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Abstract—Datacenter demand response is envisioned as a promising tool for mitigating operational stability issues faced by smart
grids. It enables significant potentials in peak load reduction and facilitates the incorporation of distributed generation. Monetary
refund from the smart grid can also alleviate the cloud’s burden in escalating electricity cost. However, the current demand response
paradigm is inefficient towards incentivizing a cloud service provider (CSP) that operates geo-distributed datacenters. To incentivize
CSP participation, this work presents an auction mechanism that enables smart grids to voluntarily submit bids to the CSP to procure
diverse amounts of demand response with different payments. To maximize the social welfare of the auction, the CSP that acts as
the auctioneer needs to solve the winner determination problem at large-scale. By applying the proximal Jacobian alternating direction
method of multipliers, we propose a distributed algorithm for each datacenter to solve a small-scale problem in a parallel fashion.
Desirable properties of the proposed auction, such as social welfare maximization and truthfulness are achieved through Vickrey-Clarke-
Groves (VCG) payment. Through extensive evaluations based on real datacenter workload traces and IEEE 14-bus test systems, we
demonstrate that our incentive mechanism constitutes a win-win mechanism for both the geo-distributed cloud and the smart grid.

Index Terms—Geo-distributed datacenters, smart grid, demand response, incentive mechanism, distributed algorithm.
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1 INTRODUCTION

THE recent years have witnessed new emerging technol-
ogy advances in the ICT sector, among which two are

widely recognized as having profound impacts. The first
is the internet-scale cloud services that are deployed over
geographically distributed datacenters, indispensable for a
wide variety of applications and serving both enterprises
and end users. The second is the evolution from the tradi-
tional power grid to the smart grid, enabling sustainable,
cost-effective, and environmental-friendly electric power
generation, distribution and consumption.

It is readily acknowledged, however, that the further
developments of both cloud computing and smart grid are
facing their respective challenges. Specifically, for large-scale
cloud service providers, the annual electricity bill can be
as high as $67M [1], a number continuing to rise with
the flourishing of cloud services and the rise of electricity
prices. Meanwhile, the smart grid that integrates a large
number of distributed generations such as solar arrays and
wind turbines also faces severe operation instability and
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hence economic issues, due to the intermittent nature of
distributed generation. For example, the enormous wind
generation in May 2014 in Germany incurred 5 hours of
continuous negative electricity prices [2].

The aforementioned concerns of both the cloud and the
smart grid can be alleviated through appropriate cooper-
ation between the two sides. It has been widely recog-
nized that, datacenters can provide a great potential for
demand response, since power consumption at a datacenter
is often of very large volumes yet exhibiting an elastic
nature. Specifically, datacenters are estimated to consume
about 8% of world wide electricity by 2020, while an in-
dividual datacenter can make up 50% of the power load
of a distribution grid nowadays [3] (e.g., Facebook’s dat-
acenter in Crook County, Oregon). Besides its sheer vol-
ume, datacenter power consumption is a natural target in
demand response as it comes from not only interactive
workloads driven by user requests that can be split to geo-
distributed datacenters, but also back-end batch workloads
(e.g., indexing and web crawling) that are elastic to resource
allocation and thus power consumption. This feasibility can
be exploited to adjust the power consumption of the geo-
distributed datacenters when demand response is required.
While for the cloud, participation in the demand response
program can help to ease the burden from its growing
electricity cost.

Unfortunately, despite the fact that calculated demand
response can lead to a win-win solution for both the cloud
and the smart grid, in reality the cloud contributes little
to demand response, as pointed out by the Green Grid
Association, “utilities and datacenters do not mix yet” [4]. This
is due to challenges and hurdles from both technical and
economic aspects. On the technical side, ensuring the avail-
ability and desired performance for the risk-sensitive data-
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Fig. 1: The smart grid and datacenter system overview, as well as the
process of our proposed demand response auction.

centers is being addressed [5]. While on the economic side,
the most commonly adopted demand response program,
Coincident Peak Pricing (CPP), is known to be inefficient and
poorly designed for datacenter participation [5], for cost
savings may be insufficient to incentivize datacenters to
automatically respond. Furthermore, most existing demand
response schemes (see [5] and the references therein) are
designed for the stability of each regional smart grid; when
a cloud runs on top of geo-distributed datacenters and
thus couples multiple smart grids, the competition in the
price of demand response would no doubt incur a loss in
social efficiency. Consequently, in line with the suggestion
of the Green Grid Association — “energy efficiency programs
need to place greater focus on marketing and outreach” [4], an
economically efficient demand response program tailored
for geo-distributed datacenters to realize their potential is
needed.

This work aims to design an efficient mechanism for
trading demand response between the CSP and smart grids.
The proposed solution for incentivizing CSP participation
and social cost minimization for demand response is an
auction with multiple buyers (smart grids) and a single
seller (CSP). Unlike the current demand response programs
(e.g., [5]–[8]) in which the CSP passively accepts the prices
given by the smart grids, auction enables each smart grid to
voluntarily submit multiple bids to express its willingness
to pay for different levels of power demand, and then
the CSP autonomously determines the winning bids and
real payment of each smart to maximize the social welfare
and attain its own benefit. The proposed divisible auction
framework is illustrated in Fig. 1: each regional smart grid
first submits the bidding function, i.e., the collection of all its
feasible bids to the corresponding datacenter, to express its
willingness to pay for different levels of power demand.
After receiving the bidding functions from all the smart
grids, the CSP jointly optimizes the winning bid of each
smart grid as well as workload management, i.e., how much
interactive workload and batch workload to be allocated to
each datacenter. This is achieved through maximizing the
social welfare, defined as the aggregate satisfaction from
both the CSP and smart grids. Finally, the CSP computes
a truthful payment for each smart grid, which incentivizes
them to reveal their true utility.

The mechanism design in our demand response setting

is rather challenging, with two salient differences from the
design of conventional auction mechanisms: (i) each smart
grid has a non-monotonic bidding function, and (ii) the
utility of the CSP includes not only the payments from
the smart grids, but also the electricity charges, the rev-
enue from both interactive workloads and batch workloads.
Thus, instead of relying on existing centralized approaches
for mechanism design, we propose to effectively settle the
large-scale winner determination problem by exploiting the
distributed computing capacity of the cloud. Leveraging
the recently developed multi-block alternating direction
method of multipliers (ADMM), we efficiently maximize the
social welfare, i.e., solve the winner determine problem, in
a parallel and fully distributed manner. Though different
from conventional auctions, by adapting the classic VCG
mechanism to determine the payment of each smart grid,
the proposed mechanism is proven to achieve desirable
economic properties that include truthfulness, economic
efficiency and individual rationality.

As an extension of the preliminary conference version
[9], this work extends the combinatorial auction in [9]
to a divisible auction which better captures the divisible
nature of power demand. Specifically, for general bidding
setup, the combinatorial auction approximately maximizes
the social welfare in a decentralized and near-optimal man-
ner using Gibbs sampling and 2-block ADMM. While for
convex bidding function, the divisible auction optimally
maximizes the social welfare in a fully distributed manner
by leveraging the recently developed multi-block ADMM
approach. Extensive trace-driven simulations in Sec. 6 verify
the effectiveness of both the combinatorial auction and the
divisible auction.

2 BACKGROUND AND RELATED WORK

2.1 Background and motivation
Datacenter demand response. Demand response is iden-
tified as a priority for the future smart grid, by both
the National Institute of Standards and Technology (NIST)
and the Department of Energy (DoE) [5]. Among all the
end users, such as factories, buildings, residential houses
and electrical vehicles, datacenters constitute a particularly
promising segment, as verified by the Lawrence Berkeley
National Laboratories (LBNL): “Datacenters are excellent
candidates with great potential for smart grid demand re-
sponse” [5]. This is because (1) datacenters are extremely
large loads (typically tens of MW) in the smart grid, as
exemplified by Facebook’s datacenter in Crook County,
Oregon, which makes up 50% of the load in the power
grid [3]. (2) Datacenter power drawn from the grid is highly
elastic, since it can be flexibly rectified by a wide variety of
approaches including hardware-based, software-based and
power source-based, as summarized in Table 1.
Demand response from datacenter and other loads: sim-
ilarities and differences. As discussed, datacenters can
take various approaches to do demand response; in real-
ity, similar approaches are also applicable to other power
consumers. For example, a factory or a residential home can
shutdown devices (e.g., lamps) when not needed. For the
air conditioners widely deployed in buildings, the temper-
ature set points may be flexibly adjusted within a tolerable



3TABLE 1: Demand response strategies and their advantages/disadvantages.
Category Strategy Advantages Disadvantages

Hardware-based
Idle Server shutdown/sleep [10] Idle power reduction Vulnerability to traffic bursty
Temperature adjustment [11] Cooling power reduction Hardware reliability degradation

Software-based Workload management [11] Quick response time Service quality degradation

Power source-based
Local Generation [1] Large controlling range High cost and emission
Energy Storage [1] Quick response time Vulnerability to power emergency

range. Similarly, local generation is becoming standard for
power consumers sensitive to power emergencies, and can
be started when demand response is required. Finally, due
to the promotion of commercial companies such as Tesla,
energy storage is gaining popularity in electrical vehicles,
buildings and homes, which can jointly make a great differ-
ence in demand response.

Perhaps the most significant difference between data-
center demand response and demand response from other
loads is the freedom in workload (or power load) manage-
ment. For other loads, power load management is typically
performed through temporal load shifting, i.e., a power user
may advance or postpone its load to avoid the peak-hours.
For geo-distributed datacenters, workload management can
be realized in the form of spatial load shifting (i.e., geographi-
cal load balancing) and batch workload scheduling. In terms
of geographical load balancing, the interactive workload
driven by front-end user requests can be dispatched to
datacenters with sufficient power supply. Except for the
interactive workload, datacenters nowadays commonly pro-
cess batch workload such as data mining and web crawling
frameworks that reside constantly at the back-end. Different
from interactive workload that requests fixed amount of
resources, batch workload is elastic to resource allocation
and power consumption. Unfortunately, both geographical
load balancing and batch workload scheduling would incur
service quality degradation, since the former may increase
the RTTs and the latter may compromise output accuracy.
Why a new market for datacenter demand response?
Power load shaping is traditionally achieved via real-time
electricity pricing. Unfortunately, for geo-distributed data-
centers, the above traditional scheme may not work well,
due to the following distinct features of datacenters: (1)
datacenters are extremely large energy consumers, they typ-
ically sign long-term energy purchase contracts with gener-
ators at locked-in electricity price, in order to avoid the risk
of electricity price volatility. For example, in 2010 and 2011,
Google secured two 20-years contracts with wind farms to
power its datacenters in Iowa and Oklahoma, respectively
[12]. (2) In traditional dynamic electricity pricing program,
the smart grid dynamically adapts the power price to shape
the power consumption of price-sensitive users. As the
power demand of traditional users exhibits a strong periodic
pattern, the smart grid can readily predict the behaviour of
the users, by using some machine learning based methods
that have been extensively studied and verified in literature
[13]. However, for a geo-distributed cloud, the workload is
allocated to multiple geo-distributed datacenters based on
multi-criteria as exemplified by energy cost, performance,
carbon emission, etc [10], [11], [14]. Nevertheless, since the
smart grids are unaware of the private parameters such as
power usage efficiency, server capacity and performance
coefficient of those geo-distributed datacenters [14], the
decision-making process of geographical load balancing is a
black-box for those smart grids. As a result, the smart grids

are unable to confidently evaluate the datacenters’ response
to their electricity prices.

The above analysis shows how long-term energy con-
tracts and geo-distributed nature of datacenters inhibit the
effectiveness of current demand response programs, this is
inline with recent literature on datacenter demand response.
For example, both the utility program influence survey
conducted by the Green Grid Association [4] and a recent
report [15] show that datacenters contribute little to demand
response. To address this problem, the Green Grid Associ-
ation [4] and Lawrence Berkeley National Laboratory [16]
have suggested that market design for datacenter demand
response deserves more attention. Following this thread, we
proposed an auction-based incentive mechanism tailored
for geo-distributed datacenters. In the proposed mechanism,
each smart grid first voluntarily submits a bidding function
to the CSP to express its willingness to pay for different
levels of power demand, then the CSP determines the power
load and the real payment of each datacenter by maximizing
the social welfare.

Since the payment for demand response is determined
by the CSP, some readers may wonder whether the pro-
posed program subverts traditional incentive programs and
it would be manipulated by the CSP. Actually, our proposed
market only introduces moderate changes to the traditional
incentive program and would not harm the position of the
smart grids. First, our proposed program can co-exist with
and supplement to the existing demand response programs
such as dynamic electricity pricing. Specifically, by enhanc-
ing dynamic electricity pricing with our proposed program,
the inefficiency of the former on demand response can be
alleviated. Besides, in our proposed program, each smart
grid submits a bidding function to the CSP, though the final
payment is determined by the CSP, it could not exceed the
bidding price which is controlled by the smart grid. For
the above reasons, we believe that our proposed market is
friendly to the stringent regulation of electricity market.

2.2 Related work
To curb the escalating energy cost, a large body of recent
research has been devoted to improve energy efficiency
of datacenters. To this end, power proportional techniques
such as server right-sizing (i.e., shutting down idle servers)
and dynamic voltage and frequency scaling (DVFS) can
be applied to reduce the server power consumption [5],
[10], [17], geographical load balancing for workload can be
adopted to exploit the spatial diversities of electricity, car-
bon emission and cooling efficiency at different datacenter
locations [10], [11], [18]. While for delay tolerant workload,
joint optimization on geographical load balancing and tem-
poral workload scheduling can be applied to reduce the en-
ergy cost of geo-distributed datacenters [19], [20]. Our work
is supplementary to the above literature, since an efficient
market for datacenter demand response further reduces the
energy-related cost achieved by the above strategies.
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The interaction between a geo-distributed cloud and a
smart grid has been studied by Wang et al. [6], through
a single-leader single-follower Stackelberg game model,
assuming that the geo-distributed datacenters are covered
by a single smart grid. More recently, Zhou et al. [7] and
Tran et al. [8] studied the pricing for the geo-distributed
cloud which trades to completing smart grids, both through
a multi-leader single-follower pricing game approach. For
demand response of geo-distributed colocation datacen-
ters that serves delay-tolerant workload, an online auction
mechanism has been proposed by Sun et al. [21]. Our work
is supplementary to the above literature in the following
aspects: (1) the above studies assume that the smart grids
know the exact utility function of the CSP, which is not
always practical. In contrast, in our auction, the private val-
uation of each smart grid is extracted through a truthful pay-
ment mechanism. (2) Rather than only consider interactive
or delay-tolerant workload, we consider the more practical
and challenging scenario of a mix of both interactive and
batch workload.

As an effective pricing mechanism, auction theory has
witnessed a wave of successful applications in a broad
range of IT problems, as exemplified by cloud resource
provisioning [22], spectrum management [23] and network
bandwidth allocation [24], etc. Unfortunately, our problem
is shown to departure from standard auction in two crucial
aspects (elaborated in Sec. 3.3 and Sec. 3.4). In response to
our non-standard setup, we verify that some well-known
mechanisms such as dimensional Kelly mechanism [24] and
monotonic allocation [23] are not applicable, and further
theoretically prove the availability of VCG mechanism in
such a non-standard setup. To address the challenge of pro-
hibitively high computation complexity incurred by VCG
mechanism, we take advantage of distributed computing
power of the CSP to accelerate the implementation the VCG
auction mechanism in a fully parallel and distributed man-
ner, based on the recently proposed multi-block alternating
direction method of multipliers (ADMM).

3 DEMAND RESPONSE AUCTION MODEL

3.1 Overview of the Geo-distributed Cloud Platform
Consider a CSP running cloud services on a set of N
geographically dispersed datacenters, D = {1, 2, ..., N}.
Each datacenter j ∈ D consists of Sj processing servers,
which are assumed to be homogeneous in this work. We
also assume that the cloud deploys a set of M front-end
servers, S = {1, 2, ...,M}, here front-end servers represent
mapping nodes deployed at distinct geographical regions
with moderate size (e.g., a city), such as authoritative DNS
servers as used by Akamai and most CDNs, or HTTP ingress
proxies used by Google and Yahoo [25]. The function of
a front-end server is to aggregate the user requests of the
region and then route them to appropriate datacenters based
on certain criteria.

To capture and follow the system dynamics such as time-
varing electricity price and workload, we adopt a discrete
time-slotted model where the length of a time slot matches
the time scale at which demand response pricing and work-
load management decisions are periodically updated, e.g.,
hourly. At each time slot t = (0, 1, 2, · · · ), the total amount

of incoming interactive workload (in number of processing
servers required) at the front-end server i is Di(t), and the
amount of interactive workload distributed from front-end
server i to datacenter j is dij(t), which is to be determined.
Considering the enormous amount of user requests of typ-
ical applications such as web-service, we allow a front-end
server to arbitrarily split the user requests among the set of
datacenters. In practice, such a flexibility can be achieved
by commercial DNS servers and HTTP proxies that use the
hash-based scheme to split and route the user requests to
different datacenters [25].

In this paper, we assume that the interactive requests
are computation-intensive rather than data-intensive. There-
fore, the back-end input data for the cloud services can
be fully replicated across the geo-distributed datacenters
with very slight overhead, and an interactive request can
be distributed to any datacenter for execution. While for
data-intensive workload such as analytic jobs, running them
across geo-distributed datacenters is far from trivial. Since
it requires a joint optimization on the task distribution and
input data movement to reduce the additional overheads
such as WAN-bandwidth cost and data transmission delay
incurred by the cross-datacenter bulk data transfer [26].
Dealing with data-intensive workload is out of the scope
of this paper, and we leave it as our future work.

Besides interactive workload, datacenters nowadays
commonly process back-end batch workload that has elas-
tic resource demand, as exemplified by maching learning
model training, web crawling and data mining jobs, running
at the back-end [11]. Let λj(t) represents the amount of
batch workload (also in the number of processing servers
allocated) to be executed in datacenter j at time t. The
aggregated workload at datacenter j and time slot t is then∑
i∈S dij(t) + λj(t). Note that for interactive requests, since

they typically require to be finished immediately, i.e., within
a tolerable delay up to several seconds which is far smaller
than the time length of a slot, therefore all the requests
arrived at each time slot can be finished within the time
slot. While for batch workload, it is resource flexible as it
does not predefine a resource quota that temporally couples
resource allocation. Thus, the decision making of the CSP is
uncoupled from slot to slot, and we can focus on a single
time slot and drop index t henceforth.

3.2 Datacenter Power Consumption
A series of recent empirical studies [14] show that, the
aggregated power consumption of homogeneous servers
can be modelled as a linear function of the total work-
load, sPidle + (Ppeak − Pidle)µ. Here s and µ denote the
number of running servers and the amount of workload,
respectively. Pidle is the server power when idle, while Ppeak
is the server power when fully utilized. For a datacenter
j ∈ D that hosts Sj homogeneous active servers, manages
a total workload of

∑
i∈S dij + λj and possesses a power

usage efficiency of PUEj , its server power consumption is:
SjPidle + (Ppeak −Pidle)(

∑
i∈S dij + λj). Furthermore, the total

power demand at datacenter j is:

ej =
(
SjPidle + (Ppeak − Pidle)(

∑
i∈S

dij + λj)
)
· PUEj .

The power usage efficiency metric PUE represents the ratio
between (i) the total amount of power used by the entire



5

datacenter facility and (ii) the power delivered to the com-
puting equipment. We next reformulate the above equation
of ej for concise presentation:

ej = αj(
∑
i∈S

dij + λj) + βj ,

where αj = (Ppeak − Pidle) · PUEj and βj = SjPidle · PUEj .
In the above formulation, we assume that all the servers

at each datacenter are powered on and thus the parameter
Sj is a constant. The rationale is that for risk-sensitive com-
mercial cloud services such as Amazon, reliability and wear-
and-tear are more of the concern than shutting down the idle
servers to reduce energy [27], [28]. Nevertheless, our model
is quite general and can be easily extended to incorporate
the choice of shutting down the idle servers for further
energy savings [29]. Specifically, if we use Smax

j to denote
the number of total available servers in datacenter j, then,
we further need to determine the number of active server
Sj which satisfies the additional constraint Sj ≤ Smax

j for
each datacenter j.

3.3 Demand Response Bidding
Before presenting our datacenter demand response auction,
we assume that a single datacenter locates within the ge-
ographical span of a smart grid, in line with the fact that
regional smart grids usually cover a moderate-size district.
Table 2 below shows that Google’s 6 datacenters in USA
purchase electricity from different power utilities.

TABLE 2: Power utilities for Google datacenters in America [18].

Location Utility
Council Bluffs, IA MidAmerican Energy
Berkeley County, SC South Carolina Electric
The Dalles, OR Northern Wasco County PUD
Lenoir, NC Duke Energy
Mayes County, OK The Grand River Dam Authority
Douglas County, GA Georgia Power

At the beginning of each time slot, each smart grid
corresponding to datacenter j first computes the demand re-
sponse goal, i.e., the desired power consumption by datacen-
ter j, êj , which minimizes the voltage violation frequency
of that smart grid. In practice, the power usage behavior
of traditional users (non-datacenter users) in the smart
grid exhibits strong periodical pattern and price-sensitivity,
thereby can be readily predicted by taking some machine
learning methods that have been extensively researched in
literature [13]. Then, based on the predicted power demand
of non-datacenter users and the real-time supply of renew-
able generation, the smart grid can compute the demand
response target êj for the datacenter. Specifically, given the
profile of the power distribution network (e.g., the SCE 47-
bus network in [3], and the IEEE 14-bus network used in
performance evaluation in Sec. 6), by applying the “branch
flow” model [3] to explore the feasible region of datacenter
power consumption, êj can be found.

Based on the calculated êj , each smart grid correspond-
ing to datacenter j — as the bidder in the datacenter
demand response auction — computes its valuation (i.e.,
maintenance cost savings from potential voltage violation) on
the actual power consumption ej of datacenter j. Here we
use a continuous function Vj(·) to capture the maintenance
cost savings brought by demand response from datacenter

j. In particular, the valuation function is Vj(ej − êj). We
assume this function is concave, non-negative, incresing
when ej− êj ≤ 0 and decreasing when ej− êj ≥ 0. The con-
tinuity captures the divisible nature of power consumption. The
concavity assumption is widely adopted in literature [3],
for capturing the fact that the marginal maintenance cost
increases as ej deviates the target êj more. For illustration,
based on the quadratic Taguchi loss function which has been
used to evaluate the cost of a demand response mechanism
in [30], we take the following valuation function as an
example:

Vj(ej − êj) = bj −
cj
2
(ej − êj)2, (1)

where cj is the price that converts the power deviation
ej − êj to a monetary term, and bj denotes the maximal cost
saving that is achieved when the deviation ej − êj is equal
to 0.

A primary difference between the proposed demand
response auction and conventional auctions such as com-
binatorial auctions for cloud VMs [22], divisible auction
for network bandwidth [24], is the non-monotonicity of the
valuation function Vj(ej − êj). For each smart grid, its
valuation on the power consumption of the corresponding
datacenter first increases and then decreases as the power
consumption grows. Such non-monotonicity captures the
fact that neither too high or too low datacenter power
consumption is beneficial to demand response.

The operator of each smart grid corresponding to data-
center j has a quasi-linear utility:

uj(ej) = Vj(ej − êj)− rj , (2)

where rj is the payment of the smart grid corresponding to
datacenter j for winning a bid of power consumption ej .

3.4 Utility of Geo-distributed Cloud to Participate in
Demand Response Auction
While the CSP can benefit from demand response to the
smart grids (i.e., the payment rj from each smart grid),
such benefit does not come without compromising the CSP’s
utility, including the revenue loss due to the latency of
its interactive workload, reduced revenue from its batch
workload, and higher electricity cost of each datacenter. We
next elaborate on these three terms.
Dis-utility of interactive workload. For interactive cloud
applications such as web search and social networking, la-
tency is a critical performance metric. Even a small increase
in latency can significantly impact the revenue of service
providers, as demonstrated by measurements conducted by
internet giants [31]. For Google, an additional 400 ms latency
in search responses reduces search volume by 0.74%. For
Amazon, a 100 ms latency increase implies a 1% sales loss.
For Bing, a 500 ms latency increase leads to 1.2% revenue
loss, while a one second latency increase can lead to 2.8%
revenue loss.

The round-trip times (RTT) Lij between the front-end
server i and datacenter j can be obtained through active
measurements in practice [14]. Empirical studies have also
demonstrated that, in backbone networks, Lij can be ap-
proximated by geographical distance lij between the front-
end server i and datacenter j as: Lij = lij×0.02ms/km [14].
The revenue from serving the interactive workload ag-
gregated at front-end server i depends on the experi-
enced mean propagation latency

∑
j∈D dijLij/Di, through
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a generic utility function Ui that is decreasing and concave.
A commonly adopted revenue function is quadratic on the
mean latency, reflecting a user’s increased tendency to leave
the service with an increased latency [18]:

Ui(di) = qDi

(
wi −

(∑
j∈D dijLij

Di

)2)
, (3)

where di = (di1, di2, · · · , diN )T, q is the price that converts
latency to a monetary term, and qDiwi can be treated as the
revenue when the latency approaches zero.
Revenue from resource-flexible batch workload. System-
level batch workload, such as indexing, data mining and
machine learning jobs that are originated from the back-end
datacenters rather than the front-end clients, has witnessed
great proliferation in datacenters with the booming of big
data and artificial intelligence (AI). One salient and appeal-
ing feature of batch workload is that it is resource-flexible
and thus can be partially served with an arbitrary amount
of resource allocation. For instance, for some approximated
big data analytics [32] applications, an analytic job can be
executed with only a subset of its tasks to be completed,
leading to various levels of resource allocation. While for
system level AI applications (e.g., recommendation system
of an e-commerce website, and the click rates prediction for
internet ads), inference models with different sizes can be
employed [33], also resulting in various amounts of resource
consumption. Intuitively, the more computing resources
allocated to batch workload, the better performance and
thus higher revenue the datacenters can glean. The marginal
improvement of performance however is diminishing as the
allocated resources increase. A typical application that ex-
hibits this property is web-page indexing: as demonstrated
by 200K queries in a production trace of Microsoft Bing,
the indexing quality profile is concave on the amount of
allocated computing resources [34]. To model the revenue
of allocating processing servers in datacenter j for batch
workload, a differentiable, increasing and concave function
Hj(λj), as exemplified by the logarithmic function, can be
adopted, as the revenue is zero when no computing capacity
is allocated to batch workload:

Hj(λj) = θ log(1 + λj), (4)

where θ is the price that translates a resource amount to
monetary terms.
Electricity cost. Energy cost constitutes a substantial portion
(e.g., > 40%) of the operational cost for cloud providers.
Given the power consumption ej of datacenter j, and power
price pj at the smart grid corresponding to datacenter j, the
total electricity cost of the cloud is:

∑
j∈D ejpj . Here pj can

be the real-time electricity price dynamically adjusted by the
smart grid, or a wholesale price signed with the smart grid
in advance.

In the demand response auction, the CSP receives a
total payment of

∑
j∈D rj from the smart grids. We are

now ready to formulate the revenue of the CSP in the
demand response auction:

∑
j∈D

{
rj + Hj(λj) − ejpj

}
+∑

i∈S Ui(di).

A second difference (besides the non-monotonic valuation
function) between our power demand response auction and
a conventional auction is that the auctioneer’s utility com-
prises of not only payments from the bidders, but also the
varying revenue from serving both interactive and batch
workloads, and energy cost that depends on the allocation
of the datacenter power consumption.

3.5 The Winner Determination Problem (WDP)

Given the utility of each smart grid and the geo-distributed
cloud, we formulate the winner determination problem
(WDP) that maximizes the social welfare (the aggregated
utility of the cloud and all the smart grids), W(D) =

max
∑
j∈D

{
Vj(ej − êj) +Hj(λj)− ejpj

}
+
∑
i∈S

Ui(di), (5)

s.t.
∑
j∈D

dij = Di, ∀i ∈ S, (6)∑
i∈S

dij + λj ≤ Sj , ∀j ∈ D, (7)

ej = αj(
∑
i∈S

dij + λj) + βj ,∀j ∈ D, (8)

dij ≥ 0, λi ≥ 0, ej ≥ 0,∀i ∈ S,∀j ∈ D. (9)

The load balance constraint (6) ensures the interactive
workload from each front-end server is satisfied. The ca-
pacity constraint (7) ensures the aggregated workload pro-
cessed at each datacenter does not exceed the latter’s ca-
pacity. (8) is the relation between power consumption and
aggregated workload at each datacenter, as derived in Sec.
3.2. Finally, (9) is the nonnegativity constraint. Note that
the functions Vj(·), Hj(·) and Ui(·) are not restricted to the
specific forms presented in the equations (1), (3) and (4).
Instead, our model and algorithm to be presented are gen-
erally applicable to those functions with mild assumptions
such as concavity.

In our model, the auctioneer maximizes the social effi-
ciency (i.e., social welfare) rather than its own utility. Note
that this is a de facto setup in many auctions. The rationale
is that, when maximizing the social efficiency, the happiness
of both the auctioneer and the bidders can be improved. By
doing so, the sustainability and attractiveness of the auction
to the bidders can be firmly maintained, which in return
improve the long-term market share and thus the revenue
of the auctioneer.

The above model makes simplifying assumptions to
focus on the most fundamental features of a datacenter
demand response auction. We now briefly discuss how this
model can be further extended to accommodate a variety of
practical operational conditions of a geo-distributed cloud.
Delay-tolerant Workload. Delay-tolerant workload, as ex-
emplified by scientific computing and video transcoding,
represents another important segment of datacenter work-
load. Since this type of workload is tolerant to a soft dead-
line typically ranging from minutes to days, it greatly com-
plicates our mechanism design by temporally coupling the
optimization problem across consecutive slots. Fortunately,
efficient management of delay-tolerant workload has been
well-studied in literature [21]. By taking such schemes, we
can decouple the long-term optimization problem into a se-
ries of one-shot optimization problems. Then, the proposed
mechanism in this paper can be readily incorporated into
each one-shot optimization problem.
Extending the 1-to-1 trading. The basic auction model
assumes that each datacenter trades with only one smart
grid. In practice, multiple datacenters may locate within
one smart grid, and one datacenter may trade with mul-
tiple smart grids. The underlying problem does not change
fundamentally. For the case that multiple datacenters locate
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within one smart grid, the smart grid needs only to sub-
mit one bid to each of the datacenters. For the case that
one datacenter trades with multiple smart grids, one may
introduce an additional constraint to ensure that the sum
of the winning bids of these smart grids equals the power
consumption of the datacenter.
Multiple CSPs. The basic auction model assumes a single
CSP that operates multiple geo-distributed datacenters. A
practical direction of extending this model is to consider
multiple CSPs (e.g., Google, Microsoft and Facebook) co-
existing and trading with multiple smart grids. To accom-
modate such a complicated multi-CSP multi-smart-grid sce-
nario, the well-studied double auction model [35] can be
applied, in which a third-party auctioneer first collects the
sell bids from CSPs and buy bids from smart grids. Then,
the auctioneer determines the received/payed payment of
each CSP/smart grid by maximizing the social welfare.

In this paper, our focus lies mainly on the basic auc-
tion problem which is inherently difficult, as we show
as follows. The WDP is a large-scale convex optimization
problem, as the number of front-end servers is typically
O(105) − O(106), and number of datacenters is typically
O(10) for business production systems such as Google [11].
Thus, our problem can have tens of millions of variables
and million of constraints, solving such large-scale problem
with standard convex solvers is unpractical since it may
take hours. While there exist literature on designing an
auction mechanism that is both truthful and computation-
ally efficient, the two differences between our problem and
conventional auction design preclude direct application of
such approaches. Specifically, to efficiently share the divisi-
ble network resources, proportional allocation mechanisms
were introduced in [24], and VCG mechanisms with di-
mensional bids were introduced in [36]. Unfortunately, the
first difference between our auction and the conventional
auction, that the valuation function of each bid is non-
monotonic, invalidates these approaches. Furthermore, the
classic method that exploits monotonic allocation and crit-
ical value based charging was widely adopted in truthful
auction design [23]. However, the nonlinear terms in the
utility of the cloud operator and thus the social welfare
make it highly challenging to construct a power distribution
scheme that satisfies monotonicity.

While the distinct features as well as the large-scale of
our demand response auction impose great challenges on
the mechanism design, it is critical to note that, the cloud
who acts as the auctioneer provides abundant server re-
source distributed across its datacenters. A natural question
is then, can we leverage this enormous computing power
to facilitate the auction design? The answer is ‘yes’, and
in the next section, we describe how to parallelize the
winner determination problem to significantly reduce the
computation time.

4 DISTRIBUTED SOCIAL WELFARE MAXIMIZATION

Since conventional auction design approaches are not di-
rectly applicable in our problem, in this section, we propose
a distributed algorithm to efficiently address the challenge
of solving the WDP at large-scale. Our algorithm is based
on the alternating direction method of multipliers (ADMM),

a simple yet powerful algorithm for convex optimization
that witnessed successful recent applications in a broad
spectrum of problems from image processing to machine
learning and applied statistics. The performance of ADMM
in solving large-scale convex problems has been extensively
studied.

4.1 The ADMM Method

ADMM works for linearly constrained convex problems
whose objective function is separable into multiple convex
functions with non-overlapping variables:

min

m∑
i=1

fi(xi), s.t.
m∑
i=1

Aixi = z, (10)

with variables xi ∈ Rni (i = 1, ...,m), where fi :
Rni → R (i = 1, ...,m) are closed proper convex functions,
Ai ∈ Rl×ni are relation matrices, and z ∈ Rl is a relation
vector. Note that the model (10) can easily accommodate
general linear inequality constraints

∑m
i=1Aixi ≤ z by

adding one extra block. In particular, we can introduce a
slack variable xm+1 ≥ 0 and rewrite the inequality con-
straint as

∑m
i=1Aixi + xm+1 = z.

A commonly adopted approach to the separable convex
optimization (10) is to form the augmented Lagrangian by
introducing an extra L2 norm term ‖

∑m
i=1Aixi−z‖2 to the

objective:

Lρ(x1, ..., xm; y) =

m∑
i=1

fi(xi) + yT(

m∑
i=1

Aixi − z)

+
ρ

2
‖
m∑
i=1

Aixi − z‖22, (11)

where ρ ≥ 0 is the penalty parameter. Clearly the min-
imization of Lρ(x1, ..., xm; y) is equivalent to the original
problem (10).

When there are two blocks of variables, i.e., m = 2, the
iterative scheme of ADMM method decomposes the two
blocks of variables in the following Gauss–Seidel sequential
manner

xk+1
1 = argmin

x1
Lρ(x1, xk2 ; yk),

xk+1
2 = argmin

x2
Lρ(xk+1

1 , x2; y
k),

yk+1 = yk + ρ(

m∑
i=1

Aix
k+1
i − z). (12)

Note that in each iteration, the augmented Lagrangian is
minimized over x1 and x2 separately. Consequently, the
generated subproblems are of smaller-scale and are easier
to solve. The convergence of ADMM with two blocks of
variables has been well understood.

However, when there are more than two blocks of
variables, the Gauss–Seidel type direct extension of the 2–
block ADMM does not necessarily converge [37], unless
the functions fi (i = 1, · · · ,m) are strongly convex [11].
Some recent progresses have been made to establish the
global convergence of ADMM with m ≥ 3. Among which,
the proximal Jacobian ADMM [38] is an iterative scheme for
the m–block ADMM with Jacobian update and , it updates
each block of variables in the following parallel coordinate
fashion:

xk+1
i = argmin

xi
Lρ(xi, {xkj }j 6=i; yk) +

1

2
‖xi − xki ‖2Qi

. (13)
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Here 1
2‖xi − xki ‖2Qi

represents a proximal term for each
xi-update to improve the convergence, Qi � 0 is a
symmetric and positive semi-definite matrix, and we let
‖xi‖2Qi

= xT
iQixi. A commonly adopted setting is Qi =

τiI (τi > 0). The involvement of the proximal term can
make the subproblem of xi strictly or strongly convex
and thus make the problem more stable. Besides, a damp-
ing parameter γ > 0 is introduced for the update of y:
yk+1 = yk+γρ(

∑m
i=1Aix

k+1
i −z). Iterations in the proximal

Jacobian ADMM can execute in a parallel fashion, making
the proximal Jacobian ADMM amenable for parallel imple-
mentation. Finally, the global convergence of the proximal
Jacobian ADMM in general cases has been proven [38], with
a convergence rate of o(1/k).

4.2 Transforming the WDP to ADMM form
In the original WDP (5), two different blocks of variables,
dij and λj are constrained by an inequality, rather than
an equality constraint required by the ADMM method.
To address this challenge, we might introduce an addi-
tional block of slack variables to transform inequality into
equality. However, the introduction of a new block of
variables would no doubt increase the complexity of the
algorithm. For our problem, a more appropriate approach
is to replace the inequality constraint on capacity alloca-
tion with the bounds on datacenter power consumption,
given the relationship between the power consumption and
the computing capacity. Specifically, by jointly consider-
ing the inequality

∑
i∈S dij + λj ≤ Sj and the equality

ej = αj(
∑
i∈S dij +λj) +βj , we have βj ≤ ej ≤ αjSj +βj .

Thus, We re-write the WDP (5) as W(D) =

max
∑
j∈D

{
Vj(ej − êj) +Hj(λj)− ejpj

}
+
∑
i∈S

Ui(di), (14)

s.t.
∑
j∈D

dij = Di, ∀i ∈ S,

ej = αj(
∑
i∈S

dij + λj) + βj , ∀j ∈ D,

dij ≥ 0, λi ≥ 0, βj ≤ ej ≤ αjSj + βj ,∀i ∈ S, ∀j ∈ D.

Is ADMM directly applicable? However, directly ap-
plying ADMM to problem (14) will lead to a centralized
algorithm with high complexity, since the workload utility∑
i∈S U(di) couples dij ’s across j, while the penalty term∑
j∈D

(
αj(
∑
i∈S dij + λj) + βj − ej

)2
couples dij ’s across

i. Thus, the workload utility ought to be separated from the
penalty term if we pursue a distributed algorithm.

To this end, we continue to introduce a set of auxiliary
variables aij = dij ,∀i ∈ S,∀j ∈ D, and reformulate
problem (14) as W(D) =

max
∑
j∈D

{
Vj(ej − êj) +Hj(λj)− ejpj

}
+
∑
i∈S

Ui(di), (15)

s.t.
∑
j∈D

dij = Di, ∀i ∈ S,

aij = dij , ∀i ∈ S,∀j ∈ D, (16)

ej = αj(
∑
i∈S

aij + λj) + βj , ∀j ∈ D, (17)

dij , aij , λi ≥ 0, βj ≤ ej ≤ αjSj + βj , ∀i ∈ S, ∀j ∈ D.

Insight: Problem (15) is equivalent to problem (14), where
dij controls the workload utility only with the load bal-
ance constraint (6), while aij ensures that constraint (17)

is enforced when the coupling happens across the front-end
server i. This is the key idea that enables both the d and a
minimization to be decomposable, as we will demonstrate
in the next section.

The augmented Lagrangian Lρ of problem (15) can be
readily obtained from (11) as follows:

Lρ =
∑
j∈D

{
ejpj − Vj(ej − êj)−Hj(λj)

}
−
∑
i∈S

Ui(di)

+
∑
j∈D

φj
(
αj
(∑
i∈S

aij + λj
)
+ βj − ej

)
+
ρ

2

∑
j∈D

(
αj
(∑
i∈S

aij + λj
)
+ βj − ej

)2
+
∑
i∈S

∑
j∈D

ϕij(aij − dij) +
ρ

2

∑
i∈S

∑
j∈D

(aij − dij)2,

where φj is the dual variable for constraint (17), ϕij is the
dual variable for the new constraint (16).

4.3 Distributed Winner Determination

For our transformed winner determination problem (15), the
commonly adopted revenue functions Ui(di) and Hj(λj)
(in the form of (3) and (4), respectively) are not strongly
concave. Thus, for computation efficiency and provable
convergence, we adopt the proximal Jacobian ADMM to
facilitate the distributed winner determination.

Now we show how the update of each block of variables
can be performed in a distributed fashion. Here we take the
d-update as an example: by omitting the irrelevant terms
in Lρ and setting the matrices Q = τI (τ > 0) for each
block, at each iteration, the d-update step involves solving
the following problem according to the iteration process (13)
of the proximal Jacobian ADMM method:

min
∑
i∈S

(∑
j∈D

(ρ
2
(akij − dij)2 +

τ

2
(dij − dkij)2 − ϕkijdij

)
−U(di)

)
s.t.

∑
j∈D

dij = Di, dij ≥ 0, ∀i ∈ S.

Insight: The problem described above is clearly decompos-
able over i into M per-front-end server sub-problems, since
the objective function and constraint are separable over i.
Similarly, we also find that the update steps for e, λ and a
are decomposable over datacenters. Therefore, the winner
determination problem can be efficiently computed in a
parallel and fully distributed fashion.

The detailed iterative scheme for distributed winner
determination is shown as follows:

Distributed Winner Determination. Initialize the vari-
ables λ, e, a, d and multipliers φ, ϕ to 0. For each iteration
k = 0, 1, · · · , perform the following five updates in a parallel
fashion.

1. d-update: Each front-end server i solves the following
sub-problem for dk+1

i :

min
∑
j∈D

(ρ
2
(akij − dij)2 +

τ

2
(dij − dkij)2 − ϕkijdij

)
− U(di),

s.t.
∑
j∈D

dij = Di, dij ≥ 0, ∀i ∈ S. (18)
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2. e-update: Each datacenter j solves the following sub-
problem for ek+1

j :

min (pj − φkj )ej +
ρ

2

(
αj
(∑
i∈S

akij + λkj
)
+ βj − ej

)2
+
τ

2
(ej − ekj )2 − Vj(ej − êj),

s.t. βj ≤ ej ≤ αjSj + βj . (19)

This per-datacenter sub-problem (19) is over a single vari-
able, thus, given the form of Vj , it can be readily solved.
For instance, if Vj is in form of equation (1), then the
above problem is a quadratic programming, and it leads to

the closed-form solution: ek+1
j = max

{
min

{
Ψi, αjSj +

βj
}
, βj

}
, where the constant Ψi is defined as Ψi =

φk
j−pj+τe

k
j+cj êj+ρ

(
αj

(∑
i∈S a

k
ij+λ

k
j

)
+βj

)
ρ+τ+cj

.
3. λ-update: Each datacenter j solves the following sub-

problem for λk+1
j :

min −φkjλj +
ρ

2

(
αj
(∑
i∈S

akij + λj
)
+ βj − ekj

)2
+
τ

2
(λj − λkj )2 −Hj(λj),

s.t. λj ≥ 0. (20)

This per-datacenter sub-problem (20) is over a single
variable too, and can be readily solved by following the
technique used in the e-update step.

4. a-update: Each datacenter j solves the following sub-
problem for ak+1

j = (ak+1
1j , · · · , ak+1

Mj )T:

min
ρ

2

(
αj
(∑
i∈S

aij + λkj
)
+ βj − ekj

)2
+
∑
i∈S

aij(αjφ
k
j + ϕkij)

+
∑
i∈S

(ρ
2
(aij − dkij)2 +

τ

2
(aij − akij)2

)
,

s.t. aij ≥ 0. (21)

5. Dual update: Each datacenter j updates φj for the
constraint ej = αj(

∑
i∈S aij + λj) + βj with φk+1

j =

φkj + γρ
(
αj
(∑

i∈S a
k
ij + λkj

)
− ekj

)
. Each front-end server

i updates ϕij for the equality constraint dij = aij with
ϕk+1
ij = ϕkij + γρ(akij − dkij).

Implementation issues: The computation of the dis-
tributed ADMM algorithm can be undertaken by each local
facility. However, such a fully localized implementation
would make the broadcast operations at each iteration travel
across the WAN that interconnects the front-end servers
and datacenters, incurring heavy usage of expensive WAN
bandwidth and prolonged communication time. To address
this issue, we can push computation into a designated
datacenter that has abundant server resources, and split
those subproblems to the numerous servers, on which the
subproblems can be solved in a parallel manner.

5 PAYMENT DESIGN

In the previous section, we have computed the winning
bid of each smart grid to maximize the social welfare in
a fully distributed manner. When implementing an auction,

the goal is naturally two-fold: besides pursuing economic
efficiency by maximizing the social welfare, truthfulness in
terms of determining the payment of each winning bid to
elicit truthful bids from each smart grid is equally impor-
tant. Since only when the truthfulness is guaranteed, the
dominant strategy of each economically-motivated selfish
bidder is to report her truthful valuation to the auction-
eer, and thus the true rather than a fake social welfare
is maximized. We design the payment scheme for each
smart grid by leveraging the celebrated VCG mechanism.
Though our setting differs from conventional auctions, we
rigorously prove that the VCG mechanism still preserves
nice properties including truthfulness, economic efficiency
and individual rationality.

5.1 The VCG Payment Mechanism
The VCG mechanism is a well known type of auction at
the centre of truthful mechanism design. It is essentially
the only type of auction that ensures both truthfulness and
economic efficiency in terms of social welfare maximization.
However, the VCG mechanism suffers from vulnerability to
shill bidding, precluding its direct applications in auction
markets such as cloud computing platforms and secondary
spectrum markets.

An alternative to VCG auctions, core-selecting auctions
[39], have gained increasing attention in the literature re-
cently. However, it is based on the hypothesis that seller
utility is only composed of all the bidders’ payments, which
is just not our case as highlighted in Sec. 3.4. As a result,
core-selecting auctions can not be directly applied to our
demand response setting.

Fortunately, when comparing our demand response auc-
tion to other auctions (e.g., virtual machine auction and
wireless spectrum auction), we find that the demand re-
sponse auction is naturally shielded from shill bidding.
Each smart grid corresponds to a specific datacenter, and
is unable to impersonate multiple bidders in the demand
response auction. Therefore, applying the VCG payments to
our demand response auction does not result in vulnerabil-
ity to shill bidding.

The VCG payment scheme charges each winning bidder,
who in our demand response auction wins exactly one bid,
an amount equal to the externality that it exerts on the other
bidders. As a result, the utility of a winning bidder is the
marginal contribution to the total values when it joins the
auction. Specifically, the VCG payment of each smart grid
corresponding to datacenter m ∈ D for its winning bid is:

rm = W(D\{m})− (W(D)− Vm(e∗m − êm)), (22)

here W(D)− Vm(e∗m − êm)) computes the social welfare of
the geo-distributed cloud and all the other smart grids when
the smart grid corresponding to datacenter m ∈ D joins
the auction, while W(D\{m}) is the same aggregated social
welfare when the smart grid corresponding to datacenter
m ∈ D is absent from the auction, which can be formulated
as W(D\{m}) =

max
∑

j∈D,j 6=m

Vj(ej − êj) +
∑
j∈D

{
Hj(λj)− ejpj

}
+
∑
i∈S

Ui(di),

s.t. constraints (6)(7)(8)(9). (23)

Problem (23) can be solved by applying the distributed
algorithm proposed in Sec. 4, by setting Vm(em − êm) = 0.
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Furthermore, there are in total N + 1 WDPs to be solved
in the VCG payment computation, and a multi-threaded
implementation where each thread corresponds to a WDP
instance can be adopted to expedite the overall payment
computation process.

5.2 Economical Properties of the Payment Mechanism

When applying the VCG mechanism to classical combina-
torial auctions such as spectrum auction and cloud auction,
the aforementioned economic properties can be guaranteed.
However, the demand response auction in our paper has
two distinguish features with both conventional combinato-
rial auction and divisible auction in (1) the bidding function
submitted by each smart grid maybe non-monotone, and
(2) the auctioneer’s utility comprises of not only payments
from the bidders, but also the varying revenue from serving
both interactive and batch workloads, and energy cost that
depends on the allocation of the datacenter power consump-
tion. Thus, it is unclear whether those economic properties
still hold in the presence of these two differences. These are
examined in the following theorems.

Theorem 1: The proposed auction mechanism is truthful, i.e., a
smart grid can not increase its utility by misreporting its private
valuation function, whatever other smart grids report.

Proof: Suppose that the submitted bidding functions
of the smart grids are (B1, · · ·, Bm, · · ·, BN ). To prove
that the VCG payment is truthful for our auction, we need
to prove that for any smart grid correspond to datacenter
m ∈ D, it utility um(em) is maximized when Bm = Vm.
When applying the VCG mechanism to compute the pay-
ment of the smart grid corresponding to datacenter m, its
bidding function is not included in problem (23). Thus,
the value of the term W′(D\{m}) = max

{∑
i∈S Ui(di) +∑

j∈D,j 6=mBj(ej − êj) +
∑
j∈D{Hj(λj) − ejpj}

}
is indepen-

dent of the submitted valuation function of the smart grid
corresponding to datacenter m.

Based on the utility given by (2) and the payment given
by (22), for each smart grid corresponding to datacenter m,
its utility can be written as

um(e) = Vm(em − êm)−
{

W′(D\{m})−
{∑
i∈S

Ui(di)

+
∑

j∈D,j 6=m

Bj(ej − êj) +
∑
j∈D

{Hj(λj)− ejpj}
}}

= Vm(em − êm) +
{∑
i∈S

Ui(di) +
∑

j∈D,j 6=m

Bj(ej − êj)

+
∑
j∈D

{Hj(λj)− ejpj}
}
−W′(D\{m}). (24)

We use e∗ = (e∗1, · · ·, e∗m, · · ·, e∗N ) to denote the outcome
of the auction with the submitted bidding function (B1, · ·
·, Bm, · · ·, BN ). Since the outcome out the auction always
maximize the social welfare under the submitted bidding
function, thus e∗ maximize the term:

Bm(e∗m − êm) +
{∑
i∈S

Ui(d
∗
i ) +

∑
j∈D,j 6=m

Bj(e
∗
j − êj)

+
∑
j∈D

{Hj(λ∗j )− ejpj}
}
. (25)

Note that when Bm = Vm, i.e., the smart grid corre-
sponding to datacenterm reports its true valuation function,
then the right-hand-side of (24) is maximized by e∗|Bm=Vm

since we have shown that the last term of W′(D\{m} is
independent of Bm, and thus e∗|Bm=Vm

exactly maximize
um(e). While if Bm 6= Vm, the outcome of the auction,
e∗|Bm 6=Vm

is the optimum of maximizing the term (25),
but not necessarily the optimum of maximizing um(e). To
conclude, the utility of each smart grid is maximized when
it reports the true valuation function to the CSP.
Theorem 2: The proposed auction mechanism satisfies the prop-
erty of individual rationality, i.e., for each smart grid, it has a
non-negative utility.

Proof: Based on the proved truthfulness and the utility
given by (2) and the payment given by (22), for each smart
grid corresponding to datacenter m and wins the bid e∗m, its
utility can be written as

um(e∗m) = W(D)−W(D\{m}), (26)

Note that the WDPs (5) and (23) have the same con-
straints, while the objective function of problem (5) has
an additional non-negative term Vm(em − êm) not in the
objective function of problem (23). Therefore, the maximum
of problem (5) is no smaller than that of problem (23), i.e.,
W(D) ≥ W(D\{m}), substituting this into the equation
(26), we have um(e∗m) ≥ 0. This completes the proof, and
it also implies that the joining of an additional smart grid
would not harm the social welfare.
Theorem 3: The proposed auction mechanism grantees that, for
the cloud, it gets a non-negative payment from each smart grid.

Proof: Since the WDPs (5) and (23) have the same
constraints, the optimal solution for problem (5), i.e., e∗ =
(e∗1, e

∗
2, · · ·, e∗N ) is also a feasible solution of the problem (23).

Furthermore, the value of the second term in equation (22),
i.e., W(D)−Vm(e∗m−êm) can be viewed as a feasible solution
of the objective function of problem (23) under the feasible
set e∗ = (e∗1, e

∗
2, ···, e∗N ). While the first term in equation (22),

i.e., W(D\{m}) is the optimal solution of problem (23), since
the optimal solution is always no smaller than a feasible
solution, we have W(D\{m}) ≥ W(D) − Vm(e∗m − êm),
substituting this into the equation (22), we further have
rm ≥ 0. This completes the proof.

6 PERFORMANCE EVALUATION

In this section, we conduct trace-driven simulations to
evaluate the practical economic benefits of the proposed
incentive mechanism.
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Fig. 2: Normalized CPU usage trace from a Google cluster.

6.1 Simulation Setup
Geo-distributed cloud: we consider Google’s six datacen-
ters in the USA as a representative geo-distributed cloud.
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Location of each datacenter and the corresponding electric-
ity price are listed in Table 3. Following a recent report on
the number of servers owned by Google, each datacenter’s
capacity is set to 2×105 processing servers. We use the 2-day
hourly CPU usage extracted from Google cluster-usage data
[40] to generate the interactive workload, by proportionally
scaling the CPU usage to the number of servers required, as
shown in Fig. 2. To imitate the geographical distribution of
requests, we split this total workload among the M = 10
front-end servers that are uniformly distributed across the
continental U.S., following a normal distribution [11]. Each
round-trip time Lij is calculated according to the aforemen-
tioned empirical approximation Lij = tij × 0.02ms/Km,
where the geographical distance tij is obtained from Google
Maps. For power consumption of the servers in each dat-
acenter, we choose a state-of-the-art setting where each
server has a peak power Ppeak = 250W , and consumes
Pidle = 125W when idling. We set a higher energy efficiency
PUEj = 1.2 for the six datacenters, which is consistent
with industrial leading datacenters’ energy efficiency. We
use the 2011 annual average day-ahead on peak prices at
the corresponding local markets as the power prices pj for
the 6 datacenter locations [11], as shown in Table 3. We
take the revenue functions in the form of (3) and (4), with
qi = 4×10−6 and θj = 4.4×10−3 to make the revenues from
both interactive and batch workloads close to that of the
electricity cost, which represents an impartial consideration
on the impacts among the three aspects.

TABLE 3: The electricity price ($USD/MWh) at different datacenter
locations.

Council Bluffs, IA 42.73 Berkeley County, SC 44.44
The Dalles, OR 32.57 Lenoir, NC 40.68
Mayes County, OK 36.41 Douglas County, GA 39.97

Fig. 3: Topology of the IEEE 14-bus test system.
Smart grids: we use the IEEE 14-bus test system [41]

illustrated in Fig. 3 to represent a smart grid that serves a
datacenter. The arrows represent various power loads such
as datacenter power demand, the synchronous condensers
at buses 3, 6 and 8 can be replaced by power loads or renew-
able generators, and two other generators are connected to
buses 1 and 2. To distinguish among the six smart grids, we
place the datacenters at different buses of the test system,
and use different configurations of renewable generations

and power demands. The demand profiles and renewable
generations are taken form the SCE load profile [3] and
the NREL datasets [42], respectively. The desired levels of
datacenter power consumption that minimizes the voltage
violation frequency, êj , are computed by using MatPower
[3]. We choose bj = 3000, and set cj =

2bj
(ej−60)2 for êj ≤ 45,

cj =
2bj

(ej−30)2 for êj ≥ 45 to make the valuation function Vj
close the electricity bill of each datacenter.

6.2 Performance
For comparison, we further implement and evaluate other
three schemes: (1) The No-In scheme in which no incentive
is provided to the datacenter demand response. (2) The
combinatorial auction proposed in the preliminary work
[9], where each smart grid submits 10 and 20 discrete
feasible bids, respectively. (3) The game-theory-based dy-
namic power pricing sheme (denoted as DPP) proposed in
[8]. Note that DPP assumes that the utility maximization
problem of the cloud admits a closed-form solution which
can be derived theoretically. For comparision with DPP, here
we consider a restricted case in which the cloud does not
consider of utility of the interactive workload (i.e., qi = 0).

Social welfare. Fig. 4 depicts the social welfare under
different schemes over 48 hours. We have the following
observations: (1) Compared to the no incentive scheme and
dynamic power pricing, demand response auction signif-
icantly improves the social welfare. Specifically, the time-
averaged hourly improvement over the two schemes is 8.7%
and 6.3%, respectively. (2) The performance of the combina-
torial auction is very close to that of the divisible auction,
as the time-averaged hourly improvement of the divisible
auction over the 10 bids auction and 20 bids auction is 0.8%
and 1.1%, respectively. This demonstrates that the proposed
combinatorial auction can achieve near-optimal economic
efficiency. (3) The social welfare improvement promoted by
the demand response auction is relatively small when the
interactive workload bursts, as shown by statistics from
hour 19 to hour 22. The reason behind this decrement of
social welfare is that when the interactive workload con-
sumes a larger amount of datacenter capacity, the flexibility
on power consumption associated with the batch workload
is reduced. In consequence, a loss of the demand response
efficiency is incurred. While the performance improvement
from our proposed auctions is not so significant when com-
pared to the DPP approach, we should note that our scheme
is more practical than the DPP approach. Specifically, DPP
assumes that the smart grids know the exact utility function
of the CSP, which is not always practical. In contrast, in our
auction, the private valuation of each smart grid is not given
as a priori but extracted through a truthful payment mech-
anism, making it amenable to practical implementation.

Further discussions of the performance improvement.
While our auction scheme realizes 8.7% improvement over
the scenario with no incentives, we believe it still represents
a fairly appealing result, due to the following reasons: (1)
we optimize the social welfare which includes four terms:
cost of demand deficit, dis-utility of interactive workload,
revenue from batch workload and the electricity cost of
datacenters, rather than the single term of cost of demand
deficit. In the simulation, for fair comparison without bias,
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Fig. 4: Social welfare under different schemes.
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Fig. 5: Utility of the CSP under different
schemes.
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Fig. 6: Aggregated utility of the smart grids.
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Fig. 8: Mean of demand deficit under different
maximal bidding price.
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Fig. 9: Demand deficit vs. scaling ratio of inter-
active workload.

we set the cost parameters to make the above four terms
are close. Therefore, even though our auction scheme sig-
nificantly reduces the cost of demand deficit (as illustrated
in Fig. 7), the social welfare (i.e., the aggregated cost of the
four terms) may not necessarily diminish dramatically. (2)
In practice, voltage violation is not the norm, instead, it
happens only when the demand and supply of electricity
are seriously imbalanced. Since such severe imbalance does
not frequently occur, the remarkable cost reduction obtained
at such imbalance time would be diluted by that at balance
time, leading to a small average improvement over a long-
term.

Utility of the CSP. Fig. 5 compares the utility of the geo-
distributed cloud under different schemes over 48 hours.
We observe that: (1) compared to the no incentive and
dynamic power pricing schemes, the divisible demand re-
sponse auction can always improve the utility of the CSP. (2)
The performance of the combinatorial auctions is instable.
This is because the optimization algorithm proposed in the
preliminary work [9] is an approximated and randomized
algorithm that does not search all the solution space, thus
the performance of the algorithm may fluctuates in practice.
(3) The utility of the CSP under combinatorial auctions may
outperform that under divisible auction. This is due to the
fact that our solution focus on the maximization of social
welfare, thus it may sacrifice the auctioneer’s utility. Hence,
it is reasonable that the CSP’s utility under 20 bids may
larger than that under divisible auction. However, this does
not mean that our proposed mechanism is not efficient,
since the later evaluation will show that our solution indeed
improves the stability of the smart grids.

Utility of smart grids. Fig. 6 plots the total utility of
the smart grids under different schemes over 48 hours.
It can be seen the total utility of smart grids could not
always be improved by the divisible auction. We should
note that few exceptions do not imply that our auction
mechanism is inefficient in improving the stability of the
smart grid. The reasonable interpretation to the exceptions

is that in the absence of a demand response auction, the
smart grid may occasionally have chances to get desired
power consumption from the cloud without any payment,
and thus obtain a high utility. In addition, the utility of the
smart grids under combinatorial auctions may outperform
that under divisible auction. The explanation is that, in our
previously combinatorial auction, the utility of each smart
grid is denoted by a discrete function, while the utility of the
CSP is denoted by a continuous function. When exploring
the solution space, the adopted Gibbs sampling method
focuses on tunning the discrete terms, thereby giving more
emphasis on improving the utility of the smart grids. In
contrast, in the divisible auction, since the utility functions
of both the smart grids and the CSP are continuous, they are
equally treated.

Stability of smart grids. We further demonstrate the
efficiency of the proposed auction mechanism in improving
the smart grids’ stability in a more straightforward man-
ner. Specifically, we define the aggregated demand deficit
(quantified by

∑
j∈D |ej − êj |) as the gap between the data-

center’s actual power consumption (e1, e2, · · · , eN ) and the
most stable power consumption profile (ê1, ê2, · · · , êN ) to
capture the stability of the smart grids. Fig. 7 shows that the
stability of the smart grids can be largely improved when
the divisible demand response auction is introduced. In
particular, the aggregated demand deficit can be very small
when the interactive workload is off-peak (e.g., hour 7), this
is because the datacenter can provide more flexibility on
power consumption, via leaving more capacity to the elastic
batch workload when the amount of interactive workload
is low. We also observe that from hour 30 to hour 44, the
difference between the divisible auction and no auction
becomes slighter. This is due to the fact that, during that
interval, êj reduces greatly for each datacenter, meaning that
each datacenter is expected to use less power. However, to
serve to interactive workload which has fixed amount of
power demand, each datacenter becomes less responsive to
the smart grid. As a result, the demand deficit keeps almost
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unchanged.
Influence of the maximal bidding price. We also inves-

tigate the role of the maximal bidding price, which was set
to $3000 in the valuation function. In this simulation, we let
the maximal bidding price vary, and plot the mean of the
aggregated demand deficit over 48 hours in Fig. 8. We ob-
serve that, as the maximal bidding price increases, the mean
of the aggregated demand deficit diminishes much faster
and converges to a lower level. The observation indicates
that the instability of the smart grid can be eliminated by
bidding moderately higher prices.

Flexibility of batch workload on demand response.
The computing-resource-elastic nature of batch workload
enables substantial flexibility on its power consumption,
and thus provides great potential for datacenter demand
response. In this simulation, we assess the flexibility of batch
workload on demand response. Specifically, by scaling the
interactive workload trace while still keeping the capacity of
each datacenter unchanged (corresponding to varying the
available capacity for batch workload), we plot the mean
of the aggregated demand deficit over the 48 hours under
various interactive workload scaling ratios (i.e., how much
we scale the amount of request traffic presented in Fig.
2) in Fig. 9. As expected, the aggregated demand deficit
increases as the scaling ratio grows, demonstrating that a
greater potential is provided if there is more capacity for
batch workload.
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Fig. 10: CDF of the number of iterations to achieve convergence.

Convergence of the distributed algorithm. We now
examine the convergence of our distributed proximal Jo-
cabian ADMM-based algorithm. Fig. 10 plots the CDF of
the number of iterations that our algorithm takes to achieve
convergence for the 336 (7 × 48) runs. It suggests that our
algorithm is able to converge within 45 iterations for 80%
of the total runs. Furthermore, the fastest run uses only 12
iterations, and our algorithm takes at most 84 iterations to
converge. These demonstrate the fast convergence of our
distributed algorithm.

Running time. Since we do not have enough server
resource to experiment with a parallel implementation, we
evaluate the proposed distributed algorithm on an Intel
Xeon E5-2670 server with 8-core CPU (2.6G) and 8GB
DDR3 memory. By solving the per-front-end server and per-
datacenter sub-problems with Matlab2014R in a sequential
manner, we observe that one iteration takes 0.13 second
on average. Considering that there are 22 sub-problems for
one iteration (10 for d-update, 6 for λ-update and 6 for
a update), one iteration takes about 0.0062 second when
the algorithm is implemented in a fully parallel manner.
As the scale of the geo-distributed cloud is close to the
state-of-the-art level, we further scale the number of the

front-end servers to examine the scalability of our solution.
Specifically, when scaling the number of front-end servers
from 10 to 20, 30 and 40, the running time (under fully
parallel implementation) for one iteration increases from
0.0062 second to 0.0069, 0.0078 and 0.0092 second, respec-
tively. Clearly, the running time only slightly increases as
the number of front-end server scales, since the scale of each
per-front-end server sub-problem remains unchanged.

7 CONCLUDING REMARKS

This work studied truthful and efficient auction mechanism
design for demand response from a geo-distributed cloud.
Relying on existing approaches for the mechanism design
in such a market is impractical, since the demand response
auction is substantially different from conventional auctions
in two significant aspects. To address this challenge, we
first propose a distributed social welfare maximization al-
gorithm, by incorporating techniques from the alternating
direction method of multipliers. The payment mechanism
is then designed based on the classic VCG mechanism.
Nice properties of the proposed mechanism, such as social
efficiency, individual rationality and improvement on grid
stability, are verified via rigorous theoretical analysis and/or
extensive evaluations based on real datacenter workload
traces and IEEE 14-bus test systems. For future work, we
hope to facilitate the potential extensions discussed in Sec.
3.5.
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