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Abstract—With the rapid development and deployment of 5G wireless technology, Mobile Edge Computing (MEC) has emerged as a
new computing paradigm to facilitate a large variety of infrastructures at the network edge to reduce user-perceived communication
delay. One of the fundamental problems in this new paradigm is to preserve satisfactory quality-of-service (QoS) for mobile users in
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typically in terms of the end-to-end delay, is highly vulnerable to both access network bottleneck and communication delay. Previous
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selection and service placement for MEC, with the objective of improving the QoS in a cost-efficient manner by judiciously balancing
the access delay, communication delay, and service switching cost. Specifically, we propose an efficient online framework to
decompose a long-term time-varying optimization problem into a series of one-shot subproblems. To address the NP-hardness of the
one-shot problem, we design a computationally-efficient two-phase algorithm based on matching and game theory, which achieves a
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1 INTRODUCTION

W ITH the continuous development of wireless com-
munications and the explosive growth of mobile

devices over the recent years, our daily life is increasingly
exposed to a plethora of mobile applications as exemplified
by online social network, mobile game and instant message.
The de-facto wisdom to host these diverse applications is
deploying services on the centralized datacenters [1]. How-
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ever, due to the inevitable long distance between end-users
and service-hosting clouds, the centralized cloud computing
paradigm cannot meet the stringent timeliness requirement
of the emerging delay-sensitive applications such as vir-
tual/augmented reality (VR/AR) [1], industrial internet-of-
things (IIoT), and connected cars [2].

Mobile Edge Computing (MEC) [3] is proposed as a
promising technique to fulfill the low-latency requirement
of the aforementioned applications. The key idea beneath
the MEC technique is to push storage and computation
resources from the network core to network edges, which
are in closer proximity to users [4]. MEC node is typically
built-up in a micro datacenter and collocated with an access
point (AP) (e.g., a base stations or a WiFi hotspot) [2].
Users’ requests can be served on top of a nearby MEC node
and hence the user-perceived delay is drastically reduced
due to the greatly shorten network distance [5]. It’s highly
acknowledged that, MEC is a backbone building block of
the morning 5G.

However, restricted by limited resource capacity, single
MEC cannot host diverse applications en masse and therefore
the services should be carefully placed across the MEC
nodes. In general, a MEC system divides each user’s service
application into two parts: a client entry (CE) and a service
entry (SE) [6], [7]. The CE runs on the side of client device
and communicates with the SE running on the edge cloud
to get data or computing services. A natural problem is
how to distribute and place SEs to provide users with
satisfactory Quality-of-Service (QoS), while achieving the
economic efficiency for the system operators.
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Migration

Fig. 1: An illustration of dynamic service migration by
following user mobility.

An essential issue complicating the above MEC service
placement is that the services should be dynamically mi-
grated across the MEC nodes [8], in order to maintain
the QoS perceived by users which often moves across the
coverage of various MEC nodes. As an example shown in
Fig. 1, we assume that in the first time slot the user is in the
lower-left corner area, and in the second time slot the user
moves from Area A to G. Before the movement occurs, the
user is within the coverage of Edge node 1 and Edge Cloud
2, and the user’s SE is running on Edge Cloud 1. When the
user moves to Area G, the coverage of his nearby edge cloud
is changed to Edge Cloud 3, 4, 5. In the second time slot
when the movement occurs, the MEC system operator needs
to maintain the perceived QoS of the mobile user: (1) whether
to migrate the service according to user movement; (2) if
adopting service migration, when to migrate; (3) if adopting
service migration, where (e.g., Edge Cloud 3, 4, 5) to migrate.

Fig. 2: An illustration of joint network selection and service
placement.

However, previous works [9]–[12] in answering the
above questions have focused on mobility-aware dynamic
service placement, while ignoring the critical effect of the
access network congestion on the QoS [13], [14]. To illus-
trate the importance of access network selection for user-
perceived QoS, we consider a typical MEC scenario with
four edge clouds as shown in Fig. 2. Each edge cloud is com-
posed of a network access point and a colocated computing
cloud. The network access points at Edge Cloud 2 and Edge
Cloud 3 have user queues that buffer congested user re-
quests awaiting to be served, which results in long queuing
delay for users connecting to these two edge clouds. At this

time, if a new user under the coverage of Edge Cloud 1,2
and 3 want to arouse a service entry and select a network
point to access the service. Under current situation, the
Edge Cloud 1, 2 and 3 covering the new user are faced
with an excessive amount of SEs belonging to the other
users, resulting in prolonged queuing delay. In this case,
a better alternative is to forward the user request from the
Edge Cloud 1 to the Edge Cloud 4 with sufficient available
computation resources. At this point, we can choose to place
the SE of the considered user on Edge Cloud 4 that is
out of the user’s coverage, but this procedure will suffer
additional communication overhead between Edge Cloud 1
and 4. While this approach exacerbates the communication
delay incurred by the increased network distance, the access
delay can be significantly reduced. Hence, to improve the
QoS of a MEC system, it’s essential for the MEC system
operators to jointly optimize the network selection and
service placement strategy for users, so as to gain a system-
wide optimization.

In addition, jointly optimizing service placement with
network selection can achieve the following benefits. We
can avoid the high delay caused by users continuously
connecting to poor networks if some users don’t move
frequently. Although they don’t change their locations over
a long period of time, the number of users connected to their
nearby APs is constantly changing. If the dynamic selection
of the access network is not performed, these users who
don’t move frequently may always connect to the network
access point with poor network conditions, and thus they
will obtain unacceptable QoS of applications.

Our main contributions are summarized as follows.
First, we jointly consider the access network selection and
service placement problem in MEC. We take into account
the access delay, switching cost and communication delay
to improve the QoS for MEC applications. Specifically, the
communication delay in this work is incurred when users
access services placed in indirectly connected edge clouds.
The access delay and switching cost are incurred by the
queuing delay for AP and the dynamic migration of ser-
vices, respectively. As the formulated long-term optimiza-
tion problem is stochastic by nature, i.e., containing future
uncertain information such as user mobility, we focus on
designing an efficient online algorithm, which relies on the
zero information of the future, in order to accommodate the
random and unpredictable mobility of the users.

Compared with our previous version [15], this version
makes the following differences. Firstly, we introduce the
new configuration setting which is a pair of AP and edge
cloud. With the configuration pair, the network selection
variables are loosely coupled with the service placement
variables, hence avoiding the curse of dimensionality in
our original model [15]. After decomposing the long-term
problem into a set of one-shot subproblems, secondly, we
propose a two-phase approximation algorithm with prov-
able performance, by applying matching and game theory.
One of the difficulties of our sub-problem is that the per-
ceived delay of a mobile user at the access point depends
on not only its own request but also the overall load of
the connected access point, which makes it infeasible to
directly apply the stable matching technique. To tackle
this challenge, we transform the original problem into a
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college admission problem, which is a classical problem in
matching theory. We then introduce two roles of objects,
which we call configuration pair and user, to make an
analogy to the concept of “college” and “student” in the
college admission problem respectively. We define the user’s
preference list over configuration pair based on the worst
response time that the configuration pair can achieve, and
configuration pair’s preference list based on the resource
demands required by the users. With these definitions,
we obtain a stable matching assignment that guarantees
the worst response time for users. Thirdly, we avoid from
unbalancing situations which probably incurred by stable
matching. We use coalitional game theory to further balance
the matching result between our two roles and improve
overall response time of the whole MEC system. Finally,
through the theoretical analysis of our algorithm, we can
strictly derive the competition ratio compared with the of-
fline optimum. Extensive simulations based on the realistic
trace and setup further demonstrate the effectiveness of our
algorithm.

The rest of this paper is organized as follows. We discuss
related work in Sec. 2. In Sec. 3, we introduce our system
model and problem formulation. In Sec. 4, we present our
online optimization algorithm. In Sec. 5, we analyze our on-
line algorithm to derive a competitive ratio and prove nice
properties of our two-phase algorithm. In Sec. 6, we show
how our online optimization framework can be plugged
into existing MEC architectures. The online framework is
evaluated in Sec. 7 and we conclude this paper in Sec. 8.

2 RELATED WORK

The problem of service placement is a common topic, and
has been extensively researched in cloud computing. [16]–
[18]. Different from it in cloud computing, the problem of
service placement in MEC is associated with the charac-
teristic of users’ movement. To address the random user
mobility, there are roughly three kinds of service placement
strategies.

The first is the follow me at the edge (FME) strategy,
which dynamically migrates services from current edge
servers to the nearby one as the users move. FME strategy
typically makes service placement and service migration
decisions based on the system geography information or
workloads, such as users’ spatial locations and resource
demands. A basic concept of FME consists of a system
operator, who controls a series of geographically distributed
edge servers. This operator makes service scheduling deci-
sions for all the mobile users under his control according
to service types, QoS demands, task data sizes and so on.
The FME policy aims at striking a balance between QoS and
switching cost [9], [10].

The second strategy is modeling the service migration
problem using Markov decision process (MDP) [10], [11].
MDP takes into consideration the cost and benefit of service
migration, and it builds the best policy to decide whether
to migrate a service or not. MDP based service migration
contains two types of strategies, including one-dimensional
and two-dimensional MDP. One-dimensional MDP is first
applied in [10] and [19]. One-dimensional MDP assumes
that mobile users move following a straight line (e.g., a car

driving along the road) [20], [21], which is far from reality
and cannot be applied well into practice. Two-dimensional
MDP [9], [22] is a more general case, which models users’
movements in two-dimensional space, e.g., a plaza. Users
have more than two destinations to make a forward move-
ment. However, these works [6], [23] only consider the
cost associated with the service (e.g., service switching cost,
service configuration cost), while ignoring the cost when
the user accesses the network. In particular, when an access
point is overloaded [24], it will cause network congestion,
which will become a major overhead part of the communi-
cation with the service.

Another method widely adopted in service migration
is time window control mechanism. Time window based
service migration defines a look ahead window as a time
period that can be predicted in the future. This given time
window is used to find the optimal service placement and
minimize the average cost [25], [26]. Compared with MDP
based service migration, this model can handle complex cost
function, heterogeneous network topology and mobile user
movement pattern. In addition, time window based service
migration doesn’t require any probability distribution of the
user mobility and can be applied to more realistic scenarios
[25]. However, existing time window control mechanisms
[25], [26] don’t optimize non-service related costs, such as
queuing delay incurred when users access network.

Apart from dynamic service migration, there are also
some research works optimizing the QoS by the other
ways. The work [27] proposes a new human-driven edge
computing pattern that helps extend the scope of the tradi-
tional MEC. They utilize the computing and communication
capabilities of devices on mobile entities as external MEC
nodes to improve the service quality of mobile applications.
The work [28] takes service placement and request routing
into consideration together, and proposes a close-to-optimal
algorithm to solve the joint problem by random rounding.
However, the work [28] ignores the characteristic of mobility
widely existing in mobile edge computing scenario. The
work [29] exploits the historical queue information as well
as the energy consuming information to reduce the users’
experienced delay by leveraging Lyapunov optimization
framework. The work [30] considers the effect of energy
budget on service placement. The work [30] proposes an
online algorithm to improve the quality of service while
satisfying the limited energy budget constraints. The work
[31] targets to minimize the computation delay and energy
consumption of mobile user in mobile edge computing,
which neglects the mobility characteristic and communica-
tion delay between devices and service entries.

A closely related work to ours is [12]. Without any user
mobility as priory knowledge, the work [12] develops an
energy-aware mobility management scheme to optimize the
total delay due to both communication delay and com-
putation delay under the long-term energy consumption
constraint of the user. Compared with [12], our work has the
following advantages and improvements: (1) Our work con-
siders the nonlinear network access delay, switching cost,
and communication delay to minimize overall delay. (2) the
work [12] only considers single-user’s service placement,
while we consider multiple users and we can minimize
the average delay by coordinating all users in the entire
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TABLE 1: List of Main Notations.

Notation Definition

N Set of mobile users
M Set of access point/edge clouds
φk(t) Set of available access points of user k
xik(t) Whether the service of user k is placed

on edge cloud i (=1) or not (=0)
yjk(t) Whether the AP j is selected for user k

to access the edge clouds (=1) or not (=0)
x(t) Vector of the decision variable xik(t)
y(t) Vector of the decision variable yjk(t)
Cj Capacity of each AP j in MEC
Ei The maximum capacity of edge cloud i
Dq The total queuing delay to access the network
Ds The total switching cost

to adjust service placement
Dc The total communication delay to access services
lij(t) The communication delay

between edge cloud i and j
rk(t) The service resource demand of user k

edge network system. (3) We design an online algorithm to
reduce frequent switching cost and balance the access delay
and communication delay.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model

We consider a MEC system which consists of M access
points (e.g., 4G, 5G or WiFi.) and N users. Each AP
is equipped with a computing node (e.g., a server or a
server cluster) which can be regarded as edge clouds. We
denote the set of APs/edge clouds and the set of users
by M = {0, 1, ...M} and N = {0, 1, ...N}, respectively.
Without loss of generality, the system works in a time-
slotted fashion within a large time span and its timeline
is discretized into time frames t ∈ T = {0, 1, ..., T}. We
assume that MEC platform running on edge clouds adopts
light weight virtualization solutions (e.g., VM or Container.)
[32] that allow a portable runtime of MEC services. For each
user k ∈ N , a service program is brought up on one of
the edge clouds i ∈ M to offer all necessary computing
environment (e.g., computation, storage or database access.)
desired by users. For edge cloud i ∈ M, we let Ei indicate
the maximum number of services that can be hosted in MEC
node i. At each time slot t, mobile user k is covered by a set
of nearby edge clouds via neighboring APs [33], denoted by
φk(t). Key parameters and notations are listed in Table 1 for
ease of reference.

3.2 Access Point Selection Model

At each time slot t, the system operator makes AP selection
decisions for all mobile users. Here we take a binary in-
dicator yjk(t) to denote the dynamic access point selection
decision variable. Let yjk(t) = 1 if the user k ∈ N selects
access point j ∈ φk(t) to connect to the edge clouds at time
slot t, and yjk(t) = 0 otherwise. At a given time slot, since

each user is served by only one access point, we have the
following constraints for yjk(t):∑

j∈φk(t)

yjk(t) = 1,∀k ∈ N , (1)

yjk(t) ∈ {0, 1} ,∀j ∈ φk(t),∀k ∈ N . (2)

At any time t, given resource demand rk(t) for a given
user k, each AP cannot exceed the resource capacity limita-
tion: ∑

k∈N
rk(t)yjk(t) ≤ Cj ,∀j ∈ φk(t). (3)

3.3 Service Placement Model

As mentioned above, each user accesses edge clouds via a
neighboring AP. For each user k, a service entry is offloaded
to one of the edge clouds i to provide service for user k.
Specially, there is no necessary relevancy between the access
point selection and service placement for a specific user. The
service of user k can be placed on any edge cloud i ∈M, but
a user k only can select AP j ∈ φk(t) to access edge clouds at
time slot t. Since users have limited communication distance
in a MEC system, each user can only access the networks via
the AP close to him. Similar to the AP selection model, we
denote the service placement model as follows:∑

i∈M
xik(t) = 1,∀k ∈ N , (4)

∑
k∈N

rk(t)xik(t) ≤ Ei,∀i ∈M, (5)

xik(t) ∈ {0, 1} ,∀i ∈M,∀k ∈ N . (6)

Constraint (4) states that each service must be allocated
to exactly one of the edge clouds. Constraint (5) ensures
that the total number of service in each cloud doesn’t exceed
capacity limits. Constraint (6) indicates that whether placing
service of user k on the edge cloud i or not.

3.4 QoS Model

3.4.1 Queuing delay
For an access point, the number of connected users varies
over time. Occasionally, AP is selected preferentially ac-
cording to the location, which may cause some APs to be
overloaded. The increase in queuing delay will greatly affect
the quality of user service. To analyze the delay performance
of users, we model each access point as an M/M/1 queue
[34]. Therefore, the total queuing delay of the whole AP set
M at time slot t is given by:

Dq(~y(t)) =
∑
k∈N

∑
i∈M

yjk(t)
1

Cj −
∑
k∈N rk(t)yjk(t)

. (7)

where Cj is the capacity of AP j and
∑
k∈N rk(t)yjk(t) is

the overall loads connected to AP j. Each user only can
select AP from his nearby AP set φk(t), so yjk used in (7)
should be 0 when j /∈ φk(t). To ensure that the Expression
(7) makes sense, we will guarantee that the resource capacity
Cj is greater than the demand resource

∑
k∈N rk(t)yjk(t) at

any time.
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3.4.2 Communication Delay
In our model, the service placement is independent, and the
service doesn’t have to be placed in the cloud adjacent to the
user’s communication access point. Doing so will alleviate
the pressure of some hotspot edge clouds to reap the load
balancing of the entire MEC system. Correspondingly, users
accessing services across the edge clouds will spend extra
communication delays. Let lij denote the delay of the trans-
mission path from the AP j to the edge cloud i. Combining
the AP selection decision yjk with service placement deci-
sion xik, the overall corresponding communication delay at
time slot t in the system can be expressed as:

Dc(~x(t), ~y(t)) =
∑
k∈N

∑
i∈M

∑
j∈φk(t)

yjk(t)xik(t)lij(t). (8)

3.4.3 Switching Cost
In the paradigm of MEC, user’s mobility is inevitable. When
users roam around the mobile edge clouds, keeping the
placement of their services invariant would greatly deterio-
rate the perceived delay of users. It behooves to optimize the
user experience via dynamically re-placing or migrating the
services. Toggling service across mobile edge clouds incurs
the switching cost due to the initialization time of booting
new software resources, loading profiles, migrating states,
and so on. The total switching cost of all users between time
slot t− 1 and time slot t is given:

Ds(~x(t), ~x(t− 1)) =
∑
k∈N

∑
i∈M

σ[xik(t)− xik(t− 1)]+, (9)

where [xik(t)− xik(t− 1)]+ = max {xik(t)− xik(t− 1), 0}.
The operator may set the switching cost σ according to
the energy price of edge cloud [35], [36], container state
migration costs [37].

3.5 Problem Formulation

By combining the queuing delay Dq
k(t), the switching cost

Ds
k(t) and the communication delay Dc

k(t), we formulate
the offline network selection and service placement opti-
mization problem (NSSP) as follows:

min
T∑
t=1

D(~x(t), ~y(t)) =
T∑
t=1

(Dq(~y(t))+

Ds(~x(t), ~x(t− 1)) +Dc(~x(t), ~y(t)))

s.t. (1)(2)(3)(4)(5)(6).

(10)

3.6 Challenges

In the above subsections, we have formulated the joint op-
timization problem of network selection and service place-
ment. But to solve this joint problem, we still face several
challenges.

First of all, in a long-term period, the problem requires
the future system information (i.e., the user mobility pat-
tern), so that MEC system operator can make the global
optimal decisions across time slots for users to achieve
better performance both in network selection and service
placement. Unfortunately, it’s difficult to precisely predict
the system information from beginning to end beforehand.

Secondly, the partial objective function Dc(~x(t), ~y(t)) is
a coupling term that depends on both the network selec-
tion variable ~x and the service placement variable ~y. This
coupling term creates difficulties for the problem and we
can’t just achieve optimal state by only optimizing network
selection or service placement. This coupling term also illus-
trates the need for joint optimization of network selection
and service placement. Only by optimizing the relationship
between these two can the objective function be optimized
overall.

Thirdly, by degradation, our problem can be proved as
a complicated variant of generalized assignment problem
[38] which is NP-hard at least. Proof details can be found
in appendix. In addition, considering that our problem
is generally large-scale existence in reality, the algorithm
should be computationally efficient to obtain an outcome.

To overcome the above challenges, we design an online
algorithm to provide a long-term optimization without re-
quiring any future information. Then, to solve the subprob-
lems at each time slot in an online manner, we decouple
the coupling variables by transforming the problem with
newly introduced configuration pair notion. By resorting to
the methods of stable matching and cooperative game, we
design an efficient algorithm to tackle the subproblem with
which is NP-hard difficulty.

4 AN ONLINE OPTIMIZATION FRAMEWORK

In the above sections, we demonstrate the difficulties of our
joint optimization problem. To address these difficulties, in
this section, we first design an online algorithm for the long-
term optimization. Then we design a two-phase algorithm
to gain an efficient solution to deal with the divided short-
term problems.

4.1 Problem Decomposition via Online Lazy Switching
In a long-term issue, future system information (i.e., the
user mobility pattern) is required, so that MEC system
operator can make the global optimal decisions for users
to achieve better performance both in network selection
and service placement. Unfortunately, it’s difficult to get the
system information in the whole time period beforehand.
To address this, we can firstly divide the long-term problem
(10) into T one-shot optimization problems:

min D(~x(t), ~y(t)) = Dq(~y(t))+

Ds(~x(t), ~x(t− 1)) +Dc(~x(t), ~y(t))

s.t. (1)(2)(3)(4)(5)(6).

(11)

and then we can get solution for long-term problem with a
competitive ratio by solving a series of short-term problems.

Our objective is to find an online algorithm to minimize
the total delay of the users in the MEC system. Intuitively,
we can re-calculate the optimal solution at each time slot,
but this comes with the expense of frequent migration cost.
For example, assume that user k moves to a light load access
point j at time slot t, and one-shot optimization would select
AP j for k to access network. But if crowded users flood
to AP j at time slot t + 1, the offline optimization may
keep the connect state for user k without migration. This
inspires us to carefully consider when to migrate the service
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placement and which network access point to choose for the
user. The key idea of our online algorithm is to tolerate as
much as non-switching delay (e.g., queuing delay and com-
munication delay) as possible until it significantly exceeds
the switching cost. Inspired by the work [39], we design
an online lazy switching algorithm (OLSA ) (Alg. 1) to deal
with the AP selection and service placement problem.

In order to describe our algorithm more clearly, we
divide the overall delay D(~x(t), ~y(t)) incurred at time t
into two parts: (1) switching delay Ds(~y(t), ~y(t − 1)) de-
fined in (9) which is related to the decisions in t − 1; (2)
nonswtiching delay Dns(~x(t), ~y(t)) that only relies on the
current information at t, that is, the sum of queuing delay
and the communication delay:

Dns(~x(t), ~y(t)) = Dq(~y(t)) +Dc(~x(t), ~y(t)), (12)

hence, the total latency can be expressed as follows:

T∑
t=1

D(~x(t), ~y(t)) =
T∑
t=1

(Dns(~x(t), ~y(t)) (13)

+Ds(~x(t), ~x(t− 1)).

Algorithm 1: The Online Lazy Switching Algorithm
(OLSA)

1: t = 1;
2: t̂ = 1; // Time cursor for the last service migration

occurred;
3: Init AP selection decision vector x(1) and service

placement decision vector y(1) by Alg. 2 and Alg. 3;
4: Compute Dns(~x(1), ~y(1)) and Ds(~y(1), ~y(0));
5: while t ≤ T do

6: if Ds(~y(t̂), ~y(t̂− 1)) ≤ 1
β

t−1∑
v=t̂

Dns(~x(t), ~y(t)) then

7: Obtain the vector x(t) and y(t) by Alg. 2 and 3;
8: if x(t) 6= x(t− 1) then
9: Use the new service placement vector x(t);

10: t̂ = t;
11: end if
12: end if
13: if t̂ < t then
14: x(t) = x(t− 1);
15: If y(t) isn’t derived, compute it by Alg. 2 and 3;
16: end if
17: t = t+ 1;
18: end while

In the algorithm, we initialize the two decision vectors
x and y by assigning T = 1. At the beginning time slot
T = 1, we first solve the one-shot optimization problem
(11) by Alg. 2 and Alg. 3. After that, we obtain the original
switching cost and non-switching delay deceived by above
decision variables. Then, at each time slot t, OLSA chooses
the proper access point and service placement for every user
according to the following strategies. Let t̂ denote the last
service migration moment over the past time. OLSA firstly
computes overall non-switching delay

∑t−1
v=t̂

Dns(~x(t), ~y(t))

in time [t̂, t − 1]. The algorithm checks whether the overall
non-switching delay is at least β times than the switching
cost Ds(~y(t̂), ~y(t̂ − 1)) or not. If the condition holds, OLSA

obtains the decision vector ~x(t) and ~y(t) by Alg. 2. Under
the previous conditions, the algorithm decides to place or
migrate the services at time t by judging whether a new
service placement strategy is generated (x(t) 6= x(t − 1)) at
time t. Other than that, in all remaining cases, the algorithm
keeps the service at the same place without any migration
operation (x(t) = x(t− 1)).

Here we use β > 0 as an indicator to control the
frequency of service migration. More specifically, a larger
β signifies to tolerate more non-switching delay in our algo-
rithm. This can be observed from the judgement condition
Ds(~y(t̂), ~y(t̂− 1)) ≤ 1

β

∑t−1
v=t̂

Dns(~x(t), ~y(t)). A larger β will
tolerate a larger

∑t−1
v=t̂

Dns(~x(t), ~y(t)), that is, more non-
switching costs can be tolerated. We can set β values for
different types of applications to get the desired QoS.

A critical challenge of OLSA is how to solve the problem
(12). Note that the difficulty in solving the above problem
roots partially in that the decisions of network selection and
service placement of top level stages are coupled. In the
following subsection, we show how to solve non-switching
subproblem (12). We design a two stage algorithm to obtain
a near optimal solution. In the first stage, we transform
the problem to a stable matching problem which can be
efficiently solved by deferred acceptance algorithm [40],
[41]. In the second stage, we use the results obtained from
the first stage as an input and apply coalitional game theory
to further improve the quality of the result.

4.2 A Primer on Configuration Pair
Before we get into the two phase algorithm, we first intro-
duce a conceptual configuration setting, which helps ease
the coupled variables in the original subproblem (12).

Considering that at a single time slot, a specific mobile
user definitely chooses a nearby network and a MEC cloud
to constitute a network-service group, it’s a natural way to
determine a (network, MEC cloud) group at each decision
cycle. Inspired by this point, we subtly orchestrate a con-
figuration pair which is composed of an access point and
an MEC cloud. Each configuration pair is assigned with a
communication delay dij which is hinged on the value lij
of formula (8). By importing such conception, the variables
which are coupled by each other in the formula (8) can be
simply decoupled. Moreover, rather than having to make
choices in the three sets N ,M, φk(t) before, now the search
space is degraded, and we only need to find solutions in
the user set and the configuration pair set, which greatly
degrades the complexity of the problem.

The configuration pair set, denoted as C, contains N ∗N
elements in total, which is related to the size of the MEC
set N . Each element in the set C represents an available
resource group (e.g., access point and MEC cloud). For the
sake of simplicity, we use C equal to N ∗ N to indicate the
length of the configuration set C.

The matchup between users and configuration pairs at
time t is denoted as a binaryM×C matrixZ(t). Each binary
decision zij(t) ∈ {0, 1} in Z(t) satisfies:

zij(t) =

{
1 ith user is connected to jth configuration pair;
0 otherwise.

(14)
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4.3 The Stable Matching Phase

Our non-switching subproblem can be considered as a vari-
ant of stable marriage problem (SMP) [42], which is known
as college admissions problem (CAP). Different from tradi-
tional one-to-one matching, the CAP is devoted to many-to-
one matching up, that is, one specific college is open to all
applicants and can admit a group of more than one student.
A student at one time is allowed to show diverse intention of
more than one school with a preferred order, but one college
can only be accepted as the final sole choice. Applying
the analogy to our problem, each configuration pair and
mobile user play the role of college and student in the CAP,
respectively. In every decision round, each configuration
pair provides sufficient resources to multi-users to access
the network and deploy service. Each user only can choose
one configuration pair to obtain service ability.

In general, there exist two sided sets in the stable match-
ing problem, in which both sides have preferences over the
other. In our stable matching phase, let C and S denote
sets of configuration pairs (acting as colleges) with differ-
ent capacities to serve network-service group and mobile
users (acting as students) with different service demands
respectively. Assume that |C| = C and |S| = N .

Definition 1. A matching µ is a function from the set
C ∪ S to the set C ∪ S such that each student is assigned
to exactly one college and colleges are open to match more
than one preferred students. That is, for each s ∈ S and
c ∈ C, µ(s) = c only exists but there are several elements
s1, s2, ..., sn ∈ S that may compose the matching µ(c) =
{s1, s2, ...sn}.

According to the core concept of the stable matching [40],
we firstly need to subtly define preferences over the set C
and S and blocking pairs, and then our problem can be seen
as a many-to-one stable matching problem. Here we take
a �c b to indicate that c prefers a to b. However, our problem
cannot apply the method directly. Different from preferences
of students and colleges in, the object in our problem, users
and configuration pair, have their own special interest. It’s
necessary to find out the desired point of each role in our
problem, and then create the preference list following the
objects’ desired objective.

First, we take a look at each user’s objective. Users in a
mobile edge computing system always seek configuration
pair to handle their mobile services. From the perspective of
a mobile user, he eagerly yearns for a configuration pair that
provides low service access delay. The delay in our problem
mainly contains two components including queuing delay
and communication delay. From the above point, one user
i can build his preference list by computing the following
definition:

1

Cj − θj(t)
+ dij(t). (15)

where θj(t) is the overall loads of j-th configuration pair
and dij is the communication delay that user i selects j-th
configuration pair.

However, there still exist some difficulties when employ-
ing the above equation. Most of previous works on many-
to-one stable matching depend on the premise that the pref-
erences are static and independent of the others members.
However, in our problem, the perceived delay of the user i

in expression (15) subjects to not only the requests of user
i but also the loads of the network in the configuration
pair, which makes it infeasible to directly apply the original
stable matching method. To tackle this technical challenge,
we define users’ preference list according to the worst delay
that the selected configuration pair can provide:

νmaxij (t) =
1

Cj − β ∗ Cj
+ dij(t). (16)

where β is a factor that indicates the maximum loads the
configuration can provide.

After getting the aim of the mobile users, we can define
users’ preference list as follows.

Definition 2. User’s preference list over configuration
pair. The preference list of the ith user si is Γ(si) =
{cj∗, ..., } which contains configurations whose capacity is
at least equal to i’s requested resource. The elements in
preferred list Γ(si) are sorted in the ascending order of
the worst delay that a configuration provides according to
definition (16).

For configuration pairs, they are more willing to provide
services as many as possible. Hence configuration pairs
desire the users with smaller resource requirements, who
will not cause the overloads of the configuration. Hence,
we define the configurations’ preferred list according to the
resource demand requests from users as below.

Definition 3. Configuration’s preference list over users.
The preferred list of the jth configuration cj is Γ(cj) =
{si∗, ..., }, which contains the users whose resource de-
mands don’t exceed the configuration’s capacity. The ele-
ments in the preferred list Γ(cj) are ranked in an ascending
order of the resource demand request volume.

Definition 4. Blocking pair. In a matching Θ, a user-
configuration pair (si, cj) is a blocking pair if it satisfies any
of the following two conditions:

1) cj �si Θ(si), and kj(t) + ri(t) ≤ Ej ;
2) kj(t)+ri(t)−

∑
i∗ rk∗(t) ≤ Ej , where si �cj Θ(si∗)

and Θ(si∗) = cj .

According to the definition of blocking pair, we define
the stable matching as follows:

Definition 5. Stable Matching. A matching Θ is said to
be stable if there doesn’t exist any blocking pairs.

Getting all the definitions, the detailed algorithm to
obtain a stable matching for our problem is given in Alg.
2.

The procedures of the first stable matching phase is
described in Alg. 2. At the beginning, the Algorithm 2
computes the preference lists for each mobile user and
configuration pair. Then each mobile user selects its most
preferred configuration pair from its preference list as pro-
posals to require a matching. If all of the proposals can
be handled without violating the capacity constraint, the
configuration pair accepts all the proposals. Otherwise, the
configuration pair only holds the most preferred proposals.
All above procedures continue until there is no proposal to
be proposed.

4.4 The Coalitional Game Phase
Stable matching phase is efficient to obtain a feasible so-
lution for our problem, but it probably results in a unbal-
anced matching. For instance, three mobile users A, B, C
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Algorithm 2: Stable Matching Phase Procedure
Input:

Resource demand of each mobile user in time slot t,
ri(t),∀i;
The capacity of the configuration pair, Ej , ∀j;

Output:
Mapping between mobile users and configuration
pair, zij(t),∀i, j;

1: function StableMatching (resource demand ∀, i, ri(t),
configuration pair capacity ∀j, Ej);

2: Each mobile user and configuration pair computes
its own preference list in the Definition (1) and (2)
as ∀i,Γ(si) = {cj∗, ..., }, ∀j,Γ(cj) = {si∗, ..., };

3: while Mobile users still have proposals do
4: Each mobile user proposes to its most preferred

configuration according to its preference list;
5: if All of the proposals don’t exceed the capacity

constraint in Constraint. (3) and (5) then
6: The configuration pair temporarily holds all the

proposals;
7: else
8: According to configuration pair’s preference list,

the configuration pair holds the most preferred
proposals that will not violate the capacity
constraint;

9: The configuration pair rejects the other
unacceptable proposals;

10: end if
11: end while
12: Transform the matching Θ to zij ,∀i, j; Unpack zij to

decision x, y;
13: return x, y.
14: end function

have request demand of 2,4,6. Access point 1 and 2 are
available to the three users with capacity of 20 and 30,
respectively. Access point 1 and 2 are all connected to the
same Edge Cloud. After stable matching, all the mobile
users are connected to the pair of AP 2 and Edge Cloud
but leave the pair of AP 1 and Edge Cloud unoccupied. It
yields an unbalenced stable matching situation that can be
further improved by a transfer that switches user B to AP 1
to reduce response time. Next, we further utilize coalitional
game theory [43] to improve this unexpected situation.

Essentially, coalitional game involves a set of players
who seek from cooperative groups to strengthen their po-
sitions in a given situation. The other basic concept of a
coalitional game is the coalition value, which determines
the payoffs that all the players receive in a game. In our
solution, the first matching phase divides the mobile users
set N into M subsets, each of which is affiliated with one
configuration pair. Thus every subset that corresponding
to one configuration pair can be viewed as a coalation of
mobile users. Thus the output from the prior matching
phase is be adopted as an input of the second coalitional
game phase. Next we give the definition, including game
description and payoff value of our problem.

Definition 5. Game Definition. The coalitional game is
defined by the pair (S,Θ), where mobile users set S is the

collection of players, and Θ indicates the coalitions, and PV
is the payoff value that all the mobile users receive in a game
round, which defines in the definition 6.

Definition 6. Transfer Rule. In our coalitional game, a
user s has incentive to transfer from the current coalition
Sa to the next coalition Sb, formed as Sa∗ = Sa \ s and
Sb∗ = Sb ∪ s if and only if the following two conditions
establish:

1) κb(t) + rs(t) ≤ Ej ;
2) Payoff value satisfies PV (s, a, b) = Dq

a(t) +Dc
b(t)−

Dq
a∗(t)−Dc

b∗(t) > 0.

The first condition is to ensure that a transfer doesn’t go
against the capacity constraint of mobile edge cloud in the
configuration pair b∗. The second condition is defined to
stimulate players transfer to better coalitions to decrease the
overall delay of the whole game. When the transfer process
happens to an end, the coalition game reaches to a Nash
stable state in which no mobile user can decline the game
revenue without hurting the others’ benefit.

When the stable matching phase stops with a stable
matching Θ, the matching is used as an input for the second
coalitional game phase. The matching result is splitted into
M partitions, P = {S1, S2, ...SM}, according to the config-
uration pair. Then the obtained partition set is applied as an
initial partition Pinitial for the second phase. We iteratively
find the transfer pair with minimum transfer value until the
algorithm goes to a Nash stable state.

Algorithm 3: Coalitional Game Phase Procedure
Input:

Partition P = {P1, P2, ..., PM} obtained from
Algorithm 2;
The capacity of the configuration pair, Ej , ∀j;

Output:
Mapping between mobile users and configuration
pair, zij(t),∀i, j;

1: function CoalitionalGame (initial partition P ,
configuration pair capacity ∀j, Ej));

2: while Partition P hasn’t converage to a Nash stable
partition do

3: Each mobile user computes its most preferred
transfer rules;

4: Init transfer pair (s, a, b) with the Definition 6;
5: for all Configuration pair, ∀j, cj do
6: Find the minimum transfer (s∗,Θ∗, j) with

minimum TV (s∗,Θ∗, j);
7: if TV (s∗,Θ∗, j) < TV (s, a, b) then
8: Update the pair (s, a, b) = (s∗,Θ∗, j);
9: end if

10: end for
11: Agree with the transfer (s, a, b) and update the

partition P ;
12: end while
13: Obtain zij ,∀i, j;
14: return zij .
15: end function
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5 THEORETICAL ANALYSIS

In this section, we analyze the theoretical performance of
OLSA algorithm for MEC. First we discuss the performance
relationship between the switching cost and non-switching
cost. Then we compare OLSA with the offline optimal cost
to discern the competitive ratio. We prove that the stable
matching in our algorithm is user-side optimal and our
coalitional game can converge to a Nash stable status. We
also give the complexity analysis of our proposed algorithm
in the third subsection. Due to limited space, the detailed
proof process can be found in Appendix.

Theorem 1. The one-shot optimization problem (11) is NP-hard.

5.1 Online Lazy Switching Algorithm Analysis
In this subsection, we derive the performance guarantee of
the OLSA algorithm, in terms of the optimally gap between
the cost incurred by the OLSA algorithm and the offline
optimal cost. We first deduce the numerical relationships
between the non-switching delay, the switching cost, and
the optimal value, respectively. Then we determine the
competitive ratio of the entire OLSA through the derived
relationship.

5.1.1 Switching Cost Analysis
Lemma 1. In a time slice [1, T ], given any control parameters
β, the OLSA algorithm provides a determined bound for overall
switching cost as follows:

T∑
t=1

Ds(~y(t− 1), ~y(t)) ≤ 1

β

T∑
t=1

Dns(~x(t), ~y(t)).

5.1.2 Non-switching Cost Analysis
Lemma 2. Let (~x∗(t), ~y∗(t)) denote the optimal solution to
problem (10). In a time slice [1, T ], the overall non-switching
delay is at most ε times the total offline optimal, that is:

T∑
t=1

Dns(~x(t), ~y(t)) ≤ ε
T∑
t=1

D(~x∗(t), ~y∗(t)),

where ε = maxt∈[1,T ]
maxDns(~x(t),~y(t))
minDns(~x(t),~y(t)) .

5.1.3 Competitive Analysis
Theorem 2. The OLSA produces a solution with a competitive
ratio of ε(1 + 1

β ).

5.2 Two-Phase Algorithm Analysis
In this subsection, we give analysis of our two-phase algo-
rithm. We first prove that the first stable matching phase
always ends to a stable matching assignment and it’s user-
side optimal. We then demonstrate that the second game
phase can converge to Nash stable solution in finite steps.

Theorem 3. There always exists a stable set of assignments
between configuration pairs and users.

Theorem 4. Every matching given by the Alg. 2 is as well off as
any other stable matching assignments at least.

Theorem 5. Given original partition Pinitial obtained from Alg.
2, Alg. 3 converges to a Nash stable partition Pfinal.

5.3 Complexity Analysis

For Alg. 2, each mobile user roundly proposes its most
preferred configuration pair, the running cycle number of
which is related to the length of mobile user’s preference
list. Since we introduce a virtual configuration pair to handle
the unbalanced situation, the length of the mobile user’s
preference list is M + 1. Thus, the Alg. 2 will terminate in
M + 1 iterations. In each iteration round, the worst case is
sorting all of the proposals to determine the preferred mo-
bile user for configuration pair, which needs O(N log(N))
time. Hence, the computation complexity of the Alg. 2 is
O(MN log(N)).

For Alg. 3, the computation mainly concentrates on
searching for the available transfer pair. The search space
of each partition finding round is N ∗M , which causes a
O(MN) computation complexity.

6 IMPLEMENTATION CONSIDERATIONS

In this section, we show how our proposed online opti-
mization framework can be plugged into state-of-the-art
MEC architecture. We first clarify a recommended MEC
architecture from European Telecommunications Standards
Institute (ETSI), and then discuss how our method will
be implemented into such architecture. At the end of this
section, we further discuss how the devices and MEC nodes
corporate together to gain performance benefit.

6.1 System Overview

We illustrate the state-of-the-art MEC architecture recom-
mended by ETSI in Fig. 3 [44]. From the view of bottom
to the top, the recommended MEC architecture will be ab-
stracted including hardware layer, virtualization layer, ap-
plication layer, and MEC system orchestrator. The hardware
layer is consisted of physical resources like bare servers
providing computing capability, and a couple of networks
providing network access capability. It has to point out
that our mentioned network resources contains not network
connecting MEC inner components but outward network
access point, for example, 3GPP, directly supplying mobile
users with the ability accessing their service entry hosted on
MEC clouds.

The recommended MEC architecture contains the MEC
hosts and the MEC management entities that’s necessary
to run MEC service entries. The MEC host includes MEC
platform and a virtualization layer that supplies computing,
storage, and network resources for MEC applications. In
MEC host, MEC platform provides a basic environment that
supports the running of the MEC applications. The virtual-
ization layer abstracts the bare metal physician resources to
easy-obtained soft resources for MEC applications to apply.
Empowered by MEC platform and virtualization layer, MEC
applications run on top of the MEC host in virtual machines
or containers.

While all the above components of MEC are similar to
the traditional centralized cloud, MEC has its own unique
characteristics. First, MEC holds on the direct control right
of the radio network and this exposes up-to-date radio
network information to the applications. Hence by doing
this, MEC applications can be aware of the instant network
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Fig. 3: State-of-the-art MEC architecture recommended by ETSI [44]

information to make further performance optimization. The
other particular aspect in MEC is that the MEC platform can
easily obtain and utilize the location-related information.
The locating position, the service-hosted MEC node, and
connected radio network are all known to the MEC appli-
cations which can help them improve service performance.
These unique characteristics enables that our proposed on-
line optimization framework can be readily integrated into
existing MEC architectures.

6.2 System working strategy

Our work is to target the applications serving multiple users
with mobility features as well as connecting to multiple
different network access points. With the MEC architecture
recommended by ETSI, it’s reasonable for the mobile appli-
cations to get their location and network information, which
is crucial to be used in our proposed online optimization
framework. While running, the applications collect location
and network information from each MEC host, and then
hand these information from MEC platform through MEC
system level management to the MEC system orchestrator.
There will have a central control unit to collect the infor-
mation from all of the MEC system orchestrator together.
After collecting the needed information, the control unit will
make the optimization decisions on access point selection
and service placement based on the optimization algorithms
proposed in Sec. 4.

7 PERFORMANCE EVALUATION

In this section, we conduct both simulated and trace-drive
evaluations to validate the performance of our proposed
algorithms. We seek to find the answers for the following
questions: (1) What is the performance of our two-phase
algorithm on solving problem (12)? (2) What is the necessity
of two-phase processing? How do the transfers perform in

the second phase? (3) What is the performance of our online
algorithm without any future system information? (4) What
are the influencing factors of service migration? (5) How
does the control parameter β affect the service migration?

7.1 Simulated Evaluation

7.1.1 Simulation Setup

Data Set: We take advantage of the ONE simulator [45] to
generate the movement traces of mobile users. The ONE
simulator is a potent tool that is widely used in generating
user movement traces by using different mobile models.
We generate the movement trajectory of 1,000 mobile users
through this simulator, which belong to 6 groups with
different speeds. We use groups of different speeds to tell
moving objects, such as cars, or low-speed moving objects,
such as pedestrians.

MEC Details: The total simulation area is almost 8 ×
8 km2. We divide the whole area into 8 × 8 square cell
grids. Each cell grid occupies 1 km2, endowed with one
MEC node to provide mobile services. We consider that
the capacity of AP in each MEC should be slightly larger
than the maximum resource requirement in the system.
Regarding the edge cloud in each MEC, we simply set the
total capacity as 1/10 of the amount of resource requirement
at all time slots. The communication delay between two
MEC in our simulations is measured by the geographical
distance between any two entities based on their locations,
which is in the range of [0, 16] ms.

Users Details: We assume that each user has indepen-
dent resource demands of access point. Capricious require-
ments will put different pressure on the queuing delay of
network access points. We randomly set the requirements
for each user within the AP capacity of each MEC. Consid-
ering that the service’s switching cost varies among different
edge clouds, we generate the switching cost by following a
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Gauss distribution with the negative tail cutted, which is
distributed in [0.5, 1].

7.1.2 Performance Benchmark
We carry out experiments with the above setting. To further
understand the impact of our online algorithm on different
types of delay and the efficiency of our two-phase algo-
rithm, we compare the results of our algorithm with the
following two baselines:

• Stable matching (SM): at each time slot, the system
operator only uses Alg. 2 to select access point and
arrange service placement.

• Frequent switching (FS): the system operator uti-
lizes both stable matching and coalitional game to
make decisions for network selection and service
placement without considering any migration tactics
at each time slot. This strategy applies new service
placement choice, which causes service migration at
each time slot.

7.1.3 Effectiveness of Two-phase Algorithm at Single Time
Slot
In this subsection, we evaluate the performance of our
two-phase algorithm, named SMCG (stable matching and
coalitional game) in the simulations.

The changes of different delay during SMCG itera-
tion. When evaluating response time, we firstly consider
the delay changes at different iteration cycles. As shown
in Fig. 7, at the beginning of the iteration processing, the
queuing delay of the system stays at a high level. With the
increasing of iteration, overall queuing delay first declines
steeply and then deceases gently. For communication delay,
it can be seen a slightly growth with the algorithm iterating.
The reasons behind these changes is that in the second
game phase, we accept the stable matching result from
the prior stable matching phase. In the stable matching,
we build users’ preference list by assuming that an access
point provides the worst delay to all users. Such a mistiness
disposing weakens the possibility of optimization queuing
delay on network selection but can produce an excellent
service placement strategy, which has little reduction space
coming into game phase from stable matching. Therefore, in
the iteration of game phase, SMCG mainly reduces queuing
delay as well as make moderate changes between queuing
delay and communication delay, which results in the going
up of communication delay. It also can be found in our
experiments that our algorithm can converge to an end after
hundreds of iterations.

Load distribution. We calculate load distribution before
and after adopting our SMCG method. Fig. 4 shows a time
slice that user density hotspot is concentrated in area (4,B)
and its surroundings. We give load distribution of access
point and edge cloud in Fig. 5, and Fig. 6, respectively.
As we can see, SMCG significantly reduces the load of the
access points in the hotspot area and distributes the load to
its surrounding areas, achieving the effect of load balancing.
For the edge cloud, their resources are limited, and they will
be greatly troubled when they face sudden traffic and con-
gested population. In our experiments, we can find in the
Fig. 6 that our solution can make full use of the edge cloud

resources of the entire system, offloading service pressure
to other edge clouds, improving resource utilization of the
entire system, and avoiding fierce competition for resources.

Response time comparison at different time slot with-
out considering service migration. In our experiment, we
want to learn how our proposed method does at different
time slot. We adopt frequent switching (FS) in this test,
that is, we only use SMCG to make decisions of network
selection and service placement for users at each time slot.
FS strategy will update and migrate service immediately
when a new placement decision is computed. We list com-
munication delay, queuing delay and overall delay in Fig.
11, Fig. 12, and Fig. 13, respectively.

• Communication delay. According to Fig. 11, the
communication delay in our algorithm has fluctua-
tions over time. Both the SM and SMCG method keep
stable communication delay, but the communication
delay in SMCG is always less than that of SM, which
also proves our efficiency on balancing communica-
tion delay.

• Queuing delay. For queuing delay at different time
slot, SMCG method has a level off at around 25, while
SM causes a changeable performance, which is two
times our SMCG method at least. From this point,
our proposed method can provide users with a stable
delay even if the system is full of ruleless movement
event.

• Overall delay. The tendency of overall delay shows
the same character as the queuing delay. Due to the
stability of communication delay and queuing delay
in SMCG, overall delay in system sostenuto owns a
smooth performance over time.

7.1.4 Effectiveness of OLSA
Response time in a non-switching phase. Our online algo-
rithm adopts a strategy of delaying the service migration,
so how does it affect the response time of the system?
We calculate the response time of our algorithm over time,
and the results are listed in Fig. 8, Fig. 9 and Fig. 10. The
three pictures use different parameter settings, but the main
features are similar. We use a star to represent the service
migration point chosen by OLSA. We can find that during
service migration, the overall delay of the entire system will
drop to the lowest point. After that, before the next migra-
tion occurs, the delay of the entire system will continue to
increase. When the delay accumulates to a certain degree,
the system will make a decision to migrate the service to
reduce the response time of the entire system. According to
the statistics of the queuing delay and the communication
delay, it can be seen that before the migration event occurs,
the queuing delay and the communication delay of the
entire system have different trends. The main reason for the
increase in the overall system delay is communication delay.
Because the system adopts a delayed migration strategy,
when users move, their services will be retained at the place
where they were placed at the previous point in time. There-
fore, users need additional communication overheads to
contact with the corresponding service entry, which causes
the significant increase of system’s communication delay. As
for the queuing delay of each access point, it does show a
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Fig. 4: User density before SMCG.
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Fig. 5: Access point pressure in SMCG.
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Fig. 6: Service placement distribution in
SMCG.
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Fig. 8: Different delay of OLSA
(β = 0.5).
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Fig. 9: Different delay of OLSA (β = 1).

0 10 20 30 40 50
time slot

0

20

40

60

80

100

120

de
la

y

Overall Delay
Queue Delay
Communication Delay

Fig. 10: Different delay of OLSA
(β = 1.5).
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Fig. 12: Queuing delay in SM and
SMCG under FS setting.

certain reduction trend. This is because, in the case of non-
switching, the service placement location is fixed. The OLSA
algorithm mainly optimizes network access and has more
optimization space to reduce the overall queuing delay of
the system.

The impact of control parameter β. In our algorithm,
we introduce a control variable β to adjust the frequency
of service migration of the system. Therefore, we evaluate
the system performance under different β settings. When
parameter β is equal to 0.5, 1, and 1.5, the system situation
is shown in Fig. 8, Fig. 9 and Fig. 10. Under the parameter β
of three different sizes, we find that the system’s tolerance

for delay grows up with the increase of parameter β. It’s
found from the experimental results that when β is equal to
0.5, the system migrates services every 5 time slots. When
β is equal to 1 and 1.5, the service migration interval of
the system is 10 and 20 time slots. Therefore, in the face
of applications with different delay requirements, we can
dynamically adjust the value of parameter β to control the
frequency of system service migration and suppress the
increase of the total delay in the system.

Switching cost comparison. Our online method OLSA
aims to optimize and control the cost of service switching.
Therefore, we compare the switching cost of the OLSA
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Fig. 15: Different delay of OLSA under
realistic trace.
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Fig. 18: Switching cost in OLSA and FS.

method and the baseline FS under different parameter set-
tings in Fig. 14. As we can see in the Fig. 14, compared
with FS, our method can effectively control the switching
cost under different parameter settings. For OLSA itself, as
the parameter β increases, the switching overheads continue
to decrease. This is because a larger value of β allows the
system to tolerate more communication delay and reduce
the frequent service migration of the system. Therefore, the
overheads of service migration are smaller.

7.2 Real-trace Evaluation
This subsection conducts evaluations on realistic taxi move-
ment trace from EPFL [46]. This trace includes more than
500 taxis mobility records over 30 days in San Francisco Bay
Area.

7.2.1 Evaluation Setup
By removing the abnormal taxies, we finally obtain 535
taxies and test the records of these taxies in 50 time slots
in an area of about 10KM2. Other setup configurations
still follow the configuration in Sec. 7.1.1 and Sec. 7.1.2,
including MEC details, users details. We compare OLSA
with the benchmark FS to illustrate the effectiveness.

7.2.2 Effectiveness of OLSA
Delay in OLSA. Fig. 15 shows different delay components
when β = 1. Comparing Fig. 15 and Fig. 9, we can ob-

serve that in realistic trace, the communication delay is
not increased step by step like simulated data. The queue
delay in realistic data trace, however, varies more than
simulated data set. This is because the realistic data set
contains more natural characteristics with random factors,
while the simulated data set is created by following some
settled policies.

Comparison between OLSA and FS. We also perform
comparison between OLSA and the baseline FS, in terms
of the total cost, communication delay, queuing delay, and
switching cost, the results are illustrated in Fig. 15 to Fig.
18. The performance of OLSA is always better than FS’s
because FS suffers from frequent service switching which
will incur high switch cost like Fig. 18 shows. Fig. 16 shows
the communication delay in OLSA and FS setting. Because
FS frequently switches its services at each time slot, so its
communication delay is always zero. Although at most time
slots, the system should endure communication delay, the
overall delay is better in OLSA because it avoids unneces-
sary service switching cost. Regarding queuing delay in Fig.
17, the trends of OLSA and FS is similar, but our OLSA is
slightly better than FS, because OLSA comprehensively con-
siders the switching cost, the queuing delay and the com-
munication delay to make service decisions and network
selection decisions, which can gain global optimizations to
make trade-off or achieve good performance.
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8 CONCLUSION

In this paper, we study the problem of joint optimization on
the access network selection and service placement for MEC,
towards the goal of improving the QoS by balancing the
queuing delay, communication delay and service switching
cost. We first argue that, the commonly adopted approach
of unitary service placement doesn’t necessarily improve
the user-perceived QoS, since the later is vulnerable to not
only the communication delay, but also the network access
delay. Then we formulate the joint optimization on access
network selection and service placement as a long-term
cost-minimization problem. We design an efficient online
framework, which decomposes this long-term optimization
problem into a series of one-shot problems. To address the
NP-hardness of these one-shot problems, we provide a two-
phase algorithm to get an efficient near-optimal solution.
Both rigorous theoretical analysis on the optimality gap and
extensive trace-driven simulations demonstrate the efficacy
of our proposed solution.
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APPENDIX

Theorem 1. The one-shot optimization problem (11) is NP-hard.

Proof. We construct a polynomial-time reduction to problem
(11) from the generalized assignment problem (GAP), a
classic combinatorial optimization problem which is known
to be NP-hard [47]:

min
m∑
i=1

n∑
j=1

cijxij (17)

s.t.
m∑
i=1

xij = 1,∀j = 1, ..., n,

n∑
j=1

wijxij ≤ ti,∀i = 1, ...,m,

Var xij ∈ {0, 1},∀i = 1, ...,m, j = 1, ..., n.

Given an instance A = (m,n, cij , wij , ti) of the GAP, we
map it to an instance of the one-shot optimization problem
(11) with A′ = (|M| = m, |N | = n, lij = cij , ~y = 1, wj =
rk, ti = Ci). Clearly, the above mapping can be done in
polynomial time. Then, if there exists an algorithm that
solves the cost-performance tradeoff problem A′, it solves
the corresponding GAP A as well. As a result, the GAP can
be treated as a special case of problem (11). Given the NP-
hardness of GAP, the one-shot optimization problem (11)
must be NP-hard as well.

Lemma 1. In a time slice [1, T ], given any control parameters
β, the OLSA algorithm provides a determined bound for overall
switching cost as follows:

T∑
t=1

Ds(~y(t− 1), ~y(t)) ≤ 1

β

T∑
t=1

Dns(~x(t), ~y(t)).

Proof. First define t̂i as the time point for i-time migration
occurring. Before (i + 1)-time migration comes, according
to judgement condition of the online algorithm, we have
the bound that the non-switching delay is at most β than
the switching cost at each time slot t in [t̂i, t̂i+1]. Hence, we
have:

T∑
t=1

Ds(~y(t− 1), ~y(t)) ≤ 1

β

T−1∑
t=1

Dns(~x(t), ~y(t))

≤ 1

β

T∑
t=1

Dns(~x(t), ~y(t)).

Lemma 2. Let (~x∗(t), ~y∗(t)) denote the optimal solution to
problem (10). In a time slice [1, T ], the overall non-switching
delay is at most ε times the total offline optimal, that is:

T∑
t=1

Dns(~x(t), ~y(t)) ≤ ε
T∑
t=1

D(~x∗(t), ~y∗(t)),

where ε = maxt∈[1,T ]
maxDns(~x(t),~y(t))
minDns(~x(t),~y(t)) .

Proof. We prove this lemma by the definition of ε. The mean-
ing of ε is the ratio of the maximum non-switching delay to
the minimum switching cost during the time period [1, T ].
On this ground, the non-switching delay incurred at each

time slot is ε times the optimal non-switching delay and we
have Dns(~x(t), ~y(t)) ≤ εDns(~x∗(t), ~y∗(t)). Therefore, the
lemma can be derived by the following steps:

T∑
t=1

Dns(~x(t), ~y(t)) ≤ ε
T∑
t=1

Dns(~x∗(t), ~y∗(t))

≤ε
T∑
t=1

{Dns(~x∗(t), ~y∗(t)) +Ds(~y∗(t− 1), ~y∗(t))}

≤ε
T∑
t=1

D(~x∗(t), ~y∗(t)).

Theorem 2. The OLSA produces a solution with a competitive
ratio of ε(1 + 1

β ).

Proof. By applying Lemma 1 and Lemma 2 to equation (13),
we have:

T∑
t=1

D(~x(t), ~y(t)) =
T∑
t=1

(Dns(~x(t), ~y(t))

+Ds(~y(t), ~y(t− 1)))

≤
T∑
t=1

((1 +
1

β
)Dns(~x(t), ~y(t)))

≤ ε(1 +
1

β
)
T∑
t=1

(D(~x∗(t), ~y∗(t))).

Thus, we prove that the OLSA can gain a competitive
ratio of ε(1 + 1

β ) compared with the offline optimum.

Theorem 3. There always exists a stable set of assignments
between configuration pairs and users.

Proof. We will prove the existence of stable matching by
analyzing the iterative procedures. We assume that if a
configuration pair is not willing to accept a user under
any situations, then this user will not even be permitted
to propose to these pairs. In the procedures, all users firstly
raise their first choice of configuration pair as proposals.
A configuration pair with capacity of Ej then places on
its waiting list the top Ej who ranks the topest, or all of
the users’ proposals if they’re fewer than Ej . All of the rest
will be rejected. Rejected users then again ask their second
choice and each configuration pair select the top Ej from
among the new proposers and those on its waiting list,
makes these new constitute its new waiting list, and reject
the rest. The procedure will continue to find the matching
until every user is put on a waiting list or has been rejected
by every configuration that he desires. At this point, each
configuration pair accepts all the users on its waiting list and
then constructs a matching assignment Θ. Here, we consider
two kinds of user-configuration (s, c) that is not in Θ.

Case 1: User s never proposes to configuration c. This hap-
pens when s prefers another configuration pair c′ to c. In
this situation, pair (s, c) is not stable.

Case 2: User s proposes to configuration c. But c rejects s.
c prefers the better choice s′ to s. Hence, pair (s, c) is not
stable, either.

Hence, the matching in the Θ keeps stable.
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Theorem 4. Every matching given by the Alg. 2 is as well off as
any other stable matching assignments at least.

Proof. We will prove this theorem by induction. Here we
call a configuration pair ”possible” for a specific user if
there is a stable assignment between them. Assume that at
a given point in the processing procedure no user has yet
been turned away from a configuration pair that is probably
suitable for it. There is a time point when configuration A
is receiving a full set of better users s1, s2, ...sq , and thus
A rejects the worse option sα. We must show that A is
impossible for sα. We understand that each si prefers config-
uration pair A to all the other users, except for the pairs that
rejected him. Similarly, those pairs also are impossible for
him. Consider a hypothesis that sends sα to A and everyone
else to configuration pairs that are possible for them. At
least one of the member in si will have to connect to a less
desirable place than A. However, this matching is unstable
because not si but A will agitate it to the better benefit of
both. For this reason, the hypothetical matching is unstable
and A is impossible for sα. Our algorithm only rejects users
from configuration pairs which they couldn’t be accepted to
any other stable matching. Therefore, the final assignment
in our algorithm is optimal.

Theorem 5. Given original partition Pinitial obtained from Alg.
2, Alg. 3 converges to a Nash stable partition Pfinal.

Proof. Denote the partition that’s after k iterations as Pk.
Alg. 3 can be seen as an order of partitions:

P0 = Pinitial → P1 → P2...

Because a transfer pair (s, a, b) only affects the partition
set Sa and Sb (forming the new coalitions Sa∗ = Sa\{s} and
Sb∗ = Sb\{s} each close transfer, e.g., Pl → Pl+1). Every
neighboring transfer follows an order:

Dq
a∗(t)−Dc

b∗(t) < Dq
a(t) +Dc

b(t),

which is transitive and irreflexive. Because the partition
number of set S is finite, Alg. 3 will finally converge to an
end partition Pfinal. In addition, we assume that Pfinal is
not Nash stable, and there must exist a transfer pair (s, a, b)
that can lead to better social welfare. Alg. 3 has to continue,
and P does not converge. However, this disagrees the
previous demonstration of Alg. 3’s convergence. Therefore,
Alg. 3 will converge to a Nash stable partition.


