
Microns: Connection Subsetting for Microservices in Shared
Clusters

Microservice applications typically employ a technique known as connection subsetting to ensure resource-
efficient and stable communication. In this technique, upstream containers selectively route requests to a
limited subset of downstream counterparts via persistent connections. However, the interdependency in
microservice applications along with the complex runtime environments pose significant challenges for
effective connection subsetting, rendering traditional strategies notably inefficient.
In this paper, we present Microns, a connection subsetting framework designated for microservices in shared
clusters. At the application level, Microns effectively handles the complex call dependencies in applications and
meticulously determines the number of connections maintained by each pair of dependent microservices. At
the microservice level, Microns manages the connection relationships between dependent containers according
to their respective contributions on end-to-end latency. Experiments across microservice benchmarks and
large scale simulations demonstrate that Microns achieves a significant reduction on end-to-end latency by
over 74.4% compared with the state-of-the-art strategies.

1 INTRODUCTION
In recent years, there has been a growing trend towards developing user-facing applications with
the microservice architecture [2, 4, 17]. This architecture decomposes applications into tens to
hundreds of independent, loosely-coupled microservices [19, 25, 29, 31], each providing specific
functionality and collectively forming a complex dependency graph [6, 32]. The microservice
architecture offers advantages such as ease of maintenance, efficient resource management, and high
reliability. Consequently, leading technology companies have increasingly embraced microservice
architectures for the development of their online applications.

In a microservice application, microservices continuously interact with their dependent counter-
parts to handle user requests throughout their lifetime. To avoid the overhead of re-establishing
connections for each interaction, persistent connections are typically established between depen-
dent containers at startup, ensuring seamless and efficient communication [11, 16]. However, given
the inherent complexity and large scale of microservices, establishing connections indiscriminately
between all containers with dependencies can result in significant resource (e.g., CPU, Memory)
overheads to maintain these connections, which degrades both performance and scalability. To miti-
gate the overhead, production clusters often implement connection subsetting [44], configuring each
upstream container to maintain connections with only a limited subset of downstream containers.
Our analysis of Alibaba’s production traces reveals that the majority of upstream containers connect
to fewer than 20% of their downstream counterparts. Additionally, as the scale of microservices
increases, the number of connections established by each upstream container stabilizes (§ 2.3).

Connection subsetting has been widely implemented by internet giants such as Google [18, 43],
Twitter [40], Uber [41], and Netflix to manage connections in their large scale clusters. Existing
strategies [14, 18, 35, 40–43] primarily focus on balancing the workloads or connections allocated
to containers. Although these approaches effectively mitigate connection overheads, their benefits
can not be fully materialized in the microservice era. First, in a single microservice, containers
are often distributed across multiple physical hosts, each exposed to varying levels of resource
contention from co-located microservices or best-effort applications (e.g., batch analytics) running
on shared hosts. This uneven resource contention can lead to significant performance disparities
between containers of the microservice. If such imbalances fail to be addressed when establishing
connections between dependent containers, it can result in substantial performance degradation, as
highly interfered containers can become bottlenecks in request handling. Second, in a microservice
application, the end-to-end latency is interdependent with each pair of dependent microservices.

As the number of connections maintained by these pairs greatly affects their individual latency,
fluctuations in their connection quantity can lead to notable changes in the overall end-to-end
performance. Furthermore, given the disparities in latency and call dependencies between different
microservice pairs, adjusting the number of connections for specific pairs can have distinct impacts
on the end-to-end latency. However, existing strategies manage connections for each microservice
pair separately, failing to account for the interdependency between individual pairs and the whole
application. This can result in significant performance degradation, as microservice pairs with
minimal influence on end-to-end latency may still consume excessive connections.

Given the limitations of existing strategies, we present Microns, a connection subsetting frame-
work designed to optimize end-to-end latency for microservice applications in shared clusters.
Microns models the connection subsetting as a joint optimization problem, aiming to optimize
both the number of connections and the connection relationships between containers for each
microservice pair. However, this problem is intractable due to its vast search space and the complex
interdependency between the two knobs. To address this, Microns employs an efficient iterative
approach that decouples the optimization process. It begins by independently adjusting the number
of connections for each microservice pair using a learning-based method to enhance end-to-end
latency. Following this, Microns efficiently manages the connection relationships between depen-
dent containers for each microservice pair, addressing performance disparities among containers.
By executing these two steps interactively, Microns progressively refines the connection subsetting
solution, ultimately achieving the optimal configuration for minimizing end-to-end latency. No-
tably, Microns ensures high convergence efficiency with minimal overheads, even in large-scale
deployments, thereby minimizing interference with the execution of microservices.

We implement a prototype of Microns on the widely-adopted container orchestration framework
Kubernetes [24] in our local cluster and comprehensively evaluate it with real-world applications
in DeathStarbench [16] and Alibaba production traces [3] to demonstrate Microns’ effectiveness.
Empirical findings reveal that Microns is capable of substantially diminishing end-to-end latency
by a notable margin of over 74.4%. In summary, Microns makes the following main contributions:

• In-depth analysis of connection subsetting. Microns is the first system to comprehen-
sively analyze the deployment of connection subsetting and the limitations of existing
strategies within the microservice architecture.

• Efficient optimization of connection subsetting. Microns develops an efficient opti-
mization scheme for connection subsetting to significantly enhance the end-to-end latency
of microservice applications while incurring minimal computational overheads.

• Extensive evaluations. We conduct real-world experiments and large scale simulations to
demonstrate the effectiveness of Microns and its scalability in large scale deployments.

2 BACKGROUND
2.1 Microservices Background
A microservice application consists of numerous loosely coupled microservices, each running
independently in hundreds of containers and dedicated to performing specific operations to handle
user requests. Typically, a user request is initially routed to an entry-point microservice (e.g.,
Nginx) and subsequently triggers a series of inter-microservice calls, either serially or in parallel,
throughout its lifetime. Microservices that initiate these calls are known as upstream microservices,
while those receiving the calls are referred to as downstream microservices. Together, an upstream
microservice and its corresponding downstream microservice constitute a microservice pair. These
calls, along with the microservices involved, collectively form a dependency graph, where each

2

0 20 40 60 80 100
Host resource utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

CPU
Memory

(a)

0 20 40 60 80 100
Host utilization difference (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

CPU
Memory

(b)

Fig. 1. (a) Cumulative distribution function (CDF) of
the host resource utilization for each container. (b)
CDF of difference in resource utilization between the
residing hosts with the highest and lowest utilization
for each microservice.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of dc

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(a)

5 10 50 200 500 1000
of upstream container

0
2
4
6
8

10
12
14

of

 c
on

ne
ct

io
ns

(b)

Fig. 2. (a) CDF of the proportion of downstream
containers (dc) connected by individual upstream
containers. (b) The average number of connections
established by each upstream container for different
groups of microservice pairs, with each group cate-
gorized by the number of upstream containers.

vertex indicates a microservice, and each directed edge represents a microservice pair. The end-to-
end latency of the request is measured as the time elapsed from the moment the user initiates the
request to when the response is received. To ensure a consistent and reliable user experience, the
Service Level Agreement (SLA) is typically defined based on the tail end-to-end latency, such as
the 95th percentile.

2.2 Resource Contention
Nowadays, shared clusters, which colocate latency-sensitive applications (e.g., microservices [12])
with best-effort applications such as batch jobs [37] on the same physical hosts to improve the
overall resource utilization, have become the de-facto production practice [38, 39, 45, 48]. However,
due to the resource-intensive nature of batch jobs, this colocation can incur significant resource
contention, negatively impacting the performance of microservices sharing the same infrastructure.
Moreover, given the diverse resource demands of different batch jobs, containers from the same
microservice but running on different physical hosts may experience different levels of resource
contention [28, 39, 49].

To investigate the resource contention, we conduct an analysis over ten thousand microservices
on Alibaba production traces [3]. We quantify resource contention by measuring the CPU and
memory utilization of the physical hosts onwhichmicroservice containers are deployed. As depicted
in Fig.1a, a notable proportion of containers experiences high resource contention, with over 60%
running on hosts with CPU and memory utilization ranging from 30% to 80%. Additionally, for
each microservice, we assess the disparity in resource utilization between its residing host with the
highest and lowest utilization to assess the extent of imbalanced resource contention experienced
by its containers. As illustrated in Fig. 1b, for half of the microservices, the utilization difference
exceeds 50%, indicating significant variability in resource contention among containers of the same
microservice. This uneven resource contention causes substantial performance disparities among
containers, as container performance is highly sensitive to resource contention. Experimental
results show that when the resource utilization of physical hosts reaches 60%, container latency
can increase by more than 5× compared to containers unaffected by resource contention..

2.3 Connection Subsetting for Microservices
Microservices typically rely on connection-oriented protocols like RPCs [26, 27] to facilitate smooth
inter-microservice communication. With these protocols, persistent connections are established
between containers from dependent microservices during the startup of containers, streamlining
future interactions without the need to repeatedly establish connections for each individual query.
However, maintaining these persistent connections incurs non-negligible resource overheads. Each

3

connection requires memory for data buffering, as well as CPU and network bandwidth for periodic
health check packets [7, 44]. These overheads become especially significant in large-scale production
environments, where microservices dynamically spawn thousands of containers, resulting in the
establishment of millions of inter-container connections. The sheer volume of these connections
can result in substantial resource consumption and performance degradation.

Connection subsetting [43, 44], a technique where each upstream container connects with only
a small subset of its downstream containers, offers a promising approach to reduce the overall con-
nection overheads. Its effectiveness has spurred the development and implementation of multiple
subsetting strategies in production clusters [14, 35, 40, 41, 43, 44] to optimize overall system perfor-
mance and resource usage. For example, Google leverages the Rocksteadier Subsetting strategy,
which randomly partitions downstream containers into equally sized subsets and assigns them to
corresponding upstream containers. To comprehensively investigate the connection subsetting in
production clusters, we conduct an analysis on Alibaba traces [3]. Specifically, we track the number
of connections established by each upstream container to calculate the proportion of connected
downstream containers. As depicted in Fig. 2a, most upstream containers establish connections with
only a small fraction of their potential downstream counterparts, with over 50% connecting to fewer
than 20% of downstream containers. Furthermore, we categorize microservice pairs based on the
number of their upstream containers and analyze the average number of connections established by
each upstream container within each group. As illustrated in Fig. 2b, when the number of upstream
containers in a microservice pair exceeds ten, the number of connections established by individual
upstream containers stabilizes, with each typically connecting to four downstream containers. This
result indicates that the total number of connections maintained by individual microservice pairs
is typically four times the number of their upstream containers.

64 128 256 512
of containers

0
40
80

120
160

E2
E

la
te

nc
y

(m
s) Rocksteadier

Subsetting
Fully
Connected

Fig. 3. Comparison of end-to-end (E2E) la-
tency between fully connected and connec-
tion subsetting approaches across varying
numbers of container deployments.

To delve into the effectiveness of connection subset-
ting in reducing connection overheads and enhancing
application performance, we conduct an experiment us-
ing the Social Network application from DeathStarBench
[16], comparing the Rocksteadier Subsetting strategy im-
plemented in Google with the Fully Connected strategy,
where each upstream container connects to all its down-
stream counterparts. We deploy different number of con-
tainers respectively, ranging from 64 to 512, to evaluate
these two strategies under different deployment scales.
The containers of each microservice are configured using
the default Kubernetes autoscaler [5], which scales con-
tainers based on the average resource utilization of microservices. For the Rocksteadier Subsetting
strategy, the number of connections maintained by each microservice pair is four times the number
of their upstream containers, aligning with our observation in § 2.3. Then we generate workloads
in proportion to the total number of containers and evaluate the 95th percentile end-to-end latency.

As illustrated in Fig. 3, when deploying 64 containers, which represents a small deployment scale,
the Fully Connected strategy reduces end-to-end latency by 20.1% compared to the Rocksteadier
Subsetting strategy. This is achieved by introducing more request traversal pathways, which helps
alleviate bottlenecks caused by abnormal containers. However, as the deployment scale increases,
the connection maintenance overhead becomes substantial, leading to a significant impact on the
application’s end-to-end latency. Particularly in a large scale where 512 containers are deployed,
using the Fully Connected strategy, which establishes tens of thousands of connections between
containers, can lead to a 35.1% increase in end-to-end latency. Furthermore, our experimental
results indicate that using the Fully Connected strategy can result in a 14.7% increase in resource

4

20% 40% 60%
Resource utilization difference

0

200

400

600

800

E2
E

la
te

nc
y

(m
s)

Contention
Aware

Rocksteadier
Subsetting

(a)

9

<1>

Containers experiencing high resource contention

9 9

9 9

<2>

9 6

9 6

<3>

9

99

3

3

(b)

Fig. 4. (a) End-to-end (E2E) latency across different resource contention settings. (b) A schematic diagram
illustrating the impact of various connection relationships between containers. Numbers on edges denote the
number of connections established between containers.

32

64

32 16 16

(a)

1:2:2:2 1:1:1:1 2:1:2:2 4:1:1:1
Connection quota distribution

0
20
40
60
80

100

E2
E

la
te

nc
y

(m
s)

(b)

64 128 256 512
Connection Quota

0
20
40
60
80

100

La
te

nc
y

(m
s) p1

p2
p3
p4

(c)
Fig. 5. (a) Microservices and dependencies within the top four microservice pairs in Social Network. Numbers
indicate the number of containers for each microservice. (b) End-to-end latency under different connection
quota distributions. (c) Latency of individual microservice pairs under varying connection quotas.

usage compared to the Rocksteadier Subsetting strategy when deploying 512 containers. These
results highlight the importance of mitigating connection overheads with connection subsetting.

3 MOTIVATIONS
3.1 Limitation of existing subsetting strategies
Existing connection subsetting strategies [14, 35, 40, 41, 43, 44] distribute connections or workloads
evenly among different containers to achieve balanced container usage. Despite their effectiveness
in reducing maintained connections, these strategies overlook the resource contention and the
interdependency in microservice applications, resulting in significant performance degradation.
Contention-unaware connection management. As discussed in § 2.2, containers within the
same microservice often encounter significant imbalance in resource contention, resulting in
notable performance disparities. However, existing strategies connect dependent containers without
accounting for these disparities, potentially causing significant degradation and fluctuations in the
end-to-end latency. To examine the limitation, we implement an alternative subsetting strategy
(Contention Aware), where the number of connections established by each container is configured
based on the resource contention it experiences. Within this strategy, less interfered containers will
maintain more connections with their counterparts, while keeping the total number of connections
consistent with the Rocksteadier Subsetting. Then we conduct an experiment similar to the one
described in Fig. 3. To generate resource contention, we employ iBench [13] to deploy best-effort jobs
with varying resource requirements including CPU, memory bandwidth and network bandwidth.
The difference in resource utilization between hosts is configured from 20% to 60%.

Fig. 4a depicts the end-to-end latency of the application across different resource contention
settings. On average, the Rocksteadier Subsetting strategy results in a 1.31× higher end-to-end
latency compared to the Contention Aware strategy, with the increase reaching over 2.16× when

5

the difference in resource utilization between hosts reaches 60%. This outcome is attributed to the
contention-unaware nature of the Rocksteadier Subsetting strategy, which connects containers
without factoring in imbalanced resource contention. First, when connections are unintentionally
established between highly interfered containers, as depicted in Fig. 4b <1>, part of user requests
may continuously traverse through containers with poor performance, causing a significant degra-
dation in end-to-end latency. Second, even if connections between poorly performing containers
are prevented, as depicted in Fig. 4b <2>, balancing the connections or workloads allocated to
containers fails to mitigate the adverse effects of containers with high resource contention, leading
to suboptimal end-to-end latency. Furthermore, the Rocksteadier Subsetting strategy demonstrates
greater variability in end-to-end latency compared to the Contention-Aware strategy due to the
high randomness in connecting containers with varying performance, which can easily result in
a poor and inconsistent user experience. In contrast, the Contention Aware strategy unevenly
distributes connections among containers based on their respective resource contention, as shown
in Fig. 4b <3>, effectively addressing performance imbalance and significantly enhancing end-to-
end latency. Therefore, it is essential to manage connections between dependent containers in a
contention-aware manner to minimize performance degradation.
Interdependency-unaware connection quota assignment. Existing strategies typically adopt
an unified approach to assign the number of connections, referred to as the connection quota, to
each microservice pair respectively, aiming to independently manage connections for each pair.
For example, our analysis of Alibaba traces [3] reveals that the connection quota of microservice
pairs is typically four times the number of upstream containers. Nevertheless, while enhancing
connection management with a connection-aware approach can effectively address the imbalanced
performance among containers, assigning connection quotas without accounting for the inter-
dependency between individual microservice pairs and the whole application may still result in
suboptimal end-to-end latency. To examine this, we investigate the impact of different connection
quota distributions among microservice pairs on the end-to-end latency in the Social Network
application. We apply the Contention Aware strategy to manage inter-container connection rela-
tionships and configure the resource utilization difference between hosts to 30%. For illustration,
we focus on the top four microservice pairs with the highest contribution on the end-to-end latency,
labeled as 𝑝1 to 𝑝4, adjusting the connection quotas assigned to these pairs while ensuring the total
quota remains 224, which is four times the number of upstream containers in the pairs. Fig. 5a
depicts the microservices and dependencies of these pairs.
As illustrated in Fig. 5b, when the connection quota distributes differently among microser-

vice pairs, the end-to-end latency exhibits a notable fluctuation. Compared to the default setting
1:2:2:2, where connection quotas are assigned based on the number of upstream containers in
microservice pairs, adjusting the distribution to 2:1:2:2 results in a reduction of 32.8%. These re-
sults suggest that meticulously distributing connection quotas among microservice pairs presents
another promising opportunity to further improve end-to-end latency. Note that this example
involves only four microservice pairs. As the complexity of microservice applications increases,
optimizing the connection quota distribution could lead to even greater improvements.
To explore the rationale behind the benefit of optimally distributing connection quotas, we

evaluate the 95th percentile latency of each microservice pair, which is determined by the latency
of downstream microservices, under varying connection quotas. As shown in Fig. 5c, the latency of
microservice pairs is significantly influenced by the assigned connection quota. Initially, latency
reduces as higher connection quota enables a more uneven distribution of connections, helping
to address performance disparities among containers. However, once the quota exceeds a certain
threshold, containers with high resource contention are allocated more connections and workloads,
which degrades the latency. Furthermore, we observe a notable disparity in latency variation

6

Quota Adjuster
Original

Microservice
Virtual

Microservice

4

Connection Manager5

Online Prediction

Latency Distribution

MS
Latency

Graph Merge

Quota Adjustment

Offline Profiling

Latency Distribution

Latency Analyzer3

WL

Upstream Containers Downstream Containers

Microservice
System

Latency
Sensitive Tr

ac
e

C
oo

rd
in

at
or

1
C

on
ne

ct
io

n
D

ep
lo

ye
r

6
D

ep
lo

ym
en

t
Tr

ac
er

2

Best Effort
CPU

NET

MBW

CPU MBW NET

+10

-10

+10

+5 -9

-8 +2

Container
Latency

Connection
Orchestration

Workload Assignment
0.2

0.1

0.2

0.2

0.3

0.3

0.3

0.4

Fig. 6. The system architecture of Microns

between microservice pairs under different connection quotas: increasing the connection quota for
𝑝1 can result in a reduction in latency by up to 64.6 ms, while the latency variation for 𝑝4 typically
remains below 0.5 ms. Thus, by factoring in the interdependency between individual microservice
pairs and the whole application, and redistributing more connection quotas to microservice pairs
that benefit the most, the end-to-end latency can be significantly improved.

3.2 Opportunities and challenges
We propose that connection subsetting in microservice applications should be contention-aware
and interdependency-aware. Optimally distributing the connection quota among microservice
pairs and managing connection relationships to address performance imbalance among containers
can result in a notable reduction in end-to-end latency. However, due to the large-scale nature
and complex dependencies of microservices, optimizing these two aspects presents significant
challenges, including the vast search space and the complexity of modeling the impact of connection
quota distribution and connection relationships on end-to-end latency. Moreover, the lightweight
startup of containers and the frequent scaling of resources in microservices necessitate that both
aspects should be optimized within a short period. Consequently, there is a critical need for a
meticulously designed and efficient connection subsetting strategy for microservice applications.

4 THE MICRONS FRAMEWORK
In this section, we introduce the overall architecture of Microns, as illustrated in Fig. 6. Microns is
a cluster-wide connection subsetting framework that executes when a scaling decision is made by
the resource scaling framework, e.g., Kubernetes [24], to manage connections between dependent
containers. It mainly consists of the following components:

The Trace Coordinator ❶ extracts latency statistics and the graph topology of applications from
request traces. The Deployment Tracer ❷ monitors the statistics of microservice containers and the
resource contention data including CPU, memory bandwidth (MBW) and network (NET) within
each host. It triggers the connection subsetting procedure when a change in the resource allocation
of microservices is detected.

The Latency Analyzer ❸ proceeds to profile and analyze the latency of containers and microser-
vices. It executes an offline profiling process to collect latency samples from the Trace Coordinator
and model the latency distribution of containers. At runtime, the Latency Analyzer queries the
latency distribution of individual containers utilizing workloads and resource contention statistics
to predict the latency of containers and microservice pairs (MS Latency).

7

Notation Definition
𝐸 Set of microservice pairs in the application
𝐶 Total connection quota of the application
𝑊 Workload arrival of the application
𝑈𝑒 (𝐷𝑒) Set of upstream (downstream) containers in

microservice pair 𝑒
𝐿 Latency of microservice pairs
𝐺 Latency gradient of microservice pairs
𝑦 Connection quota of microservice pairs
𝑥 Connection relationships between containers
𝑤 Workload distribution among containers

Table 1. Notations for Connection Subsetting

The Quota Adjuster ❹ attains the graph topology of the application from the Trace Coordinator
and takes charge of distributing connection quotas among microservice pairs. This entails a graph
merge algorithm to handle the call dependencies between microservices and leveraging the latency
variation of microservices under fluctuating connection quotas collected from the Trace Coordinator
to refine these quotas. The resulting connection quota distribution will serve as a pivotal input for
the Connection Manager.
The Connection Manager ❺ is responsible for managing the connection relationships between

containers. With statistics collected from the Deployment Tracer, it initiates a workload assignment
process to derive the optimal workload distribution among containers within each microservice pair.
Subsequently, it dynamically resolves the connection relationships between dependent containers.
The optimal connection subsetting solution is deployed through the Connection Deployer ❻.

5 DESIGN DETAILS
5.1 Overview
For a specific microservice application, Microns minimizes its end-to-end latency by optimally
assigning connection quotas among microservice pairs and managing the connection relationships
between containers, while adhering to a predefined total connection quota for the entire application.
Specifically, given the set of microservice pairs 𝐸 in the application, 𝑒 ∈ 𝐸 is a specific microservice
pair and𝑈𝑒 and 𝐷𝑒 denote the set of its upstream and downstream containers, respectively. The
binary variable 𝑥𝑒𝑖, 𝑗 indicates whether the upstream container 𝑖 ∈ 𝑈𝑒 in pair 𝑒 connects to the
downstream container 𝑗 ∈ 𝐷𝑒 (𝑥𝑒𝑖, 𝑗 = 1) or not (𝑥𝑒𝑖, 𝑗 = 0). For the application, given the total amount
of connection quota 𝐶 , we introduce the variable 𝑦𝑒 to denote the amount of connection quota
allocated to microservice pair 𝑒 . According to the empirical study in § 2.3, 𝐶 is typically set to four
times of total number of upstream containers in microservice pairs. Given the workload arrival
𝑊 of the application, the function𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑥,𝑊) derives the workload distribution 𝑤 among
containers based on the connection relationships 𝑥 . ThenMicrons optimizes 𝑥 and𝑦 to minimize the
objective function 𝐸2𝐸 (𝑤, 𝐸), which captures the end-to-end latency of the application according
to the workload distribution𝑤 and the call dependencies in microservice pairs 𝐸:

min 𝐸2𝐸 (𝑤, 𝐸) (1)

s.t.
∑︁
𝑖∈𝑈𝑒

∑︁
𝑗∈𝐷𝑒

𝑥𝑒𝑖, 𝑗 = 𝑦𝑒 , ∀𝑒 ∈ 𝐸 (2)∑︁
𝑒∈𝐸

𝑦𝑒 = 𝐶 (3)

𝑤 =𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑥,𝑊) (4)
𝑥𝑒𝑖, 𝑗 ∈ {0, 1}, 𝑦𝑒 ∈ 𝑁 ∗, ∀𝑒 ∈ 𝐸, 𝑖 ∈ 𝑈𝑒 , 𝑗 ∈ 𝐷𝑒 (5)

8

Here, constraint (2) ensures the number of connections in pair 𝑒 matches its connection quota
𝑦𝑒 , while constraint (3) ensures the overall allocated quota is 𝐶 .

Jointly optimizing the allocation of connection quotas across microservice pairs and inter-
container connection relationships introduces significant complexity due to their interdependency.
The allocation of connection quotas depends on the latency of microservice pairs, which, in turn,
is influenced by the connection relationships between containers. Conversely, managing these
relationships is constrained by the available connection quotas. To address this complexity, Microns
adopts an iterative approach that decouples the optimization of these two aspects, solving them
separately in each iteration.

Algorithm 1 presents the overall connection subsetting procedure of Microns. Initially, Microns
derives the optimal workload distribution 𝑤̂ across downstream containers without considering
the limit of the connection quotas. This will be utilized for efficient and decoupled management
of connection relationships, as detailed in § 5.3. In each iteration, Microns handles the complex
dependencies between microservices using a graph merge algorithm. This algorithm computes
the latency gradients 𝐺 of microservice pairs with respect to connection quotas, as well as the
overall end-to-end latency 𝐸2𝐸. If the optimal end-to-end latency stabilizes within 𝜃 iterations (set
to 5 by default), Microns terminates the procedure and outputs the optimal connection subsetting
solution. Otherwise, Microns refines the distribution of connection quotas, 𝑦, among microservice
pairs based on latency gradients. Leveraging the updated quota distribution and optimal workload
assignments, Microns efficiently manages the connection relationships 𝑥 between containers and
solves the actual workload distribution𝑤 among containers. At the end of each iteration, Microns
uses actual workloads to predict the latency of microservice pairs, 𝐿𝑡+1, for the next iteration.

Algorithm 1: Connection Subsetting
1 Procedure Subsetting(𝐸, 𝐶 ,𝑊):
2 Initialize 𝐿0, 𝑦0 and 𝐺 to 0;
3 𝑤̂ = OptimalWorkloadDistribution(𝐸,𝑊);
4 for 𝑡 = 0, 1, 2, . . . do
5 𝐸𝑚𝑒𝑟𝑔𝑒 , 𝐸2𝐸 = GraphMerge(𝑡 , 𝐸, 𝐿, 𝑦, 𝐺);
6 if optimal 𝐸2𝐸 stagnates for 𝜃 iterations then
7 Output 𝑦 and 𝑥 that optimize 𝐸2𝐸;
8 QuotaAdjustment(𝑡 , 𝐸𝑚𝑒𝑟𝑔𝑒 , 𝐶 , 𝑦, 𝐺);
9 𝑥,𝑤 = ConnectionOrchestration(𝑡 , 𝐸, 𝑦,𝑊 , 𝑤̂);

10 Predict latency of microservice pairs 𝐿𝑡+1 with𝑤 ;

5.2 Quota Adjustment
For each iteration, the Quota Adjuster adjusts the connection quota distribution 𝑦 among microser-
vice pairs, aiming to minimize the end-to-end latency. Solving for the optimal distribution requires
accurately modeling the latency of microservice pairs under varying connection quota distributions,
which is a complex task intertwined with multiple factors, including container workloads, resource
contention and call dependencies between microservices. To mitigate the complexity, the Quota
Adjuster employs a gradient-driven learning methodology to mitigate the need for a closed-form
formula of microservice pair latency with respect to connection quotas. Specifically, given the
connection quota 𝑦𝑡𝑒 of microservice pair 𝑒 at iteration 𝑡 and the corresponding latency 𝐿𝑡𝑒 , the
Quota Adjuster capitalizes on the estimated partial derivatives of microservice latency with respect

9

Algorithm 2: Graph Merge
1 Function GraphMerge(𝑡, 𝐸, 𝐿, 𝑦, 𝐺):
2 𝐸𝑚𝑒𝑟𝑔𝑒 = empty set of microservice pairs;
3 if 𝑡 = 0 then
4 return 𝐸, +∞;
5 for 𝑒 ∈ 𝐸 do
6 if 𝑒 denotes a serial dependency then
7 Calculate 𝐺𝑒 ;
8 𝐸𝑚𝑒𝑟𝑔𝑒 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒)
9 else
10 𝑆 = the set of subgraphs in the parallel dependency;
11 𝑒𝑝 = MergeParallel(𝑆, 𝐿, 𝑦, 𝐺);
12 𝐸𝑚𝑒𝑟𝑔𝑒 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑝)

13 return 𝐸𝑚𝑒𝑟𝑔𝑒 ,
∑

𝑒∈𝐸𝑚𝑒𝑟𝑔𝑒
𝐿𝑡𝑒 ;

14 Function MergeParallel(𝑆 , 𝐿, 𝑦, 𝐺):
15 for 𝐸𝑆 ∈ 𝑆 do
16 𝐸𝑆 , 𝐿𝑡𝐸𝑆 = GraphMerge(𝑡 , 𝐸𝑆 , 𝐿, 𝑦, 𝐺);
17 Merge 𝐸𝑆 into microservice pair 𝑒𝑠 and calculate 𝐺𝑒𝑠 ;
18 Merge 𝑆 into microservice pair 𝑒𝑝 and calculate 𝐺𝑒𝑝 ;

19 𝐺𝑒𝑠 =
𝐿𝑡𝑒𝑠
𝐿𝑡𝑒𝑝

𝐺𝑒𝑠 , for 𝑒𝑠 ∈ 𝑆 ;

20 return 𝑒𝑝 ;

to connection quotas as the latency gradient, formulated as:

𝐺𝑒 =
𝐿𝑡𝑒 − 𝐿𝑡−1𝑒

𝑦𝑡𝑒 − 𝑦𝑡−1𝑒

(6)

TheQuota Adjuster then strategically assigns larger quotas to microservice pairs with higher latency
gradients, as they present a greater potential for minimizing overall end-to-end latency.
However, relying solely on these gradients for quota adjustment can inadvertently yield sub-

optimal results. This is because end-to-end latency is a complex accumulation of microservice
pair latency, influenced by the underlying call dependencies between microservices. Reductions
in the latency of individual microservice pairs do not necessarily translate into improved end-
to-end performance. Consequently, neglecting call dependencies can lead to assigning quotas to
microservice pairs that have minimal impact on the overall end-to-end latency. To incorporate the
call dependencies, the Quota Adjuster employs a graph merge algorithm to simplify the dependency
graph of the application and compute the latency gradients for microservice pairs.
Algorithm 2 details the graph merge algorithm. At the initialization iteration (t=0), as latency

gradients are not needed for quota adjustment, the algorithm directly outputs the original de-
pendency graph and sets the end-to-end latency to +∞. In the subsequent iteration 𝑡 , the Quota
Adjuster examines all microservice pairs 𝑒 involved in the application. If pair 𝑒 denotes a serial
dependency between microservices, the Quota Adjuster calculates its latency gradient 𝐺𝑒 based
on equation (6) and inserts it into the merged graph. In contrast, for a parallel dependency, where
an upstream microservice calls a set of microservice subgraphs 𝑆 in parallel, the Quota Adjuster

10

Parallel
Dependency

0

sub-
graph1

sub-
graph2

2

1 1

3

4

5

Graph Merge Quota Adjustment

10

5 15

15 5

10

2020

10

40

20

30 17 13

20 20

10 6

7 7

0 0

1

0

1 1

0 0

1

2

3

4

5

Fig. 7. An example of the algorithm of graph merge and quota adjustment in Microns. The numbers on edges
denote the connection quotas of microservice pairs.

merges it. Specifically, for each subgraph 𝐸𝑆 ∈ 𝑆 , the Quota Adjuster first simplifies the subgraph,
derives its latency and merges it into a new microservice pair 𝑒𝑠 . The connection quota of 𝑒𝑠 is
the cumulative quotas of microservice pairs involved in 𝐸𝑆 , represented as 𝑦𝑡𝑒𝑠 =

∑
𝑒∈𝐸𝑆 𝑦

𝑡
𝑒 , and the

latency gradient 𝐺𝑒𝑠 is calculated according to equation (6). Next, the Quota Adjuster merges the
set of subgraphs 𝑆 into a new microservice pair 𝑒𝑝 to represent the parallel dependency. Since these
subgraphs are executed in parallel, the latency of 𝑒𝑝 is the maximum execution time among sub-
graphs, formulated as 𝐿𝑡𝑒𝑝 =𝑚𝑎𝑥𝑒𝑠 ∈𝑆𝐿

𝑡
𝑒𝑠
. To account for the fact that subgraphs with lower latency

in parallel dependencies have a weakened impact on end-to-end latency, the latency gradients of
these subgraphs are scaled based on the difference between their latency and the overall latency
of the parallel dependency. This adjustment helps refine the quota allocation by emphasizing the
subgraphs that most significantly affect the overall performance. Once all parallel dependencies
have been merged, the algorithm outputs a simplified dependency graph 𝐸𝑚𝑒𝑟𝑔𝑒 , which consists
of only serial dependencies, and the latency gradients 𝐺 of microservice pairs. The end-to-end
latency of the application is then computed as the cumulative latency of the microservice pairs in
this simplified graph. This algorithm takes both serial and parallel dependencies into account to
facilitate more accurate latency gradients and optimal end-to-end latency.

Fig. 7 illustrates an example of the graph merge process in Microns. In this example, microservice
0 calls 1 in a serial manner, while 1 calls two subgraphs {2,3} and {4,5} in parallel. To simplify this
parallel dependency, the Quota Adjuster first merges these two subgraphs into virtual microservices
𝑣1 and 𝑣2 respectively, and creates new microservice pairs 1 → 𝑣1 and 1 → 𝑣2. The connection
quotas of these new pairs are the cumulative quotas of their respective original microservice pairs.
Subsequently, the Quota Adjuster merges the whole parallel dependency into a new microservice
pair 1 → 𝑣3. Through merging all parallel dependencies, the microservice dependency graph is
simplified to involve only serial dependencies.

With the simplified dependency graph, the Quota Adjuster leverages the gradient-driven learning
methodology to adjust the connection quota allocation, as outlined in algorithm 3. For the initial
iteration 𝑡 = 0, the connection quota of each microservice pair 𝑒 is initialized proportional to the
number of its upstream containers, calculated as 𝑦𝑡+1𝑒 =

|𝑈𝑒 |𝐶∑
𝑝∈𝐸𝑚𝑒𝑟𝑔𝑒

|𝑈𝑝 | . In each subsequent iteration
𝑡 , the Quota Adjuster first deducts the maximum gradient value from each latency gradient to align
the sign of gradient values (line 4). Then it adjusts the connection quotas based on the difference
between individual latency gradients 𝐺 and the average value 𝐺 , aiming to balance the gradient
values across all microservice pairs. The rationale is that when latency gradients are equal across
microservice pairs, adjusting the connection quota allocated to each microservice pair impacts
end-to-end latency equally. Therefore, further refinement of the quota distribution will not improve
end-to-end latency. The adjustment of connection quotas is scaled by a learning rate 𝜂, which is set
to 0.5 and discussed in § 7.4. After each adjustment, the connection quota distribution is normalized
to ensure that the total quota across all microservice pairs matches 𝐶 . Finally, the Quota Adjuster

11

Algorithm 3: Connection Quota Adjustment
1 Function QuotaAdjustment(𝑡 , 𝐸𝑚𝑒𝑟𝑔𝑒 , 𝐶 , 𝑦, 𝐺):
2 if 𝑡 = 0 then
3 Initialize 𝑦𝑡+1 based on the number of upstream containers in microservice pairs.
4 𝐺𝑒 = 𝐺𝑒 −max𝑝∈𝐸𝑚𝑒𝑟𝑔𝑒

𝐺𝑝 for 𝑒 ∈ 𝐸𝑚𝑒𝑟𝑔𝑒 ; // Align the sign of gradient values

5 𝐺 =
∑

𝑝∈𝐸𝑚𝑒𝑟𝑔𝑒
𝐺𝑝

|𝐸𝑚𝑒𝑟𝑔𝑒 | ; // |𝐸𝑚𝑒𝑟𝑔𝑒 | is the cardinality of set 𝐸𝑚𝑒𝑟𝑔𝑒

6 for 𝑒 ∈ 𝐸𝑚𝑒𝑟𝑔𝑒 do
7 𝑦𝑡+1𝑒 = 𝑦𝑡𝑒 ∗ (1 + 𝜂𝐺−𝐺𝑒

𝐺
);

8 Normalize 𝑦𝑡+1 to ensure
∑

𝑒∈𝐸𝑚𝑒𝑟𝑔𝑒
𝑦𝑡+1𝑒 = 𝐶;

9 for 𝑒 ∈ 𝐸𝑚𝑒𝑟𝑔𝑒 do
10 if 𝑒 denotes a parallel dependency then
11 𝑆 = subgraph set of the parallel dependency;
12 QuotaAdjustment(𝑡 , 𝑆 , 𝑦𝑡+1𝑒 , 𝑦, 𝐺);
13 else if 𝑒 denotes a subgraph then
14 𝐸 = microservice pair set of the subgraph;
15 QuotaAdjustment(𝑡 , 𝐸, 𝑦𝑡+1𝑒 , 𝑦, 𝐺);

decouples the merged microservice pairs (representing parallel dependencies or subgraphs) and
applies the quota adjustment within them, as illustrated in Figure 7. After applying a depth-first
decomposition to these merged microservice pairs, the connection quotas of all microservice pairs
in the original dependency graph are updated.

5.3 Connection Management
Based on the connection quota distribution provided by the Quota Adjuster, the Connection Manager
manages the connection relationships between dependent containers to achieve optimal workload
distribution that minimizes the latency of each microservice pair. To this end, a naive approach
is to first formulate the optimization of connection management as a mixed integer non-linear
programming (MINLP) that minimizes the latency difference among the downstream containers of
each microservice pair. In this formulation, the constraints regulate the number of connections
does not exceed the allocated quota generated by the Quota Adjuster. Additionally, the workload
distributionmust align with the connection decisions: workload can only be assigned to downstream
containers that are connected to the upstream container. However, applying this approach in practice
presents two challenges. First, the large scale of microservice applications makes connection
management computationally expensive, as it can involve establishing millions of connections.
Second, connection management between different microservice pairs has cascading effects. The
connections between containers in an upstream microservice pair affect the workload distribution
of its downstream containers, which then impacts the connection management and latency of
downstream microservice pairs. This leads to uncertainty in estimating latency gradients during
quota adjustment, reducing the convergence efficiency of Microns’ connection subsetting procedure.
Given these challenges, the Connection Manager aims to mitigate cascade effects and ensure

efficient connection management. It starts by deriving the optimal workload distribution among
downstream containers, without considering the limit of the connection quota. Using this optimal
workload distribution as a reference effectively decouples the connection management between

12

microservice pairs, as it is independent from the connection relationships between containers.
Besides, it alleviates the need to model the relationships between inter-container connections
and microservice pair latency, streamlining and facilitating efficient connection management.
Subsequently, the Connection Manager refines the connection relationships between containers to
ensure that the actual workload assignment closely aligns the optimal distribution, while adhering
to the connection quota limit.
Optimal Workload Distribution. For each microservice pair 𝑒 , the Connection Manager first de-
rives the optimal workload distribution 𝑤̂ 𝑗 for all downstream containers 𝑗 ∈ 𝐷𝑒 to achieve balanced
latency among them, without considering the constraint of the connection quota. Mathematically,
this problem can be formulated as:

min
∑︁
𝑗∈𝐷𝑒

(𝑙 𝑗 (𝑤̂ 𝑗) − 𝑙)2, s.t.
∑︁
𝑗∈𝐷𝑒

𝑤̂ 𝑗 =𝑊 . (7)

Here, 𝑤̂ 𝑗 denotes the amount of workloads assigned to downstream container 𝑗 ∈ 𝐷𝑒 , and
𝑙 𝑗 (𝑤̂ 𝑗) represents the latency of container 𝑗 under workload 𝑤̂ 𝑗 . The mean latency 𝑙 is defined
as 𝑙 =

∑
𝑗 ∈𝐷𝑒

(𝑙 𝑗 (𝑤̂𝑗))
|𝐷𝑒 | , where |𝐷𝑒 | is the number of downstream containers in microservice pair

𝑒 . By minimizing the sum of squared differences between individual container latency and the
mean latency, the above optimization problem seeks to balance the latency across all downstream
containers in the microservice pair.
In production systems, the relationship between container latency, workload, and underlying

resource contention of the physical host is highly complex, making the exact form of the function
𝑙 𝑗 (𝑤̂ 𝑗) difficult to obtain. As a result, the optimization problem in Eq. (8) cannot be solved directly
using standard methods, such as convex optimization tools like CVXPY. To address this challenge,
the Connection Manager employs the Newton’s method [23], which iteratively approximates the
solution by updating the workload distribution in a way that better aligns with the trailed gradient,
rather than relying on the exact form of the latency function 𝑙 𝑗 (𝑤̂ 𝑗). The process begins by evenly
assigning the total workload 𝑊 across all downstream containers in microservice pair 𝑒 , i.e.,
𝑤̂ 𝑗 =

𝑊
|𝐷𝑒 | for all 𝑗 ∈ 𝐷𝑒 . Then, the Connection Manager progressively refines this initial workload

distribution. In each 𝑘-th refinement step, it queries the Latency Analyzer for the latency 𝑙 𝑗 (𝑤̂ 𝑗) of
each downstream container 𝑗 ∈ 𝐷𝑒 under its current workload 𝑤̂ 𝑗 . Newton’s method is then used
to update the workload distribution, as formulated in the following equation:

𝑤̂ 𝑗,𝑘+1 = 𝑤̂ 𝑗,𝑘 +
(𝑙 − 𝑙 𝑗 (𝑤̂ 𝑗,𝑘)) (𝑤̂ 𝑗,𝑘 − 𝑤̂ 𝑗,𝑘−1)

(𝑙 𝑗 (𝑤̂ 𝑗,𝑘) − 𝑙 𝑗 (𝑤̂ 𝑗,𝑘−1))
,∀𝑗 ∈ 𝐷𝑒 (8)

After each refinement, the updated workloads are normalized so that their cumulative sum
equals the total workload𝑊 . The refinement process continues until the latency difference between

containers falls within a specified threshold, formulated as:
∑

𝑗 ∈𝐷𝑒
(𝑙−𝑙 𝑗 (𝑤̂𝑗,𝑘))
|𝐷𝑒 |𝑙

< 𝛽 . By default, the
termination threshold 𝛽 is empirically set to 0.1, ensuring that the container latency is sufficiently
balanced with fast convergence.
Connection Orchestration.While the optimal workload assignment derived by Eq. (8) effectively
balances the latency of downstream containers, it may not be feasible in practice, as it does not
account for connection quotas and could potentially violate the allocated quota constraints. To
address this issue, the Connection Manager refines the connections between dependent containers
to ensure that the actual workload assignment closely approximates the optimal distribution (from
Eq. (8)), while adhering to the connection quota limits. Fig. 8 illustrates this procedure. Initially,
the actual workload𝑤 𝑗 of each downstream container 𝑗 ∈ 𝐷𝑒 is initialized to 0. For each upstream
container 𝑖 ∈ 𝑈𝑒 of microservice pair 𝑒 (outlined with a red border in Fig. 8), given its optimal

13

Fig. 8. An example of connection orchestration in Microns.

workload assignment 𝑤̂𝑖 , the number of its connections is determined by: 𝑅𝑖 = ⌊ 𝑤̂𝑖𝑦
𝑡+1
𝑒∑

𝑖∈𝑈𝑒
𝑤̂𝑖
⌋. To select

𝑅𝑖 downstream containers in 𝐷𝑒 to connect with each upstream container 𝑖 ∈ 𝑈𝑒 , the Connection
Manager sequentially selects a downstream container 𝑗 ∈ 𝐷𝑒 to be included in this subset, establishes
a connection by setting 𝑥𝑒𝑖 𝑗 = 1 and increments the actual workload of 𝑗 as 𝑤 𝑗 = 𝑤 𝑗 + 𝑤𝑖

𝑅𝑖
. If the

workload of container 𝑗 exceeds its designated optimal value 𝑤̂ 𝑗 (highlighted in red in Fig. 8), it
will no longer be selected by other upstream containers in subsequent rounds. This connection
management process continues until the total number of established connections reaches the
connection quota 𝑦𝑡+1𝑒 for microservice pair 𝑒 . Finally, the Connection Manager outputs the updated
connection relationships 𝑥 and the individual workloads𝑤 of all containers in each microservice
pair. Notably, the time complexity of the connection management procedure for microservice pair
𝑒 at iteration 𝑡 is quantified as O

(
𝑦𝑡+1𝑒), which represents a relatively low computational overhead.

5.4 Latency Prediction
When calculating the latency gradients for quota adjustment by Eq. (6) and deriving the optimal
workload assignment by Eq. (8), it is necessary to estimate the latency of individual containers
and microservice pairs under varying workloads and resource contention. Previous studies [9,
22, 30, 34, 47, 49] model the latency of microservices as a function of workloads and resource
contention. While these methods effectively predict the latency of individual containers, they
struggle to accurately predict microservice pair latency. The main limitation is their reliance on
average workloads and resource contention of containers to estimate overall latency of microservice
pairs, overlooking the uneven impacts of containers with imbalanced workloads and resource
contention. This simplification results in poor accuracy in predicting microservice pair latency.

0 16 32 48
Container Latency (ms)

0

1

2

3

4

PD
F

(1
0

3)

T(Contention: [40%, 40%, 35%],
Workload: [120 qps])
F(Contention: [40%, 40%, 35%],
Workload: [120 qps])
T(Contention: [10%, 15%, 20%],
Workload: [80 qps])
F(Contention: [10%, 15%, 20%],
Workload: [80 qps])

Fig. 9. Latency distributions of containers
follow a log-normal distribution. T denotes
the ground truth of latency distribution
and F denotes the fitting results. Resource
contention includes the CPU utilization,
memory bandwidth utilization and network
bandwidth utilization.

In this paper, the Latency Analyzer takes a more gran-
ular approach by considering the specific contribution of
individual containers to the latency of microservice pairs,
thereby achievingmore accurate predictions. The Latency
Analyzer begins by analyzing the latency distribution of
containers for each microservice. As shown in Fig. 9, the
latency distribution of a given container—determined
by its workload and resource contention—follows a log-
normal distribution [15, 46]. This distribution is charac-
terized by two parameters: the mean (𝜇) and the stan-
dard deviation (𝜎). To validate this observation, we apply
the Kolmogorov-Smirnov test [33] to compare the ob-
served latency distribution with the log-normal distribu-
tion for different applications from DeathStarbench [16].
The average P-value from the test, as shown in Table 2,
exceeds 0.12 for all applications, well above the conven-
tional threshold of 0.05. This result indicates that there is no statistically significant difference
between the observed latency distributions and the log-normal distribution, further validating the
suitability of this model for container-level latency prediction.

14

Application Social Network Hotel Reservation Media Service
P-value 0.123 0.169 0.217

Table 2. P-value from the Kolmogorov-Smirnov test between the latency distribution of containers and the
log-normal distribution in different applications.

Building on these findings, the Latency Analyzer first incorporates an offline profiling process
to profile the latency distribution of containers for each microservice. Specifically, it collects
data samples across different workloads and resource contention, where each sample captures
the workload, resource contention, and the mean 𝜇 and standard deviation 𝜎 of the log-normal
distribution for each container. The resource contention factors include CPU utilization, memory
bandwidth utilization, and network bandwidth utilization of the physical hosts. Using the collected
data samples, the Latency Analyzer trains two XGBoost models [10] for each microservice : one
to learn the mapping from workloads and resource contention to the mean 𝜇, and another to
learn the mapping to the standard deviation 𝜎 . For a specific container 𝑗 of microservice 𝑚,
the mapping relationship can be formulated as 𝜏𝑚 (𝐼 𝑗 ,𝑤 𝑗)−→𝜇 𝑗 and 𝜋𝑚 (𝐼 𝑗 ,𝑤 𝑗)−→𝜎 𝑗 , where 𝐼 𝑗 =
(𝐶𝑃𝑈 𝑗 , 𝑀𝐵𝑊𝑗 , 𝑁𝐸𝑇𝑗) represents the resource utilization of the physical host hosting container 𝑗 ,
and𝑤 𝑗 denotes the workload of container 𝑗 .
With the workload distribution generated by the Connection Manager and resource contention

statistics of containers, the Latency Analyzer predicts the latency of individual containers for optimal
workload distribution and the latency of microservice pairs for quota adjustment. Specifically, for
downstream container 𝑗 in microservice pair 𝑒 , the Latency Analyzer queries the corresponding
XGBoost models for the mean 𝜇 𝑗 and standard deviation 𝜎 𝑗 of the latency distribution. It then
solves equation 𝜙 (𝑙𝑛 (𝑙 𝑗)−𝜇 𝑗

𝜎 𝑗
) = 𝑃 to estimate the latency 𝑙 𝑗 , where 𝜙 represents the cumulative

distribution function of the standard normal distribution, and 𝑃 is the target quantile of the latency,
e.g. 95th percentile. For microservice pair 𝑒 , the Latency Analyzer models its latency distribution as
a weighted mixture of the latency distribution from all its downstream containers. The cumulative
distribution function of microservice pair 𝑒 is 𝐹𝑒 =

∑
𝑗∈𝐷𝑒

𝐹 𝑗 𝑤 𝑗 , where 𝐹 𝑗 and𝑤 𝑗 is the cumulative
distribution function and workloads of downstream container 𝑗 ∈ 𝐷𝑒 . The Latency Analyzer then
employs Brent’s method [8] to efficiently solve the target latency 𝐿𝑡+1𝑒 of microservice pair 𝑒 in
next iteration 𝑡 + 1, using the cumulative distribution function of the mixture latency distribution.

6 IMPLEMENTATION
We develop a prototype of Microns on top of Kubernetes [24], which provides comprehensive
container orchestration functionalities to deploy microservices.
For the offline profiling process, we deploy the best-effort jobs to generate diverse types of

resource contention with IBench[13]. The Trace Coordinator queries a widely-adopted tracing
system Jaeger [21] to extract latency data of microservices from traces of requests and analyze the
graph structure of applications. With collected latency samples, the Latency Analyzer employs the
python scikit-learn library [1] to fit the latency distribution and train XGBoost models.
For the online connection subsetting procedure, we design an interface for Microns’ operators

to specify the total connection quota as a function of the number of upstream and downstream
containers. We implement the Deployment Tracer with the Kubernetes Python client library to
monitor the real-time statistics of microservices including the number of containers within each
microservice, the virtual IP address and the residing physical host of each container. TheDeployment
Tracer also queries the Prometheus [36] to attain resource contention statistics of hosts. To accelerate
the procedure, we leverage multi-core parallelization on the CPU to parallelize the connection
management of multiple microservice pairs. Furthermore, we implement the Connection Deployer
to apply the optimal connection subsetting solution to corresponding applications in the network

15

200 400 600 800 1000
Workloads (QPS)

0
100
200
300
400

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(a) Social Network

2000 2200 2400 2600 2800
Workloads (QPS)

0
100
200
300
400
500

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(b) Hotel Reservation

1000 1200 1400 1600 1800
Workloads (QPS)

0
100
200
300
400

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(c) Media Service

200 400 600 800 1000
Workloads (QPS)

0
200
400
600
800

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(d) Social Network

2000 2200 2400 2600 2800
Workloads (QPS)

0
200
400
600
800

1000

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(e) Hotel Reservation

1000 1200 1400 1600 1800
Workloads (QPS)

0
100
200
300
400
500
600
700
800

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(f) Media Service
Fig. 10. End-to-end latency under static deployments. (a)-(c) Low imbalance. (d)-(f) High imbalance.

layer. The adjustment of inter-container connections is achieved by modifying forwarding rules
between containers based on their virtual IP addresses in Linux Iptables.

7 EVALUATION
7.1 Evaluation Setup
Cluster Setup: We implement Microns in a local cluster consisting of eight two-socket physical
hosts, where each host is equipped with 48 CPU cores and 64GB of RAM. Each microservice
container is configured with 0.1 CPU core and 200MB of RAM.
Benchmarks: We evaluate Microns with three applications including Social Network, Media
Service and Hotel Reservation in the widely-adopted microservice benchmark DeathStarBench
[16]. These applications contain 36, 38, and 15 microservices respectively.
Baseline Schemes: We evaluate the design of Microns with three mainstream connection subset-
ting strategies including the Rocksteadier Subsetting (Rocksteadier) in Google [43], the Real-Time
Dynamic Subsetting (Dynamic) deployed in Uber [41], and the Fully Connected strategy (Fully). The
Rocksteadier Subsetting randomly classifies downstream containers into equally sized subsets and
subsequently assigns each subset to individual upstream containers to evenly distribute connections
among containers. The Dynamic Subsetting tracks the workloads received by each container and
establishes connections proportional to these workloads to achieve balanced workload distribution.

7.2 Performance Analysis
7.2.1 Static Deployment. We first demonstrate the effectiveness of Microns in improving the end-
to-end latency of applications under static deployments. We identify that deploying 512 containers
reaches the capability of our cluster under high imbalance settings. Therefore, we deploy 512
containers based on scaling results of the default autoscaler in Kubernetes. The total connection
quota is set to four times the number of upstream containers in all microservice pairs, aligning
with our observations in § 2.3. Then we generate workloads and evaluate the 95th percentile
end-to-end latency for all applications. For illustration, we categorize the results into two groups:
‘High Imbalance’ indicates that the difference in resource utilization between hosts, including CPU,
memory bandwidth and network bandwidth, exceeds 30%, while ‘Low Imbalance’ indicates that
this difference is 30% or less.

As shown in Figure.10, Microns consistently outperforms the baseline schemes. The Rocksteadier
Subsetting assigns an identical number of connections to both upstream and downstream containers
without accounting for their individual workloads, resulting in greater performance imbalance
among containers. The Dynamic Subsetting allocates connections to containers based on their

16

Low Imbalance High Imbalance

(a) Variation of workloads and containers

0 10 20 30
Time (Minutes)

0
200
400
600
800

E2
E

la
te

nc
y

(m
s) Microns

Rocksteadier
Dynamic
Fully

(b) End-to-end latency over time
Fig. 11. Experimental results under dynamic deployments.

workload distribution, but it can inadvertently establish connections between containers experienc-
ing high resource contention. The Fully Connected strategy connects all dependent containers to
prevent requests from continuously passing through containers with poor performance at the cost
of increased connection overheads. Moreover, it fails to balance the performance among down-
stream containers. In contrast, Microns factors in the imbalanced resource contention encountered
by containers, carefully establishing connections to balance latency of downstream containers, and
further optimizes the overall end-to-end latency through dynamic adjustment of connection quotas.
Therefore, it achieves an average reduction on end-to-end latency by 67.2%, 57.5%, 60.1%, compared
to Rocksteadier, Dynamic and Fully, respectively. As the workload increases, the latency imbal-
ance among containers becomes more pronounced. Consequently, Microns achieves an average
reduction of 63.2% in end-to-end latency compared to all baseline schemes. Furthermore, in high
imbalance settings, where the resource contention difference between physical hosts surpasses
30%, Microns reduces the end-to-end latency by up to 74.4% compared with all baseline schemes,
underscoring its superior effectiveness in improving end-to-end latency of applications.

7.2.2 Dynamic Deployment. We further assess Microns under dynamic deployments using the
SocialNetwork application. We generate real-time workloads collected from production traces [3]
for 30 minutes and dynamically deploy containers using the Kubernetes autoscaler. The target
resource utilization of microservices is set to 30% for resource scaling. For the first 15 minutes, we
configure a 20% difference in resource contention between hosts (Low Imbalance) and increase
it to 40% (High Imbalance) for the remainder period. Fig. 11a illustrates the fluctuation in the
number of containers over time, with the shaded area representing the workload variation. With
contention-aware connection management, Microns strategically balances the resource utilization
among containers, thereby reducing the overall resource usage by 21.2%. Furthermore, as shown in
Fig. 11b, even with fewer containers, Microns still achieves a notable reduction by 56% in end-to-end
latency. These results demonstrate that Microns can seamlessly execute with existing autoscalers,
providing substantial improvements in both resource efficiency and end-to-end performance in
dynamic deployment environments.

7.2.3 Effectiveness of individual modules. In this part, we demonstrate the importance of individual
modules in Microns. Specifically, we implement additional connection subsetting strategies by
incorporating part of the components in Microns: The Quota strategy integrates the Quota Adjuster
and manages the connection relationships between dependent containers with the goal of balancing
the workloads among containers. The Connect strategy integrates the Connection Manager and
distributes connection quotas based on the number of upstream containers in microservice pairs.
We then experiment with these strategies and evaluate the end-to-end latency of each application.

As depicted in Fig. 12, all components of Microns are indispensable in optimizing the end-to-end
latency. When incorporating the Connection Manager, Microns achieves an average reduction of
54.6% in end-to-end latency compared to the Quota strategy, with up to a 65.5% reduction under
highly imbalanced settings, demonstrating its effectiveness in addressing performance disparities
among containers to improve end-to-end latency. By strategically assigning connection quotas

17

200 400 600 800 1000
Workloads (QPS)

0
50

100
150
200

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect

(a) Social Network

2000 2200 2400 2600 2800
Workloads (QPS)

0
100
200
300
400

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect

(b) Hotel Reservation

1000 1200 1400 1600 1800
Workloads (QPS)

0
50

100
150
200
250
300

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect
Graph

(c) Media Service

200 400 600 800 1000
Workloads (QPS)

0
100
200
300
400

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect

(d) Social Network

2000 2200 2400 2600 2800
Workloads (QPS)

0
100
200
300
400
500

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect

(e) Hotel Reservation

1000 1200 1400 1600 1800
Workloads (QPS)

0
100
200
300
400
500

E2
E

la
te

nc
y

(m
s) Microns

Quota
Connect
Graph

(f) Media Service
Fig. 12. Analysis of individual modules. (a)-(c) Low imbalance. (d)-(f) High imbalance.

to critical microservice pairs that significantly impact the end-to-end latency with the Quota
Adjuster, Microns reduces the end-to-end latency by 39.2% compared to the Connect strategy.
For the most complex Media Service application, this reduction is even more pronounced to
47.7%, underscoring the importance of optimally distributing connection quotas in highly complex
applications. Furthermore, we implement an alternative strategy called Graph by disabling the
graph merge algorithm in Microns and adjusting connection quotas without handling the call
dependencies between microservices. We then evaluate its end-to-end latency in the Media Service,
which involves four subgraphs executed in parallel. As shown in Fig.12c and 12f, by leveraging the
graph merge algorithm to shift connection quotas from non-dominant microservice pairs in parallel
dependencies to the dominant ones, Microns reduces end-to-end latency by 17.8% compared to
the Graph strategy. These results underscore the importance of integrating graph merge, quota
adjustment, and connection management in tandem.

7.3 Prediction Accuracy Analysis
In this section, we assess the prediction accuracy of Microns using the data samples collected from
local clusters. Specifically, we deploy different combinations of resource contention and workloads
in each physical host every 30 minutes and collect data samples every 30 seconds. Each sample
captures the latency of microservice pairs and statistics of individual containers as mentioned in
§ 5.4. This process lasts for 8 hours for each application, ensuring sufficient data samples to evaluate
the prediction accuracy.
We first investigate the accuracy of predicting the mean 𝜇 and standard deviation 𝜎 in latency

distributions of containers based on workloads and resource contention. We train the XGBoost
models with 70% data samples and evaluate them with the remaining ones for each application. As
shown in Table.3, the prediction accuracy of 𝜎 ranges from 85.3% to 87.1%, while the prediction of
𝜇 achieves an accuracy exceeding 91.9%. These results indicate high precision in predicting the
latency distribution across all applications.

Application Social Network Hotel Reservation Media Service
𝜇 93.6% 94.6% 91.9%
𝜎 87.1% 85.3% 86.8%
Table 3. Prediction accuracy of container latency distribution.

We further assess the accuracy of predicting microservice pair latency using the predicted latency
distributions of individual containers under different settings. For comparison, we implement three
baseline schemes: Erms [30] models the latency of microservice pairs as a piece-wise linear function.

18

Parslo [34] profiles the latency distribution of microservice pairs across varying workloads. Derm
[9] employs the exponential distribution to estimate the latency of microservice pairs.
As illustrated in Table .4, all baseline schemes exhibit a prediction accuracy below 80% as they

overlook imbalanced workloads and resource contention among individual containers. Instead, they
rely on the mean values of these statistics across containers to predict the latency of microservice
pairs, leading to underestimation. Particularly in high imbalance settings, the prediction accuracy
of baseline schemes dramatically drops to 70%. In contrast, Microns consistently achieves high
prediction accuracy, up to 86.74% across all settings, by carefully accounting for the contribution of
individual containers on microservice pair latency. These results demonstrate the effectiveness of
Microns’ design in achieving accurate latency predictions.

Contention Setting Microns Parslo Erms Derm
Low Imbalance 88.85% 77.27% 74.78% 76.51%
High Imbalance 86.74% 68.70% 65.19% 69.84%
Table 4. Prediction accuracy of microservice pair latency.

7.4 Sensitivity Analysis
In this section, we analyze Microns’s sensitivity to related parameters and prediction accuracy.
Specifically, we conduct experiments similar to § 7.2.1, varying the parameter values and introducing
different levels of prediction error. We then evaluate the resulting end-to-end latency and report
the average results across all applications.
Learning rate. We assess the impact of learning rate 𝜂 in Microns’s quota adjustment on the
end-to-end latency and convergence efficiency. As shown in Fig. 13a, increasing 𝜂 initially reduces
end-to-end latency by preventing the algorithm from getting stuck in local optima and facilitates
convergence with larger step size. However, an excessively high 𝜂 can result in convergence on
suboptimal solutions. Notably, the end-to-end latency varies by less than 10% when 𝜂 changes,
demonstrating the robustness of Microns with respect to the learning rate.
Stagnation threshold. Microns employs a stagnation threshold 𝜃 to control the termination of its
iterative connection subsetting procedure. A higher threshold enables Microns to search for better
solutions, but increases the number of iterations required to converge. As illustrated in Fig. 13b, the
end-to-end latency exhibits a notable improvement when 𝜃 increases from 2 to 5. However, further
increasing 𝜃 to 15 yields only minor improvements at the cost of reduced convergence efficiency.
We set 𝜃 to 5 by default to strike a balance between convergence efficiency and end-to-end latency.
Termination threshold. The workload assignment process, which determines the optimal work-
load distribution among containers, is regulated by the termination threshold 𝛽 . As illustrated in
Fig. 13c, reducing 𝛽 allows for an accurate workload distribution that better balances performance
across containers, thereby enhancing the end-to-end latency. But it requires additional refinement
iterations and increases computational overheads. The default value of 𝛽 is set to 0.1, aiming to
balance the overheads and end-to-end latency.
Maximum connection quota. The total connection quota 𝐶 determines the overall connections
maintained within an application. As shown in Fig.13d, increasing𝐶 from 2 to 8 times the number of
upstream containers significantly reduces end-to-end latency by 27%. This stems from the increased
opportunity for Microns to redistribute connection quotas among microservice pairs and address
the performance disparities among containers. However, when 𝐶 further increases to 16 times
the number of upstream containers, the benefit is outweighed by higher connection maintenance
overheads, leading to an increase in latency. We configure the default total connection quota based
on our analysis of production traces [3] and provide an interface to customize it.

19

0.1 0.2 0.5 1
Learning rate

1

1.1

1.2

No
rm

al
ize

d
la

te
nc

y

14
15
16
17
18

Co
nv

er
ge

nc
e

ite
ra

tio
ns

(a)

2 3 5 10 15
Stagnation threshold

1

1.1

1.2

No
rm

al
ize

d
la

te
nc

y
10
15
20
25
30

Co
nv

er
ge

nc
e

ite
ra

tio
ns

(b)

0.05 0.1 0.2 0.5
Termination threshold

1

1.1

1.2

No
rm

al
ize

d
la

te
nc

y

2
4
6
8
10
12

Co
nv

er
ge

nc
e

ite
ra

tio
ns

(c)

2 4 8 16
Total connection quota

times number of upstream containers

1

1.1

1.2

No
rm

al
ize

d
la

te
nc

y

(d)

0 5 10 15 20
Prediction error (%)

1

1.05

1.1

1.15

No
rm

al
ize

d
la

te
nc

y

(e)
Fig. 13. End-to-end latency under different parameter values and prediction error. (a) Learning rate 𝜂 in quota
adjustment. (b) Stagnation threshold 𝜃 in the connection subsetting procedure. (c) Termination threshold 𝛽 in
workload assignment. (d) Maximum connection quota 𝐶 . (e) Prediction error.

Prediction accuracy. Recognizing potential errors in latency prediction, we introduce varying
levels of error to the prediction results of the Latency Analyzer during the connection subsetting
procedure and evaluate the resulting end-to-end latency of applications. As shown in Fig. 13e,
even with a 20% drop in prediction accuracy, the end-to-end latency increases by only 10.7%. This
demonstrates the robustness of Microns against prediction errors.

7.5 Scalability of Microns
To evaluate Microns’s scalability, we conduct experiments using highly complex microservice
applications in large-scale clusters. Specifically, we leverage production traces from Alibaba [3] to
analyze the latency of a complex microservice application, which consists of 425 microservices,
under varying workloads and resource contention. We then simulate the deployment and execution
of this application within 2,000 physical hosts, with each microservice deployed with an average
of 100 containers. Within the deployment, Microns can solve the connection subsetting solution
within 1.06 seconds using an Intel i7 CPU. This computation time is remarkably efficient compared
to typical container startup times, which range from several to tens of seconds, demonstrating
Microns’s ability to scale effectively in large, complex environments.

8 RELATEDWORK
Connection subsetting [14, 18, 20, 35, 40, 41, 43] has been widely adopted in production clusters.
Google [43] leverages the Rocksteadier subsetting algorithm to assign equally sized subsets of
downstream containers to corresponding upstream containers. Uber [41] leverages the Real-Time
Dynamic Subsetting algorithm to dynamically adjust the size of upstream container subsets based
on current workload distribution, ensuring efficient resource use and adaptability to fluctuating
workloads. Twitter [40] develops Deterministic Aperture to enhance workload distribution by using
a ring coordinate system combined with the Pick of 2 Choices (P2C) algorithm. This system maps
both upstream and downstream instances onto rings, and then directs requests to downstream
instances according to their positions. Envoy [14] requires tagging downstream containers with
user defined metadata to allow the load balancer to effectively select the correct subset. Netflix [35]
efficiently manages server pools by filtering servers to form a stable subset based on metrics like
failure rates and concurrent connections. Despite the effectiveness of these techniques to regulate
connection overheads, they fail to account for the unique characteristics of microservices and result
in suboptimal end-to-end latency.

9 CONCLUSION
In this paper, we proposeMicrons, an innovative connection subsetting framework for microservices
in shared clusters. The key concept is to develop a contention-aware and interdependency-aware
approach, involving optimally distributing connection quotas among microservice pairs and man-
aging connection relationships between dependent containers. Extensive evaluations reveal that
Microns significantly improves the end-to-end performance while ensuring high efficiency.

20

REFERENCES
[1] Sklearn. https://scikit-learn.org/stable/.
[2] Alibaba cloud microservices engine. https://www.alibabacloud.com/product/microservices-engine, 2024.
[3] Alibaba microservices cluster traces. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-

v2022, 2022.
[4] Azure Cloud Container Apps. https://azure.microsoft.com/en-us/services/container-apps/, 2024.
[5] Kubernetes’s Horizontal Pod Autoscaling. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/,

2024.
[6] Rohan Basu Roy and Devesh Tiwari. Starship: Mitigating i/o bottlenecks in serverless computing for scientific

workflows. Proceedings of the ACM on Measurement and Analysis of Computing Systems, pages 1–29, 2024.
[7] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site reliability engineering: How Google runs

production systems. " O’Reilly Media, Inc.", 2016.
[8] Richard P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. The computer journal,

1971.
[9] Liao Chen, Shutian Luo, Chenyu Lin, Zizhao Mo, Huanle Xu, Kejiang Ye, and Chengzhong Xu. Derm: Sla-aware

resource management for highly dynamic microservices. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA), pages 424–436. IEEE, 2024.

[10] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of SIGKDD, 2016.
[11] Zuzhi Chen, Fuxin Jiang, Binbin Chen, Yu Li, Yunkai Zhang, Chao Huang, Rui Yang, Fan Jiang, Jianjun Chen, Wu Xiang,

et al. Resource allocation with service affinity in large-scale cloud environments. In Proc. of IEEE ICDE, 2024.
[12] Ka-Ho Chow, Umesh Deshpande, Veera Deenadhayalan, Sangeetha Seshadri, and Ling Liu. Scad: Scalability advisor

for interactive microservices on hybrid clouds. In Companion of ACM SIGMOD, 2023.
[13] Christina Delimitrou and Christos Kozyrakis. Ibench: Quantifying interference for datacenter applications. In

Proceedings of IISWC, 2013.
[14] Envoy: Load balancer subsets. https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_

balancing/subsets, 2024.
[15] Yu Gan, Guiyang Liu, Xin Zhang, Qi Zhou, Jiesheng Wu, and Jiangwei Jiang. Sleuth: A trace-based root cause

analysis system for large-scale microservices with graph neural networks. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4, 2023.

[16] Yu Gan, Yanqi Zhang, et al. An open-source benchmark suite for microservices and their hardware-software implica-
tions for cloud & edge systems. In Proceedings of ASPLOS, 2019.

[17] Google kubernetes engine. https://cloud.google.com/kubernetes-engine, 2024.
[18] Google site reliability engineering. https://sre.google/sre-book/load-balancing-datacenter/, 2024.
[19] Md Rajib Hossen. Pema+: A comprehensive resource manager for microservices. ACM SIGMETRICS Performance

Evaluation Review, pages 10–12, 2024.
[20] Istio. https://istio.io/latest/about/service-mesh/, 2024.
[21] Jaeger. https://jaegertracing.io/, 2024.
[22] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, and Jason Mars. Grandslam: Guaranteeing

slas for jobs in microservices execution frameworks. In Proceedings of Eurosys, 2019.
[23] Carl T Kelley. Solving nonlinear equations with Newton’s method. SIAM, 2003.
[24] Kubernetes. https://kubernetes.io., 2024.
[25] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and Marcos Kalinowski. Data management in

microservices: State of the practice, challenges, and research directions. Proceedings of the VLDB Endowment, 2021.
[26] I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and Milind Chabbi. The tale of errors in microservices.

Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2024.
[27] Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe, Christos Kozyrakis, Michael Stonebraker,

Lalith Suresh, Xiangyao Yu, and Matei Zaharia. R3: Record-replay-retroaction for database-backed applications.
Proceedings of the VLDB Endowment, 2023.

[28] Chengzhi Lu, Huanle Xu, Keying Ye, Guoyao Xu, Liping Zhang, Guodong Yang, and Chengzhong Xu. Understanding
and optimizing workloads for unified resource management in large cloud platforms. In Proceedings of Eurosys, 2023.

[29] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu.
Characterizing microservice dependency and performance: Alibaba trace analysis. In Proceedings of ACM SoCC, 2021.

[30] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu.
Erms: Efficient resource management for shared microservices with sla guarantees. In Proceedings of ASPLOS, 2023.

[31] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian He, and Cheng-Zhong Xu. An
in-depth study of microservice call graph and runtime performance. IEEE Transactions on Parallel and Distributed
Systems, 2022.

21

https://scikit-learn.org/stable/
https://www.alibabacloud.com/product/microservices-engine
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://azure.microsoft.com/en-us/services/container-apps/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/subsets
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/subsets
https://cloud.google.com/kubernetes-engine
https://sre.google/sre-book/load-balancing-datacenter/
https://istio.io/latest/about/service-mesh/
https://jaegertracing.io/
https://kubernetes.io.

[32] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh Elnikety, Saurabh Bagchi, and
Somali Chaterji. Wisefuse: Workload characterization and dag transformation for serverless workflows. In Proceedings
of the ACM on Measurement and Analysis of Computing Systems, 2022.

[33] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American statistical Association,
1951.

[34] Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F Wenisch. Parslo: A gradient descent-based approach for
near-optimal partial slo allotment in microservices. In Proceedings of ACM SoCC, 2021.

[35] Serverlistsubsetfilter in netflix. https://javadoc.io/doc/com.netflix.ribbon/ribbon-
loadbalancer/2.4.3/com/netflix/loadbalancer/ServerListSubsetFilter.html, 2024.

[36] Prometheus. https://prometheus.io/, 2024.
[37] Huajie Qian, Qingsong Wen, Liang Sun, Jing Gu, Qiulin Niu, and Zhimin Tang. Robustscaler: Qos-aware autoscaling

for complex workloads. In Proc. of IEEE ICDE, 2022.
[38] Krzysztof Rzadca, Pawel Findeisen, et al. Autopilot: workload autoscaling at google. In Proceedings of EuroSys, 2020.
[39] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, and Jonathan Kaldor, et al. Twine: A unified cluster management

system for shared infrastructure. In Proceedings of OSDI, 2020.
[40] Deterministic aperture: A distributed, load balancing algorithm in twitter. https://blog.x.com/engineering/en_us/

topics/infrastructure/2019/daperture-load-balancer, 2019.
[41] Better load balancing: Real-time dynamic subsetting. https://www.uber.com/en-HK/blog/better-load-balancing-real-

time-dynamic-subsetting/, 2024.
[42] Load balancing: Handling heterogeneous hardware. https://www.uber.com/en-DO/blog/load-balancing-handling-

heterogeneous-hardware/, 2024.
[43] Peter Ward, Paul Wankadia, and Kavita Guliani. Reinventing backend subsetting at google: Designing an algorithm

with reduced connection churn that could replace deterministic subsetting. Queue, 2022.
[44] Peter Ward, Paul Wankadia, and Kavita Guliani. Reinventing backend subsetting at google. Communications of the

ACM, 66(5):40–47, 2023.
[45] Wu Xiang, Yakun Li, Yuquan Ren, Fan Jiang, Chaohui Xin, Varun Gupta, Chao Xiang, Xinyi Song, Meng Liu, Bing Li,

et al. Gödel: Unified large-scale resource management and scheduling at bytedance. In Proc. of ACM SoCC, pages
308–323, 2023.

[46] Zhe Xie, Changhua Pei, Wanxue Li, Huai Jiang, Liangfei Su, Jianhui Li, Gaogang Xie, and Dan Pei. From point-wise to
group-wise: A fast and accurate microservice trace anomaly detection approach. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2023.

[47] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou. Sinan: ML-based and
QoS-aware resource management for cloud microservices. In Proceedings of ASPLOS, 2021.

[48] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. Fuxi: a fault-tolerant resource management
and job scheduling system at internet scale. In Proceedings of the VLDB Endowment, pages 1393–1404, 2014.

[49] Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie Qiu, Keqiu Li, and Yungang Bao. Rhythm: component-
distinguishable workload deployment in datacenters. In Proceedings of EuroSys, 2020.

22

https://prometheus.io/
https://blog.x.com/engineering/en_us/topics/infrastructure/2019/daperture-load-balancer
https://blog.x.com/engineering/en_us/topics/infrastructure/2019/daperture-load-balancer
https://www.uber.com/en-HK/blog/better-load-balancing-real-time-dynamic-subsetting/
https://www.uber.com/en-HK/blog/better-load-balancing-real-time-dynamic-subsetting/
https://www.uber.com/en-DO/blog/load-balancing-handling-heterogeneous-hardware/
https://www.uber.com/en-DO/blog/load-balancing-handling-heterogeneous-hardware/

	Abstract
	1 Introduction
	2 Background
	2.1 Microservices Background
	2.2 Resource Contention
	2.3 Connection Subsetting for Microservices

	3 Motivations
	3.1 Limitation of existing subsetting strategies
	3.2 Opportunities and challenges

	4 The Microns Framework
	5 Design Details
	5.1 Overview
	5.2 Quota Adjustment
	5.3 Connection Management
	5.4 Latency Prediction

	6 Implementation
	7 Evaluation
	7.1 Evaluation Setup
	7.2 Performance Analysis
	7.3 Prediction Accuracy Analysis
	7.4 Sensitivity Analysis
	7.5 Scalability of Microns

	8 Related Work
	9 Conclusion
	References

