
HarmonyBatch: Batching multi-SLO DNN
Inference with Heterogeneous Serverless Functions

Jiabin Chen†, Fei Xu†∗, Yikun Gu†, Li Chen‡, Fangming Liu§, Zhi Zhou¶
†Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University.

‡University of Louisiana at Lafayette. §Peng Cheng Laboratory. ¶Sun Yat-sen University.
Email: †fxu@cs.ecnu.edu.cn, †li.chen@louisiana.edu, §fangminghk@gmail.com, ¶zhouzhi9@mail.sysu.edu.cn

Abstract—Deep Neural Network (DNN) inference on serverless
functions is gaining prominence due to its potential for substantial
budget savings. Existing works on serverless DNN inference
solely optimize batching requests from one application with a
single Service Level Objective (SLO) on CPU functions. However,
production serverless DNN inference traces indicate that the
request arrival rate of applications is surprisingly low, which
inevitably causes a long batching time and SLO violations. Hence,
there is an urgent need for batching multiple DNN inference
requests with diverse SLOs (i.e., multi-SLO DNN inference) in
serverless platforms. Moreover, the potential performance and
cost benefits of deploying heterogeneous (i.e., CPU and GPU)
functions for DNN inference have received scant attention.

In this paper, we present HarmonyBatch, a cost-efficient
resource provisioning framework designed to achieve predictable
performance for multi-SLO DNN inference with heterogeneous
serverless functions. Specifically, we construct an analytical
performance and cost model of DNN inference on both CPU and
GPU functions, by explicitly considering the GPU time-slicing
scheduling mechanism and request arrival rate distribution.
Based on such a model, we devise a two-stage merging strategy in
HarmonyBatch to judiciously batch the multi-SLO DNN inference
requests into application groups. It aims to minimize the budget
of function provisioning for each application group while guar-
anteeing diverse performance SLOs of inference applications.
We have implemented a prototype of HarmonyBatch on Alibaba
Cloud Function Compute. Extensive prototype experiments with
representative DNN inference workloads demonstrate that Har-
monyBatch can provide predictable performance to serverless
DNN inference workloads while reducing the monetary cost by
up to 82.9% compared to the state-of-the-art methods.

Index Terms—serverless computing, resource provisioning,
DNN inference, SLO guarantee

I. INTRODUCTION

The rapid evolution of artificial intelligence across diverse
fields has elevated Deep Neural Network (DNN) inference to
a critical role in cloud-based workloads. Fueled by the bursty
nature of DNN inference requests, the fast elasticity of server-
less computing makes it compelling for hosting such inference
workloads, without heavy server maintenance [1]. As DNN
models grow in complexity, especially the emergence of large
language models (LLMs) [2], the computational and memory

∗Corresponding author: Fei Xu (fxu@cs.ecnu.edu.cn). This work was
supported in part by the NSFC under Grant 62372184, the Science and Tech-
nology Commission of Shanghai Municipality under Grant 22DZ2229004,
the NSF under Grants OIA-2019511 and OIA-2327452, the Louisiana Board
of Regents under Contract LEQSF(2019-22)-RD-A-21, the National Key
Research & Development (R&D) Plan under Grant 2022YFB4501703, and
the Major Key Project of PCL (PCL2022A05).

B1

B2

GPU functions

CPU functions
Timeout1

Timeout2

Timeout3

Photo management
with SLO1

Video analytics
with SLO2

VR application
with SLO3

Fig. 1: A scenario of batching multiple DNN inference requests with
diverse SLOs (i.e., multi-SLO DNN inference) on heterogeneous server-
less functions. Timeouti denotes the batching timeout for an application
i.B1 andB2 denote the batch sizes of DNN inference executed on CPU
and GPU functions, respectively.

resource demands of serverless inference services increase
sharply [3]. To meet the stringent Service Level Objectives
(SLOs) of DNN inference workloads, Alibaba has recently
introduced GPU serverless functions [4]. Such a development
in GPU functions not only provides opportunities for cost
reduction [5] but also brings new challenges in deploying DNN
inference on heterogeneous serverless functions [6].

Upon deploying a DNN model in public clouds, the main-
stream serverless DNN inference service (e.g., Amazon Sage-
Maker Serverless Inference1) cannot provide SLO guarantees
for users. Users only rely on their own experience to provision
CPU/GPU function resources and configure the batch size
for their inference workloads. While several recent studies
guarantee SLOs for DNN inference by either minimizing the
performance interference [7] or optimizing function resource
provisioning plan [8], they mainly focus on the DNN inference
scenario with a single SLO, which is impractical for the real-
world situation of applications with low request arrival rates
(typically less than one request per second), as evidenced in
Sec. II-A. Such low request arrival rates inevitably cause a
long batching time, which cannot meet the SLO requirements
(typically in milliseconds) of DNN inference workloads with
large batch sizes.

Fortunately, inference applications executed in public clouds
can often be grouped and each group shares the same DNN
model. Such application groups bring users an opportunity to
aggregate multiple DNN inference requests with diverse SLOs
into large batches. As an example, Hugging Face Inference
Endpoints2 provide the serverless inference API to user ap-

1https://aws.amazon.com/sagemaker
2https://huggingface.co/inference-endpoints/serverless

GPU

GPU Functions

CPU

CPU Functions

Performance Predictor
(Sec. III)

HarmonyBatch

Function Provisioner
(Sec. IV)

Batch Manager

Model Profiler
(Sec. III)

Portal
SLOs

Requests

Requests Arrival
Rates

Predicted
Latency
and Cost

Parameters

Resource
Provisioning

Batching
Configurations

SLOs

Users

Batched
Requests

Fig. 2: Overview of HarmonyBatch.

plications with diverse SLO requirements. In such a scenario,
we can batch the inference requests from video analytics with
SLO2 and VR smart assistants [9] with SLO3 on GPU functions
and thus obtain a lower monetary cost, as illustrated in Fig. 1.
The rationale is that executing a large inference batch on GPU
functions can achieve up to 37.0% of cost saving as compared
to a small batch on CPU functions, as evidenced by Sec. II-B.

However, existing works (e.g., BATCH [8], INFless [10])
have solely focused on batching requests from one application
with a single SLO requirement and optimizing CPU function
resources [11]. They cannot be readily applied to achieving
multi-SLO serverless DNN inference, due to the two key
challenges summarized below:
• Complex batching for multi-SLO DNN inference. State-
of-the-art inference batching techniques individually choose a
batch size and a batching timeout value for each application
with a single SLO [8], [12]. However, it is complex to batch
requests from a set of applications in the multi-SLO DNN
inference scenario. This is because it requires categorizing the
applications into groups cost-efficiently and determining the
batching configuration (including the batch size for each group
and a batching timeout for each application) without SLO
violations. Moreover, it is difficult to estimate the monetary
cost of DNN inference in such a multi-SLO scenario.
• Heterogeneous function resource provisioning. Significant
efforts (e.g., AWS Lambda Power Tuning [13], COSE [14])
have been devoted to provisioning homogeneous CPU func-
tions for guaranteeing performance SLOs of applications,
which overlook the potential performance and cost benefits
of deploying heterogeneous functions. As the performance
SLOs and request arrival rates of an inference application
vary, the optimal provisioning plan can be shifted between
CPU and GPU functions, leading to up to 83.0% of budget
saving as elaborated in Sec. II-B. Moreover, the heterogeneous
function provisioning can be even harder in the multi-SLO
DNN inference scenario, which requires the co-optimization
of the function resource allocation and application grouping
as well as batching configuration.

To address these challenges above, we introduce Harmony-
Batch as illustrated in Fig. 2, a cost-efficient function resource
provisioning framework for achieving predictable DNN infer-
ence in serverless platforms. To the best of our knowledge,
HarmonyBatch is the first work to provision heterogeneous
(CPU and GPU) functions for judiciously batching multi-SLO
DNN inference in public clouds. The main contributions of

our paper are as follows:
B By obtaining model parameters through a lightweight work-
load profiling in the model profiler (Sec. III-A), we develop an
analytical performance predictor (Sec. III) for DNN inference
workloads on both CPU and GPU serverless functions. We
explicitly consider the GPU time-slicing schedule mechanism
and request arrival rate distribution.
B We design a cost-efficient inference resource provisioning
strategy in the function provisioner (Sec. IV) for multi-SLO
DNN inference. Our strategy uses a two-stage merging strategy
to judiciously batch the multi-SLO DNN inference requests
into application groups, with the aim of minimizing the budget
of function provisioning for each application group while
guaranteeing DNN inference performance SLOs.
B We implement a prototype of HarmonyBatch (https://
github.com/icloud-ecnu/HarmonyBatch) with both CPU and
GPU functions on Alibaba Cloud Function Compute [4].
Extensive prototype experiments with four representative DNN
models (including LLMs) demonstrate that HarmonyBatch can
achieve predictable performance for multi-SLO DNN infer-
ence, while saving the inference budget by up to 82.9%, com-
pared to state-of-the-art methods (e.g., BATCH [8], MBS [12]).

II. BACKGROUND AND MOTIVATION

In this section, we first investigate the key factors that
impact the performance and cost of serverless DNN inference.
Then, we show that adequately batching requests onto hetero-
geneous functions can significantly save the user budget.

A. DNN Inference in Serverless Platforms

Deploying and batching DNN inference requests on server-
less platforms can reduce the user budget [8]. However,
the request arrival rate of applications is typically low (i.e.,
less than 1 request per second), as analyzed by the average
request rates of applications in the Microsoft Azure Functions
trace [15] and Huawei Public Cloud trace [16]. Specifically,
approximately 98.7% of applications in Microsoft Azure and
99.6% of applications in Huawei Cloud demonstrate a request
rate of fewer than 1 request per second, as depicted in Fig. 3.
As DNN inference workloads are typically latency-critical (in
milliseconds), such low request arrival rates call for batching
multi-SLO DNN inference requests on serverless platforms.

In general, there exist two types of serverless functions in
mainstream public clouds. Specifically, CPU functions have
finer resource allocation granularity (i.e., 0.05 vCPU cores
on Alibaba Cloud Function Compute [4]) and lower prices,
while GPU functions are equipped with higher computing
power (i.e., 1 total GPU for a GPU function on Alibaba
Cloud Function Compute [4]) and a larger amount of GPU
memory. In such a case, it is complex for users to determine
the appropriate CPU or GPU functions to be deployed together
with the allocated function resources (i.e., vCPU cores and
GPU memory).

2

10−4 10−2 100 102

Arrival rates (req/s)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

of
 a

pp
s

(1, 0.987)

(1, 0.996)

Microsoft
Huawei

Fig. 3: CDF of request arrival rates per function
in Microsoft Azure Functions trace [15] and
Huawei Public Cloud trace [16].

0.5 1.0 1.5 2.0 2.5 3.0
vCPU cores

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(s
)

AVG latency (batch: 1)
MAX latency (batch: 1)
AVG latency (batch: 2)
MAX latency (batch: 2)

Fig. 4: Inference latency of VGG-19 executed
on a CPU function by varying the allocated
vCPU cores from 0.5 to 3.0.

1 3 5 7 9 11 13 15
Batch size

0.0

0.1

0.2

0.3

La
te

nc
y

(s
)

AVG latency (GPU mem: 4GB)
MAX latency (GPU mem: 4GB)
AVG latency (GPU mem: 24GB)
MAX latency (GPU mem: 24GB)

Fig. 5: Inference latency of VGG-19 executed
on a GPU function by configuring the batch size
from 1 to 16.

B. Characterizing Serverless Inference Performance and Cost
To explore the characteristics of serverless DNN inference

performance (i.e., latency) and monetary cost, we conduct
motivation experiments of representative DNN models (i.e.,
VGG-19 [17], BERT [18]) on CPU and GPU functions in
Alibaba Cloud Function Compute [4]. We execute DNN infer-
ence workloads for 100 times with each function configuration
in latency motivation experiments, while in monetary cost
motivation experiments, we execute DNN inference for 10
minutes with each function configuration.

Latency. As shown in Fig. 4, the average and maximum
inference latency of VGG-19 both show a roughly exponential
decrease as more vCPU cores are allocated to CPU functions.
This is because DNN inference workloads are commonly
multi-core friendly, and the inference latency drops rapidly
as we increase function resources at first. Our results indicate
that provisioning more vCPU cores for CPU functions and in-
creasing inference batch sizes can bring marginal performance
benefits. As depicted in Fig. 5, the average and maximum
inference latency on GPU functions overlap each other, both
exhibiting a linear relationship with the batch size with the 24-
GB configuration. Interestingly, when switching to the 4-GB
configuration, the average inference latency is roughly linear
to the batch size, while the maximum inference latency shows
a stepwise increase with the batch size. We attribute such a
result above to the time-slicing scheduling mechanism of GPU
functions [19], which will be elaborated in Sec. III. In addition,
there exists a noticeable difference between the average and
maximum inference latency on both CPU and GPU functions,
which indicates that DNN inference latency can be unstable
due to the performance interference among functions [7], [20].

Cost. As illustrated in Fig. 6, the optimal function provi-
sioning plans3 under diverse SLOs ranging from stringent to
relaxed turns out to GPU, CPU, and GPU functions. Under
strict SLOs, CPU functions cannot meet the SLO require-
ments, while GPU functions with low batch sizes can meet
such requirements. As SLOs become larger (more relaxed),
CPU functions gain the advantage with their lower unit price
at first, and then GPU functions become cost-efficient again, as
longer batching time and requests with larger batch sizes are

3The optimal resource provisioning plan is obtained by iterating through
all possible configurations via the grid search method.

allowed. As shown in Fig. 7, the normalized cost decreases as
the request arrival rate increases especially for GPU functions.
This is because the batch size for inference gets large on
GPU functions as the request arrival rate increases. The results
indicate that batching requests from multiple applications for
larger request arrival rates can bring significant cost benefits.
In addition, the cost of DNN inference for CPU functions is
insensitive to the changes in SLOs or request arrival rates.

C. An Illustrative Example

Batching multiple DNN inference requests from applica-
tions with diverse SLOs is challenging. In response, we design
HarmonyBatch to identify cost-effective function resource pro-
visioning for the predictable performance of DNN inference
workloads in serverless platforms. As an example, we conduct
motivation experiments using three applications (i.e., App1,
App2, and App3) sharing the same model VGG-19 [17],
but with different SLOs and arrival rates. Specifically, the
performance SLOs of App1, App2, and App3 are 0.5, 0.8,
and 1 seconds, respectively. The request arrival rates of App1,
App2, and App3 are 5, 10, and 20 req/s, respectively.

As listed in Table I, HarmonyBatch can significantly reduce
the function resource provisioning cost by up to 37.0% com-
pared to the baselines. Specifically, the BATCH strategy [8]
achieves the highest cost with several SLO violations. This
is because it only batches requests from one application and
simply assumes the inference latency following a deterministic
distribution (i.e., stable values). Though we modify the MBS+

strategy to support heterogeneous function provisioning, it
still brings a higher inference monetary cost compared to
HarmonyBatch. This is because the MBS+ strategy divides the
requests from the three applications evenly, which aggregates
App1, App2 and part of App3 on a CPU function with the
batch size set as 1. The remaining requests of App3 are routed
to a GPU function with a moderate batch size set as 11.
In contrast, HarmonyBatch provisions three applications with
heterogeneous functions, by adequately aggregating App2 and
App3 as a large inference batch set as 13 on a GPU function.

Summary. First, judiciously batching multi-SLO inference
requests can effectively save monetary cost while guaranteeing
performance SLOs for DNN inference workloads. Second,
provisioning heterogeneous functions for DNN inference ap-

3

0.2 0.4 0.6 0.8 1.0
SLO (seconds)

0.0

0.5

1.0

N
or

m
al

iz
ed

 c
os

t

Knee point
BERT

0.2 0.4 0.6 0.8 1.00.0

0.5

1.0
Knee point

VGG-19

CPU Functions
GPU Functions

Fig. 6: Normalized cost of optimal function
provisioning plan under different SLOs with
the request arrival rate set as 20 req/s. The
blue area denotes the optimal plan is CPU
functions and two knee points exist.

0 5 10 15 20
Arrival rates (req/s)

0.0

0.5

1.0

N
or

m
al

iz
ed

 c
os

t

Knee point

BERT

0 5 10 15 200.0

0.5

1.0

Knee point VGG-19

CPU Functions
GPU Functions

Fig. 7: Normalized cost of optimal function
provisioning plan under different request
arrival rates with the SLO set as 1 second.
The blue area denotes the optimal plan is
CPU functions and one knee point exists.

Strategies Provisioning plans Norm. cost

BATCH
(1.55, 1, [0])c, (1.5, 2,

1.00
[0.48])c, (1.5, 2, [0.48])c

MBS+ (1.6, 1, [0, 0, 0])c,
0.88

(2, 11, [0.65])g

HarmonyBatch
(1.6, 1, [0])c,

0.63
(2, 13, [0.45, 0.65])g

TABLE I: Comparison of the normalized cost of VGG-19
with BATCH [8], MBS+ [12], and HarmonyBatch strategies.
The function provisioning plan is represented as a 3-tuple
value: (vCPU cores, batch, [timeouts])c for CPU functions
and (GPU memory, batch, [timeouts])g for GPU functions.

TABLE II: Key notations in our DNN inference latency and cost models
in serverless platforms.

Notation Definition

Lt
avg , L

t
max

Average, maximum inference latency of an infer-
ence workload on functions with a type t = c, g

Lg
0

Inference latency on a GPU function configured
with the maximum GPU memory size Mmax

αavg
b , βavg

b , γavgb

Model coefficients of inference average latency
on CPU functions with the batch size set as b

αmax
b , βmax

b , γmax
b

Model coefficients of inference maximum latency
on CPU functions with the batch size set as b

ξ1, ξ2
Model coefficients of inference latency on GPU
functions

c,m
vCPU cores of provisioned CPU functions, GPU
memory of provisioned GPU functions

CX
Average monetary cost of an inference request of
the application group X

K1,K2,K3
Unit cost of a vCPU core, GPU memory, and a
function invocation

rX , bX , TX
Total request arrival rate, batch size, equivalent
batching timeout of the application group X

plications can yield significant (up to 37.0%) cost benefits
compared to homogeneous provisioning solutions. In particu-
lar, CPU functions are cost-effective for inference applications
with moderate SLOs and low request arrival rates, while GPU
functions are cost-effective for inference applications with
tight or loose SLOs and high request arrival rates.

III. SYSTEM MODEL

In this section, we model the inference latency with the
CPU and GPU functions and leverage the request arrival rate
to model the inference cost. The key notations in our serverless
DNN inference model are summarized in Table II.

A. Modeling Latency of Serverless Inference

We focus on two key metrics including the average inference
latency and maximum inference latency. The former is used
to calculate the monetary cost of inference, while the latter is
used to evaluate SLO violations.

CPU functions. As elaborated in Sec. II-B, the average
inference latency on CPU functions Lcavg decreases expo-

nentially as more vCPU cores are provisioned. The average
latency for batch size b on CPU functions can be given by

Lcavg = αavgb · exp
(
− c

βavgb

)
+ γavgb , (1)

where αavgb , βavgb , γavgb are the model coefficients with the
batch size set as b, and the variable c denotes the allocated
vCPU cores of functions. We apply a similar method to model
the maximum inference latency on CPU functions Lcmax by
leveraging the model coefficients αmaxb , βmaxb and γmaxb .

GPU functions. When a GPU function is provisioned with
the maximum GPU memory of Mmax (e.g., 24 GB for an
NVIDIA A10 GPU), the GPU function exclusively occupies
a whole GPU device, leading to a stable inference latency.
As evidenced in Sec. II-B, the average and maximum latency
overlap each other with the function GPU memory set as
Mmax. In addition, the inference latency on GPU functions
with Mmax is roughly linear to the batch size b. Accordingly,
we formulate the inference latency Lg0 on GPU functions with
Mmax as

Lg0 = ξ1 · b+ ξ2, (2)

where ξ1 and ξ2 are model coefficients for GPU functions.
We further model the average inference latency Lgavg and

maximum inference latency Lgmax on GPU functions. To
facilitate serverless GPU functions, Alibaba Cloud Function
Compute [4] deploys GPU temporal sharing mechanism (i.e.,
cGPU [19]). Specifically, cGPU partitions the GPU’s comput-
ing power into Mmax units with each lasting for a duration of
τ . It combines multiple time slices into a larger time slice m·τ
which is assigned to a GPU function with the GPU memory
set as m. Though the latency of an inference request on GPU
functions can be influenced by its arrival time, the average
inference latency is still roughly linear to Lg0 (in terms of the
batch size), which is estimated as

Lgavg =
Mmax

m
· Lg0. (3)

Furthermore, by assuming an inference request demands 2m·τ
to complete the execution, the maximum and minimum infer-
ence latency can be obtained as 2Mmax ·τ and (Mmax+m)·τ ,
respectively, as shown in Fig. 8. Accordingly, as for a request
that demands Lg0 to complete the execution and arrives at the

4

...
Request arrives Request ends

Timeline

Request arrives Request ends

(b) minimum inference latency

(a) maximum inference latency

(�푚�� − 푚)� 푚�

...

...

Obtained
unit time

slice

Preempted
unit time

slice

Fig. 8: Maximum and minimum inference latency scenarios caused by
GPU time-slicing scheduling mechanism [19] on a GPU function with
the GPU memory set as m. It hosts an inference request that demands
2m · τ time slices, where τ denotes a unit GPU time slice. (a) The
request arrives at the beginning of a preempted time slice, resulting in
the maximum inference latency 2Mmax · τ ; and (b) the request arrives
at the start of the obtained time slice, leading to the minimum inference
latency (Mmax +m) · τ .

start of the preempted time slice, it requires undergoing an
additional number (i.e.,

⌈ Lg
0

m·τ
⌉
) of preempted time slices. As

a result, we formulate the maximum inference latency on GPU
functions as

Lgmax =
⌈ Lg0
m · τ

⌉
· (Mmax −m) · τ + Lg0. (4)

Model coefficients acquisition. Based on our model
above, we have six workload-specific coefficients (i.e.,
αavgb , βavgb , γavgb , αmaxb , βmaxb , γmaxb) for CPU functions, two
workload-specific coefficients (i.e., ξ1, ξ2) and one hardware-
specific parameter (i.e., τ) for GPU functions. To determine the
six coefficients for CPU functions, we execute DNN inference
workloads 100 times on each configuration by varying function
vCPU cores and batch sizes. As evidenced by Sec. II-B, CPU
functions typically outperform GPU functions with small batch
sizes. To obtain model coefficients, we only profile DNN
inference workloads with small batch sizes (i.e., ranging from
1 to 4), which significantly reduces the profiling overhead. To
obtain the workload-specific coefficients for GPU functions,
we configure the GPU function with the GPU memory set
as Mmax and execute DNN inference workloads only three
times with two different batch sizes, as the inference latency
on GPUs is stable. To identify τ , we get the Lgmax and Lg0 by
running VGG-19 inference on a GPU function with a suitable
GPU memory m and Mmax for 100 times, respectively.

B. Modeling Monetary Cost of Multi-SLO DNN Inference

In a scenario with multiple applications (i.e., a group X),
we assume that an inference application Appi in the group X
follows the Poisson distribution with the request arrival rate
ri. The application requests are first cached in a buffer with
the capacity of bX for batching. We set a batching timeout
Ti for each application to avoid long request waiting in the
buffer. Once any Ti expires, the cached requests (in a batch)
are then sent to the functions for inference.

To execute the inference with the maximum batch size (i.e.,
bX), the prerequisite brX · TX c + 1 ≥ bX needs to be held,
where brX · TX c + 1 denotes the total number of requests

received over a period TX , including the first request. In
more detail, rX is the total request arrival rate, and TX is the
equivalent batching timeout of group X , which is considered
as the expectation value of request waiting time in the buffer,
as each application has its own batching timeout. To illustrate
that, we start from two applications with their request arrival
rates and batching timeouts (i.e., App1 with r1, T1 and App2
with r2, T2). By assuming that T1 is smaller than T2, the
equivalent batching timeout of X can be calculated by

TX = T1 + η2 ·
1− exp

(
− r1 · (T2 − T1)

)
r1

, (5)

where η2 = r2
r1+r2

denote the probability of the first request
from App2. The derivation can be found in Appendix A [21].
To obtain the equivalent batching timeout of a large group X
with two more applications, we can iteratively apply Eq. (5)
to a sequence of two applications in the group X .

According to the pricing of function resources in Alibaba
Cloud Function Compute [4], we further model the average
monetary cost CX of an inference request in terms of vCPU
cores, GPU memory, and function invocations, which is given
by

CX =
1

bX
[
Ltavg · (c ·K1 +m ·K2) +K3

]
, (6)

where Ltavg is the average inference latency with the batch
size bX and the function type t. K1,K2 is the unit cost of
vCPU cores c and GPU memory m. K3 is the constant cost
of each function invocation. In particular, m = 0 represents a
CPU function, and c = 0 represents a GPU function.

IV. ALGORITHM DESIGN

In this section, we first formulate the optimization problem
of function resource provisioning for multi-SLO DNN infer-
ence. We then design and implement HarmonyBatch to provide
predictable performance for multi-SLO DNN inference with
heterogeneous serverless functions.

A. Optimizing Serverless Inference Resource Provisioning

We assume a set of DNN inference applications W =
{w1, w2,, wn} sharing the same DNN model with the infer-
ence latency SLOs S = {sw1 , sw2 , ..., swn} and request arrival
rates R = {rw1 , rw2 , ..., rwn}. We categorize the application
set W into several groups G = {X1,X2, ...,Xm}. Each group
X = {wj , wj+1, ...} is provisioned with an appropriate CPU
function or GPU function, with the aim of meeting application
SLO requirements while minimizing the average monetary
cost of each inference request. Based on the DNN inference
performance and cost models in Sec. III, we can formulate the
optimization problem as

min
G,F,B

Cost =
∑
X∈G

ηX · CX (7)

s.t. mX ≥MX , ∀ X ∈ G (8)
bX ≤ brX · TX c+ 1,∀ X ∈ G (9)
tw + Ltmax ≤ sw, ∀ w ∈ X , X ∈ G (10)

5

where ηX is the ratio of the request arrival rate of a group X
to the total request arrival rate. CX is the average monetary
cost of a group X . Each group X is configured with a function
of resource fX ∈ F (i.e., a tuple of vCPU cores cX and GPU
memory mX , fX = [cX ,mX]). Constraint (8) guarantees the
GPU memory demands MX of inference, which are propor-
tional to the batch size. In addition, bX ∈ B denotes the batch
size configured to group X and tw is the timeout configured
with the application w. Constraint (9) guarantees that DNN
inference is executed with the batch size bX . Constraint (10)
guarantees the latency SLO sw for an application w, where
the Ltmax is the maximum inference latency with the batch
size bX . TX is calculated by tw in the group X by Eq. (5).
To greedily enlarge the batching timeout TX , we set the tw

as the maximum value which meets the Constraint (10) (i.e.,
tw = sw − Ltmax).

Problem analysis. Our group solution G has a large search-
ing space of B|W|, which is the Bell number [22]. Given
a group G, the function resource f ∈ F can only take
limited discrete values. Meanwhile, the batch size b ∈ B
is constrained to integer values. Accordingly, the resource
provisioning problem can be reduced to an integer program-
ming problem. Obviously, the total average monetary cost and
Constraint (10) is non-linear with the configuration parameters,
and thus our optimization problem can further be reduced to
a non-linear integer programming problem, which is an NP-
hard problem [23]. We turn to designing a heuristic algorithm
in Sec. IV-B to solve such an optimization problem.

B. Design of HarmonyBatch Strategy

HarmonyBatch divides the problem into two parts: First is
to divide the applications into different groups, and second is
to provision function resources for each application group.

Two-stage merging for application groups. We consider
placing the adjacent applications sorted by their SLOs in
ascending order into a group. According to Constraint (10),
the batching timeout gap between two applications can be
substantial if their SLO difference is large. If the two appli-
cations (with batching timeouts denoted as T1 and T2, where
T1 < T2) are grouped together, the equivalent batching timeout
TX becomes much less than T2 by analyzing Eq. (5). This
causes a smaller aggregated batch size of DNN inference for
all groups X ∈ G, thereby leading to a lower cost-efficient
function resource provisioning, as evidenced by Sec. II-B.

Based on our analysis above, we design a two-stage group
merging strategy in Alg. 1. Initially, each application is
considered as a group, and the function provisioning plan
and monetary cost for each group are calculated by our
funcProvision strategy (lines 1-2). In the first stage, groups
originally deployed on CPU functions are merged to be
deployed on GPU functions as much as possible. To support
the group merging for applications with adjacent SLOs, we
sort the applications in G into a list L based on their SLOs, and
only consecutive groups (or applications) in the list are merged
(line 3). We leverage the knee point of the request arrival
rate as illustrated in Fig. 7 to be the threshold r∗ for group

Algorithm 1: HarmonyBatch: Two-stage merging
strategy for application groups.

Input : A set of applications W with their SLOs S and
arrival rates R.

Output: A set of group G, sets of function provisioning
plans F and batch size B.

1 Initialize: G ← {{w1}, {w2}, ..., {wn}};
2 Provision function resources for each X ∈ G,

CX , fX , bX ← funcProvision(X , sX , rX);
3 Sort the applications in G with SLOs and initialize the group

list L← sortWithSLO(G);
// Stage1: merging CPU functions

4 Set index i← 0, j ← 0; Set the request arrival rate r ← 0;
5 while i < |L| do
6 if cL[i] > 0 then
7 r ← r + rL[i];

// r∗ is the arrival rate knee point
8 if r > r∗ then
9 L, ← Merge(L, j, i+ 1);

10 Set i← j, j ← j + 1 and r ← 0;

11 else
12 Set j ← i+ 1 and r ← 0;

13 Set i← i+ 1;

// Stage2: merging GPU functions
14 Set index i← 0;
15 while i < |L| − 1 do
16 if mL[i] > 0 or mL[i+1] > 0 then
17 L, isMerged← Merge(L, i, i+ 2);
18 if isMerged then
19 i← i− 1;

20 Set i← i+ 1;

21 return G,F ,B;

22 Function Merge(L, low, high):
23 X ← L[low] ∪ L[low + 1] ∪ ...L[high− 1];
24 Provision function resources for group X ,

CX , fX , bX ← funcProvision(X , sX , rX);
25 if CX is lower than the cost before merging then
26 Update G, F and B with the function provisioning

plan;
27 L← L[: low] + X + L[: high];
28 return L, True;

29 return L, False;

merging. If the total request arrival rate exceeds r∗, merging
provides an opportunity to configure a more efficient GPU
function (lines 4-13). In the second stage, groups deployed
on GPU functions and adjacent groups based on SLOs are
merged as much as possible to increase the request arrival
rate of the merged groups. By iterating each group on GPU
functions, HarmonyBatch examines whether they can reduce
the monetary cost after group merging (lines 14-20). After
that, HarmonyBatch outputs the application groups and their
corresponding function provisioning plans.
funcProvision: Function provisioning for an appli-

cation group. We analyze the optimization of CPU/GPU
function resource provisioning. The configuration space of

6

vCPU cores cX ∈ [0.05, 16] for CPU functions with the step
of 0.05 is larger than that of bX ∈ [1, 4]. The configuration
space of GPU memory mX ∈ [1, 24] for GPU functions with
the step of 1 is smaller than that of bX ∈ [1, 32]. We find that
the CPU function exhibits a smaller batch size configuration
space (4 choices) but a larger resource configuration space
(320 choices), whereas the GPU function shows the opposite
characteristics. To speed up searching for the optimal solution,
we derive two theorems by analyzing Eq. (6).

Theorem 1. Given a batch size bX , the minimum cost of
CPU function provisioning can be achieved with the allocated
vCPU cores set as c∗ (i.e., the relative minimum point or the
boundary points).

Proof. The proof can be found in Appendix B [21].

Theorem 2. Given an amount of GPU memory mX , the
minimum cost of GPU function provisioning can be achieved
if the following condition holds.

brX · TX c+ 1 = bX . (11)

Proof. The proof can be found in Appendix C [21].

Based on Theorem 1 and Theorem 2, we simply adopt the
binary search method in HarmonyBatch to fast identify the
cost-efficient function provisioning plan (i.e., the vCPU cores
for the CPU function and the batch size for the GPU function,
respectively). Accordingly, HarmonyBatch can minimize the
inference budget, while guaranteeing the latency SLOs for an
application group X .

Remark. The complexity of Alg. 1 is in the order of
O(|W|·Mmax·log2Bmax), where |W| is the number of the ap-
plications. Mmax and Bmax are the maximum GPU memory
and the maximum batch size, respectively. This is attributed to
the relatively small batch size considered by the CPU function,
which makes the complexity of the function provision strategy
mainly depend on the size of the search space of GPU function
resource provisioning. The computation overhead of Alg. 1 is
well contained, which will be evaluated in Sec. V-D.

C. Implementation of HarmonyBatch Prototype

The HarmonyBatch prototype is implemented on the Al-
ibaba Compute Function platform [4] with over 1, 400 lines
of Python codes, which are publicly available on GitHub.
We implement four representative DNN inference workloads
based on PyTorch4 v1.13.0 and ONNX Runtime5 v1.16.1. We
use the Alibaba FC-Open Python SDK [4] to update function
resources. We deploy the HarmonyBatch on a dedicated cloud
instance, which receives DNN inference requests from a set
of user applications. We first set up a request queue for each
application group. We then batch the inference requests in the
queue and finally route them to the provisioned CPU/GPU
functions. To handle the request arrival variations, Harmony-
Batch can be periodically executed to provision functions for

4https://pytorch.org
5https://onnxruntime.ai

TABLE III: DNN inference workloads deployed in our experiments.

Workloads VideoMAE VGG-19 BERT GPT-2

Framework PyTorch PyTorch Onnx Runtime PyTorch

Domains Video Analytics Image Processing NLP NLP

Datasets Kinetics-400 ImageNet Wikipedia ShareGPT

DNN inference workloads. HarmonyBatch mainly determines
the batching and function resource configurations. The batch-
ing configurations are sent to the batch manager to control the
request queue, while the function resource configurations are
sent to the serverless platform to vertically scale up or scale
down functions.

V. PERFORMANCE EVALUATION

In this section, we evaluate HarmonyBatch by conducting
a set of prototype experiments with four representative DNN
models (listed in Table III) deployed on Alibaba Cloud Func-
tion Compute [4]. We seek to answer the questions as follows.
• Accurary: Can our model in HarmonyBatch accurately

predict the DNN inference latency with heterogeneous
serverless functions? (Sec. V-B)

• Effectiveness: Can our function provisioning strategy
in HarmonyBatch provide predictable performance for
multi-SLO DNN inference while saving the monetary
cost? (Sec. V-C)

• Overhead: How much runtime overhead does Harmony-
Batch practically bring? (Sec. V-D)

A. Experimental Setup

Configurations of DNN inference workloads. We select
four representative DNN models as listed in Table III and
replay the real-world trace from Azure Function [15] to
evaluate the effectiveness of HarmonyBatch. The DNN models
are selected from diverse fields, i.e., VideoMAE [24] in video
analytics, VGG-19 [17] in image processing, BERT [18] and
GPT-2 [25] in NLP. We use several widely-used datasets in-
cluding Kinetics-4006, ImageNet7, Wikipedia8 and ShareGPT9

for serving the four models above, respectively.
Configurations of serverless functions. We deploy our

inference models in China Shanghai region of Alibaba Cloud
Function Compute [4]. We adopt an ecs.e-c1m1.large
ECS instance to deploy HarmonyBatch. During the period of
our experiments (Nov. 2023), the unit price of vCPU cores is
K1 = 1.3e−5$/vCPU·s, and the unit price of GPU memory
is K2 = 1.5e−5$/GB·s, as well as the constant unit cost of a
function invocation is K3 = 1.3e−7$.

Baselines and metrics. We compare HarmonyBatch with
two baselines: (1) BATCH [8]: It leverages multi-variable
parametric regression to model the latency, and separately
provisions CPU functions only for each application using an

6https://www.deepmind.com/open-source/kinetics
7https://image-net.org/challenges/LSVRC/2017
8https://en.wikipedia.org/wiki/English Wikipedia
9https://sharegpt.com

7

2.5vCPU 5.5vCPU0.0

1.5

3.0

4.5

6.0
La

te
nc

y
(s

ec
on

ds
) Observed AVG

Observed MAX
BATCH
HarmonyBatch AVG
HarmonyBatch MAX

(a) VideoMAE

0.75vCPU 1.25vCPU0.0

0.5

1.0

1.5

La
te

nc
y

(s
ec

on
ds

) Observed AVG
Observed MAX
BATCH
HarmonyBatch AVG
HarmonyBatch MAX

(b) VGG-19

Fig. 9: Comparison of the observed and predicted inference latency of
VideoMAE and VGG-19 executed on CPU functions.

2GB 3GB0.0

0.1

0.2

0.3

La
te

nc
y

(s
ec

on
ds

) Observed AVG
Observed MAX
HarmonyBatch AVG
HarmonyBatch MAX

(a) BERT

3GB 6GB0.0

1.0

2.0

3.0

La
te

nc
y

(s
ec

on
ds

) Observed AVG
Observed MAX
HarmonyBatch AVG
HarmonyBatch MAX

(b) GPT-2

Fig. 10: Comparison of the observed and predicted latency of BERT and
GPT-2 executed on GPU functions. BATCH does support GPU functions.

VideoMAE VGG-19 BERT GPT-20

5

10

15

M
on

et
ar

y
co

st
 ($

)

BATCH
MBS +

HarmonyBatch

Fig. 11: Comparison of the monetary cost of
various function resource provisioning strate-
gies for representative DNN models.

VideoMAE VGG-19 BERT GPT-2
0

5

10

15

20

25

SL
O

 v
io

la
tio

ns
 (%

)

BATCH
MBS +

HarmonyBatch

Fig. 12: Comparison of the SLO violations of
various function resource provisioning strate-
gies for representative DNN models.

0 1 2 3 4 5 6 7
Index of merging

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 c
os

t

VideoMAE
VGG-19

BERT
GPT-2

Fig. 13: Normalized monetary cost of four
representative DNN models by increasing the
merging index of application groups over time.

exhaustive search. (2) MBS+: It is the extended MBS [12],
which employs Bayesian-based provisioning to distribute re-
quests into several groups evenly. We incorporate our perfor-
mance model into MBS+ to support heterogeneous function
provisioning for application groups. We focus on three metrics:
SLO violations, monetary cost, and runtime overhead.

B. Validating Inference Performance Model of HarmonyBatch

Can HarmonyBatch well predict the DNN inference
latency? We first evaluate the latency of VideoMAE and
VGG-19 on the CPU function by setting the batch size as
1. As depicted in Fig. 9, HarmonyBatch can well predict the
average and maximum inference latency of VideoMAE and
VGG-19 with the prediction error ranging from 0.2% to 6.1%.
In contrast, BATCH [8] poorly predicts the DNN inference
latency as it treats the model latency as a deterministic
distribution with the prediction error ranging from 0.7% to
43.0%. We next evaluate the inference latency of BERT and
GPT-2 on the GPU function by setting the batch size as 8. As
depicted in Fig. 10, HarmonyBatch exhibits strong predictive
capabilities, accurately predicting the average and maximum
inference latency of BERT and GPT-2 with prediction errors
ranging from 0.1% to 11.4%. In particular, the accuracy in
predicting the maximum latency of BERT achieves a low
prediction error of 0.1%, which can be attributed to the
integration of GPU time-slicing scheduling mechanism into
our inference performance model.

C. Effectiveness of HarmonyBatch Function Provisioning

Can HarmonyBatch guarantee the DNN inference per-
formance while minimizing the monetary cost? To evaluate
the efficacy of HarmonyBatch, we utilize 8 applications for

each DNN model (32 applications in total). Specifically, we
set the application SLOs between 0.2 and 1.0 seconds with
an interval of 0.1 seconds for VGG-19 and BERT. Also, we
set the application SLOs between 1.0 and 2.4 seconds with an
interval of 0.2 seconds for VideoMAE and GPT-2.

As shown in Fig. 11, HarmonyBatch can save the cost by
up to 82.9% compared with the two baselines. Specifically,
BATCH can hardly reduce the cost with predictable perfor-
mance, because it only batches requests for individual applica-
tions. Meanwhile, it overlooks the significant cost reduction of
GPU functions, particularly for resource-intensive DNN mod-
els like VideoMAE. In contrast, MBS+ and HarmonyBatch
implement a heterogeneous serverless provisioning strategy,
which leverages GPU functions to significantly enhance the
advantages of batching, thereby gaining a substantial cost
benefit. Furthermore, HarmonyBatch achieves cost reductions
of 16.2%, 17.2%, 24.8% and 37.2% for the four workloads
compared to MBS+. This is attributed to the fact that MBS+,
with its evenly distributed requests, commonly aggregates
inference requests with significant differences in SLOs into
application groups. Moreover, it distributes the inference re-
quests from the application with high request arrival rates to
several functions, resulting in smaller batch sizes.

Regarding the SLO violations as illustrated in Fig. 12,
BATCH can hardly provide predictable inference performance
for DNN models, because it treats the inference request latency
as a deterministic distribution, which leads to an excessively
large SLO violations across all DNN models. In contrast, both
HarmonyBatch and MBS+ can guarantee inference perfor-
mance for all models. Furthermore, HarmonyBatch can obtain
the function provisioning plans much faster than MBS+ as

8

1 2 3 4 5 6 7 8

1 11

0

7

0.58000

1 2 3 4 5 6 7 8

GPU memory GPU functionCPU functionvCPU cores

App

Timeout(s)

Batch size

Function

i Appi

0

1 1

0 0

2.10

1

0 0

1.75 2

13

0.15

0.25 0.35 0.45 0.55
0.65

11

1.75 1.752

1

1.751.751.751.752.10

Fig. 14: Function provisioning plans of VGG-19 before and after the group merging.

Number of
BATCH MBS+ HarmonyBatch

applications

1 34 176 2

6 222 3, 497 23

12 393 8, 156 38

TABLE IV: Computation time (in milliseconds) of dif-
ferent strategies.

elaborated in Sec. V-D.
Can HarmonyBatch reduce the monetary cost as the

merging of application groups proceeds? As depicted in
Fig. 13, HarmonyBatch separately provisions function re-
sources for each application at the initial time. After 4 to
7 merging operations, the four DNN inference workloads
achieve notable cost reduction by 13.1%− 62.4%. By taking
VGG-19 as an example, it experiences a significant reduction
in the monetary cost by up to 38.4%. The reason is that before
the merging, the request rates of 7 applications were low,
making them be deployed on CPU functions. However, after
the merging, 6 applications are grouped and deployed on a
GPU function with a large batch size, achieving a significant
cost reduction while guaranteeing application SLOs.

We look into the adjustments on function provisioning
plans made by HarmonyBatch for VGG-19 during the two-
stage merging process. As shown in Fig. 14, HarmonyBatch
provisions 7 CPU functions and 1 GPU function at first. After
the merging process, HarmonyBatch decreases the application
groups as 3 and optimizes the function provisioning to only
2 CPU functions and 1 GPU function. It directs 79.0% of
requests to the GPU function for DNN inference. Meanwhile,
the batch size of the GPU function is increased from 7 to 13
after the merging process. As a result, HarmonyBatch priori-
tizes assigning inference requests to GPU functions whenever
feasible, with the aim of greedily creating large batches and
thus significantly reducing the DNN inference budget.

D. Runtime Overhead of HarmonyBatch

We evaluate the runtime overhead of HarmonyBatch includ-
ing the workload profiling time and the computation time of
Alg. 1. Specifically, the profiling time for obtaining model
coefficients of VideoMAE [24], VGG-19 [17], BERT [18],
and GPT-2 [25] on CPU functions are 13, 5, 11, and 18
minutes, respectively. The profiling time for each model listed
in Table III is less than 1 minute on GPU functions. In
addition, the profiling time to obtain the minimum time slice
τ is merely 0.1 minutes which requires profiling only once.

To evaluate the computation time of HarmonyBatch, we
provision a VGG-19 model with different numbers of appli-
cations from 1 to 12. As listed in Table IV, the algorithm
computation time of HarmonyBatch is roughly linear to the
number of applications, which is negligible as compared to
the other two strategies. This is because we adopt a two-
stage merging grouping strategy, which significantly reduces

the complexity of the application grouping and function provi-
sioning algorithms to O(|W|·Mmax·log2Bmax). In particular,
we evaluate the computation overhead of funcProvision for
an application group. Its computation time is still acceptable
because we obtain function resource provision plan using the
binary search method instead of an exhaustive search.

VI. RELATED WORK

Optimizing DNN inference with serverless functions. To
reduce the serverless inference budget, BATCH [8] introduces
batching inference requests in serverless platforms. MBS [12]
further optimizes the padding overhead by aggregating similar-
size requests in a batch. To reduce the memory consumption,
Tetris [26] combines batching and concurrent executions in a
serverless inference system. Different from prior works above,
HarmonyBatch aims to adequately configure the batch size
for multi-SLO DNN inference workloads by considering their
SLOs explicitly. INFless [10] develops a serverless inference
system with CPU and GPU resources by unifying their com-
puting power using the floating point operations per second
(FLOPS) metric. In contrast, HarmonyBatch builds an analyt-
ical model for the inference performance and cost of public
heterogeneous functions. Moreover, HarmonyBatch can bene-
fit from several recent DNN inference optimizations such as
scalability improvements (e.g., MArk [27], AsyFunc [9]) and
fine-grained selective batching techniques (e.g., Orca [28]).

Resource provisioning of serverless functions. To opti-
mize the function provisioning, AWS Lambda Power Tun-
ing [13] adopts workload profiling with all possible memory
configurations to identify the optimal memory allocation for
functions, which brings heavy overhead. Sizeless [29] adopts
a machine learning model to predict the inference execution
time, which brings a non-negligible model training cost. To
mitigate such a training cost, COSE [14] and MBS [12]
employ Bayesian Optimization to identify the cost-effective
resource provisioning plan, which highly depends on initial
sampling and seeding. In contrast, HarmonyBatch identifies
a cost-effective function provisioning plan using an inference
performance model. ElasticFlow [30] proposes a greedy al-
gorithm to allocate GPU resources on serverless platforms
dynamically which only works for DNN training workloads.

Performance modeling of DNN inference. To model DNN
inference performance, BARISTA [31] employs the maximum
likelihood estimation approach to obtain the distribution of

9

inference latency. BATCH [8] leverages multi-variable para-
metric regression to model the inference latency as a deter-
ministic distribution. Instead of identifying the latency distri-
bution, HarmonyBatch develops an analytical model of the
average and maximum inference latency, which significantly
reduces workload profiling overhead. A recent work named
iGniter [7] emphasizes performance interference for GPU-
based inferences. INFless [10] adopts a lightweight Combined
Operator Profiling method to predict inference latency with
GPU spatial-sharing. In contrast, we focus on modeling infer-
ence latency on public heterogeneous functions by explicitly
considering the GPU time-slicing scheduling mechanism.

VII. CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of Har-
monyBatch, a cost-efficient resource provisioning framework
that achieves predictable performance for multi-SLO DNN
inference with heterogeneous serverless functions. Harmony-
Batch consists of a lightweight performance and cost model
of DNN inference on heterogeneous functions and a two-stage
merging strategy, which judiciously batches the multi-SLO
DNN inference requests into application groups and provisions
each group with adequate CPU or GPU function resources.
Prototype experiments on Alibaba Cloud Function Compute
demonstrate that HarmonyBatch can deliver predictable DNN
inference performance on serverless platforms while saving the
monetary cost by up to 82.9% compared to the state-of-the-art
methods, yet with acceptable runtime overhead.

We plan to extend HarmonyBatch in two directions: (1)
supporting large model inference by leveraging model parti-
tioning, and (2) supporting other public serverless platforms
(e.g., AWS Lambda) when GPU functions are enabled.

REFERENCES

[1] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost Efficiency,” in
Proc. of ACM ICPP, Aug. 2021, pp. 1–12.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language Models
Are Few-shot Learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, Dec. 2020.

[3] Y. Fu, L. Xue, Y. Huang, A.-O. Brabete, D. Ustiugov, Y. Patel, and
L. Mai, “ServerlessLLM: Locality-Enhanced Serverless Inference for
Large Language Models,” arXiv preprint arXiv:2401.14351, 2024.

[4] Alibaba. (2023, Oct) Function Compute. [Online]. Available: https:
//www.alibabacloud.com/product/function-compute

[5] J. Gu, Y. Zhu, P. Wang, M. Chadha, and M. Gerndt, “FaST-GShare: En-
abling Efficient Spatio-Temporal GPU Sharing in Serverless Computing
for Deep Learning Inference,” in Proc. of ACM ICPP, Aug. 2023, pp.
635–644.

[6] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
Computing on Heterogeneous Computers,” in Proc. of ACM ASPLOS,
2022, pp. 797–813.

[7] F. Xu, J. Xu, J. Chen, L. Chen, R. Shang, Z. Zhou, and F. Liu, “iGniter:
Interference-Aware GPU Resource Provisioning for Predictable DNN
Inference in the Cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 3, pp. 812–827, 2023.

[8] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine Learning
Inference Serving on Serverless Platforms with Adaptive Batching,” in
Proc. of IEEE SC, Nov. 2020, pp. 1–15.

[9] Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “AsyFunc: A High-
Performance and Resource-Efficient Serverless Inference System via
Asymmetric Functions,” in Proc. of ACM SOCC, Oct. 2023, pp. 324–
340.

[10] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and
K. Li, “INFless: A Native Serverless System for Low-Latency, High-
Throughput Inference,” in Proc. of ACM ASPLOS, Feb. 2022, pp. 768–
781.

[11] S. Cai, Z. Zhou, K. Zhao, and X. Chen, “Cost-Efficient Serverless
Inference Serving with Joint Batching and Multi-Processing,” in Proc. of
ACM APSys, Aug. 2023, pp. 43–49.

[12] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Optimizing Inference
Serving on Serverless Platforms,” Proceedings of the VLDB Endowment,
vol. 15, no. 10, pp. 2071–2084, 2022.

[13] A. Casalboni. (2023, Oct) AWS Lambda Power Tuning. [Online].
Available: https://github.com/alexcasalboni/aws-lambda-power-tuning

[14] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring
Serverless Functions using Statistical Learning,” in Proc. of IEEE
Infocom, Jul. 2020, pp. 129–138.

[15] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the Wild: Characterizing and Optimizing the Serverless Workload at
a Large Cloud Provider,” in Proc. of USENIX ATC, Jul. 2020, pp. 205–
218.

[16] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. Darlow, J. Wang, and
A. Barker, “How Does It Function? Characterizing Long-term Trends in
Production Serverless Workloads,” in Proc. of ACM SOCC, Oct. 2023,
pp. 443–458.

[17] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proc. of NAACL-HLT, Jun. 2019, pp. 4171–4186.

[19] Alibaba. (2023, Oct) Install and Use cGPU on a Docker
Container. [Online]. Available: https://www.alibabacloud.com/help/
en/egs/developer-reference/install-and-use-cgpu-on-a-docker-container

[20] S. Li, W. Wang, J. Yang, G. Chen, and D. Lu, “Golgi: Performance-
Aware, Resource-Efficient Function Scheduling for Serverless Comput-
ing,” in Proc. of ACM SOCC, Oct. 2023, pp. 32–47.

[21] J. Chen, F. Xu, Y. Gu, L. Chen, F. Liu, and Z. Zhou. (2024, May)
HarmonyBatch: Batching multi-SLO DNN Inference with Heteroge-
neous Serverless Functions. [Online]. Available: https://github.com/
icloud-ecnu/HarmonyBatch/blob/main/pdf/harmonybatch.pdf

[22] E. T. Bell, “The iterated exponential integers,” Annals of Mathematics,
pp. 539–557, Jul. 1938.

[23] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[24] Z. Tong, Y. Song, J. Wang, and L. Wang, “Videomae: Masked Au-
toencoders Are Data-efficient Learners for Self-supervised Video Pre-
training,” Advances in Neural Information Processing Systems, vol. 35,
pp. 10 078–10 093, Nov. 2022.

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language Models are Unsupervised Multitask Learners,” OpenAI blog,
vol. 1, no. 8, pp. 1–24, 2019.

[26] J. Li, L. Zhao, Y. Yang, K. Zhan, and K. Li, “Tetris: Memory-efficient
Serverless Inference through Tensor Sharing,” in Proc. of USENIX ATC,
Jul. 2022, pp. 473–488.

[27] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting Cloud
Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving,” in Proc. of USENIX ATC, Jul. 2019, pp. 1049–1062.

[28] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
Distributed Serving System for Transformer-Based Generative Models,”
in Proc. of USENIX OSDI, Jul. 2022, pp. 521–538.

[29] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the Optimal Size of Serverless Functions,” in
Proc. of ACM/IFIP Middleware, Dec. 2021, pp. 248–259.

[30] D. Gu, Y. Zhao, Y. Zhong, Y. Xiong, Z. Han, P. Cheng, F. Yang,
G. Huang, X. Jin, and X. Liu, “ElasticFlow: An Elastic Serverless
Training Platform for Distributed Deep Learning,” in Proc. of ACM
ASPLOS, Mar. 2023, pp. 266–280.

[31] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “BARISTA: Efficient and Scalable Serverless Serving System
for Deep Learning Prediction Services,” in Proc. of IEEE IC2E, Jun.
2019, pp. 23–33.

10

