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Abstract—With the advent of cloud container technology,
enterprises develop applications through microservices, breaking
monolithic software into a suite of small services whose instances
run independently in containers. User requests are served by a
series of microservices forming a chain, and the chains often
share microservices. Existing load balancing strategies either
incur significant networking overhead or ignore the competition
for shared microservices across chains. Furthermore, typical load
balancing solutions leverage a hybrid technique by combining
HTTP with message queue to support microservice communi-
cations, bringing additional operational complexity. To address
these challenges, we propose a chain-oriented load balancing
algorithm (COLBA) based solely on message queues, which
balances load based on microservice requirements of chains to
minimize response time. We model the load balancing problem
as a non-cooperative game, and leverage Nash bargaining to co-
ordinate microservice allocation across chains. Employing convex
optimization with rounding, we efficiently solve the problem that
is proven NP-hard. Extensive trace-driven simulations demon-
strate that COLBA reduces the overall average response time at
least by 13% compared with existing load balancing strategies.

I. INTRODUCTION

Driven by latest container technology, the microservice
architecture decomposes a monolithic cloud application into
a collection of small services, and has been adopted by IT
giants such as Amazon, Netflix, and Uber [1]–[3].
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Fig. 1. Overview of a traditional monolithic project architecture.

As shown in Fig. 1, web applications are typically developed
in a monolithic fashion. Services provisioned by the applica-
tion are tightly coupled, making them complex to maintain,
upgrade and test. All the modules and functionalities are
developed in one piece of monolithic code, which is then
deployed across multiple hosts in the application tier. A small
change of the code requires redeployment across the entire
infrastructure, incurring significant maintenance overhead.
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Different from the monolithic architecture, in a microservice
system, an application is developed as a suite of microser-
vices, each running independently on containers. Fig. 2 plots
partial functionalities of an ecommerce website developed in a
microservice fashion, where each container, i.e., microservice
instance, can be dynamically created and removed.

However, apart from the high agility and scalability brought
by microservices, service providers are required to orchestrate
hundreds of microservices efficiently [4]. To this end, a critical
problem needs to be addressed: how to efficiently balance load
across microservices?

In a microservice system, homogeneous user requests tra-
verse a set of microservices in succession, thereby served in
a chain. The instances of a microservice may serve multiple
chains. As shown in Fig. 2, chains A and B traverse the product
microservice simultaneously. Hence, it is inevitable that chains
compete for a microservice against each other. Furthermore,
user requests of chains have different QoS requirements, as
well as different processing times. Existing load balancing
solutions fail to take either request heterogeneity or inter-chain
competition into consideration.

To address the above issues, instances of a microservice
should be isolated across chains, and requests of a chain
should be carefully steered to pass through instances that
belong to them. As a result, chain-oriented load balancing is
required to judiciously balance requests across their exclusive
microservice instances. Unfortunately, existing communica-
tion pattern, which combines HTTP with message queue,
complicates interconnection management across microservice
instances, bringing extra challenges towards achieving chain-
oriented load balancing.
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Fig. 2. A microservice architecture of an e-commerce website.

Purely employing the message queue technique, we propose
in this work a Chain-Oriented Load Balancing Algorithm
(COLBA) to address the above challenges. On one hand, for
homogeneous requests of a chain, COLBA should determine
how many instances of a microservice to serve the requests in



a chain, so as to minimize the average response time. On the
other hand, concerning request heterogeneity and competition,
COLBA needs to decide how many instances of a microservice
are sufficient to serve chains that pass through.

The challenges of designing COLBA are three folds. First,
pure message communication fails to support the synchronous
pattern, providing no guarantee in serving interactive requests.
As a result, it is challenging for a pure message solution
to bound average response time of each microservice chain.
Second, the scale of microservice population is much larger
than that of VMs, e.g., Netflix employs over 600 microservices
to support its business [4]. Therefore, for each round of the
balancing strategy, our algorithm is required to determine
instance assignment across chains promptly to meet fluctuating
loads. Third, jointly determining instance scale within a chain
and assigning instances across chains are challenging due to
chain heterogeneity.

Our contributions of this work are summarized as follows.
• We model the load balancing problem as a non-

cooperative game, and leverage Nash bargaining solution
to bound the average response time of every chain and
coordinate microservice allocation across chains.

• By employing the convex optimization technique with
rounding, we (approximately) solve the problem that
is proven to be NP-hard within dozens of iterations.
Theoretical analysis proves that the solution is within a
constant gap of the optimum.

• We carry out extensive trace-driven simulations to
demonstrate that COLBA can reduce the overall average
response time by 13% and 41% respectively, compared
with microservice-oriented and instance-oriented load
balancing solutions.

II. BACKGROUND AND MOTIVATION

A. Load Balancing across Microservices
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Fig. 3. An overview of instance-oriented load balancing strategy.

With respect of load balancing in the context of microser-
vice systems, since instances of microservices independently
run in containers, operators are supposed to determine the
balancing scope, i.e., the basic unit chosen to balance load
across. For example, an aggressive strategy chooses instance as
the balancing scope, in which a central load balancer balances
requests across instances [5]. As shown in Fig. 3, suppose
that requests of a chain traverse microservices A, B, and C.

Lacking request redirection from one microservice to another,
the load balancer has to send the request to a specific instance,
receive response, and send it to the next microservice instance.
Such an instance-oriented solution can balance load across
instances well, but at the price of significant overhead in
communicating with instances back and forth.

To alleviate the overhead of the aggregative strategy, an
alternative is a microservice-oriented solution. As shown in
Fig. 4, instances of the same microservice are managed by
a service registery, and load is balanced across them evenly.
However, instances of a microservice may serve multiple
chains, whose requests have different requirements of perfor-
mance and various service times. For example, requests that
query a product’s specifications are more urgent than those
that insert a log record, and it takes longer to update product
specification than to insert a log entry. Furthermore, it is com-
mon that different chains are served by the same microservice,
competing for microservice instances against each other. In
short, the microservice-oriented solution is oblivious to the
heterogeneity of requests and competition across chains. To
overcome the disadvantages of both solutions, a chain-based
load balancing solution is required.
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Fig. 4. Overview of microservice-oriented load balancing strategy.

B. Communication across Microservices
Communication techniques used by a microservice system

fall into two categories, i.e., HTTP and message queue. Using
HTTP, a microservice instance can initiate a connection to
anyone without relying on an intermediate broker. However,
since HTTP communication requires exact locations (URLs)
of microservice instances, it highly depends on service reg-
istries such as Zookeeper [6], to discover instances and API
gateways to dispatch requests. Furthermore, designed and
intended for one-to-one request/response, HTTP fails to sup-
port either one-to-many or asynchronous patterns. Compared
with HTTP, message queue supports all communication pat-
terns except the synchronous mode. A hybrid technique may
combine HTTP and message queue to support microservice
communication; however, such a hybrid method comes with
additional operational complexity.

Modern web applications are developed using the Task
Asynchronous Paradigm (TAP) [7], [8], making it possible
to use a pure message queue technique to support microser-
vice communication. Direct TCP connection between message
producers and consumers is absent in message queues, and
consequently no guarantee is provided on response time and
request status. That further compromises user-side QoS. To
overcome the disadvantages above, this work aims to propose a



pure message queue based pattern with performance guarantee.
A detailed comparison among HTTP, message queue, and our
solution is shown in Table I.

TABLE I
COMPARISON BETWEEN HTTP AND MESSAGE QUEUE

HTTP Message Queue Our Solution

One-to-One

One-to-Many

Synchronous Guaranteed

Asynchronous

C. Pure Message Chain-Oriented Load Balancing

Product microservice

Request of Chain A
Topic pattern: *.chain_a.*

Channel
Request of Chain B

Topic pattern: *.chain_b.*

topic_a: *.chain_a.*

insert.chain_b.json_a

update.chain_b.id

topic_b: *.chain_b.*

Fig. 5. The implementation of COLBA across chains in one microservice.

To address the issues above, we propose a Chain-Oriented
Load Balancing Algorithm (COLBA) using message queues.
As illustrated in Fig. 5, we leverage the topic mode of
RabbitMQ [9] to balance loads across instances based on
different chains. The upstream microservice declares a channel
and binds two queues to it. The messages are routed to
the corresponding queues based on topics. By updating the
topic of each downstream instance, we are able to change
the instance assignment to adapt to workload fluctuation. As
such, we can balance load based on request heterogeneity and
competition across chains.
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Fig. 6. The positioning of COLBA against instance-oriented and
microservice-oriented solutions.

Fig. 6 illustrates the positioning of COLBA by comparing
with instance-oriented and microservice-oriented solutions.
We evaluate load balancing solutions in two dimensions,
namely balancing scope and communication overhead. As

shown in Fig. 6, the instance-oriented solution is most promis-
ing in handling heterogeneity and competition of requests,
but incurs significant overhead due to frequent interaction
between the central load balancer and instances. On the
contrary, the microservice-oriented solution evenly balances
load across instances of each microservice without bringing
extra overhead, yet fails to take request heterogeneity and
competition across chains into consideration.

III. SYSTEM MODEL

TABLE II
KEY PARAMETERS

Definition

C The total number of microservice chains

M The number of microservice types

Im Number of instances of microservice m

Cm The total number of chains that passes microservice m

Mc The total number of microservices which chain c passes

�c,m The request arrival rate of chain c at microservice m

µc,m The request service rate of chain c at microservice m

Ub
c an upper bound for response time of each chain

A. The Microservice Architecture
For an application developed in a microservice fashion, its

architecture can be represented as a matrix R = (rc,m)C⇥M ,
where rc,m 2 {0, 1} and indicates whether chain c traverses
microservice m. The total number of chains that passes
microservice m is then Cm =

PC
c=1 rc,m.

Moreover, the overall assignment strategy of the microser-
vice architecture is S = (sc,m)C⇥M , where sc,m denotes the
number of microservice m instances assigned to chain c.

The microservice system has a total capacity limit in the
number of microservice instances that can be provisioned:

CX

c=1

rc,m · sc,m  Im,

where Im is the total instances of microservice m.

B. Performance of Microservice System

...

... ml c, m
c, m

Fig. 7. A queue model for one microservice.

1) Response time of a microservice: Following existing
literature, in the microservice system, we assume that requests
belonging to a chain arrive at the API gateway as a Poisson
process [10]–[12]. Moreover, we assume that the service



time of requests in a microservice instance follows general
distribution. We represent the request arrival rate of chain c at
microservice m as �c,m. Meanwhile, let µc,m be the average
rate that a microservice m instance serves requests of chain
c. We model the serving process of each microservice as an
M/G/1/PS queue [13], as depicted in Fig. 7. Hence, the average
response time of chain c in microservice m is:

uc,m(sc,m) =

Z 1

0

zc,m

1� sc,m
dF (zc,m) =

E[Zc,m]

1� ⇢c,m(sc,m)
,

(1)
where ⇢c,m(sc,m) = �c,m

µc,m·sc,m . F (zc,m) is the probability
distribution function of service time, and E[Zc,m] is the
expectation of service time. Hence, the following constraint
must be satisfied, to keep the traffic intensity ⇢c,m(sc,m) below
1.

sc,m � sbc,m >
�c,m

µc,m
.

2) Response time of a chain: In a microservice chain, as
shown in Fig. 8, requests traverse a set of microservices.
Based on Equation (1), we then prove the following theorem
to evaluate the average response time of a chain.

...
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1st Microservice

...

Mth Microservice

...

Fig. 8. A queue-based model for a microservice chain.

Therom 1. Suppose chain c passes M c microservices, 8m 2
{1,M c�1}, the request departs from microservice m at a rate
of �c,m and arrives at microservice m+1 at a rate of �c,m+1.
Hence, the request arrival process of microservice m+1 is a
Poisson process, and �c,m+1 = �c,m when the microservice
system is stable.

Proof: Let Z be the set of the user requests who depart
from the microservice m during (z, z + t). Hence, at the yth

time slot, the probability that a request belongs to set Z arrives
at microservice m is denoted as:

F (y) =

8
><

>:

Q(z + t� y)�Q(z � y), y < z

Q(z + t� y), z < y < z + t

0, y > z + t

where Q(x) is the probability distribution function of the
duration spent on serving a request.

Since requests that arrive at the same time slot in an
M/G/1/PS queue share the capacity of microservice instances,
the output of an M/G/1/PS queue is still a Poisson process. Let
E[N(t)] be the expected number of the requests which departs

from microservice m to m+1 at tth time slot. Inspired by [14],
we hence calculate E[N(t)] as follows.

E[N(t)] = �c,m ·
Z 1

0
F (y)dy

= �c,m ·
Z s

0
(Q(z + t� y)�Q(z � y))dy

+�c,m ·
Z z+t

z
Q(z + t� y)dy

= �c,m ·
Z z+t

z
Q(y)dy.

As a result, requests which depart from microservice m
follow a Poisson process, with an expectation of �c,m ·R z+t
z Q(y)dy. Hence, we have:

Pn(t) = e��c,m·
R z+t
z Q(y)dy ·

⇣
�c,m ·

R z+t
z Q(y)dy

⌘n

n!
(2)

According to the definition of Poisson process, we have:

Pn(t+ h) = P{N(t+ h) = n}
= P{N(t) = n� 1, N(t+ h)�N(t) = 1}

+P{N(t+ h) = n,N(t+ h)�N(t) � 2},

where h > 0. Given P{N(h) = 1} = �c,m+1h + o(h), and
P{N(h) � 2} = o(h), we hence have:

Pn(t+ h) = (1� �c,m+1h)Pn(t) + �c,m+1hPn�1(t) + o(h),

where �c,m+1 is the arrival rate of requests from microservice
m to m+ 1.

Dividing both sides of the equation above by h leads to:

Pn(t+ h)� Pn(t)

h
= ��c,m+1Pn(t)+�c,m+1Pn�1(t)+

o(h)

h

When h ! 0, it derives:

P
0

n(t) = ��c,m+1 · Pn(t) + �c,m+1 · Pn�1(t). (3)

Applying Equation (2) to the left side of Equation (3), we
have:

�c,m+1 = �c,m ·Q(t).

When t ! 1, i.e., the microservice system approaches stable,
Q(t) ! 1. We hence prove that �c,m+1 = �c,m.

Based on Theorem 1, it is reasonable to compute the average
response time by summing up that of each microservice.
Hence, we have the following proposition.

Proposition 1. In chain c, the average response time uc can
be calculated as:

uc(sc) =
MX

m=1

rc,m · uc,m(sc,m),

where rc,m indicates whether chain c passes microservice m.

Different from the instance-oriented and microservice-
oriented load balancing solutions, our solution is dedicated
to balancing load at the chain level. Considering that chains



have unique requirements of QoS as well as different capacity
of serving their requests, we introduce a predefined upper
bound U b

c for response time of each chain. Since our solution
employs pure message queue to enable communications across
microservices, the QoS of each chain should be carefully
guaranteed. To this end, the average response time should
be controlled within this predefined deadline. To bound and
further minimize the average response time of each chain, we
formulate an objective function as follows.

max
uc

Y

uc2U

U b
c � uc

U b
c

, (4)

where U b
c = uc(sbc), and sbc is the initial instance assignment

of each chain.
From the perspective of chains, each chain competes for

microservice instances against other chains. Thus an instance
allocation algorithm is required to coordinate the resources
across chains. Game theory is known as a promising approach
to solve such resource competition among agents.

IV. A NASH BARGAINING BASED SOLUTION

Let RN be the set of all the available instance allocation
strategies. Define G as the subset of allocation strategies in
which response times of each chain is within its deadline,
denoted as G = {sc|sc 2 S, uc(sc)  uc(sbc) = U b

c , c 2
{1, ..., C}}. Each chain in the system uses an initial strategy sbc
to bargain with others, and finally the chains reach agreement
upon an allocation strategy in G.

Defination 1. A mapping M : (G, sbc) ! RN is a Nash
bargaining solution if it satisfies M : (G, sbc) 2 G, Pareto
optimality, symmetry, invariant to affine transformations, and
independent of irrelevant alternatives [15].

Let J = {G = {sc|sc 2 G, uc(sc) < uc(sbc) = U b
c , c 2

{1, ..., C}}, so J is nonempty. Given that S is a convex and
compact subset of RN , we have Theorem 2 as follows.

Therom 2. There exists a Nash bargaining solution and the
elements of the vector sc = M(G, u0) solve the following
optimization problem:

max
sc

Y

sc2J

U b
c � uc

U b
c

. (5)

Theorem 2 implies that there exists a Nash bargaining
solution to the instance allocation problem, which minimizes
and bounds average response time of each microservice chain.
Note that the objective function (5) is equivalent to the
function maxsc ln(U

b
c�uc), 8sc 2 J . Hence we can formulate

the optimization problem as follows:

max
sc

CX

c=1

ln
U b
c � uc

U b
c

(6)

s.t.
CX

c=1

rc,m · sc,m  Im, m 2 {1, ...,M} (7)

sc,m >
�c,m

µc,m
, m 2 {1, ...,M} (8)

The problem above is a nonlinear integer program, where
nonlinearity is confined to the objective function. It is proven
that such a problem is NP-hard in general [16]. Given
that user requests are varying and unpredictable, the problem
should be solved efficiently so as to obtain a latest instance
allocation strategy timely. By relaxing integrality constraints,
the original problem is reduced to convex optimization. Based
on the optimal solution to the relaxed version, we leverage a
rounding strategy to compute the solution to problem (6), with
integrality gap analyzed.

Therom 3. There exist �m > 0,m 2 {1, ...,M} such that

ŝc,m > � A2

2A1
, (9)

where A1 = U b
cµ

2
c,m+E[Zc,m]µ2

c,m, A2 = 2ub
c,m�c,mµc,m+

E[Zc,m]�c,mµc,m.

Proof: Because Constraints (7) and (8) are linear and
the objective function (6) is differentiable, the Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient for
optimality [17].

Define the Lagrangian function L(s, �, ⌘) as follows.

L(s, �, ⌘) = f(s)�
MX

m=1

�m(sc,m � �c,m

µc,m
)

�
MX

m=1

⌘m(
CX

c=1

rc,m · sc,m � Im),

where �m  0(m = 1, ...,M) and ⌘m  0(m = 1, ...,M)
are the Lagrange multipliers.

We hence derive the first-order necessary and sufficient
conditions as follows.

rsL(s, �, ⌘) =
@f(sc,m)
@sc,m

��m �
MX

m=1

⌘m · rc,m = 0, (10)

(
CX

c=1

rc,m · sc,m � Im) · �m = 0;

�m � 0;m 2 {1, ...,M} (11)

(sc,m � �c,m

µc,m
) · ⌘m = 0;

⌘m � 0;m 2 {1, ...,M} (12)

Based on Constraint (8), we have ⌘m ⌘ 0.
If �m = 0, we have rsL(s, �, ⌘) = 0, which contradicts the

fact that f(·) is increasing.

Hence, we have �m > 0, indicating that
CP

c=1
rc,m · sc,m �

Im = 0, which ensures that load is balanced across all the
instances. Based on Equation (10), we have:

rsL(s, �, ⌘) =
@f(sc,m)

@sc,m
� �m = 0.

Applying Equation (6) to the above equation, we have:

A1 · s2c,m �A2 · sc,m +A3 = 0 (13)



where A1 = U b
cµ

2
c,m+E[Zc,m]µ2

c,m, A2 = 2ub
c,m�c,mµc,m+

E[Zc,m]�c,mµc,m, and A3 = U b
c�

2
c,m � E[Zc,m]µc,m�c,m

�m
.

As a result, 9�m > 0, such that Equation (13) has at
least one solution ŝc,m > � A2

2A1
, which is the unique Nash

bargaining solution to the optimization problem.
By employing convex optimization techniques, we obtain

the optimal solution ŝc,m, c 2 {1, ..., C},m 2 {1, ...,M}
to the relaxed version of problem (5). However, ŝc,m is
fractional, and is hence infeasible for the original problem. We
apply a simple rounding up (factional part > 0.5) and down
(otherwise) strategy. We then have the following theorem,
which quantifies the integrality gap between the optimal value
of problem (6) and the value of problem (6).

Therom 4. Let � be the value of problem (6) under relaxation
with rounding and �⇤ be the optimal value of problem (6),
respectively. We hence are able to bound the value of �̃ as
follows.

� > �⇤ �
CX

c=1

ln(1 +M ·Qc)

where Qc = 1

Ub
c�

MP
m=1

uc(ŝc,m+1)
and M is the total number

of microservices.

Proof: Let S̃ = (s̃c,m)C⇥M be the optimal solution to
problem (5) under relaxation, and let �̃ be the optimal value
of the problem. Moreover, let S⇤ = (s⇤c,m)C⇥M denote the
optimal solution to problem (5), whose value is defined as �⇤.
Hence, we have:

�̃ > �⇤. (14)

Then, under the rounding strategy of ŝc,m = bs̃c,mc, Ŝ =
(ŝc,m)C⇥M is a solution to problem (5), whose objective func-
tion value is �̂. Therefore, 9✓c,m 2 {0, 1}(c 2 {1, ..., C},m 2
{1, ...,M}), such that

ŝc,m = s̃c,m + ✓c,m. (15)

Since ŝc,m is larger than s̃c,m, we have:

� > �̂, (16)

where � is the optimal value of problem (6) after rounding.
Based on Eq. (14), Eq. (15), and (16), we have:

�⇤ � � < �̃� �̂

=
CX

c=1

ln

✓
Ub

c � uc(ŝc)
Ub

c
� ln

Ub
c � uc(s̃c)

Ub
c

◆

=
CX

c=1

ln

Ub
c �

MP
m=1

uc(ŝc,m)

Ub
c �

MP
m=1

uc(ŝc,m + ✓c,m)

=
CX

c=1

ln

0

BB@1 +

MP
m=1

uc(ŝc,m + ✓c,m)�
MP

m=1
uc(ŝc,m)

Ub
c �

MP
m=1

uc(ŝc,m + ✓c,m)

1

CCA

<
CX

c=1

ln

 
1 +Qc

MX

m=1

uc(ŝc,m + ✓c,m)� uc(ŝc,m)

!

=
CX

c=1

ln

 
1 +Qc ·

MX

m=1

(1� �)

!

where Qc = 1

Ub
c�

MP
m=1

uc(ŝc,m+1)
, and � =

✓c,m�c,m

µc,mŝ2c,m+(µc,m✓c,m��c,m)ŝc,m
Noting that � � 0, we have:

�⇤ � � <
CX

c=1

ln(1 +M ·Qc),

where M is the total number of microservice types.

V. PERFORMANCE EVALUATION

A. Simulation Setup
We simulate a microservice system with M = 6 microser-

vices, 600 instances in total, serving C = 7 chains.
1) Workload data: In the simulations, we use the online

traffic activity of the world’s top e-retailers in the U.S. on
Cyber Monday collected by Akamai [18]. Data were reported
by Akamai’s Net Usage Index and Real User Monitoring,
which is plotted in Fig. 9. For requests of chains, we randomly
determine each chain’s share of the overall traffic, to examine
whether COLBA adapts well to fluctuating workload.
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Fig. 9. Normalized online traffic of ecommerce retailers in the U.S. on Cyber
Monday.

2) Baselines: To evaluate the performance of COLBA,
we compare it with two baselines: microservice-oriented and
instance-oriented solutions.

Instance-oriented load balancing. Recall that instance-
oriented solution is promising in handling request heterogene-
ity and competition, since it balances load across instances
with a central load balancer. For fair comparison, we apply
the chain-oriented load balancing strategy to it.

Microservice-oriented load balancing. Compared with
instance-oriented solution, microservice-oriented solution
evenly balances requests across instances of a microservice,
ignoring request heterogeneity and competition.

3) Worst response time U b: In Sec. III, to bound response
time of a chain, we introduced U b

c (c 2 {1, ..., C}), represent-
ing the worst response time of requests in chain c, i.e., the
upper bound of response times. U b

C can also be interpreted as
the performance requirement of user requests in chain c.



B. Comparing to Baselines
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Fig. 10. CDF of response time, COLBA vs. baselines.

Overall performance. We take the average response time
of all requests in the microservice system as a metric to
demonstrate the balancing performance of the three solutions.
Fig. 10 plots the CDF of overall response time of COLBA,
compared with baselines. In Fig. 10, we observe that among
the three solutions, performance of the instance-oriented solu-
tion is the worst due to significant communication overhead.
Furthermore, 80% of response times are almost the same for
microservice-oriented solution and COLBA. However, com-
pared with COLBA, the response time of the microservice-
oriented solution spans a smaller range. It is because that
COLBA balances load jointly concerning the worst response
time U b

c and competition across chains, meaning that COLBA
prefers allocating resources to urgent chains and compromising
with others.
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Fig. 11. The normalized response time of COLBA against instance-oriented
and microservice-oriented solutions.

Individual performance of chains. Fig. 11 depicts the
respective normalized response time of chains under the worst
response time configuration of [10, 8, 6, 7, 2, 4, 2]. Under the
microservice-oriented solution, performance of each chain is
almost the same. In comparison, under COLBA, the response
time of chains are different from each other and are in
accordance with the worst response time configuration. Fur-
thermore, a chain with a lower U b

c has better performance,
reflecting that COLBA can guarantee QoS based on U b

c of a
chain, and coordinate instance allocation across chains.

C. Convergence of COLBA
Fig. 12 plots the CDF of the number of iterations to

achieve convergence. It shows that our algorithm COLBA

can converge within 79 iterations in 80% of the respective
total runs. Furthermore, the minimum number of iterations is
16 while the maximum is 109. Such results demonstrate that
our solution can achieve fast convergence, making it possible
to adjust the instance allocation strategy promptly to adapt
unpredictable workload.
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Fig. 12. The iterations of COLBA.

D. Impact of Parameters
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Fig. 13. Normalized response time of chains in the microservice system.
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Fig. 14. The instance allocation across chains under request arrival rate of
�max.

Request arrival rate. To further evaluate the performance
of COLBA, we tune the maximum request arrival rate � from
1.0x to 1.5x of the maximum page view in Fig. 9. Fig. 13
illustrates the normalized response time of chains when �
increases from 1.0x to 1.5x. In Fig. 13, as � increases, the per-
formance of both microservice-oriented and COLBA degrades.
Specifically, response times of chains under the microservice-
oriented solution roughly have similar increments. In compari-
son, performance of Chains 5 and 6 almost remains unchanged



under COLBA. However, response time of Chains 4 and 7
increases substantially.
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Fig. 15. The instance allocation across chains under request arrival rate of
1.5�max.

To further evaluate the impact of request arrival rate, we
plot instance allocation of COLBA under two values of 1.0x
and 1.5x in Fig. 14 and 15, respectively. We make the
following observations. For Chain 5 and 6, the instances
allocated to them increase significantly so as to overcome
the bursty workload, finally guaranteeing response time under
the worst value U b

c . Obviously, since the scale of instances
is limited, other chains who compete against Chains 5 and
6 have to compromise on microservice instances. As such,
we then observe that number of instances assigned to Chains
1, 4 and 7 decreases sharply, leading to increase in response
time. Such phenomenon indicates that COLBA can exploit
the heterogeneity of performance requirements across chains,
therefore better adapt to fluctuating workload and meet users’
expected QoS.
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Fig. 16. The instance allocation of COLBA when Ub = [3 : 3 : 2 : 5 : 4 :
2 : 9].
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Fig. 17. The instance allocation of COLBA when Ub = [3 : 3 : 2 : 9 : 4 :
2 : 5].

Worst response time U b. We evaluate the response time
of COLBA under different configuration of U b, with results

depicted in Fig. 18. By switching the worst response time
between Chains 4 and 7, we change U b from [3 : 3 : 2 : 5 : 4 :
2 : 9] to [3 : 3 : 2 : 9 : 4 : 2 : 5]. In Fig. 18, we can observe that
response time of requests in Chain 7 decreases while those in
Chain 4 increase, because Chains 4 and 7 exchange the worst
response time with each other. Furthermore, performance of
Chains 3 and 6 remains stable, yet response time of Chains
1, 2 and 5 increases. The reason behind such increase can be
found in Fig. 16 and 17.
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Fig. 18. The normalized response time of COLBA under different values of
Ub.

Fig. 16 and 17 plot the instance allocation of COLBA under
different U b. As we observe, the scale of instances allocated
to Chain 7 increases remarkably, especially for Microservice
1 and 6, ensuring response time within U b. In the meantime,
instance scale of Microservice 6 assigned to Chain 4 shrinks
significantly, incurring increase in response time, meaning that
U b successfully changes the preference of instance allocation.
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Fig. 19. The respect ratio of response time to upper bound ub
c across chains

under different Ub.

Apart from Chain 4, response time of Chains 1, 2, and 5 also
goes down, due to compromising on instances with others. To
investigate whether response time of Chains 1, 2, and 5 stays
within the upper bound U b, we plot Fig. 19 to demonstrate
the respect ratio of response time to upper bound ub

c across
chains under different U b. As we observe, response time in
Chains 1, 2, and 5 goes up, yet without exceeding the upper
bound U b.

VI. RELATED WORK

In this section, we briefly review existing work on cloud
containers and microservices.

Cloud containers. Recently, container technology, which
provisions lightweight isolation, has drawn extensive attention



from researchers. Burns et al. explicitly discuss three typi-
cal design patterns for container-based systems, i.e., single-
container pattern, single-node pattern, and multi-node pat-
tern [19]. In [20], three container management systems, i.e.,
Borg [21], Omega [22], and Kubernetes [23] are carefully
compared based on lessons learned by Google when man-
aging Linux containers. Yi et al. propose a group buying
mechanism to improve cloud resource utilization on cloud
containers [24]. Moreover, motivated by the lightweight and
flexible characteristics of containers, the IT industry shows a
growing interest in deploying network functions in containers.
Zhang et al. design an NFV platform which enables every
single NF to process a specific flow by running VNFs in
containers [25]. Yu et al. propose FreeFlow, which leverages
shared memory and RDMA to improve performance and
portability of container networking [26]. Jointly optimizing the
communication overhead and overall throughput, Zhang et al.
propose to re-distribute containers across hosts, to alleviate the
communication overhead in container system in [27]. Different
from and compliment to the above studies, COLBA focuses
on enterprise applications, e.g., web applications, which are
deployed in containers.

Microservices. With the popularity of container technology
growing, many applications are developed in a microservice
fashion, facilitating frequent update and deployment. As a
result, testing and troubleshooting become critical issues to
address. With respect of testing, Heorhiadi et al. propose
a framework for systematically testing the failure-handling
capabilities of microservices [28]. In terms of troubleshooting,
Rajagopalan et al. propose an autonomous tool to troubleshoot
and repair such software issues in production environments
[29].

Different from the above works, our solution focuses on the
load balancing problem across microservices. To the best of
our knowledge, little literature is dedicated to handling such
a problem in the context of microservice systems.

VII. CONCLUSION

This work proposes COLBA to balance load across mi-
croservices, jointly taking heterogeneity of requests and inter-
chain competition into consideration. By employing convex
optimization with rounding, COLBA efficiently solves the
chain-oriented load balancing problem which is NP-hard. The-
oretical analysis proves that COLBA can promptly converge
to the unique Nash solution which is within a constant gap of
the optimum. Moreover, statistics of iterations times indicate
that COLBA can converge within 79 iterations in 80% of
the respective total runs, facilitating adapting unpredictable
workload. Trace-driven simulation shows that COLBA can
reduce average response time by about 13% and 41% com-
pared with instance-oriented and microservice-oriented load
balancing solutions, respectively. In addition to minimizing
response time, simulation results demonstrate that COLBA
can coordinate instance allocation, concerning expected QoS
of chains as well as competition across chains.
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