
Opara: Exploring Operator Parallelism for

Expediting DNN Inference on GPUs

Abstract

GPUs have become the defacto hardware devices to accelerate Deep Neural
Network (DNN) inference in deep learning (DL) frameworks. However, the
conventional sequential execution mode of DNN operators in mainstream DL
frameworks cannot fully utilize GPU resources, due to the increasing complexity
of DNN model structures and the progressively smaller computational sizes of
DNN operators. Moreover, the inadequate operator launch order in parallelized
execution scenarios can lead to GPU resource wastage. To address such perfor-
mance issues above, we propose Opara, a lightweight and resource-aware DNN
Operator parallel scheduling framework to accelerate the execution of DNN infer-
ence on GPUs. Specifically, Opara first employs CUDA Graph and CUDA Streams

to automatically parallelize the execution of multiple DNN operators. It further
leverages the resource requirements of DNN operators to judiciously adjust the
operator launch order on GPUs to expedite DNN inference. We implement a pro-
totype of Opara based on PyTorch in a non-intrusive manner. Our prototype
experiments with representative DNN models demonstrate that Opara outper-
forms the default sequential CUDA Graph in PyTorch and the state-of-the-art DNN
operator parallelism systems by up to 1.61× and 1.24×, respectively, yet with
acceptable runtime overhead.

Keywords: DNN inference, DNN operator parallelism, Scheduling, GPU utilization.

1 Introduction

Deep Neural Networks (DNNs) have gained notable success in various business fields
such as image processing, speech recognition, and virtual reality [1]. In general, DNN
inference tasks are exceptionally latency-sensitive. For instance, latency requirements
in autonomous driving scenarios are non-negotiable (e.g., within 100 milliseconds)
due to safety considerations [2]. Accordingly, increasing attention from both academia
and industry has been paid to efficient model serving. To meet such performance
requirements, modern cloud datacenters are hosting thousands of GPUs to accelerate
DNN inference for users. For instance, Alibaba Cloud houses more than 6, 000 GPUs,
many of which are tasked with managing a substantial volume of inference requests [3].

Cloud-based GPUs are equipped with an increasing amount of computational
power, which typically exceeds the resource demands of individual inference tasks,
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leading to under-utilization and wastage of hardware resources. To enhance compu-
tational efficiency, several recent works (e.g., Szegedy et al. [4]) focus on substituting
large operators with small and multiple-branch operators in DNN models, which
exacerbates the under-utilization of GPU resources. While batching requests or
concurrent processing of multiple model inference tasks can mitigate such GPU under-
utilization [5], it adversely results in increased latency for model inference due to
batching latency and interference. As a result, it is compelling to improve the GPU uti-
lization without impacting the DNN inference latency. As DNN models can typically
be represented by a Directed Acyclic Graph (DAG) with parallel operators, it provides
us an opportunity to explore operator parallelism for accelerating DNN inference on
GPUs while improving the GPU utilization.

Unfortunately, it is nontrivial to efficiently parallelize the execution of DNN oper-
ators for a DNN inference task due to the following two facts. First, the DAG of a
DNN model typically exhibits considerable complexity, often incorporating hundreds
of DNN operators with complex inter-operator dependencies. For simplicity, exist-
ing deep learning (DL) frameworks execute DNN operators one by one in topological
sorting order, which overlooks the parallelization opportunities among operators. To
achieve operator parallelism, a recent work (i.e., Nimble [6]) relies on a reduction trans-
formation of the DNN computation graph, which inevitably brings heavy computation
overhead. Second, inadequate operator parallel scheduling can negatively impact the
DNN inference performance. As evidenced by our motivation experiment in Sec. 2.3,
the default and inadequate operator launch order in mainstream DL frameworks can
prolong the DNN inference latency by up to 20%, due to the GPU blocking caused by
the non-preemption feature of CUDA kernels [7]. In addition, several existing works
(e.g., IOS [8]) fail to consider the operator launch overhead and function call overhead
due to excessive CPU-GPU interactions when parallelizing DNN operators in the DL
framework.

To address the challenges above, in this paper, we design Opara, a resource-aware
and lightweight DNN Operator parallel scheduling framework, with the aim of expe-
diting the execution of DNN inference while improving the GPU utilization. We make
the following contributions as below.

• We propose a lightweight stream allocation algorithm without any modifications or
transformations of the computation graph. It greedily allocates operators without
dependencies to multiple CUDA Streams to maximize operator parallelism. Mean-
while, operators with data dependencies are allocated to the same CUDA Stream

without impacting parallel executions of operators, thereby reducing the number of
time-consuming synchronization operations.

• We devise a resource-aware operator launch algorithm to judiciously prioritize
launching operators with a small amount of GPU resource requirements, so as
to effectively mitigate GPU resource fragmentation while reducing DNN inference
latency. Such resource requirements of operators can be obtained by a lightweight
inference profiling in practice.

• We have implemented a prototype of Opara (https://github.com/OparaSys/Opara)
as a plug-in module of PyTorch 2.0 to parallelize the executions of DNN operators.
It can generate a parallelized CUDA Graph by capturing the stream allocation plan
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and optimized operator launch order to mitigate the operator launch overhead and
function call overhead. Our prototype experiments with representative DNN models
demonstrate that Opara outperforms the default sequential CUDA Graph in PyTorch
and the state-of-the-art DNN operator parallelism systems by up to 1.61× and
1.24×, respectively.

The rest of the paper is organized as follows. Sec. 2 presents the background and
motivation of this paper. Sec. 3 elaborates the design of four key components in Opara.
Sec. 4 implements our Opara prototype based on PyTorch. Sec. 5 evaluates the effec-
tiveness and runtime overhead of Opara. Sec. 6 discusses related work and Sec. 7
concludes this paper.

2 Background and Motivation

In this section, we first introduce how DNN operators are executed in mainstream
DL frameworks, and identify the key factors that cause the low GPU utilization when
serving DNN inference on GPUs. We then present an illustrative example to show how
to judiciously parallelize the operator1 executions on GPUs.

2.1 DNN Operator Executions on NVIDIA GPUs

After being scheduled on GPUs, a DNN operator is actually recognized as a kernel. In
general, a kernel comprises multiple thread blocks, which are the smallest scheduling
granularity in CUDA. A thread block is scheduled to a Streaming Multiprocessor
(SM) once the SM has sufficient resources to meet its resource requirements [9]. In
particular, an SM can concurrently execute multiple thread blocks, and each SM is
constrained by a limited number of threads, shared memory, and registers.

To enable parallel executions of operators, we launch operators on multiple CUDA

Streams [10]. Each CUDA Stream is actually a task queue that executes tasks sequen-
tially. The execution order of kernels in different CUDA Streams is determined by their
arrival order at the stream head. In general, the kernel execution time is considerably
short as the batch size is typically small (i.e., ranging from 1 to 16) in DNN infer-
ence scenarios. Accordingly, the kernel launch overhead constitutes the primary time
cost for DNN inference, which offsets the performance gains achieved by the parallel
executions of kernels in multiple CUDA Streams. To reduce such kernel launch over-
head, CUDA Graph [10] is a key feature introduced from CUDA 10 that allows scheduling
multiple DNN operators on GPUs at a time.

2.2 Low GPU Utilization Due to Sequential Execution of
DNN Operators

Mainstream DL frameworks generally do not support inter-operator parallel execu-
tion for DNN inference, due to the complexity of parallel programming. Instead, they
execute DNN operators sequentially in topological sorting order, which overlooks the

1Operators are commonly referred to as kernels once submitted to the GPU.
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Fig. 1 Average SM efficiency of an A100-PCIE-
40GB GPU when running GoogLeNet, Inception-v3,
and BERT models with different batch sizes.
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Fig. 2 Inference latency of GooGleNet running on
an RTX 2080 Super GPU with different operator
launch orders and batch sizes.

operator parallelism opportunity and cannot fully utilize the GPU resource. To illus-
trate that, we conduct motivation experiments with GoogLeNet [11], Inception-v3 [4],
and BERT [12] on an NVIDIA A100-PCIE-40GB GPU and an NVIDIA RTX 2080
SUPER GPU. The experiment setup is the same as in Sec. 5.1. In particular, we adopt
the SM efficiency measured using NVIDIA Nsight Compute CLI2 to evaluate the GPU
utilization.

As shown in Fig. 1, DNN inference on the mainstream DL framework (i.e., the
latest PyTorch 2.0) leads to relatively low GPU utilization on A100. Specifically, the
SM efficiency of GoogLeNet with the batch size set as 1 is a mere 2.53%, while that
of Inception-v3 is 12.04%. Even when the batch size increases to 16, the SM efficiency
of GoogLeNet is still 9.12% and that of Inception-v3 reaches at 21.48%. Similarly,
larger models such as BERT cannot fully utilize the GPU resource. By setting the
sequence length as 32, the SM efficiency of BERT with the batch size set as 1 and
16 is 18.5% and 54.8%, respectively. Meanwhile, we repeat our experiments on a less
powerful GPU (i.e., RTX 2080 SUPER), and the SM efficiency of the three workloads
is ranging from 10.47% to 82.98%. Our experiment results indicate that the sequential
execution of DNN operators is the root cause of low GPU utilization for running DNN
inference, and exploring the operator parallelism can expedite the DNN inference on
GPUs while improving GPU utilization.

2.3 An Illustrative Example: Impacts of Operator Launch
Order on Inference Latency

Apart from the sequential execution of DNN operators, the inadequate operator launch
order can also lead to idle GPU resource usage, thereby prolonging DNN inference
latency. To illustrate that, we present an illustrative example of scheduling three oper-
ators A, B, and C for execution on GPUs. Each operator has a different number of
blocks requiring three types of resources for execution, i.e., threads, shared memory,

2Nsight Compute CLI: https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
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and registers. Block resource requirements vary among operators but they are identical
within the same operator.

We only consider the shared memory resource for simplicity. We suppose that a
block of the operator A, B, and C requires 50%, 60%, and 40% of shared memory, and
a default operator launch order 1 in the DL framework is B → A→ C. In that case,
after operator B has been scheduled for execution on the GPU, operator A cannot be
scheduled due to insufficient (i.e., 40% remaining) shared memory resources. Operators
A and C will be blocked until enough resources become available on the GPU. In
contrast, a better operator launch order 2 can be B → C → A. In that case, after
scheduling blocks of kernel B on the GPU, blocks of kernel C can be scheduled on
GPUs immediately, followed by blocks of kernel A waiting for available GPU resources.
Accordingly, the operator launch order 2 can significantly reduce the GPU idle time
and improve the GPU utilization.

Based on the above, the default operator launch order in the DL framework is
the topological sorting order of the DAG of DNN models. Such an operator launch
order is resource-unaware and leads to GPU blocking, thereby wasting the available
GPU resources. As shown in Fig. 2, changing the operator launch order from order 1
to order 2 for GooGleNet can reduce the inference latency by up to 20% with differ-
ent batch sizes. Furthermore, we repeat such an experiment on the A100 GPU, and
the experiment results show around 9.2% of performance improvement by optimizing
the operator launch order for GooGleNet. As a result, determining a resource-aware
operator launch order can improve the GPU utilization and reduce the DNN inference
latency.

Summary. Low GPU utilization of DNN inference is mainly caused by two fac-
tors: First, the sequential execution of DNN operators cannot fully utilize the GPU
resources. Second, the default topological sorting order of operator launch is commonly
inadequate and resource-unaware. Accordingly, judiciously parallelizing the DNN oper-
ators with an adequate operator launch order can accelerate DNN inference on GPUs
while improving the GPU utilization.

3 System Design

In this section, we design Opara, an operator parallel scheduling framework to reduce
DNN inference latency while improving the GPU resource utilization. Opara comprises
four components including Model Profiler, Operator Launcher, Stream Allocator, and
Graph Capturer.

As illustrated in Fig. 3, Opara takes DNN models and input tensors (i.e., inference
data) from users. According to the operator dependencies in the DAG of DNN models,
the Stream Allocator first employs a stream allocation algorithm to determine which
stream the operators should be allocated to. The Model Profiler then gathers the
resource requirements of each operator during the model profiling process. With such
resource requirements of operators, the Operator Launcher further employs a resource-
aware operator launch algorithm to optimize the operator launch order on GPUs.
Finally, the Graph Capturer generates a parallelized CUDA Graph by combing the
stream allocation plan and operator launch order, thereby enabling efficient DNN
inference on GPUs.
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Fig. 3 System overview of Opara.

3.1 Stream Allocator

To parallelize the execution of operators in CUDA Streams, we leverage the compu-
tation graph of DNN models to determine how many streams to launch and how to
allocate operators to the streams.

Definition of Computation Graph. DNN computation graph can be repre-
sented as a DAG G = (V, E), where V denotes the set of operators in the model, and E
denotes the operator dependencies. Each vertex v ∈ V denotes a DNN operator, e.g.,
a linear algebra operation like convolution. Each edge 〈u, v〉 ∈ E denotes the opera-
tor dependency, where u is a predecessor of v and v is a successor of u. The set of
all predecessors of an operator v are denoted as Npred. The set of all successors of an
operator v are denoted as Nsucc.

Problem Analysis. As the number of launched streams does not impact the DNN
inference latency, a maximum of |V| streams can be launched on GPUs. In that case,
we need to allocate the |V| operators to the launched streams, with each operator
having |V| choices. Accordingly, the time complexity of the brute-force search method

is in the order of O(|V||V|
), and it turns out to be an NP problem. Moreover, operator

synchronization is required to ensure the operator dependency 〈u, v〉, which in turn
introduces non-negligible delays to DNN inference latency.

Stream Allocation Algorithm. To solve such a complex stream allocation prob-
lem in polynomial time, we design a heuristic algorithm in Alg. 1. The key idea of our
algorithm is to allocate parallelizable operators to multiple CUDA Streams as much
as possible. To avoid excessive synchronization operations, we aim to greedily put
non-root nodes (i.e., operators) in the same CUDA stream as one of their predeces-
sor operators. Specifically, given a computation graph G, Opara first initializes a set
of streams to be launched S and then enumerates operators in V in topological sort-
ing order (line 1-2). For each operator v ∈ V, it iterates over all of its predecessors
p ∈ Npred (line 3). If v is the first successor of the current predecessor p, it allocates
v to the same stream of p; otherwise, it moves on to the next predecessor (line 4-7).
If v does not find a predecessor that satisfies such a condition above, we allocate the
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operator v to a newly launched stream (lines 9-11). In particular, the streams consume
GPU resources only when operators are running, which indicates that performance
interference among streams does not occur when operators are not executed on GPUs.

Algorithm 1: Stream allocation algorithm in Opara.

Input: DNN computation graph G = (V, E).
Output: Set of streams to be launched S used by the operator set V.
1: Initialize: S ← ∅;
2: for each operator v ∈ V do
3: for each predecessor p ∈ Npred of v do
4: if v is the first successor of p then
5: stream of v ← stream of p; // put v and p in the same stream

6: break out of the loop;
7: end if
8: end for
9: if stream of v is null then

10: stream of v ← launching a stream; // put v in a newly launched stream

11: S ← S ∪ {stream of v};
12: end if
13: end for
14: return S.

1
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Fig. 4 An example of a computation graph in a DNN model.

As an illustrative example in Fig. 4, we show how Alg. 1 works to allocate the
DNN operators to streams. Specifically, as operator 1 has no predecessor, we allocate
it to a newly launched stream. For operator 2, which is the first successor of operator
1, we allocate it in the same stream of operator 1 to mitigate operator synchronization
overhead. Similarly, operators 5, 7, 9, and 13 are also allocated to the same stream
of operator 2. Meanwhile, operators 3, 6, 8, and 11 are allocated to the same stream.
Finally, operators 4, 10, and 12 are allocated to three different streams, respectively.
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3.2 Model Profiler

As discussed in Sec. 2.3, the blocks in an operator execute the same instructions even
with different data they process, which indicates that the GPU resources required by
the blocks in an operator are the same. Accordingly, we obtain the resource require-
ments of each operator by simply profiling the resource consumption (i.e., the amount
of shared memory, the number of registers and GPU threads) of a block in an operator.
Such resource requirements of operators will be used by Operator Launcher to deter-
mine an adequate operator launch order. In particular, our Model Profiler requires
profiling each DNN inference only once to acquire the resource requirements informa-
tion for each operator, thereby bringing acceptable profiling overhead. We will examine
the inference profiling overhead of Opara in Sec. 5.3.

3.3 Operator Launcher

Problem Analysis. As illustrated in Sec. 2.3, inadequate operator launch orders can
significantly affect the DNN inference latency. Therefore, it is essential to determine
an optimal operator launch order. A naive solution is to iterate through all possi-
ble topological sorting orders and choose the order with the lowest inference latency.
However, such a method involves selecting nodes with zero indegree and deleting the
corresponding vertices and their connected edges. We assume that there are n opera-
tors in the computation graph, then the time complexity of traversing all topological
sorting orders is O(n!), which is also an NP problem. As a result, we turn to design a
heuristic operator launch algorithm to solve such a complex problem.

Resource-aware Operator Launch Algorithm. As illustrated in Sec. 2.3,
launching operators with heavy resource requirements first to the GPU is likely to
cause resource fragmentation, hindering the GPU executions of subsequent operators.
Moreover, the GPU can thus be blocked due to the non-preemptive feature of ker-
nel execution [7]. To mitigate such a problem and maximize the GPU utilization, we
design a heuristic algorithm in Alg. 2 to greedily prioritize launching the operators
with the least amount of GPU resource requirements. Accordingly, Alg. 2 can maxi-
mize the parallel executions of multiple operators within a single model. In particular,
the potential starvation issue faced by larger operators is noncritical in our scenario, as
our algorithm objective is to minimize the DNN inference latency. Specifically, it first
initializes and maintains a priority queue Q of operators in resource-aware operator
launch order (line 1). It then retrieves all operators to be launched with an indegree
of 0 in a list L (line 2-6). Each time the operator requiring the least amount of GPU
resources (e.g., shared memory, threads, registers) is chosen from L and then put
into the queue Q (line 7-9). Moreover, the operator list L is continuously updated by
adding new operators with an indegree of 0 (line 10-15).

3.4 Graph Capturer

To eliminate the overhead caused by kernel launches and function calls, the Graph
Capturer first sets the CUDA Streams obtained from the Stream Allocator to the cap-
ture mode, and then it launches the operators of the DNN model to these streams
according to the operator launch order specified by the Operator Launcher. To ensure
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Algorithm 2: Operator launch algorithm in Opara.

Input: DNN computation graph G = (V, E).
Output: Operator queue Q in resource-aware operator launch order.
1: Initialize: List of operators to be launched L ← ∅, and Q ← ∅;
2: for each operator v ∈ V do
3: if indegree of v == 0 then
4: L.append(v);
5: end if
6: end for
7: while L is not empty do
8: vmin ← the operator that requires the least amount of GPU resources in L;
9: L.remove(vmin), and Q.append(vmin); // launch the operator vmin

10: for each successor s ∈ Nsucc of vmin do
11: indegree of s← indegree of s− 1; // update the indegree of s
12: if indegree of s == 0 then
13: L.append(s); // update the operator list to be launched L
14: end if
15: end for
16: end while
17: return Q.

the dependencies among operators, the Graph Capturer also launches the necessary
synchronization operators to the streams. Consequently, a CUDA Graph is generated
to enable operator parallelization while improving the GPU utilization. This graph
capture process is lightweight and non-intrusive to the DL framework.

4 Implementation of Opara

We implement a prototype of Opara with around 1, 000 lines of Python codes, which
have been integrated into PyTorch 2.0 as a plug-in module. The source codes are cur-
rently publicly available on GitHub (https://github.com/OparaSys/Opara). Specifi-
cally, we employ torch.fx.Graph as the computation graph for DNN models in Opara.
Its Intermediate Representation (IR) allows us to schedule DNN operators directly in
the Python environment. In more detail, we leverage the torch.cuda.set stream()

API in PyTorch to launch operators on the CUDA Stream. In particular, as oper-
ators are executed asynchronously on multiple streams for parallelized execution,
appropriate operator synchronizations are required to guarantee that the parallelized
computation conforms to operator dependencies. We implement the operator synchro-
nizations using the event.record() and stream.wait event(event) APIs. Finally,
we use torch.cuda.graph(g) to generate a CUDA Graph that can execute DNN oper-
ators in parallel based on the CUDA Streams. In summary, we build our prototype of
Opara only using the high-level APIs of PyTorch in a lightweight manner, rather than
modifying the computation graph construction module as in Nimble [6]. Accordingly,
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Fig. 5 (a) Relative speedup and (b) SM efficiency of GPUs running representative DNN models
with batch size set as 1 achieved by PyTorch, CUDA Graph, Nimble, and Opara operator scheduling
mechanisms.

Opara is non-intrusive to the DL framework, and it can stably work as long as the
framework APIs are not updated.

5 Performance Evaluation

In this section, we carry out prototype experiments to demonstrate the efficacy and
runtime overhead of Opara in comparison to the stock PyTorch and state-of-the-art
operator parallelism frameworks.

5.1 Experimental Setup

We conduct our experiments on an NVIDIA A100-PCIe-40GB GPU with Intel(R)
Xeon(R) Gold 6240 CPU @ 2.60GHz, and an NVIDIA GeForce RTX 2080 SUPER-
8GB GPU with an Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz. We implement
Opara using PyTorch 2.0, CUDA 11.7, and cuDNN 8.5.0, as a plug-in module of
PyTorch, as discussed in Sec. 4. We compare DNN inference performance achieved by
Opara with that achieved by the stock PyTorch (with CUDA Graph disabled), default
sequential CUDA Graph, and Nimble [6]. Our experiments employ representative DNN
models, including BERT [12], GooGleNet [11], Inception-v3 [4], and NASNet [13]. All
the experiment results are averaged over 1, 000 runs.

5.2 Effectiveness of Opara

End-to-end Inference Latency. We first examine whether Opara can accelerate
the DNN inference. As shown in Fig. 5(a), Opara consistently outperforms the other
three baselines with four representative DNN models3. Specifically, Opara can achieve
1.69× to 4.06× speedup compared to the stock PyTorch. This is because Opara utilizes

3As BERT is GPU memory intensive, we execute it on the A100, while the other three models are executed
on the RTX 2080 SUPER.
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Fig. 6 Inference throughput of Inception-v3
achieved by PyTorch, CUDA Graph, Nimble, and
Opara by varying the batch size from 1 to 32.
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Fig. 7 Relative speedup of Inception-v3 achieved
by PyTorch, CUDA Graph, Nimble, and Opara by
varying the batch size from 1 to 8.

CUDA Graph to eliminate the function call overhead and operator launch overhead.
Opara surpasses the default CUDA Graph by up to 1.61×, simply because of the parallel
execution of DNN operators in Opara. Interestingly, Opara achieves a small speedup
of 1.08× compared to CUDA Graph for BERT, and its speedup relative to Nimble
for BERT and NASNet is negligible (1.01×). This is because many memory-intensive
operators exist in BERT and NASNet, which limits the performance gains of operator
parallelism, due to increased resource competition among parallelized operators. Fur-
thermore, Opara outperforms Nimble by up to 1.24× because it judiciously schedules
the operator with the lowest GPU resource consumption for each kernel launch time,
thereby reducing GPU idle time and maximizing the operator parallelism.

GPU Utilization. To unveil the performance gains of Opara, we proceed to look
into the GPU utilization (i.e., SM efficiency of GPUs) during the execution of the four
models. As shown in Fig. 5(b), Opara exhibits a similar improvement in GPU utiliza-
tion compared to the three baselines as in Fig. 5(a). Specifically, Opara significantly
improves the GPU utilization compared to the stock PyTorch, because Opara miti-
gates the scheduling overhead of the stock PyTorch. When compared with the default
CUDA Graph, Opara increases the GPU utilization of BERT, GooGleNet, Inception-
v3, and NASNet by 19%, 55%, 34%, and 26%, respectively. Such performance gains
come from the parallelized execution of operators. When compared to Nimble, Opara
boosts the GPU utilization by 1.01× to 1.35× mainly due to our adequate operator
launch order in Opara to minimize GPU idle time.

Throughput under Different Batch Sizes. We further examine the improve-
ment of Opara in terms of DNN inference throughput across varying batch sizes. As
depicted in Fig. 6, we observe that Opara consistently surpasses the other three base-
lines by varying the batch size from 1 to 32. Nevertheless, the performance gains of
Opara gradually diminish as the batch size increases. As an example, Opara outper-
forms the default CUDA Graph by 1.38× and 1.09× when the batch size is 1 and 32,
respectively. This is because the amount of GPU resources occupied by a single oper-
ator increases when dealing with larger batch sizes, which results in less amount of
GPU resources available for the execution of parallelized operators. The experiment
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Table 1 Computation overhead (in milliseconds) of the stream
allocation algorithm in Opara and Nimble with different DNN
models.

BERT GooGleNet Inception-v3 NASNet

Opara 0.58 0.27 0.50 1.75
Nimble [6] 20.8 5.80 14.40 257.83

results above also demonstrate that maximizing the parallelism opportunities among
DNN operators can expedite DNN inference while improving the GPU utilization.

Effectiveness of Opara on GPUs with Sufficient Resources. To validate the
efficacy of Opara on GPUs equipped with powerful computing resources, we repeat
experiments by comparing performance gains with the three baselines on the A100. As
shown in Fig. 7, we observe that Opara consistently outperforms the three baselines by
varying the batch size from 1 to 8, mainly due to the better performance of operator
parallelism on the A100. In more detail, both Opara and Nimble can benefit from
the operator parallelism compared to the stock PyTorch and default CUDA Graph.
Moreover, Opara can achieve 1.02× to 1.09× speedup compared to Nimble on the
A100, which are slightly smaller performance gains compared to that on the RTX
2080 SUPER. This is because sufficient resources are available on the A100, resulting
in GPU under-utilization of DNN inference and limited optimization opportunities for
the operator launch order. As the batch size increases to 8, a higher GPU resource
requirements of the operator enlarge the optimization space for adjusting the operator
launch order, leading to higher performance gains of Opara compared to Nimble.

5.3 Runtime Overhead of Opara

We evaluate the runtime overhead of Opara in terms of algorithm computation time
and inference profiling overhead. We first compare the computation overhead of the
stream allocation algorithm in Opara and Nimble [6]. As listed in Table 1, Opara
incurs stream allocation computation time of 0.58 ms, 0.27 ms, 0.5 ms, and 1.75
ms for BERT, GooGleNet, Inception-v3, and NASNet, respectively. In contrast, such
algorithm computation time in Nimble is 20.8 ms, 5.80 ms, 14.40 ms, and 257.83 ms
for the four models, respectively, which is at least a magnitude larger than that of
Opara. This is because Nimble requires transforming the computation graph into a
bipartite graph, together with an exhaustive search in the bipartite graph. Such a
process is time-consuming, with an algorithmic time complexity in the order of O(n3),
where n is the number of operators in a DNN DAG. In contrast, the time complexity
of Opara can be reduced to the order of O(n). This is because the inner loop of the
stream allocation algorithm in Opara only depends on the maximum width of the
computation graph, which is typically quite small (i.e., below 20).

As DNN models become increasingly complex and network depth increases in the
future [14], the number of operators will also grow exponentially. Such an algorithm
overhead in Nimble becomes unacceptable when the number of operators is large
enough. In addition, as the Model Profiler needs to run the DNN inference only once,
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Opara requires several (i.e., 4.25) milliseconds of profiling overhead in our experiment.
In sum, the runtime overhead of Opara is practically acceptable.

6 Related Work

Inter-operator Parallelism within A Single Model. To parallelize the execution
of DNN operators, Graphi [15] proposes a profiler-based DNN operator scheduling
system to minimize resource contention in a multi-core CPU platform. Rammer [16]
proposes the concept of “rtask”, which allows finer-grained computing scheduling on
the device. Such an approach enables computing task combinations in different opera-
tors executed on SMs. To maximize the operator parallelism, Nimble [6] leverages the
bipartite graph algorithm to adequately launch operators on CUDA streams. Such an
algorithm requires a lengthy search process and neglects the potential GPU resource
wastage due to inadequate operator launch orders. A recent work named IOS [8]
deploys operator fusion and dynamic programming to determine operator paralleliza-
tion strategies. Such a complex method takes hours of searching and overlooks the
operator launch overhead. Different from the prior works above, Opara utilizes CUDA

Graph to eliminate such a performance overhead. It also employs a lightweight stream
allocation algorithm to parallelize the execution of operators. To minimize the GPU
idle time, Opara determines an efficient operator launch order according to operator
resource requirements.

Inter-operator Parallelism among Different Models. A number of works
aim to improve GPU utilization by co-locating multiple models so that operators from
different models can be parallelized. For example, S3DNN [17] designs a heuristic
parallelism algorithm to schedule each operator of different models to correspond-
ing streams. HiveMind [18] leverages model batches and operator fusion techniques
to construct a large computation graph that is comprised of multiple DNN mod-
els. Both iGniter [19] and GSLICE [5] employ the NVIDIA Multi-Process Service
(MPS) to co-locate multiple DNN inference on GPUs to improve GPU utilization. Yu
et al. [20] partition each model into multiple phases to balance the GPU load and
improve GPU utilization in a multi-model co-location scenario. Abacus [21] selects the
optimal combination of operator co-locations between different models. Different from
optimizing the inference model co-location, Opara minimizes model inference latency
while increasing the GPU utilization by parallelizing operators within a single model.
Moreover, it achieves the inter-operator parallelism as a plug-in module of PyTorch
2.0 without developing a new DL runtime or framework.

Intra-operator Parallelism. The performance of an individual operator running
on GPUs has been well studied. Existing DL frameworks, such as PyTorch, Tensor-
Flow [22], and TensorRT [23], employ expert-optimized operator libraries. To reduce
human interactions, TVM [24] uses machine learning methods to automatically search
for efficient codes according to the artificially specified parameter space. Such a search
process is time-consuming and it still requires manual definition of the search space.
To achieve fully automated code generation, FlexTensor [25] and Ansor [26] implement
an automatic search space construction. As the number of parallel units in commodity
GPUs increases, an individual DNN operator cannot fully utilize the GPU resources.
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Orthogonal to prior works above, Opara focuses on designing lightweight heuristic
algorithms to achieve inter-operator parallelism within a single model. It can work
with the intra-operator parallel optimization methods to significantly improve GPU
resource utilization.

7 Conclusion and Future Work

This paper presents the design and implementation of Opara, a lightweight DNN
operator scheduling framework to speed up DNN inference on GPUs. By reducing
the synchronization overhead among operators, Opara designs a lightweight stream
allocation algorithm to automatically allocate operators without dependencies to dif-
ferent CUDA streams, thereby achieving operator parallelism effectively. Furthermore,
Opara leverages non-intrusive inference profiling to judiciously select an optimal oper-
ator launch order to maximize the GPU utilization. Extensive prototype experiments
show that Opara can improve the performance of DNN inference by up to 24%, in
comparison to the state-of-the-art operator parallelism systems.

We plan to extend Opara in the following directions: (1) constructing an analyt-
ical model to analyze the inference latency and the performance interference among
operators caused by inter-operator parallelism, as well as (2) implementing Opara on
top of other DL frameworks, e.g., TensorFlow.
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