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Abstract—Fine-grained power monitoring, which refers to power monitoring at the server level, is critical to the efficient operation and
energy saving of datacenters. Fined-grained power monitoring, however, is extremely challenging in legacy datacenters that host
server systems not equipped with power monitoring sensors. Installing power monitoring hardware at the server level not only incurs
high costs but also complicates the maintenance of high-density server clusters and enclosures. In this paper, we present a zero-cost,
purely software-based solution to this challenging problem. We use a novel technique of non-intrusive power disaggregation (NIPD)
that establishes power mapping functions (PMFs) between the states of servers and their power consumption, and infer the power
consumption of each server with the aggregated power of the entire datacenter. The PMFs that we have developed can support both
linear and nonlinear power models via the state feature transformation. To reduce the training overhead, we further develop adaptive
PMFs update strategies and ensure that the training data and state features are appropriately selected. We implement and evaluate
NIPD over a real-world datacenter with 326 nodes. The results show that our solution can provide high precision power estimation at
both rack level and server level. In specific, with PMFs including only two nonlinear terms, our power estimation i) at rack level has
mean relative error of 2.18%, and ii) at server level has mean relative errors of 9.61% and 7.53% corresponding to the idle and peak
power, respectively.

Index Terms—Datacenter, servers, power monitoring, non-intrusive power disaggregation.
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1 INTRODUCTION

D EPLOYED all over the world to host computing services
and data storage, datacenters have become indispens-

able in the modern information technology (IT) landscape.
With rapid expansion of datacenters in both number and
scale, their energy consumption is increasing dramatically.
The energy expense has become one of the most signifi-
cant operating costs in today’s datacenters. Companies like
Amazon, Google, IBM, Microsoft, and Facebook, pay tens
of millions of dollars every year for electricity [1]. A recent
report [2] states that in US alone “datacenter electricity con-
sumption is projected to increase to roughly 140 billion kilowatt-
hours annually by 2020, the equivalent annual output of 50
power plants, costing American businesses $13 billion annually
in electricity bills and emitting nearly 1004 million metric tons
of carbon pollution per year.” To tackle the problem, more
attention than ever has been paid to power management
(PM) in today’s datacenters [3], [4].

Power monitoring is the foundation of power man-
agement. Fine-grained power monitoring, which refers to
power monitoring at the server level in this paper, is
of particular importance. Fine-grained power monitoring
facilitates the implementation of various power manage-
ment strategies, such as power capping and accounting [5],
[6], idle power eliminating [7], and even cooling control
and load balancing [8]. A fine-grained power monitoring
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Fig. 1: Power distribution hierarchy of the IT facilities in a
typical datacenter.

platform not only helps audit the total energy use of the
datacenter but also continuously shows the real-time server-
level power consumption. Such a platform can greatly help
the datacenter operators to adjust their power management
policies and explore potential benefits. Taking the cooling
control as an example, to optimize the air flow and locate
the thermal “hot spot”(which refers to server input air
conditions that are either too hot or too dry and may hamper
the efficiency of the datacenter.) in a datacenter, the real-time
feedback of server-level power distribution can provide
important information to identify hot spot “suspects”.

In addition to the aforementioned significance, fine-
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grained power monitoring is also critical to the safe op-
erations of datacenters. With continuous scaling-out (i.e.,
adding computing resources) and scaling-up (i.e., upgrad-
ing IT facilities), the maximum power capacity of a data-
center may be quickly reached. According to [9], 30% of
the enterprise datacenters are expected to run out of the
power capacity within 12 months. The datacenter opera-
tors are facing the dilemma of limited power capacity and
increased power demand. Meanwhile, it is also realized
that the power capacity from servers’ nameplate power is
normally over provisioned. For example, it is shown in [10]
that the peak power of a server (145 Watts) was less than
60% of its nameplate value (251 Watts) in normal cases.
As a result, more and more operators tend to overbook the
power infrastructure for a high percentile of their needs [11].
Overbooking, however, may cause power deficit at some
level of IT facilities (illustrated in Fig. 1). Even worse, once
the power usage at a lower level exceeds its power capacity,
if no actions were taken immediately, the impact cascades
and results in the overrun or system crash at a higher
level [12]. Hence, fine-grained power monitoring of the IT
facilities is in urgent need of to ensure the safe operation of
datacenters.

Nevertheless, fine-grained power monitoring is ex-
tremely challenging in datacenters that house diverse legacy
servers as well as high-density blade servers and enclosures.
While high-density computer systems greatly reduce the
space of IT infrastructure and simplify the cabling process,
many widely-used blade servers, such as DELL PowerEdge
M100e, HPE ProLiant DL380 and some of IBM BladeCenter
H series, are not equipped with power sensors, and power
meters are typically installed at power distribution units
(PDU) or at the rack level (refer to Fig. 1). In a legacy
datacenter consisting of tens of racks, each with hundreds
of servers not equipped with power sensors, how can we
precisely capture the real-time power consumption of each
server?

Naturally, one solution is to use power measurement
hardware. For instance, SynapSense [13] has developed
power monitoring solutions using power clamps or intel-
ligent power strips. The IBM PowerExecutive solution [14]
installs dedicated power sensors on servers during manu-
facturing to provide real-time power information of indi-
vidual servers. Despite the above solutions, many legacy
or even most recent server systems used in datacenters,
such as DELL PowerEdge M100e and IBM BladeCenter
H series, are not equipped with power measuring units.
In this case, it is inconvenient for datacenter operators to
install extra power meters on racks and it is extremely hard
and costly to assemble power meters to individual blade
servers as they are highly compacted in racks. This difficult
task is typically contracted out to companies specialized in
datacenter power monitoring, such as NobleVision [15] and
ServerTechnology [16], that combine special hardware and
intelligent software for fine-grained power monitoring.

Due to the above difficulties and also for cost saving,
software-based solutions are more desirable and have been
adopted in power monitoring platforms, such as Power-
Pack [17], [18] and Mantis [19]. They estimate the power
consumption of individual servers by using power mod-
els, which are learned from the dependence between the
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Fig. 2: Classification of fine-grained power monitoring for
datacenters.

server power consumption and the utilization of resources
(e.g., CPU, memory, disk and NIC). During the learning
process of power models, however, power measurements
at the server or component level (refer to Fig. 1) are usu-
ally needed. We call this type of software-based solutions
intrusive, because they need power metering at the server or
lower levels for initial model training. Although it is pos-
sible to train a power model offline using model machines
and then apply it to estimate online power consumption,
the offline training has to be performed for each category
of servers. This makes offline power model training a te-
dious and even impractical task for a large-scale datacenter
hosting heterogeneous servers.

We are thus motivated to develop a non-intrusive, purely
software-based, fine-grained power monitoring solution for
legacy datacenters. Our method is non-intrusive in the sense
that it does not need power monitoring at the server or
lower levels for initial model training. We use a novel tech-
nique, called non-intrusive power disaggregation (NIPD),
to achieve fine-grained power monitoring in datacenters.
NIPD establishes power mapping functions (PMFs) between
the states of a server and its power consumption and uses
PMFs to infer the power consumption of each server with
the aggregated power of the entire datacenter. Compared
with existing methods, our solution is unique, as illustrated
in Fig. 2. Specifically, the main contributions of our work
include:

• We are the first to formally define the problem of
non-intrusive power disaggregation (NIPD) in data-
centers and develop NIPD models using power map-
ping functions (PMFs) trained with power data from
running datacenters. Our solution can extract server-
level power consumption from aggregated power
consumption of the whole datacenter, and can be
easily implemented in modern datacenters.

• We extend the servers’ original state feature space
to a dilated one using the technique of state feature
transformation (SFT). With linear or nonlinear SFT
in the dilated feature space, we can train both linear
and nonlinear PMFs and offer much more choices for
server power modeling.

• We further improve the NIPD solution to support
adaptive PMFs update, with strategies of selective
training data collection and iterative state feature
elimination. The adaptive PMFs update can not only
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TABLE 1: Comparison of current fine-grained power monitoring solutions vs. our NIPD solution
hhhhhhhhhhhsolution

specification software/
hardware

intrusive/
non-intrusive monitoring levels deployed scale

(#server)
homogeneous/
heterogeneous error rate hardware cost

($/server)
Schneider Solution [20]

SynapSense Solution [13] hardware intrusive rack any scale both (< 1%) 55 - 68

PowerExecutive [14] hardware intrusive rack
server any scale both (< 1%) 2K - 2.8K

PowerPack [17], [18] software intrusive
rack

server
component

9 homogeneous (< 1%) 15 - 80

Mantis [19] software intrusive rack
server 1 − < 15% 30 - 200

ISCA’07 [10] software intrusive rack
server ≥ 100 homogeneous < 18% 30 - 200

TC’12 [21] software intrusive
rack

server
component

1 − < 9% 129 - 340

Our NIPD Solution software non-intrusive rack
server 326 both < 10% 0

1. The error rates shown in brackets are the measurement errors of corresponding power meters or sensors.
2. The hardware cost of each solution is estimated by the current prices of measuring devices (or prices of similar products) on the market.

effectively improve the precision of power disaggre-
gation, but also significantly reduce the overhead of
PMFs training process.

• We implement our NIPD solution over a 326-node
datacenter without introducing any extra meters (i.e.,
zero-cost). The results show that our solution can
provide high precision power estimation. The lin-
ear PMFs provide rack level estimation with mean
relative error (MRE) of 2.63%, and server level es-
timation with MREs of 10.27% and 8.17% for idle
power and peak power, respectively. The PMFs with
two nonlinear terms provide rack level estimation
with MRE of 2.18%, and server level estimation with
MREs of 9.61% and 7.53% for idle power and peak
power, respectively.

The rest of the paper is organized as follows. In Sec. 2,
we review related work for fine-grained power monitoring
in the datacenter. The overview and rationale of our non-
intrusive power monitoring (NIPD) idea are explained in
Sec. 3. Then, we formally define the problem of NIPD,
develop models, and provide solutions in Sec. 4. We further
implement NIPD over a real-world datacenter in Sec. 5 and
evaluate its performance in Sec. 6.. The paper is concluded
in Sec. 7.

2 RELATED WORK

In this section, we first review existing solutions for
fine-grained power monitoring in the datacenter, includ-
ing hardware-based power measuring and software-based
power modeling [22] [23]. Then, focusing on server-level
power monitoring, we briefly summarize the key points that
need to be considered and the major improvements of this
paper upon our previous work [24].

2.1 Fine-Grained Power Monitoring
2.1.1 Hardware-Based Power Measuring
Power monitoring with dedicated hardware is regarded
as the most accurate yet expensive approach to ob-
tain the fine-grained power information. For rack-level

power monitoring, Schneider Electric [20] provided the me-
tered Rack Power Distribution Units (RPDU). In addition,
SynapSense [13] developed power monitoring solutions us-
ing devices like power clamps and intelligent power strips.
Regarding the power monitoring at the server level, IBM
developed its own power management system, PowerExec-
utive [14], which utilized the embedded sensors to measure
the power usage and allowed users to monitor power con-
sumption at the server level. For a large-scale datacenter
not adopting the above equipments, the upgrade of power
infrastructures and IT facilities would be prohibitively ex-
pensive.

2.1.2 Software-Based Power Modeling
This type of solution establishes power models to estimate
the power consumption of a server, using information col-
lected from the level of servers, components, or applications.
Power models could be built for server, hardware com-
ponents, or applications. Here, we only review the power
models built for the servers, since they are mostly related to
our work.

Server-level power models are usually trained based on
the correlation between the state (or resource utilization) of
individual hardware component and power consumption
of corresponding component. In [25], using hardware per-
formance monitoring counters (PMCs), a surrogate linear
regression model was applied to build the power model
and predict the power consumption of computer system.
The notion of “ensemble-level” power management was
proposed in [26], which leveraged usage patterns of concur-
rent resource across the individual server blades for power
monitoring and saving. Power modeling with microproces-
sor PMCs was proposed in [27]. Five different sever-level
power models, which correlate AC power measurements
with software utilization metrics, were investigated in [28],
in which the accuracy and portability of the power models
were also compared over different workloads and servers.

Various power monitoring platforms were developed
utilizing software-based power modeling. PowerPack was
initially established in [17] and further improved in [18].
It was implemented on a small-scale (9 nodes) cluster and
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supports power measuring of individual servers as well as
power estimation of parallel applications. In [19], a hybrid
hardware-software infrastructure, Mantis, was introduced.
It first collected the individual server power consumption
using an AC power meter. By correlating the power con-
sumption data with system utilization metrics, it trained
a linear regression model to predict server-level power
consumption based on system utilization data. In [10], a
power model was learned from the aggregated power of
a few hundreds of homogeneous servers along with their
corresponding CPU utilization.

2.2 Key Points of Server-Level Power Monitoring

2.2.1 Linear/Non-Linear Power Models

Among the developed power models for the server-level
power estimation, the linear regression model is the most
widely applied. It is simple and has been shown to yield
accurate results [19], [25]. Nevertheless, there is evidence
showing that nonlinear power models can also be good
alternatives in some cases [28], [29]. Therefore, both linear
and nonlinear power models may need to be considered
before we choose one of them for the power estimation at
server level.

2.2.2 Intrusive/Non-Intrusive Power Model Training

To obtain the regression coefficients in the power model,
a model training process (e.g., least square estimation) is
needed. In existing power model training, either server-level
or component-level power information is required. As such,
we call these methods intrusive since power measuring
at the server or lower levels is needed during the initial
model training phase, even if afterwards no hardware-based
power measuring is needed. As the difficulty of training
data acquisition because of the integration of servers in
enclosures, non-intrusive training can be a more practical
approach.

2.2.3 Improvements Upon Previous Work

In our previous work [24], we proposed a non-intrusive
power model training process, in which the power model
was defined in a linear form. In this paper, we extend
the power modeling to support both linear and nonlinear
forms, and this improvement provides more choices for
server power modeling and increases the accuracy of power
estimation. Moreover, in [24], we manually specified state
features to build up power model. As an improvement in
this paper, adaptive power model update strategies are
adopted to automatically capture the major features related
to power consumption. Hence, the human workload for
power model training is reduced significantly.

As a summary, the features of current power monitoring
solutions and our NIPD method are listed and compared in
Table 1. To the best of our knowledge, our solution is unique
since we do not find any existing solution falling in the same
class, as shown in Fig. 2.

3 NIPD: OVERVIEW AND RATIONALE

In this section, we clarify why we need non-intrusive power
disaggregation (NIPD) in datacenters. Then, inspired by
non-intrusive load monitoring for residential houses, we
propose a new way to achieve NIPD in datacenters. We also
overview the steps of NIPD.

3.1 Why NIPD?

To reduce the metering cost to zero, a software-based solu-
tion has to be adopted. As we have introduced in Sec. 2.1.2,
a power model training process is needed for the software-
based solution. The traditional intrusive model training is
undesirable for legacy datacenters, since it is hard and
tedious to obtain node-level power consumption data from
highly integrated rack that is needed for model training.
Therefore, a non-intrusive power model training scheme
needs to be developed.

As shown in Fig. 1, electric power for datacenters is usu-
ally supplied via the uninterruptible power supply (UPS)
and power distribution units (PDUs). With the help of
UPS/PDUs, we can easily get access to the aggregated
power consumption of the datacenter1, from either the em-
bedded meter [30] or certain interfaces (e.g., RS485 or RS232
serial interface) provided by the vendors. Such readily-
available power readings, however, are aggregated power
consumption from multiple racks of servers. To extract
the fine-grained power information, we need to infer the
power consumption of servers from the aggregated power
readings, which is termed as power disaggregation.

In summary, we need non-intrusive training for building
power model and power disaggregation to obtain the fine-
grained power information. Hence NIPD comes naturally.

3.2 How to Develop NIPD?

The idea of separating aggregated power into individual
units can be found in non-intrusive load monitoring (NILM)
in residential houses [31], [32]. The NILM technology was
initially proposed to separate the aggregated electricity con-
sumption of a household into that of individual appliances.
As it does not need any intrusive measuring in the house but
only refers to the measurements from one meter outside the
house, this technology has drawn much attention in energy
conservation and demand response programs.

When applying existing NILM approaches in the dat-
acenter environment, however, most assumptions in these
approaches do not hold anymore. For example, servers
do not turn on/off so often like household appliances. In
addition, household appliances typically have their own
power features, so-called appliances’ signatures, which are
used in many NILM solutions. This property is not obvious
in datacenters for multiple servers can have exactly the same
power ratings. To the best of our knowledge, no NILM
solution developed for household power monitoring can be
applied directly in datacenters.

Is there any way to revamp the NILM technology for
datacenter environment? With embedded firmwares in the

1. In the rest of the paper, the power consumption of the datacenter
refers to that of the IT facilities in particular. The power supply of others
(e.g. cooling facilities) is out of the focus of this paper.
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Fig. 3: Framework of non-intrusive power disaggregation
over a datacenter.

server and easy-to-access interfaces, we can get the compo-
nent states2 information of a server. At a particular instant,
the component states from different servers are most likely
different, even when they are fed with the same type of
workloads. This observation motivates us to utilize the dis-
tinguishability of component states from individual servers
to achieve power disaggregation.

Our procedure of NIPD for a datacenter is shown in
Fig. 3. As illustrated in the figure, we first collect aggregated
power information and component states information of all
servers through the collection module. Then, the two types
of information are processed in non-intrusive power model
training (the NIPD model in the figure). Finally, with the
trained power model, we estimate the power consumption
of each individual server.

While the above procedure is clear, the details on mod-
eling, training and using the power model need further ex-
planation. To start with, we formally formulate the problem
and present solutions accordingly in Section 4.

4 MODEL DESIGN FOR NIPD
In this section, we formally define the problem of NIPD for
fine-grained power monitoring in datacenters and develop
solutions for training and updating power models used in
NIPD.

4.1 Formal Definition

Without loss of generality, we consider a datacenter con-
sisting of m servers. We denote the aggregated power con-
sumption of the m servers sampled in time interval [1, t] by
an aggregated power vector as:

y := [y1, y2, · · · , yt]ᵀ , (1)

and we denote the power consumption of the i-th (1 ≤ i ≤
m) server in the same time interval, which is unknown, by
an individual power vector as:

y(i) :=
[
y
(i)
1 , y

(i)
2 , · · · , y(i)t

]ᵀ
. (2)

2. A component state of a server in this paper refers to the instant
index/value of one component’s utilization or working speed, such as
the CPU or memory utilization, I/O speeds, or hardware performance
monitoring counters (PMCs).

For the purpose of NIPD, we use the state information
of components collected from each server, which is recorded
in a state vector containing the n scalars (n is the number of
components whose information is available):

s := [µ1, µ2, · · · , µn]
ᵀ
. (3)

Accordingly, the state vector of the i-th server at time j (1 ≤
j ≤ t) can be represented as:

s
(i)
j :=

[
µ
(i)
1,j , µ

(i)
2,j , · · · , µ

(i)
n,j

]ᵀ
(4)

in which µ
(i)
κ,j represents the value of the κ-th (1 ≤ κ ≤ n)

component state in the i-th server at time instant j.

Definition 1. During a time interval [1, t], given the aggregated
power vector y of m servers and each server’s state vector s(i)j ∈
Rn, 1 ≤ i ≤ m, 1 ≤ j ≤ t, the problem of non-intrusive power
disaggregation (NIPD) is to estimate the power consumption of
each individual server at each time instant, i.e., y(i)j , 1 ≤ i ≤
m, 1 ≤ j ≤ t.

4.2 PMFs Modeling
To solve the NIPD problem, we first logically divide the
servers in the datacenter into multiple virtual homogeneous
clusters (VHCs), so that in each VHC the major hardware
components (e.g., CPU, memory, disk and NIC) of servers
are the same or similar (i.e., the same brand and similar
capacity). Thus, if a datacenter is composed by r(r ≥ 1)
types of servers, we can divide the servers into r VHCs.

Definition 2. We define a state feature transformation (SFT)
φ : Rn → Rñ, such that the original state vector s ∈ Rn can be
transformed to a dilated state vector x ∈ Rñ, i.e.,

x = φ(s) (5)

and the elements in x (named state features) can be nonlinear-
form of individual component states and/or their combinations.

Example 1. Given a state vector consisting of two elements,
s = [µ1, µ2]ᵀ, one of the possible dilated state vectors can be
constructed as x = [1, µ1, µ2, µ

2
1, µ1µ2]ᵀ, where the SFT is

defined as φ : R2 → R5.

With SFT, the original feature space of component states
will be extended. Accordingly, the dilated state vector of the
i-th server at time j (1 ≤ j ≤ t) can be represented as:

x
(i)
j :=

[
x
(i)
1,j , x

(i)
2,j , · · · , x

(i)
ñ,j

]ᵀ
(6)

in which x
(i)
κ,j represents the value of the κ-th (1 ≤ κ ≤ ñ)

state feature for the i-th server at time instant j.
We set the first state feature as a unit constant 1, i.e., x1 =

1 or x(i)1,j = 1, which is convenient for the following power
model representation. Note that using a different constant
leads to different coefficient values but has no impact on the
final NIPD results.

Definition 3. For servers in the same VHC, we define a power
mapping function (PMF) f : Rñ → R, such that the input of
a server’s dilated state vector x at any time instant can yield its
power consumption at corresponding time instant, i.e., for the i-th
server’s dilated state vector at time j, xj , f(x

(i)
j ) approximates

y
(i)
j .



6

According to the related works, both linear and non-
linear models have been explored to depict the relation
between energy consumption of a server and its component
states. As we have mentioned in Sec. 2.1.2, the linear power
models are widely used and have shown good power es-
timations. Nevertheless, there are also evidences showing
that nonlinear power models may perform better in some
situations.

As illustrated in Fig. 4, a quadratic relationship between
the CPU frequency and system power consumption can be
observed under condition of high frequency or overclock-
ing. Furthermore, the correlation among the server compo-
nents’ power consumption is usually ignored, as taking it
into consideration can bring in nonlinear terms in the power
model (e.g., the term of µ1µ2 in Example 1).
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Fig. 4: Total system power consumption with respect to
three categories of CPU at high-end working frequency [33].
As a power model to depict the relationship between CPU
frequency and system power consumption, the quadratic
function is fitting more tightly than the linear one.

Therefore, in this paper, we explore and compare the
potentials of both linear and nonlinear power models by
applying SFT in the PMFs modeling.

For servers in the same VHC, with the ñ-dimension
dilated state vector x from a user-defined SFT in (5), we
formulate their PMF as follows:

f(x) = wᵀx (7)

where w is the coefficient vector denoted by:

w = [w1, w2, w3, · · · , wñ]
ᵀ
. (8)

Example 2. Given the state vector and SFT shown in Example 1,
i.e., x = [1, µ1, µ2, µ

2
1, µ1µ2]ᵀ, the PMF of the server can be

formulated as:

f(x) = w1 + w2 · µ1 + w3 · µ2 + w4 · µ2
1 + w5 · µ1µ2 (9)

where the coefficient vector w = [w1, w2, · · · , w5]ᵀ.

Note that as SFT can be either linear or nonlinear trans-
formation of the state vector, the PMF in (7) thus can in an
either linear or nonlinear form w.r.t. component states of
each server in a VHC.

Remark 1. Conventional methods try to build a power model
for each major component in a server, which is used to estimate
the power consumption of each component. The server’s power
consumption is approximated by the aggregate of the estimated
power consumption of its major components. Our PMF can be
regarded as a special type of power model, but it is different

from conventional ones in that our PMF just indicates a way of
mapping the dilated state features to the server’s overall power
consumption. The power of uncovered components, e.g., fans
within the server enclosure, will be properly “absorbed” (in the
sense that f(x

(i)
j ) best approximates y(i)j ) by the modeled terms

in PMF. Hence, the value of each term in PMF is not necessarily
the true power value.

4.3 PMFs Training
For the overall power consumption of a server f(x), it can
be broken down into two parts: idle power (or static power)
and dynamic power [34]. The former is considered as the
baseline power supplied to maintain the server system in an
idle state, and the latter is the additional power consump-
tion for running specific workloads.

As we have set the first state feature in the dilated state
vector as a unit constant (i.e., x1 = 1), the first term in the
PMF model (e.g.,w1 in Example 2) represents a constant and
reflects the idle power. The left coefficients w2, w3, · · · , wñ
are thus associated with the dynamic power of a server
system.

4.3.1 Estimation of Coefficients
We first estimate the coefficients of a server’s PMF. Assume
that a datacenter consists of r VHCs, and mκ servers are in
the κ-th (1 ≤ κ ≤ r) VHC. Moreover, each server of the
κ-th VHC reports a nκ-dimensional state vector, and with
a user-defined SFT, the state vector is transformed to a ñκ-
dimensional dilated state vector x. Then, with the dilated
state vector, the PMF for the VHC can be expressed as:

fκ(x) = (w(κ))ᵀx (10)

where w(κ) is the coefficient vector of PMF for the κ-th VHC
denoted as:

w(κ) =
[
w

(κ)
1 , w

(κ)
2 , · · · , w(κ)

ñκ

]ᵀ
. (11)

At an arbitrary time instant j, the aggregated power
consumption of the κ-th VHC can be expressed as: ŷj =

(w(κ))ᵀx̂
(κ)
j , where:

x̂
(κ)
j =

[
mκ∑
i=1

x
(i)
1,j ,

mκ∑
i=1

x
(i)
2,j ,

mκ∑
i=1

x
(i)
3,j , · · · ,

mκ∑
i=1

x
(i)
ñ,j

]ᵀ
. (12)

Meanwhile, the aggregated power consumption of the
whole datacenter (or r VHCs) can be expressed as: yj =
w̃ᵀx̃j , where:

x̃j =
[
x̂
(1)
j , x̂

(2)
j , · · · , x̂(r)j

]ᵀ
, (13)

and
w̃ =

[
w(1), w(2), · · · , w(r)

]ᵀ
, (14)

in which x̂
(κ)
j and w(κ) are defined by (12) and (11), re-

spectively. (Refer to Sec. 1 of supplementary materials for
detailed transformations of the above equations.)

With the measured aggregated power vector of the
whole datacenter y (in form of (1)), the following least
square estimation (LSE) problem is formulated as the train-
ing model for the r PMFs of the datacenter:

min
w̃

t∑
j=1

(w̃ᵀx̃j − yj)2 . (15)



7

开10台 
开8台 

Server Shutdown 

65

65.5

66

66.5

67

67.5

68

68.5

69

69.5

0 60 120 180 240 300 360 420 480 540 600 660 720

A
gg

re
ga

te
d

 P
o

w
er

 /
 k

W
 

Time / 2s 

20-Server Shutdown 

5-Server Restart 

8-Server Shutdown 

10-Server Restart 

8-Server Restart 

Fig. 5: On/off events captured during turning on/off servers
in our datacenter consisting of 326 servers.

By solving the above problem, we can obtain the optimal
coefficients for the r PMFs appearing in w̃, with which we
can estimate the power consumption of individual servers
in different VHCs by providing corresponding dilated state
vectors.

Remark 2. The LSE problem represented in (15) belongs to linear
regression, and to solve the problem is trivial (with closed form
given in Sec. 3 of the Supplementary Materials). Therefore, rather
than the way to solve problem (15), it is the way to represent
and formulate the NIPD into a solvable form that is the major
innovation of this work.

Nevertheless, the above LSE training model cannot cap-
ture multiple but only one constant term appearing in
the coefficient vector [28]. Consequently, if there are more
than one VHC in the datacenter (r > 1), the resulted
constant terms (i.e., w(1)

1 , w
(2)
1 , · · · , w(r)

1 ) from (15) are not
accurate. In other words, the idle power of servers in each
VHC cannot be estimated by this model. Therefore, further
approaches need to be developed to estimate the constant
terms in PMFs.

4.3.2 Estimation of Constant Terms
A widely used energy saving strategy in many datacenters
is to shutdown idle servers. They will be turned on again
when the working servers cannot satisfy the workload [35],
[36], [37]. Such a strategy provides us with an opportunity
to estimate the constant terms in PMFs.

Definition 4. For a datacenter with r VHCs, at an arbitrary
time instant j, if h servers are turned off (or on), and meanwhile a
power decrease (or increase) in the aggregated power consumption
of the whole datacenter, ∆y(∆y > 0), is detected, we call that an
off/on event is captured. We use ∆y > 0 to indicate that only
the absolute value is considered in our late problem formulation.

According to our real-world experiments illustrated in
Fig. 5, although the aggregated power of the whole datacen-
ter always fluctuates over time, we are still able to capture
the off/on events without turning on/off a large proportion
of servers.

Assume that t off/on events have been captured in the
datacenter consisting of r VHCs. For the j-th (1 ≤ j ≤ t)
off/on event, a counting vector can be defined as:

dj :=
[
d
(1)
j , d

(2)
j , · · · , d(r)j

]ᵀ
, (16)

where d(κ)j stands for the number of turned-off (or turned-
on) servers in the κ-th VHC at time j, and the detected

(mean) power decrease (or increase) is ∆yj . Then the fol-
lowing optimization problem can be formulated to find
the optimal estimation of the constant terms, i.e., w1 =

[w
(1)
1 , w

(2)
1 , · · · , w(r)

1 ]ᵀ:

min
w1

t∑
j=1

(wᵀ
1dj −∆yj)

2
. (17)

Remark 3. In the estimation of constant terms of PMFs, we
can combine the optimization strategy using (17) and the manual
setup with information from technical specification of servers. For
servers that can be shut down, e.g., the computing nodes, it is
easy to gather off/on events and estimate the idle power via the
optimization method. For other IT units that cannot be shut down
during the operation of datacenter, e.g., the admin nodes, the best
way is to refer to the server’s technical specification or approximate
their idle power using the information from other servers equipped
with similar hardware components.

So far, we have introduced the details of building PMFs.
The datacenter operators can then use PMFs to estimate
the real-time power consumption of individual servers by
referring to real-time component states from corresponding
servers.

4.4 Adaptive PMFs Update

According to the analysis in Sec. 3 of supplementary ma-
terials, the complexity of PMFs training relies on two met-
rics: the number of training data and the number of state
features. Specifically, the training complexity has a linear
growth with the increase of training data and a quadratic
growth with the increase of state features. Therefore, it is
critical to choose an appropriate number of training data
as well as state features, so that the training process is
lightweight while the resulted PMFs is accurate enough.

4.4.1 Selective Training Data Collection

To make PMFs as accurate as possible, we need a training
dataset that contains complete states in the feature space,
i.e., all possible state features of the servers in each VHC
should be included in the training dataset. Nevertheless, in
real-world datacenter operations, it is hard to stress each
of the components in a server to work through all possible
states. The training dataset collected in a time interval of
several hours or even several days may be incomplete. In
other words, there is no guarantee that the training dataset
covers all possible state features.

Simply collecting training data as much as possible,
however, is not a good solution to the above problem due
to two reasons: (1) the larger the training dataset, the higher
the overhead in PMF training, and (2) more redundant data
entries will be collected while they do not contribute to the
improvement of PMFs. Therefore, we develop a selective
data collection strategy as follows.

Preprocessing: we first set an update time interval for
the training dataset, denoted as ∆t1. At an arbitrary time
instant j, the dilated state features from r VHCs can be
expressed as x̃j in form of (13). Along with the measured
aggregated power consumption of the datacenter at the
same moment yj , a data entry can be represented as (x̃j , yj).
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With data entry of (x̃j , yj), the process of selective training
data collection is as below:

• Step 1. normalize each element in x̃j with the corre-
sponding maximum value3, i.e., rescale the values of
each element to [0, 1].

• Step 2. compare the normalized data entry with those
in the training dataset. if it already exists, go to Step
4.; otherwise, go to Step 3.

• Step 3. insert (x̃j , yj) into the training dataset as a
new entry.

• Step 4. backup the power value yj for the existed
entry with the same component states.

Note that in the fourth step, we do not simply discard
the redundant entry, but keep record of its power value.
Thus, one data entry in the training dataset may have
multiple power values, and we calculate their median as
the final value used for PMFs training. Using the median
can alleviate the affect of outliers [38] and make the PMFs’
training more robust. In addition to the gathering of state
features, the same strategy can also be applied to collect the
off/on events for constant terms estimation introduced in
Sec. 4.3.2.

Remark 4. For our selective data collection strategy, the reso-
lution of the normalized state features determines the maximum
number of data entries in the training dataset. Assuming that a
datacenter consists of r (r ≥ 1) VHCs, each with ñκ (1 ≤ κ ≤ r)
state features, and the preset resolution of normalized state fea-
tures is p (0 < p � 1), then the number of data entries in the
training dataset is upper-bounded by

∑r
κ=1

⌈
1
pnκ

⌉
. Refer to Sec.

2 of supplementary materials for the proof.

We can update training dataset at a regular basis, e.g.,
every ∆t1 interval time. Theoretically, with the above data
collection strategy, the training dataset will become com-
plete as time goes on. Meanwhile, we use the most updated
dataset to perform PMFs training introduced in Sec. 4.3 at a
regular basis, e.g., every ∆t2 interval time.

4.4.2 Iterative State Feature Elimination
There are multiple tools that can be used to collect system
component states of a server, e.g., the hardware performance
monitoring counters (PMC) and dstat tool [39]. According
to [40], as many as 86 PMC states were selected from all
available ones. As to the dstat tool that will be used in
our experiments, it can provide up to 16 different states.
Simply gathering all component states provided by these
tools can result in a large state vector. Furthermore, with
our state feature transformation introduced in Sec. 4.2, the
dilated state vector for PMFs training will be even larger.
To control the overhead in model training, we need to limit
the number of state features, especially when the number of
training data entries is already huge.

So far, it is still challenging to choose the most rel-
evant and effective state features to construct the power
model. Current approaches (like principal component anal-
ysis (PCA) [41]) usually falls into the supervised learning

3. The maximum value could be found from technical specification,
e.g., maximum I/O speed, or if unknown, it could be set as a value
higher than any possible values of the state feature.

Algorithm 1 Selective Training Data Collection

Require: Sampling interval ∆t0, training dataset update
interval ∆t1

Ensure: Training dataset D
1: D ← ∅
2: while True do
3: t← gettime()
4: if t mod ∆t1 == 0 then
5: for j ← 1 : ∆t0 : ∆t1 do
6: compose the data entry (x̃j , yj)
7: normalize each element in x̃j
8: if x̃j 6∈ D then
9: D ← D

⋃
(x̃j , yj)

10: else
11: backup power value yj
12: end if
13: end for
14: end if
15: end while

and thus need intrusive ground-truth measuring. Since in-
trusive measuring is not feasible in our context, a new state
feature selection approach is needed.

To deal with this problem, we propose and perform an
iterative state feature elimination process, which does not
need supervised learning and can significantly reduce the
irrelevant state features in PMFs. The process is shown by
following steps:

• Step 1. Initially choose potential state features from
the the raw data, and discard the irrelevant or re-
dundant state features, e.g, the CPU idle and CPU
utilization are actually equivalent and one of them
can be discarded.

• Step 2. Apply the left state features to formulate the
preliminary PMFs, and then conduct PMFs training
following the routine introduced in Sec. 4.3 when
selected training dataset is small.

• Step 3. When the number of training data entries
exceeds a pre-defined threshold value nδ , we check
the coefficient of each state feature: if its absolute
value is approximate to zero, e.g., less than 1× 10−3

in our implementation, eliminate this term in the
corresponding PMF.

The pseudocodes of selective training data collection
and iterative state feature elimination are illustrated in
Algorithm 1 and Algorithm 2, respectively. The two pro-
cesses that cooperate together can achieve adaptive PMFs
updating, with which we can significantly reduce the PMFs
training overhead. As explained in Remark 4, the number of
the training data entries using selective data collection is not
large (less than 10K in our latest experiment). Furthermore,
by applying iterative state feature elimination, we will show
that a small number of state features can be resulted and
sufficient to provide accurate PMFs in Sec. 6.

Overall, to recap our NIPD solution introduced in this
section: at background the PMFs are adaptively updated
by selective training dataset collection and iterative state
features elimination; at foreground the real-time component
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Algorithm 2 Iterative State Feature Elimination

Require: Dilated state vector x, PMFs update interval ∆t2,
training dataset D, elimination threshold nδ

Ensure: Updated PMFs
1: initialize preliminary PMFs with x
2: while True do
3: t← gettime()
4: if t mod ∆t2 == 0 then
5: if |D| < nδ then
6: update PMFs coefficients with D
7: else
8: reformulate PMFs: eliminate state features

with coefficients approximate to zero
9: end if

10: end if
11: end while

state information is fed into the most updated PMFs to
obtain the server-level power estimations.

5 IMPLEMENTATION

We implement our NIPD solution over a real-world 326-
node server cluster. It consists of 12 (blade) server racks that
house 306 CPU nodes, 16 disk array nodes, 2 I/O index
nodes, and 2 admin nodes, each running a Linux kernel.
Table 2 shows the detailed configuration of each type of
server. Fig. 6 illustrates the power architecture, network
topology, and data collection modules of the experimental
environment.

TABLE 2: Configuration of Server Nodes

Type Configurations Num.

CPU Node
2×Intel Xeon E5-2670 8-core CPU(2.6G)

8×8GB DDR3 1600MHz SDRAM
1×300G 10000rpm SAS HDD

306

Disk Array
Node

1×Intel Xeon E5-2603 4-core CPU(1.8G)
4×4GB DDR3 ECC SDRAM

1×300G 10000rpm SAS HDD
36×900G SAS HDD

Networking Switches

16

I/O Index
Node

2×Intel Xeon E5-2603 4-core CPU(1.8G)
8×4GB DDR3 ECC SDRAM

1×300G 10000rpm SAS HDD
2

Admin Node
2×Intel Xeon E5-2670 8-core CPU(2.6G)

8×16GB DDR3 1600MHz SDRAM
1×300G 10000rpm SAS HDD

2

5.1 Data Collection and Feature Elimination
As shown in Fig. 6, we collect aggregated power consump-
tion of the IT infrastructure via the UPS interface and a
power monitoring proxy (P-1 in the figure). The sampling
interval is 2 seconds. Besides the UPS, our datacenter is
further equipped with 6 Power Data Management Modules
(PDMMs) as part of the PDUs, each of which can provide
power measuring at the rack-level, also at the sampling
interval of 2 seconds. To verify our power estimation at the
rack-level in Sec. 6.2, we also collect the power consump-
tion of each rack via corresponding PDMM using the rack
proxies (P-2 in Fig. 6).

In addition to the collection of power consumption data,
the admin node is used to collect the component state infor-
mation from each node (with sampling interval of 1 second).

Transformer

Power Panel/Switch Gear

PDMM/PDU
Server Cluster

Battery
Group

RS485 Fieldbus

P-1 P-2

Admin NodeCPU Node

I/O Index

Storage System

...

...

I/O Index

Aggregated Power 
Collection

Rack-level Power 
Collection

State Collection

UPS

Fig. 6: Power architecture, network topology and data col-
lection modules in our experimental environment. Note that
the rack-level power measurements provided by PDMMs
are only used for validation purpose in this paper.

TABLE 3: State metrics collected using dstat tool

Component Label Description

processor

usr
sys
idle
wai

CPU utilization for user processes
CPU utilization for system processes
CPU in idle
CPU utilization for I/O waiting

memory

used
buff
cach
free

memory usage for processes
buffer memory
cache memory
free memory

disk read
write

disk reading amount
disk writing amount

network recv
send

traffic amount that the system received
traffic amount that the system sent

paging in
page

# pages changed from disk to memory
# pages changed from memory to disk

system int
csw

system interruption time
content switch times

Particularly, we use dstat tool [39], a widely-used resource
statistic tool that can gather various component states of
a server, as shown in Table 3. Note that other tools can
also be used here, such as vmstat, iostat, mpstat and
netstat. To ensure the time synchronization between the
component state collection and aggregated power collection,
we set their clock source the same as Time Stamp Counter
(TSC).

We first applied all the states terms listed in Table 3
to establish the preliminary PMFs. Then, we adopted the
process of state feature elimination introduced in Sec. 4.4.2
and iteratively reduced the number of state features pro-
vided by dstat to six: total CPU utilization, total memory
utilization, disk reading/writing and network traffic re-
ceiving/sending. With the six component states, according
to (3), the state vector can be represented as:

s = [µ1, µ2, . . . , µ6]
ᵀ
. (18)

When constructing nonlinear PMFs, we first included all
second-order items with states in (18). Then, the state feature
elimination was applied to minimize the dilated feature
space. At last, only the nonlinear terms of µ2

1 and µ1µ2
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left, which capture the quadratic trend shown in Fig. 4 and
the correlation between CPU utilization and memory usage,
respectively.

In real-world datacenter environment, there are mo-
ments of component failures, e.g., some servers or ToR
switch may be down. Under this situation, the component
states of some servers may not be available. To alleviate the
impact of component failures and increase the reliability, we
can take the following two measurements when implement-
ing NIPD:

• During the PMFs training, special caution should
be taken to make sure that only the data entries
containing the state information of all servers are
inserted into the training dataset. In this way, we
guarantee that the trained PMFs are not affected by
component failures.

• Once PMFs are obtained, we only estimate the power
of servers whose component states are available. For
servers whose component states are not accessible,
we should not assign them zero power. Instead, we
do not estimate their power and correspondingly
raise a warning message to the administrator.

5.2 Estimation of Idle Power
For the estimation of idle power (or constant terms in PMFs)
of CPU nodes in our experiments, we identify the idle
nodes and remotely turn them off and on. For purpose
of remote operation, the industry-standard IPMI [42] is
used to turn on/off servers. During the on/off time period,
multiple off/on events and corresponding power changes
are captured from the event logs and data logs, respectively
(as illustrated in Fig. 5), which are fed into the optimization
model (17) to estimate the constant terms (idle power) of
CPU nodes. As for the estimation of idle power of I/O and
admin nodes, they are not allowed to be shut down for the
normal operation of a running datacenter. Since the number
of these two server types is quite small (only 2 for each
type) and their hardware configurations are similar with
that of CPU nodes, we set their idle power as the same as
that of CPU nodes. The disk array nodes also need to be
kept on all the time. Thus we infer their idle power from
their working power range by making use of rack power: in
our experimental datacenter, some racks only contain CPU
nodes and disk arrays, so we can shut down all the CPU
nodes and only leave the disk arrays running to obtain the
idle power.

6 EVALUATION

In our experimental environment introduced in Sec. 5, we
evaluate the performance of different (linear and nonlinear)
PMFs for power monitoring at the rack level and the server
level, respectively.

6.1 Experiment Configuration
Table 4 summarizes the setting of parameters in our exper-
iments. We setup the parameters based on the following
considerations:

• Number of VHCs (r): According to Table 2, we can
logically divide the whole datacenter into 4 VHCs,

TABLE 4: Parameter settings of our experiments

Parameter Setting
Number of VHCs (r) 4

Number of component states (nκ) [6, 6, 6, 6]

Dilated state vectors (x)
Linear [1, s]ᵀ

Nonlinear-1
[
1, µ21, s

]ᵀ
Nonlinear-2

[
1, µ21, µ1µ2, s

]ᵀ
Normalizing resolution (p) 0.01

Training dataset update interval (∆t1) 2 seconds
PMFs update interval (∆t2) 5 minutes, 0.5 hour
Elimination threshold (nδ) 8, 000

*The s in dilated state vectors refers to the state vector defined
by (18).

and the number of servers in each VHC is 306, 16, 2,
2, respectively.

• Number of component states (nκ): As introduced
in Sec. 5.1, we select 6 component states for each
individual server based on the information provided
by Table 3.

• Dilated state vectors (x): Based on the original state
vector of (18), we establish one linear PMFs and two
nonlinear PMFs via the SFT showing in the table.
Specifically, for PMFs with one nonlinear term (i.e.,
µ2
1), we consider the quadratic trend shown in Fig. 4;

for the PMFs with two nonlinear terms (i.e., µ2
1 and

µ1µ2), besides the quadratic trend, we also consider
the correlation between CPU utilization and memory
usage.

• Normalizing resolution (p): In the update of training
dataset, we set the resolution of normalized data in
each entry as 0.01, which is proved to be precise
enough for accurate PMFs training, as shown in
Sec. 6.2. According to Remark 4, a higher resolution
will increase the size of training dataset as well as
PMFs training complexity.

• Interval for updating training dataset (∆t1): As the
sampling interval for aggregated power consump-
tion in our case is 2 seconds, we set the update
interval of training dataset to the same value in order
to collect training data quickly.

• PMFs update interval (∆t2): We first set this value
as 5 minutes, which is based on the estimation of
PMFs training time needed under the theoretical
maximum size of training dataset. As time goes,
having observed that the training dataset size tends
to be constant, we then change the update interval to
0.5 hour to reduce the overhead of PMFs update.

• Elimination threshold (nδ): When the number of
training data entries exceeds 8, 000, the resulted
PMFs coefficients tend to be accurate (with mean
relative error less than 15%), which can be verified
by Fig. 7a.

6.2 Power Monitoring at Rack Level

Putting the real-time component state information of the
servers into the corresponding PMFs, we can get the es-
timated power consumption of each server. The estimated
power consumption of servers in the same rack are aggre-
gated as the estimated power consumption of the rack. To
measure the error rate of our rack-level estimation, we apply
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Fig. 8: The estimated power of one rack with corresponding ground truth values: a global view (left) and a local view
(right).

TABLE 5: Workloads/benchmarks for NIPD evaluations

Workload Description Purpose
Idle Background OS processes Server-level

validationPeak Stress CPU usage to 100%
malloc memory till 100%

SPECint

gcc Compiler

Training
data
collection
and PMFs
update

gobmk Artificial Intelligence: go
sjeng Artificial Intelligence: chess
omnetpp Discrete Event Simulation

SPECfp
namd Biology/Molecular Dynamics
wrf Weather Prediction
tonto Quantum, Chemistry

IOZone File system benchmark tool

Our Synthetic Occupy CPU randomly
Read/write memory randomly

Rack-level
validation

the widely used metric of mean relative error (MRE) defined
by:

MRE :=
1

t

t∑
j=1

∣∣∣∣∣y′j − yjyj

∣∣∣∣∣ (19)

where t is the number of data entries in the dataset, and yj
and y′j are the ground truth and estimated rack power for
the j-th data entry, respectively.

By running different benchmarks shown in Table 5, we
collect training data and duly update PMFs following the
strategies introduced in Sec. 4.4. Furthermore, after each
PMFs update, we run our synthetic workloads, collect rack
power consumption and server component states, and cal-
culate MRE of the power estimation with updated PMFs.

The results are summarized in Table 6 (column 2-4) and
illustrated in Fig. 7, respectively. From the rack level results
in Table 6, we can see that the two nonlinear PMFs slightly
outperform the linear PMF. According to Fig. 7a, the MRE
of power estimation from the three PMFs monotonically
decreases with the increase of training dataset, and tends

to be stable at the value strictly smaller than 5%. As a
zoomed-in view, Fig. 7b illustrates the MRE of three PMFs
when MRE≤ 5.0%, in which the MRE from nonlinear PMFs
decreases faster than that from the linear PMFs.

To illustrate the performance of three PMFs more clearly,
their power estimations for a random rack along with the
ground truth values (in 0.5 hour) are shown in Fig. 8. A
global view in Fig. 8a and a local view in Fig. 8b are shown,
from which we can see that the nonlinear PMFs provide
more tight fittings for the ground truth than the linear PMFs.

Note that the power estimation shown in Fig. 8 is slightly
lower than the ground truth values. This may cause a
risk for peak power monitoring applications like rack-level
power capping. To reduce the risk of the power underes-
timation, we suggest that the datacenter operators set the
redline threshold, i.e., pre-defined peak power that triggers
management actions, slightly lower than the expected one,
when applying NIPD for rack-level power monitoring. As
the power estimation at rack level is relatively accurate
(with MRE < 3% in our case), a small magnitude (e.g., 5%)
drop of the redline threshold can much reduce the risk of
power overflow.

6.3 Power Monitoring at Server Level

It is hard to fully validate the accuracy of our estimation at
server level, because the power consumption of individual
servers in our experimental environment is hard to be
obtained. As the (blade) servers are highly integrated in
the rack, e.g., fourteen 4U CPU nodes are tightly packaged
in one row, it is difficult to assemble sensors/meters inside
individual servers. In addition, multiple servers may share
the same power supply, e.g., the fourteen 4U CPU nodes
share only four power suppliers, so it is also hard to obtain
server-level power outside the servers.
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TABLE 6: Performance of linear and nonlinear PMFs for power estimations at rack level and server level

Monitoring Level Rack Level Server Level
PMFs Type Linear Nonlinear-1 Nonlinear-2 Linear Nonlinear-1 Nonlinear-2

Mean Relative Error
(Power Disaggregation of Datacenter) 2.63% 2.29% 2.18% 10.27% / 8.17% 9.43% / 7.70% 9.61% / 7.53%

Mean Relative Error
(Power Disaggregation of Racks) − − − 6.92% / 6.30% 5.97% / 5.95% 6.03% / 5.91%

*The two values of MRE at the server level are corresponding to the idle power and peak power, respectively.
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Fig. 9: Disaggregating datacenter power: estimated power consumption vs. referred idle/peak power.
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Fig. 10: Disaggregating rack power: estimated power consumption vs. referred idle/peak power.

Even though we cannot record ground truth power
consumption for individual nodes, we do have a knowledge
about the idle power, peak power or working power range of
each server type. We focus on the power estimation of the
CPU nodes, which are dominated in our datacenter (306
out of 326 servers). Their idle power and peak power can
be either estimated via the process introduced in Sec. 4.3.2
or learned by referring to the nameplate power provided
by the server vendor. Then, we use the measured idle and
peak power values as references to evaluate our server-level
power estimation.

6.3.1 Power Disaggregation of Datacenter
Using the PMFs trained from the aggregated power read-
ings of IT facilities, we estimate the real-time power con-
sumption of individual servers. To illustrate the perfor-
mance, we choose four CPU nodes (Node-25 to Node-28)
among our datacenter as test nodes. Moreover, we make
two of them run our peak workload (listed in Table 5), and
the other two firstly keep idle for 15 minutes and then run
peak workload for another 15 minutes.

Along with corresponding referred power bounds, the
resulted power estimations for two of the CPU test nodes
are demonstrated in Fig. 9 (the situations of the other two
nodes are similar). From the results we can see that, both
the estimated idle/peak power4 from the three PMFs are

4. Peak power values refer to the power readings when the CPU
utilization is 100%.

close to the referred power bounds, with the nonlinear PMFs
slightly outperform the linear PMFs. The overall perfor-
mance is summarized in Table 6 (the last three columns). By
checking the performance under these two extreme cases,
we can validate the effectiveness of our solution.

We have also observed that the estimated power values
are slightly larger than the referred ones, as shown in
Fig. 9. This is because when disaggregating the datacenter
power, the power loss during the transmission (e.g., by wire
and PDUs) as well as power consumed by interconnection
network (e.g., network switches, line cards, and datacenter
accessories) are assigned to individual servers, as discussed
in Remark 1.

6.3.2 Power Disaggregation of Racks

When a datacenter is capable of monitoring power con-
sumption of each rack, our NIPD can be used to disag-
gregate the rack-level power consumption into server-level
power consumption. As the servers in a rack are usually
homogeneous, we can set the number of VHCs as one,
and in this case the computational complexity for training
PMFs will be much lower than that in a heterogeneous
environment (refer to Sec. 3 of supplementary materials).

In our datacenter, we choose a test rack which contains
28 CPU nodes (Node-1 to Node-28) and 2 I/O index nodes.
Since the number of CPU nodes is much larger than that of
the I/O index nodes and the CPU nodes’ working power
ranges are very similar, this rack is approximately homoge-
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neous. The collected historical data from this rack are used
for PMF training, and the updated PMF is used to make es-
timation under idle/peak workloads for individual servers
in this rack. The resulted idle/peak power estimation of the
same test nodes in Sec. 6.3.1 is illustrated in Fig. 10.

According to the server level results shown in Table 6
and the comparison between Fig. 10 and Fig. 9, we can find
that the server-level power estimation by disaggregating the
rack power is better than that from disaggregating the entire
datacenter power. This is because the impact of hardware
components not modeled in PMFs is smaller at the rack level
than at the whole datacenter level, as per the discussion in
Remark 1.

As a concluding suggestion, if the datacenter operators
can obtain rack-level power information, it would improve
the accuracy of NIPD estimation to directly disaggregate
the rack-level power than to disaggregate the power of the
entire datacenter.

7 CONCLUSIONS

In this paper, we defined the problem of non-intrusive
power disaggregation (NIPD) for legacy datacenters, and
developed a software-based approach for power estimation
of individual servers. A non-intrusive training procedure
was proposed to find the power mapping functions (PMFs)
between the states of servers and their power consumption.
With linear or nonlinear state feature transformation, the
PMFs can represent linear or nonlinear power models. To
effectively improve the precision of PMFs as well as lower
the training overhead, we adopted adaptive PMFs update
strategies of selective training data collection and iterative
state feature elimination. Based on the updated PMFs with
servers’ running state information, the power consumption
of individual servers can be estimated in real-time by only
referring to the aggregated power of the entire datacenter.
Our solution introduced no hardware cost and incurred
no interruption to the running servers. The experimental
results over a 326-node datacenter showed that our solution
can provide precise power estimation at both the rack level
and the server level. For example, with the nonlinear PMFs
including two nonlinear terms, the mean relative error of
our power estimations can reach 2.18% at rack level, and
9.61% and 7.53% at server level with respect to the idle
power and peak power.
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1 EQUATION TRANSFORMATION

1.1 Transformation of Equation (12)

For a VHC consisting of m servers, each with n component
states and ñ dilated state features, given its PMF in form
of (7) and state vector in form of (4), the aggregated power
consumption at time j can be expressed as:

ŷj =
m∑
i=1

f(x
(i)
j ) (1a)
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j ) + f(x
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1.2 Transformation of Equation (13)

Assume that a datacenter consists of r VHCs and the PMF
of the κ-th (1 ≤ κ ≤ r) VHC is denoted in form of (10).
Then, at an arbitrary time instant j, the aggregated power
consumption generated by r VHCs can be expressed as:
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where
x̃j =

[
x̂
(1)
j , x̂

(2)
j , · · · , x̂(r)j

]ᵀ
(4)

and
w̃ =

[
w(1), w(2), · · · , w(r)

]ᵀ
, (5)

in which x̂(κ)j and w(κ) are defined by (12) and (11), respec-
tively.

2 PROOF OF REMARK 3
Given that a datacenter is consist of r (r ≥ 1) VHCs, each
with nκ component states and ñκ (1 ≤ κ ≤ r) dilated state
features, for each data entry in the training dataset in form of
(x̃, y), the number of non-constant elements of x̃ is

∑r
κ=1 ñκ

(referring to (12)). Then, for each of the elements, as the
normalizing resolution is set as p and the normalized range
is [0, 1], the number of its possible values is

⌈
1
p

⌉
. Therefore,

the total number of possible combinations, i.e., the values of
x̃, is

⌈
1
pñ1

⌉
+
⌈

1
pñ2

⌉
+ · · ·+

⌈
1
pñr

⌉
, i.e.,
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pñκ

⌉
.

3 PMFS TRAINING COMPLEXITY

For PMFs training, the optimization model established
in (15) is used to find the optimal PMFs coefficients, which
essentially falls into the form of lease square linear regres-
sion. With t data entries in the training dataset, the closed-
form solution to the least square regression problem (15),
i.e., the PMFs coefficients w̃, can be expressed as:

w̃ = (XᵀX)
−1
Xᵀŷ, (6)

where X = [x̃1, x̃2 · · · , x̃t]ᵀ and ŷ = [y1, y2 · · · , yt]ᵀ.
Assuming that the total number of dilated state features

for all VHCs is ñ, ñ =
∑r
κ=1mκ where mκ denotes the

number of component states for the κ-th VHC, the time
complexity to get w̃ from formulation (6) is O(ñ2 · t).

For the datacenter hosting extremely large number of
servers, the complexity of PMFs training can be much
reduced under the following two cases:

• If the number of servers in a virtual homogeneous
cluster (VHC) is small, the PMF modeling and train-
ing process developed for the whole datacenter can
be directly applied within the VHC, as long as the
aggregated power of the VHC is accessible.

• If the number of servers in a VHC is large, the
(dilated) state features from part of the servers (e.g.,
a few hundreds as in our case) should be enough
to yield a relatively accurate PMF, as long as the
aggregated power of these servers is accessible.
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