
Demystifying the Performance Interference of
Co-located Virtual Network Functions

Chaobing Zeng Fangming Liu⇤ Shutong Chen Weixiang Jiang Miao Li
Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology

Abstract— Network function virtualization (NFV) decouples
network functions from the dedicated hardware and enables
them running on commodity servers, facilitating widespread
deployment of virtualized network functions (VNFs). Network
operators tend to deploy VNFs in virtual machines (VMs) due to
VM’s ease of duplication and migration, which enables flexible
VNF placement and scheduling. Efforts have been paid to provide
efficient VNF placement approaches, aiming at minimizing the
resource cost of VNF deployment and reducing the latency of
service chain. However, existing placement approaches may result
in hardware resource competition of co-located VNFs, leading to
performance degradation. In this paper, we present a measure-
ment study on the performance interference among different
types of co-located VNFs and analyze how VNFs’ competitive
hardware resources and the characteristics of packet affect the
performance interference. We disclose that the performance
interference between co-located VNFs is ubiquitous, which causes
the performance degradation, in terms of VNFs’ throughput,
ranging from 12.36% to 50.3%, and the competition of network
I/O bandwidth plays a key role in the performance interference.
Based on our measurement results, we give some advices on how
to design more efficient VNF placement approaches.

I. INTRODUCTION

As a flexible and economical technology for network func-
tion deployment, network function virtualization (NFV) draws
more and more attention nowadays. It decouples network
functions (NFs) from the dedicated hardware and enables them
running on commodity servers, showing great potential for
reducing capital expenditure of NF deployment and providing
network operators an ability of on-demand scaling [1], [2].

Leveraging the virtualization technology, virtual network
functions (VNFs) run in virtual machines (VMs) [3]. Un-
like traditional middleboxes with fixed locations [4], VNFs
could be deployed on any commodity server in the network
by migrating VMs. However, this usage model raises new
challenges. Firstly, a packet may need to go through a set of
NFs. Network operators should carefully decide where these
VNF instances should be placed among lots of candidate
servers, to reduce end-to-end latency [5]. Secondly, to improve
the resource utilization, VNF placement should keep pace
with flow fluctuations by dynamically scaling the number of

*This work was supported in part by the National Key Research &
Development (R&D) Plan under grant 2017YFB1001703, in part by NSFC
under Grant 61722206 and 61761136014 (NSFC-DFG) and 61520106005, in
part by the National 973 Basic Research Program under Grant 2014CB347800,
and in part by the Fundamental Research Funds for the Central Universities
under Grant 2014YQ001, 2014TS006 and 2017KFKJXX009. (Corresponding
author: Fangming Liu)

VNF instances. Finally, existing VNF instances may need
to be consolidated to another server to free and shut down
some servers for saving energy. Existing studies are devoted
to tackling the above challenges and offering efficient VNF
placement approaches. For instance, Li et al. design a real-time
system, NFV-RT, to dynamically provision resources to meet
traffic demand [6]. Eramo et al. propose a migration policy to
tell network operators when and where they should migrate
VNFs for saving energy [7]. And Mehraghdam et al. provide
different VNF placement approaches to satisfy changeable
requirements [8].

However, all of the existing VNF placement approaches
have not taken the performance interference among co-located
VNFs into account. Although the virtualization technology
provides a level of performance isolation among VMs, there is
still significant performance interference among VNFs running
on one shared hardware infrastructure [9]. As evidenced by our
measurement in Sec. II-B, the performance of flow monitor,
in terms of throughput in our work, decreases by 38.47%
when the flow monitor runs with an intrusion detection sys-
tem simultaneously. Performance interference among VNFs is
brought by inherent resource sharing principle across VMs. A
VNF has to compete with other co-located VNFs for resources,
including network I/O bandwidth, CPU, memory, etc. [10].
The more intense the resource competition is, the more severe
the performance interference is [11]. However, to maximize
resource utilization and reduce power consumption, network
operators tend to place VNF instances on the same physical
servers as much as they can, resulting in fierce resource
competition and severe performance interference [12]. An in-
depth understanding of performance interference among co-
located VNFs is significant for efficient VNF management.

To address the issues above, in this paper, we classify
VNFs into different types according to their packet operations,
as summarized in Table. II, and measure the performance
interference among different types of co-located VNFs. Firstly,
we verify the existence and severity of the performance
interference by measuring the performance of each VNF with
different VNF combinations. Next, we analyze the resource
usages of each VNF when VNFs run in pairs to explore
the relation between resource and performance interference.
Finally, we vary the level of packet characteristics, e.g.,
packet size and transmission rate, to evaluate their impacts on
performance interference. Our main findings are as follows:
• The performance interference among VNFs is ubiquitous

and severe, causing up to 50.3% of throughput degra-
dation, due to competitions of network I/O bandwidth,
CPU, cache, and memory.

• For different co-located VNFs, the performance inter-
ference is different. The reason is that the competi-
tive resources and competitive levels are different for
different VNF combinations. For example, VNFs with
packet-header-reading operations and VNFs with packet
rewriting operations suffer little performance interference,
because there is little resource competition between them.

• Packet operations of VNFs can be sorted in descending
order of CPU resource usage: after packet rewriting
would come link status updating, then table look-up, then
packet reading.

• In general, the performance interference among VNFs
becomes intenser when packet size rises. This is because
of longer I/O processing time and more occupied memory
pages.

• For most of VNFs, the higher the transmission rate is,
the severer performance interference the co-located VNFs
have, because of the intense competition for network I/O
bandwidth, CPU, and cache.

The performance interference measurement also provides
some insights on the VNF placement:
• The resource allocation mechanism should assign differ-

ent resources to VNFs in different scenarios. For example,
it is more necessary to allocate CPU resources to VNFs
with packet rewriting operations than to other types of
VNFs.

• The location of VNFs has significant effect on the per-
formance. For instance, when selecting where to deploy
VNF with packet rewriting operations, it is better to
choose the server where VNF with packet-header-reading
operations runs, since there is little performance interfer-
ence between them.

• During VNF placement, network operators should over-
provision VNF instances to offset performance degrada-
tion caused by co-located VNFs.

The remainder of this paper is structured as follows. We first
discuss the background of performance interference and the
motivation in Sec. II. Next, Sec. III discusses the measurement
setup. And Sec. IV presents the details of measurement. Based
on the measurement results, the insights on VNF placement
mechanism are provided in Sec. V. Then, Sec. VI discusses
the related works. Finally, Sec. VII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we prove the existence of performance
interference among VNFs from a theoretical perspective and
an experimental perspective, respectively.

A. Background
Ideally, VMs’ performance would be independent of the

activity going-on on the hardware, which is accomplished by
smart scheduling and resource allocation policies. However,
it is hard to realize the performance isolation of VMs in

real world. Specifically, for example, the hyper-threading
technology enables one physical core to simulate two logic
cores (i.e., vCPU), which means that the vCPUs allocated
to different VMs may share the same physical core and
caches. When setting up a VM, we can specify the number
of vCPU and allocate fixed size memory and disk, however,
it is technically difficult to allocate network I/O bandwidth,
memory bandwidth, and disk bandwidth to different VMs
[13]. The inherent resource sharing principle across VMs may
cause performance interference [14]. Furthermore, the effect
of resource competition may be interactional, which means the
competition of one type of resource may cause other resources’
competition [15].

As mentioned above, VNFs generally run in VMs and they
would co-locate in the same server. Obviously, the perfor-
mance interference among VNFs is inevitable and dependent
on the activities/characteristics of VNFs. For example, fre-
quent network I/O operations of VNFs may cause network I/O
bandwidth competition, and packet header detecting as well as
packet rewriting operations can lead to VNFs’ sensitivity to
CPU and cache. However, how severe is the performance inter-
ference among VNFs; what is the key role in impacting VNFs’
performance; and how do we avoid performance interference
during VNF placement? The answers still remain unknown.

B. Motivation
To reveal the severity of performance interference, we con-

duct a preliminary experiment with Snort
1 and Pktstat

2

which represent two types of VNFs listed in Table II. We
deploy Snort and Pktstat on two co-located VMs to per-
form filtering and listening functions, respectively. We utilize
another server to generate and send traffic to each VM. Table I
shows the performance of Snort and Pktstat running
separately and simultaneously. We observe that compared with
the case of running separately, when running simultaneously,
the processing capacities of Snort and Pktstat decrease
by 35.51% and 38.47%, respectively. These results validate
that the performance of VNFs will be cut down severely by
the performance interference across co-located VNFs.

TABLE I
PERFORMANCE COMPARISON BETWEEN SNORT AND PKTSTAT RUNNING

SEPARATELY AND SIMULTANEOUSLY.

Running Separately Running Simultaneously
Snort 955 Mbps 615.88 Mbps
Pktstat 169 Mbps 103.99 Mbps

We now discuss about the effect of co-located VNFs’ perfor-
mance interference and why we should take the performance
interference into account while placing VNF instances. As
illustrated in Fig. 1, there are two different types of VNFs,
VNF 1 and VNF 2, each of which deals with different traffic.
VNF 1 and VNF 2 are placed on server 1 and server 2,
respectively.

1
Snort: https://www.snort.org/

2
Pktstat: https://linux.die.net/man/1/pktstat

Server 1 Server 2

Ca
pa

ci
ty

Separately

Add VNF 3

Server 1 Server 2

Ca
pa

ci
ty

Simultaneously

VNF 1: VNF 2: VNF 3:

Fig. 1. A motivating example of co-located VNFs’ performance interference.

Now, the rising of network traffic calls for an additional
VNF 3. Network operators have two choices here: deploying
VNF 3 on server 1 or server 2, which are marked as plan
1 and plan 2, respectively. As shown in Fig. 1, both two
choices cause significant performance degradation: the pro-
cessing capacities of VNF 1 and VNF 2 running with VNF 3
separately are lower than their original processing capacities.
It is worth noting that the performance degradation of VNF 2
is higher than that of VNF 1, and VNF 3’s processing capacity
in plan 1 is higher than that in plan 2. If the network operators
overlook the performance interference and select plan 2, the
overall processing capacity will be lower than that in plan
1, resulting in much more profit loss. Moreover, each VNF
suffers from a sudden and severe performance degradation
no matter in plan 1 or plan 2 because of the interference.
Thus, the added VNF 3 may not meet the requirements of
the rising traffic, and the traffic processed by the original
VNF may suffer from longer latency due to performance
degradation, leading to unreliability. Existing VNF placement
approaches, which do not take performance interference into
account, cannot foresee this situation, resulting in unresponsive
action. If the performance interference is taken into account,
the performance degradation can be relieved by deploying
VNF 3 on server 1, and VNF placement approach will prepare
sufficient VNF instances to reduce latency. Above all, it is
essential to attach importance to the performance interference
among VNFs when adjusting the scale of VNF instances to
follow the traffic fluctuation.

III. MEASUREMENT SETUP

A. Measurement Platform

As shown in Fig. 2, we conduct the measurement on two
commodity servers, one server is virtualized and acts as the
NFV server, and the other server acts as the traffic server,
sending packets to the NFV server. Each server is configured
with an eight-core Intel Xeon E5-2620 v4 2.1 GHz CPU, a 64
GB memory, and two Intel I350 GbE network interface cards
(NICs).

In the NFV server, each VNF instance runs on an exclusive
VM and each VM instance is equipped with 1 vCPU core,
2 GB memory and 10 GB disk. We utilize the traffic server
to generate and send packets with varied packet sizes, and
transmission rates. The NFV server receives and forwards

Physical Machine

Virtual Machine

VNF 1

Protocol Stack

vNIC Driver
vNIC

Virtual Machine

VNF 2

Protocol Stack

vNIC Driver
vNIC

NIC NIC

Virtual Switch

Physical NIC Driver

Physical Machine

Traffic
Generator

Traffic
Generator

NIC NIC

Traffic Server

NFV Server

Fig. 2. The measurement platform with two servers. The left server acts as
the traffic sender and the right one is the NFV server where the VNFs run.

the packets to the corresponding VNFs. Throughput, response
time, and packet loss are measured as performance metrics by
packETH

3, siege4, and iperf
5. Note that throughput and

latency are two important performance metrics in network,
packet loss rate is consider for it can reveal the waste of
resources [16]. Besides, to analyze the relationship between
resource and performance, we record the CPU utilization,
memory usage and cache usage using dstat

6, ps command
and perf

7. Each measurement is carried out 10 times inde-
pendently, and we illustrate the average values as measurement
results.

B. VNF Setup

From the aspect of packet processing, VNFs can be divided
into six types which is shown in Table II. As depicted in Table
II, these VNFs whose operations are reading packets comprise
more than 75% in data centers, while the others which modify
the packets account for less than 25% [17]. In the later case,
Type VI is far less than Type IV and Type V, which is less
than 5%. So, we choose the top five types as our measurement
objects.

For each type of VNFs, we choose one common application
as representative, as listed in Table II. The introduction of
selected applications and their setups are discussed as follows.
• Iptables

8. Iptables is an administration tool
for IPv4 packet filtering and network address translation.
Iptables in our measurement is equiped with an IP set
which contains hundreds of IP addresses. It is used to check
the IP address of each incoming packet using IP set and
forward the packet to the destination server.
• Pktstat. Pktstat is a flow monitor displays a real-

time summary of packet activity on an interface. By reading
a packet header, Pktstat can get information about IP

3
packETH: http://packeth.sourceforge.net/packeth/Home.html

4
siege:https: //www.joedog.org/siege-home/

5
iperf: https://iperf.fr/

6
dstat: https://linux.die.net/man/1/dstat

7
perf: https://en.wikipedia.org/wiki/Perf_(Linux)

8
Iptables: https://linux.die.net/man/8/iptables

TABLE II
TYPES OF VIRTUAL NETWORK FUNCTIONS AND APPLICATIONS.

Type VNF
Examples

Ratio
Packet Processing

Application
IP Port Pay-

load
I Gateway

>75%

R – – Iptables

II
Firewall,
Monitor

R R – Pktstat

III
NIDS, DPI,

Caching
R R R Snort

IV
LoadBlancer,

Proxy

<25%

R/W – – Nginx

V NAT R/W R/W – Nginx

VI
VPN,

Compression,
Encryption

R/W R/W R/W –

address, ports, packet type and size, and using this information
to update the status of each connection.
• Snort. Snort is a network intrusion prevention system

with real-time traffic analysis. Snort will check the header
and content of each incoming packet, performing real-time
monitoring of network transmission. In our measurement, we
configure Snort with thousands of detection rules. When
detecting illegal packets, Snort will discard these packets,
send alerts to system and log anomalous actions. Such discard-
ing operations consume the processing capacity of Snort,
however, these processed and discarded packets cannot be
measure by our measurement tools. To ensure the accuracy of
measurement, Snort in our measurement only sends alerts
and writes logs, disabling the packet discarding operation.
• Nginx

9. Nginx is a proxy server, supporting HTTP,
HTTPS, TCP, UDP, etc. In our measurement, Nginx acts
as a load balancer. When the packets coming, it will modify
the packet header and forward the packet to another server.
It can also decide whether to modify the packet ports or not.
Hence Nginx can be classed as both Type IV and Type V,
as shown in Table II. In Type IV, Nginx will only modify
the IP address of incoming packets before forwarding, while
Nginx also modify the packet ports in Type V.

Note that the performance of NFs also depends on the
characteristics of packets. For example, Snort will compare
the IP address, ports and content of incoming packets with
predefined rules. The cost of this table look-up operation varies
with different packets. So, all the packets are generated with
random addresses and ports, which approximately confirms to
reality.

IV. MEASUREMENT RESULTS

In this section, we measure the performance interference
of VNFs and identify the key factors in impacting the per-
formance of VNF instances. We first investigate the impact
of different VNF combinations on performance interference.
Then, we collect and analyze each VM’s resource utilization

9
Nginx: http://nginx.org/en/

0

0.2

0.4

0.6

0.8

1

1.2

Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅳ Type Ⅴ

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t With Type Ⅰ With Type Ⅱ With Type Ⅲ

With Type Ⅳ With Type Ⅴ

Fig. 3. Normalized throughput of each VNF in different pairs.

to identify the competitive resources on VNFs’ performance
interference. Finally, we proceed to examine whether the
characteristics of packet can impact the performance variation
of VNF instances. For simplicity, we use the value when VNF
runs separately as a baseline to compute variations in other
contexts.

A. The performance interference between different VNF com-
binations

We first investigate the impact of VNF’s type on perfor-
mance interference by measuring the performances of appli-
cations mentioned in Table II when they run in pairs. The
performance metric used to evaluate performance interference
here is “normalized throughput”, the ratio of the VNF’s
throughput when it runs with other VNF to its throughput
when it runs separately.

As depicted in Fig. 4, we find that the performance in-
terference of co-located VNFs is ubiquitous. All types of
VNFs suffer performance degradation when they run in pairs,
because the normalized throughput is always less than 100%.
We utilize “target VNF” to represent the VNF on the horizontal
axis in Fig. 4, and the VNF running with the target VNF is
called “competitor”. Obviously, with different target VNF or
different competitor, the normalized throughput is different.
For example, running with Type III, the normalized throughput
of Type I is 85.41% while the normalized throughput of Type
II is 61.53%. We find that no matter what target VNF is,
when Type IV or Type V is the competitor, the normalized
throughput of the target VNF is almost the lowest. As a
result, Type IV and Type V are two of the most aggressive
among these types. We then analyze the average normalized
throughput of each type, as shown in Table III. We observe
that among all types, Type II is the most sensitive as it suffers
the lowest normalized throughput of down to 49.69%.

TABLE III
AVERAGE NORMALIZED THROUGHPUT OF TARGET VNF.

Type I II III IV V
Normalized
Throughput

87.64% 49.69% 64.07% 64.78% 61.14%

We draw the major observations of this section as follows:
• The performance interference among VNFs is ubiquitous

and severe, causing performance degradation ranging
from 12.36% to 50.3%. For different co-located VNFs,
the performance degradation is different.

• Type IV and Type V are two of the most aggressive
among tested VNFs, because the normalized throughput
of target VNF is always lowest when they are competi-
tors.

• Type II is the most sensitive among tested VNFs, as its
average normalized throughput is lowest among all VNFs.

B. Performance interference and resource competition
From the aspect of resource, the performance interference

may be caused by resource competition of network I/O band-
width, CPU, cache, and memory. In this section, firstly, we
learn the effect of network I/O bandwidth competition on
performance interference. Secondly, for other resources, we
collect each VM’s resource utilization to identify competitive
resources.

Since all VNFs belong to network I/O applications, the
network I/O bandwidth must be one of important competitive
resources [18]. Fig. 4 shows the performance degradation
when VNFs run in different pairs with network I/O bandwidth
guarantee. We find that all types of VNFs suffer network
I/O bandwidth competition as the normalized throughput
in Fig. 4 is higher than that in Fig. 3 where VNFs run
without network I/O bandwidth guarantee. The performance
degradation caused by network I/O bandwidth competition
accounts for half of total degradation, meaning that network
I/O bandwidth competition plays an important role in perfor-
mance interference between VNFs. Compared with Fig. 4, the
trends of normalized throughput are same except Type III.
Without network I/O bandwidth guarantee, more CPU resource
is consumed when VNFs receive packets from host server.
The competition of CPU resource of Type III when it runs
with Type IV or Type V is more serve, resulting in much
more performance degradation of Type III. We also find that
the level of performance interference caused by network I/O
bandwidth competition of different co-located VNF pairs is
different.

We further analyze the competition of other resources by the
measurement with network I/O bandwidth guarantee. We use
dstat, ps command and perf to record the virtualization
specific system-level characteristics, such as CPU utilization,
resident memory, the number of cache hits per second, which
help to reveal the intrinsic factors causing performance inter-
ference. In the following, we analyze the relationship between
performance interference and these system status by type of
VNFs.

1) Type I: As illustrated in Fig. 5, we find that the perfor-
mance degradation of Type I, the packet loss rate as well as
the response time are small, no matter which type of VNF
it runs with. And Type I’s performance is barely affected
when it runs with Type IV or Type V. Among all system
status, the variation of normalized throughput generally keeps

pace with CPU utilization, showing that Type I is sensitive
to CPU resource. We also observe that the number of cache
hits has impact on the performance of co-located VNFs. Note
that although the CPU utilization of Type I when it runs with
Type V is higher than the utilization when it runs with Type
IV, the normalized throughput is lower. The reason lies in the
number of cache hits that more cache hits help to decrease the
CPU utilization used to wait for packet accessing. Moreover,
for Type I, resident memory is only used to store rule set
rather than processing packets, as this type of VNF will discard
packets immediately when its processing capacity cannot keep
up with incoming packets. The resident memory of Type I is at
about 980 kBytes no matter what VNF it runs with, meaning
that memory resource is not the sensitive resource for Type I.

2) Type II: As shown in Fig. 6, the fluctuation of packet
loss rate and response time are consistent with the trend of
performance degradation. Like Type I, it is easy to conclude
that Type II is sensitive to CPU resource as the variation of
normalized throughput is consistent with CPU utilization when
Type II runs with Type I and Type III. When running with Type
IV and Type V, CPU utilization of Type II almost reaches to
100%, intense competition for CPU resource causes significant
performance degradation of Type II. Furthermore, unlike Type
I, the number of cache hits of Type II when it runs with Type
I is higher than that when it runs with Type III, however, the
trend of normalized throughput is opposite. This phenomenon
implies that the impact of the number of cache hits is too
limited to offset the effect of CPU resource and Type II is
more sensitive to CPU rather than cache. We also observe
that the variation of resident memory is limited when Type II
runs with other VNFs, which means that memory resource is
not the sensitive resource of Type II.

3) Type III: Fig. 7 depicts the system status of VM on
which Type III runs. The packet loss rate and the response
time are small. And the normalized throughput of Type III
when it runs with Type IV or Type V is higher than that when
it runs with Type I and Type II, which is generally consistent
with CPU utilization. It means that Type III is sensitive to
CPU resource. Similarly to Type I, the number of cache hits
also has impact on the performance of Type III. Although the
CPU utilization of Type III when it runs with Type I is higher
than the utilization when it runs with Type II, the normalized
throughput is lower. That is because that more cache hits
mean less CPU utilization used to wait for packet accessing.
Resident memory is constant with different competitors and is
ten times as much as that of other VNFs, showing that Type
III is insensitive and intensive to memory resource.

4) Type IV: As described in Fig. 8, the normalized through-
put of Type IV takes a significant decreasing trend when it runs
with different VNFs from Type I to Type V, while packet loss
rate and response time are opposite. No matter which type
the competitor is, the packet loss rate is less than 2% and the
response time ranges from 0.1s to 0.2s. We find that the CPU
utilization always reaches 100%, showing a hard competition
for CPU resource. The measurement results from Fig. 5 to Fig.
9 also show that, all tested types of VNFs can be sorted in

0

0.2

0.4

0.6

0.8

1

1.2

Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅳ Type Ⅴ

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t With Type Ⅰ With Type Ⅱ With Type Ⅲ

With Type Ⅳ With Type Ⅴ

Fig. 4. Normalized throughput of each VNF in
different pairs with network I/O bandwidth guar-
antee.

N
o
rm

a
liz

e
d

T
h
ro

u
g
h
p
u
t
(%

)

90

95

100

P
a
ck

e
t
L
o
ss

R
a
te

 (
%

)

0

1

2

R
e
sp

o
n
se

T
im

e
 (

s)

×10-5

0

0.5

1

C
P

U

U
til

iz
a
tio

n
 (

%
)

0

5

10

R
e
si

d
e
n
t

M
e
m

o
ry

 (
kB

yt
e
s)

960

980

1000

T
h
e
 N

u
m

b
e
r

o
f

C
a
ch

e
 h

its
/s

e
c ×106

1

1.5

2

Fig. 5. VM’s resource utilization where Type I
runs.

N
o
rm

a
liz

e
d

T
h
ro

u
g
h
p
u
t
(%

)

60

80

100

P
a
ck

e
t
L
o
ss

R
a
te

 (
%

)

0

20

40

60

R
e
sp

o
n
se

T
im

e
 (

s)

×10-5

0

0.5

1

C
P

U

U
til

iz
a
tio

n
 (

%
)

80

90

100

R
e
si

d
e
n
t

M
e
m

o
ry

 (
kB

yt
e
s)

4000

4200

4400

4600

4800

T
h
e
 N

u
m

b
e
r

o
f

C
a
ch

e
 h

its
/s

e
c ×106

0.5

1

1.5

Fig. 6. VM’s resource utilization where Type II
runs.

N
o

rm
a

liz
e

d

T
h

ro
u

g
h

p
u

t
(%

)

90

92

94

96

98

P
a

ck
e

t
L

o
ss

R
a

te
 (

%
)

0

2

4

R
e

sp
o

n
se

T
im

e
 (

s)

×10-5

0

0.5

1

C
P

U

U
til

iz
a

tio
n

 (
%

)

20

30

40

50

R
e

si
d

e
n

t

M
e

m
o

ry
 (

kB
yt

e
s) ×105

4.6

4.8

5

T
h

e
 N

u
m

b
e

r
o

f

C
a

ch
e

 h
its

/s
e

c ×106

0.5

1

1.5

2

Fig. 7. VM’s resource utilization where Type III
runs.

N
o

rm
a

liz
e

d

T
h

ro
u

g
h

p
u

t
(%

)
60

80

100

P
a

ck
e

t
L

o
ss

R
a

te
 (

%
)

0

2

4

R
e

sp
o

n
se

T
im

e
 (

s)

0

0.1

0.2

C
P

U

U
til

iz
a

tio
n

 (
%

)

60

80

100

R
e

si
d

e
n

t

M
e

m
o

ry
 (

kB
yt

e
s)

1000

2000

3000

4000

T
h

e
 N

u
m

b
e

r
o

f

C
a

ch
e

 h
its

/s
e

c ×106

5

10

15

Fig. 8. VM’s resource utilization where Type IV
runs.

N
o

rm
a

liz
e

d

T
h

ro
u

g
h

p
u

t
(%

)

60

80

100

P
a

ck
e

t
L

o
ss

R
a

te
 (

%
)

0

2

4

R
e

sp
o

n
se

T
im

e
 (

s)

0

0.1

0.2

C
P

U

U
til

iz
a

tio
n

 (
%

)

60

80

100

R
e

si
d

e
n

t

M
e

m
o

ry
 (

kB
yt

e
s)

1000

2000

3000

4000

T
h

e
 N

u
m

b
e

r
o

f

C
a

ch
e

 h
its

/s
e

c ×106

5

10

15

Fig. 9. VM’s resource utilization where Type V
runs.

descending order of CPU resource usage: after Type V would
come Type IV, then Type II, then Type III, then Type I. When
the competitor consumes less CPU resource, the blocking time
of Type IV is shorter and Type IV can get CPU time slices
more quickly, leading to better performance. Moreover, like
cache hits of Type I, resident memory also has effect on
the performance of Type IV: more resident memory means
more space to store packets to be processed. And hence the
performance of Type IV when it runs with Type II is higher
than that when it runs with Type III, although Type II needs
more CPU resource than Type III. Furthermore, we find a
trend of decreasing normalized throughput of Type IV as the
resident memory decreases except when it runs with Type V
whose representative application is the same as Type IV. The
reason is that Type IV and Type V own lots of sharing memory,
making more resident memory. Besides, the number of cache
hits has little effect on Type IV’s performance, showing Type
IV is insensitive to cache resource. Type IV is intensive to
cache resource, as the number of its cache hits is an order of
magnitude larger than other types of VNFs.

5) Type V: Fig. 9 illustrates that the trend of performance
metrics and resource utilization state of Type V is almost
the same with that of Type IV in Fig. 8. The difference
is that the additional port-rewriting operations of Type V
make the CPU resource competition severer, causing higher
performance degradation.

According to these analyses, we conclude the major obser-
vations as follows:

• The performance interference among VNFs is caused

by resource competition. Specially, the network I/O
bandwidth competition plays a key role in performance
interference.

• VNF’s performance has a positive correlation with the
amount of its sensitive resources. Among all tested types
of VNFs, they are all sensitive to network I/O bandwidth
and CPU resource. Besides, both Type I and Type III are
also sensitive to cache resource; both Type IV and Type
V are also sensitive to memory resource.

• Intensive resource has no effect on the performance
interference. Among all tested types of VNFs, Type III
is intensive to memory resource, and Type IV as well as
Type V are intensive to cache resource.

• All tested types of VNFs can be sorted in descending
order of CPU resource usage: after Type V would come
Type IV, then Type II, then Type III, then Type I, and their
corresponding operations are packet rewriting, link status
updating, table look-up, and packet reading, respectively.

C. The impact of the characteristics of packet on performance
interference

In this section, we proceed to investigate whether the packet
characteristics impact the performance of VNF instances. As
discussed in Sec. IV-B, the trends of response time and
packet loss rate are generally consistent with the normalized
throughput, hence we only utilize normalized throughput as
the performance metric in the following analyses. Moreover,
we find that the performance of Type I shows the same trend
with Type III when packet characteristics vary, and they also
have the same sensitive resources. The same observations hold

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 1024N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Size (B)

With Type Ⅱ With Type Ⅲ With Type Ⅳ
With Type Ⅴ

Fig. 10. Normalized throughput of Type I with
different packet sizes.

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 1024N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Size (B)

With Type Ⅰ With Type Ⅲ With Type Ⅳ
With Type Ⅴ

Fig. 11. Normalized throughput of Type II with
different packet sizes.

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 1024N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Packet Size (B)

With Type Ⅰ With Type Ⅱ With Type Ⅲ
With Type Ⅴ

Fig. 12. Normalized throughput of Type IV with
different packet sizes.

0

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transmission Rate (Mbps)

With Type Ⅱ With Type Ⅲ With Type Ⅳ
With Type Ⅴ

Fig. 13. Normalized throughput of Type I with
different transmission rates.

0

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transmission Rate (Mbps)

With Type Ⅰ With Type Ⅲ With Type Ⅳ
With Type Ⅴ

Fig. 14. Normalized throughput of Type II with
different transmission rates.

0

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transmission Rate (Mbps)

With Type Ⅰ With Type Ⅱ With Type Ⅲ
With Type Ⅴ

Fig. 15. Normalized throughput of Type IV with
different transmission rates.

for Type IV and Type V. Thus, we select Type I, Type II, and
IV as the representatives in the following measurements.

Different packet sizes. To see the impact of packet size
on the performance interference among co-located VNFs, we
utilize the traffic server to send packets with sizes from 64 B
up to 1024 B, at the transmission rate of 1 Gbps. The results
of three representative VNFs are shown in Fig. 10, Fig. 11,
and Fig. 12, respectively.

As shown in Fig. 10, the normalized throughput of Type I
is stable when the packet size varies from 64 B to 256 B, and
it declines when the packet size is no less than 512 B. When
the packet size becomes larger, each network I/O request needs
to transmit more data, resulting in longer I/O processing time
and more occupied memory pages, which is also called “world
switch” cost. That is the reason of performance degradation
of Type I. As the world switch cost of 512 B of packet size
is larger than that of 1024 B of packet size, the normalized
throughput of Type I rises when the packet size increases
from 512 B to 1024 B [19]. We also find that the normalized
throughput has the most unapparent decline when Type I
runs with Type II. As we mentioned in Sec. IV-B, Type I is
sensitive to cache resource. When the packet size increases
under the same network transmission rate, the number of
packets decreases. Less cache is needed to store packet headers
during Type I’s and Type II’s computing, leading to less cache
resource competition, and hence less performance degradation.

Now, we look at Fig. 11. In the case of Type II running with
Type I or Type III, the normalized throughput raises when the
packet size increases from 64 B to 256 B. This is because the
cache competition between Type II and other VNFs can be
mitigated when packet size rises. And then the performance

decreases when the packet size further increase because of the
world switch cost. However, when Type II runs with Type
IV or Type V, the performance of Type II keeps growing
when the packet size increases. As mentioned in Sec. IV-B, the
performances of Type IV and Type V are affected by blocking
time. When packet size becomes larger, Type II needs more
CPU time to receive packets, leading to longer blocking time
of Type IV and Type V. The performances of Type IV and
Type V decline, resulting in less resources consumed by Type
IV and Type V. Thus, Type II has more resources to improve
performance. Moreover, when the packet size is larger than
256 B, we find that the increasing rate of Type II’s normalized
throughput declines, whose reason lies in the world switch
cost.

Fig. 12 shows that Type IV’s throughput decreases when
packet size varies from 64 B to 1024 B. As mentioned above,
the performance of Type IV is limited by longer blocking time
when packet size increases. And the world switch cost also
pays an effort to lower normalized throughput. The level of
performance degradation when Type IV runs with Type II or
Type V is severer than it runs with Type I or Type III, because
the CPU competition is more serve when Type IV runs with
VNFs which consume more CPU resource.

Different transmission rates. To further understand the
impact of transmission rate on the performance interference
among co-located VNFs, we utilize the traffic server to send
fixed-size packets with transmission rates from 200 Mbps to
up to 1 Gbps. The results of three representative VNFs are
shown in Fig. 13, Fig. 14, and Fig. 15, respectively.

As shown in Fig. 13, the normalized throughput of Type
I is always less than 100%, and the performance degrada-

tion becomes more and more severe when the transmission
rate increases. As mentioned above, network I/O bandwidth
competition plays a key role in performance interference.
As the transmission rate rises, network workloads become
heavier, leading to fiercer network I/O bandwidth competition.
Moreover, more CPU resource is consumed because VNFs
receive more packets. Meanwhile more cache resource is
consumed by packets as transmission rate rises. We observe
that the normalized throughput of Type I when it runs with
Type II or Type III is lower than it runs with Type IV and Type
V. The reason lies on the cache resource competition between
Type I and Type II or Type III is severer when transmission
rate increases.

From Fig. 14, we can see clearly that the normalized
throughput of Type II decreases when the transmission rate
increases from 200 Mbps to 1000 Mbps because of com-
petitions of network I/O bandwidth, CPU and cache. When
Type II runs with Type I or Type III, we observe that the
normalized throughput of Type II has a sharp decline when the
transmission rate varies from 400 Mbps to 600 Mbps because
CPU resource becomes the bottleneck. As depicted in Fig. 6,
the CPU utilization of Type II is higher than 80% when it runs
with Type I or Type III with network I/O bandwidth guarantee,
showing its strong demand for CPU resource. As transmission
rate increases, more CPU resource is consumed by packet
receiving. When transmission rate exceeds 400 Mbps, the
limited CPU resource can no more meet Type II’s resource
demand.

Finally, Fig. 15 shows that due to the competition for
network I/O bandwidth, CPU resource, and memory resource,
the level of Type IV’s throughput degradation becomes higher
as the transmission rate raises. As transmission rate rises,
more packets need to be stored in memory, resulting in strong
memory competition. We also observe that the normalized
throughput of Type IV is highest when Type I is the com-
petitor, and it has poorest performance when Type V is the
competitor no matter what transmission rate is. It implies that,
Type V is the most aggressive to Type IV and Type I has the
weakest aggression on Type IV among all tested VNFs.

We draw the major observations of this section as follows:
• In general, for all tested types of VNFs except Type II, the

performance of VNFs becomes poorer when the packet
size increases. This is because of the higher world switch
cost and longer blocking time.

• When Type II runs with Type IV or Type V, its perfor-
mance improves when packet size rises, due to mitigated
cache resource competition and more resource it owns.

• For most of VNFs, the performance interference between
co-located VNFs becomes severer when the transmission
rate rises, because of the intense competition for network
I/O bandwidth, CPU, and cache.

V. DISCUSSION

The measurement results of the performance interference
among co-located VNFs have many potential applications.
In this section, we provide some suggestions on how to

utilize our observations and analyses to provide an efficient
VNF placement approach, from the perspectives of resource
allocation, location selection, and dynamic scaling.

Resource Allocation. The resource allocation mechanism
should assign different resources to VNFs in different sce-
narios. First, different VNF instances need different types
of and the different number of resources. For example, as
mentioned in Sec. IV-B, Type III is intensive to memory
resource while Type IV and Type V are intensive to cache
resource. And VNFs with packet rewriting or link status
updating operations consume more CPU resource than those
only with packet reading operations. Second, the level of
performance interference generally depends on the allocated
resources. For example, when placing Type I and Type III,
who are both sensitive to cache, on a same physical server,
it is better to bind each VNF with different physical core to
partly avoid cache competition.

Location Selection. The location of VNFs also has sig-
nificant effect on the performance. Network operators must
carefully decide where VNF instances should be placed to
reduce the end-to-end latency. According to our measurement
results, the level of performance interference is different with
different co-located VNFs, and the operators could reach
higher performance goals if placing VNFs properly. For exam-
ple, among the tested VNFs, Type V is the most aggressive to
Type IV while Type I has the weakest aggression to Type IV.
That is, it is better to place Type IV to where Type I locates,
rather than to the server where Type V runs.

Dynamic Scaling. As illustrated in Sec. IV, the performance
interference among VNFs is ubiquitous and severe. However,
the existing VNF placement approaches are all based on
an impractical hypothesis that the resource and performance
isolation between co-located VMs is thorough, leading to
inefficient VNF instance scaling. For example, if we need a
Type II instance to deal with additional traffic, the existing
approaches would like to initialize an instance whose capacity
exactly meets the traffic demand. However, as mentioned
in Sec. IV-A, the performance of this instance may suffer
up to 50.3% of throughput degradation due to performance
interference. And the actual processing capacity cannot meet
the demand immediately, leading to packet loss and latency.
To take another example, suppose that Type I and Type II
locate in a same physical server and deal with different traffic.
When the network traffic processed by Type I has a sharp
decline, the existing approaches would like to recall Type I.
This decision would eliminate the performance interference
and improve Type II’s performance, which, however, leads to
resource over-provisioning and hence waste of resources.

VI. RELATED WORK

In this section, we briefly review existing work on NFV
measurement and VM interference, as well as VNF placement.

NFV measurement. Wu et al. propose PerfSight, a system
detecting the root causes of performance problems in software
data planes by extracting and analyzing comprehensive low-
level information of the various elements (e.g., pNIC driver

and virtual switches) [10]. Xu et al. take the first step to
investigate the power efficiency of different NFV implemen-
tations with extensive experiments [20]. Different from these
works that focus on the software data planes’ performance
detecting or energy efficiency of VNF, our work is devoted to
investigating performance interference of co-located VNFs.

VM interference. Park et al. study the performance inter-
ference of memory thrashing in virtualized cloud environment
and offer some solutions to mitigate the effects of performance
interference [21]. Different from this work, our work not only
pays attention to the performance interference of memory
thrashing but also the performance interference brought by
other reasons, such as CPU, cache. Bu et al. present a task
scheduling strategy to mitigate interference for MapReduce ap-
plications in virtual clusters, which preserves task data locality
at the same time [22]. Xu et al. present a heterogeneity and
interference-aware VM provisioning framework named Heifer,
which offers corresponding configuration of VM based on
the performance predictions of MapReduce applications [23].
Nonetheless, our work focuses on the performance interference
of VNFs rather than that of MapReduce applications.

VNF placement. Moens et al. present and evaluate an inte-
ger linear program named VNF-P, which focuses on allocating
resources for NFV service chains in a hybrid scenario [24].
Mehraghdam et al. propose a model depicting the service
chain which composes of NFs, and allocate resource with
a mixed integer quadratically constrained program [8]. Sang
et al. solve the problem of joint placement and allocation of
VNF instances in a new NFV-enabled networking paradigm
using greedy algorithms [3]. Ma et al. present a traffic-
aware VNF placement approach, which also takes account
of the relationships among VNFs [4]. These works, however,
have not taken the performance interference among co-located
VNFs into account. Our work measures the performance
interference among co-located VNFs and provides insights
on VNF placement, offering opportunities to improve and
supplement VNF placement approaches.

VII. CONCLUSION

In this paper, we classify VNFs into different types accord-
ing to their packet operations, and present the study on perfor-
mance interference among different types of co-located VNFs.
To investigate the root cause of performance interference, we
measure the VNFs’ performance with different combinations
of co-located VNFs, varying packet sizes and transmission
rates. We find that the performance interference among VNFs
is ubiquitous and severe, while the interference level shows
differences with different groups of co-located VNFs. The
reason is that the co-located VNFs compete for resources,
usually network I/O bandwidth, CPU, cache, and memory. We
also observe that the performance interference will be severer
when packet size and transmission rate increase. Accordingly,
we give some suggestions on how to make the VNF placement
approach more efficient.

REFERENCES

[1] NFV white paper. [Online]. Available: https://portal.etsi.org/NFV/NFV_
White_Paper.pdf

[2] NFV white paper2. [Online]. Available: https://portal.etsi.org/NFV/
NFV_White_Paper2.pdf

[3] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in Proc. of IEEE INFOCOM, 2017.

[4] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in Proc. of IEEE
INFOCOM, 2017.

[5] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Proc. of IEEE ICDCS, 2017.

[6] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in Proc. of IEEE INFOCOM, 2016.

[7] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Transactions on Networking, pp. 1–18, 2017.

[8] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE International Conference on
Cloud Networking, 2014.

[9] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, “iAware: Making live
migration of virtual machines interference-aware in the cloud,” IEEE
Transactions on Computers, pp. 3012–3025, 2014.

[10] W. Wu, K. He, and A. Akella, “Perfsight: Performance diagnosis for
software dataplanes,” in Proc. of ACM IMC, 2015.

[11] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of I/O workload in virtualized cloud environ-
ments,” in IEEE International Conference on Cloud Computing, 2010.

[12] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in IEEE International
Conference on Cloud Networking, 2015.

[13] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in Proc. of ACM SoCC, 2011.

[14] R. C. Chiang and H. H. Huang, “Tracon: Interference-aware schedul-
ingfor data-intensive applicationsin virtualized environments,” IEEE
Transactions on Parallel and Distributed Systems, pp. 1349–1358, 2014.

[15] Q. Huang and P. P. Lee, “An experimental study of cascading perfor-
mance interference in a virtualized environment,” SIGMETRICS Per-
form. Eval. Rev., 2013.

[16] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakr-
ishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic
backpressure and scheduling for nfv service chains,” in Proc. of ACM
SIGCOMM, 2017.

[17] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc. of
USENIX NSDI, 2012.

[18] Y. Mei, L. Liu, X. Pu, and S. Sivathanu, “Performance measurements
and analysis of network i/o applications in virtualized cloud,” in IEEE
International Conference on Cloud Computing, 2010.

[19] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. of Workshop on Experimental Computer Science, 2007.

[20] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the energy efficiency
of network function virtualization,” in Proc. of IEEE/ACM IWQoS, 2016.

[21] J. Park, Q. Wang, J. Li, C. A. Lai, T. Zhu, and C. Pu, “Performance
interference of memory thrashing in virtualized cloud environments:
A study of consolidated n-tier applications,” in IEEE International
Conference on Cloud Computing, 2016.

[22] X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-aware task
scheduling for mapreduce applications in virtual clusters,” in Proc. of
ACM HPDC, 2013.

[23] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware virtual
machine provisioning for predictable performance in the cloud,” IEEE
Transactions on Computers, pp. 2470–2483, 2016.

[24] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in IEEE International Conference on
Network and Service Management, 2014.

