
SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 1

λDNN: Achieving Predictable Distributed DNN
Training with Serverless Architectures

Fei Xu, Member, IEEE , Yiling Qin, Li Chen, Member, IEEE , Zhi Zhou, Member, IEEE ,
Fangming Liu, Senior Member, IEEE

Abstract—Serverless computing is becoming a promising paradigm for Distributed Deep Neural Network (DDNN) training in the cloud,
as it allows users to decompose complex model training into a number of functions without managing virtual machines or servers.
Though provided with a simpler resource interface (i.e., function number and memory size), inadequate function resource provisioning
(either under-provisioning or over-provisioning) easily leads to unpredictable DDNN training performance in serverless platforms. Our
empirical studies on AWS Lambda indicate that, such unpredictable performance of serverless DDNN training is mainly caused by the
resource bottleneck of Parameter Servers (PS) and small local batch size. In this paper, we design and implement λDNN, a
cost-efficient function resource provisioning framework to provide predictable performance for serverless DDNN training workloads,
while saving the budget of provisioned functions. Leveraging the PS network bandwidth and function CPU utilization, we build a
lightweight analytical DDNN training performance model to enable our design of λDNN resource provisioning strategy, so as to
guarantee DDNN training performance with serverless functions. Extensive prototype experiments on AWS Lambda and
complementary trace-driven simulations demonstrate that, λDNN can deliver predictable DDNN training performance and save the
monetary cost of function resources by up to 66.7%, compared with the state-of-the-art resource provisioning strategies, yet with an
acceptable runtime overhead.

Index Terms—Distributed DNN training, serverless computing, predictable performance, function resource provisioning.

F

1 INTRODUCTION

D ISTRIBUTED Deep Neural Network (DDNN) training is
becoming an increasingly important workload in the

cloud [1]. As the DNN models get complex and datasets
grow large, DDNN training workloads require a consider-
able amount of cloud resources and thus become compu-
tationally expensive [2]. To reduce the budget and ease the
management of cloud resources, the serverless architecture
has recently emerged as a promising paradigm for training
DNN models in a distributed manner, as it allows cloud
users to decompose complex model training into a number
of functions, without managing Virtual Machines (VMs) or
servers [3]. Most cloud providers have launched server-
less platforms (e.g., AWS Lambda [4], Google Cloud Func-
tions [5], and Microsoft Azure Functions [6]) for commercial
use such as machine learning, data processing, and Web ap-
plications. They offer cloud users a simple resource interface

• Fei Xu, Yiling Qin are with the Shanghai Key Laboratory of Multi-
dimensional Information Processing, School of Computer Science and
Technology, East China Normal University, 3663 N. Zhongshan Road,
Shanghai 200062, China. Email: fxu@cs.ecnu.edu.cn.

• Li Chen is with the Department of Computer Science, University of
Louisiana at Lafayette, 301 East Lewis Street, Lafayette, LA 70504, USA.
E-mail: li.chen@louisiana.edu.

• Zhi Zhou is with the Guangdong Key Laboratory of Big Data Analysis
and Processing, School of Data and Computer Science, Sun Yat-sen
University, 132 E. Waihuan Road, Guangzhou 510006, China. E-mail:
zhouzhi9@mail.sysu.edu.cn.

• Fangming Liu is with the National Engineering Research Center for
Big Data Technology and System, the Services Computing Technol-
ogy and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science
and Technology, 1037 Luoyu Road, Wuhan 430074, China. E-mail:
fmliu@hust.edu.cn.

Manuscript received July XX, 2020; revised November XX, 2020.

to specify the number and memory size of functions and
then charge only for the consumed function resources [7].
As a result, it becomes increasingly compelling to deploy
DDNN training workloads in serverless platforms.

Though users are offered a simple and flexible resource
model in serverless platforms, serverless DDNN training
workloads easily suffer from unpredictable performance [8],
due to inadequate function resource provisioning (under-
provisioning or over-provisioning). While under-provisioning
(e.g., insufficient function memory size) will automatically
trigger several rounds of workload re-executions [9], over-
provisioning can severely degrade the resource utilization
of functions. The intrinsic function resource limitations (e.g.,
function timeout) as listed in Table 1 can further deteri-
orate the training performance of large DNN models. As
evidenced by our motivation experiment in Sec. 2.2, the CPU
utilization of functions for training the MobileNet model can
be drastically degraded from 92.1% to 25.7%. Such severe
function CPU under-utilization mainly originates from: (1)
resource bottleneck of Parameter Servers (PS) [2] caused by
aggregating model gradients and pushing updated model
parameters to workers, and (2) small local batch size [10] for
DDNN training workloads. Surprisingly, we have also iden-
tified that the functions have been well isolated (and thus lit-
tle performance interference exists among functions) in pub-
lic serverless platforms [11] (as evidenced by Sec. 2.2). Ac-
cordingly, the unpredictable performance elaborated above
undoubtedly hinders cloud users from migrating DDNN
training workloads to serverless platforms.

To solve such performance issues, many efforts have
been devoted to optimizing the function performance from
the provider’s perspective. While most of them focus on

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 2

enforcing isolation among functions (e.g., FAASM [12]) or
mitigating the cold-start latency (e.g., Catalyzer [13]), com-
paratively little attention has been paid to guaranteeing the
performance [14] of serverless applications. There have also
been several recent works on improving the cost efficiency
of function resources for various serverless applications
from the user’s perspective, ranging from machine learning
inference [15] and training workloads [16] to linear algebra
algorithms [17] and Directed Acyclic Graph (DAG) jobs [18].
However, they mainly leverage existing machine learning
algorithms like Deep Reinforcement Learning (DRL) [16]
and Bayesian Optimization [19] to find a feasible amount
of function resources. Such black-box approaches still re-
quire efforts (i.e., around hundreds of iterations and high-
quality profiled performance data samples) to train the
model and thus bring non-negligible performance overhead.
Moreover, the existing methods are not readily available for
serverless DDNN training especially with large models (e.g.,
ResNet50) due to the resource limitations of functions (e.g.,
function timeout) listed in Table 1. As a result, there has been
a paucity of research attention paid to delivering predictable
performance to long-running DDNN training workloads in
a lightweight manner in serverless platforms.

To fill this gap, in this paper, we present λDNN, a
cost-efficient function resource provisioning framework to
minimize the monetary cost and guarantee the performance
for DDNN training workloads in serverless platforms. To
the best of our knowledge, λDNN is the first attempt to
demonstrate how to achieve predictable performance for DDNN
training workloads with serverless functions, while saving the
training budget for cloud users. λDNN can also reduce the re-
source cost for serverless computing providers. Specifically,
we make the following contributions in λDNN as below.

B First, we build a serverless DDNN training framework
with the PS architecture [20], and we design a lightweight
analytical model to predict the DDNN training performance
in serverless platforms. To capture the performance degra-
dation caused by the resource bottleneck of PS and small
local batch size, our model explicitly takes the PS network
bandwidth and function CPU utilization into account.

B Second, we devise a cost-efficient function resource pro-
visioning strategy to guarantee the performance of server-
less DDNN training workloads. Given a DNN model with
the training dataset and objective training time, λDNN first
calculates the upper and lower bounds of provisioned func-
tions, and then identifies an appropriate function resource
provisioning plan (i.e., the number and memory size of func-
tions) with the minimal cost for DDNN training workloads.

B Finally, we implement a prototype of λDNN on AWS
Lambda [4] and conduct extensive prototype experiments
and large-scale trace-driven simulations with four represen-
tative DNN models. Experiment results show that λDNN
can provide predictable performance for serverless DDNN
training workloads, while reducing the monetary cost by
up to 66.7%, in comparison to the state-of-the-art function
resource provisioning strategies (e.g., Siren [16]).

The rest of the paper is organized as follows. Sec. 2 em-
pirically analyzes the key factors that cause unpredictable
DDNN training performance in serverless platforms, which
motivate the design of our analytical performance model for
serverless DDNN training workloads in Sec. 3. Sec. 4 fur-

TABLE 1: Resource limitations of functions in the three representative
serverless computing platforms (Data is retrieved on Nov. 26th, 2020).

Resources
Limitations1

AWS Google Azure

#maximum memory (MB) 3, 008 2, 048 1, 536

Timeout (seconds) 900 540 600

Local storage (MB) 512 > 512 1024

S3
Bucket

λ λ λ

Training Data

Provisioned
Serverless
Functions

pull parameters
push gradients
load input data

... ...

S3
Bucket

...

Parameter Servers
(VM instances)

...

Fig. 1: A serverless DDNN training framework with the PS architecture
in AWS Lambda [4].

ther presents the design and implementation of our λDNN
function resource provisioning strategy. Sec. 5 evaluates
the effectiveness and runtime overhead of λDNN. Sec. 6
discusses related work and Sec. 7 concludes this paper.

2 BACKGROUND AND MOTIVATION

In this section, we seek to understand the following ques-
tions: how can we effectively train DNN models in a distributed
manner in serverless platforms, and what are the key factors that
impact the performance of serverless DDNN training workloads?

2.1 DDNN Training with Serverless Functions

To reduce the complexity of DDNN training and ease the
resource management in the cloud [21], deploying DDNN
training workloads on serverless functions becomes increas-
ingly compelling. However, DDNN training with serverless
functions is challenging, mainly because the functions have
stringent limitations on a set of resources such as memory
size, lifetime, local storage. As listed in Table 1, users are
allowed to allocate each function with a flexible amount
of memory within a maximum size (e.g., 3, 008 MB), and
AWS Lambda [4] allocates proportional computing resources
(i.e., CPU capability, disk I/O bandwidth). The functions
are invoked and scaled automatically by requests, and each
function is terminated when it completes the user request
or reaches the maximum execution time (i.e., timeout). In
addition, the function is “stateless” and the temporary local
storage will be deleted when the function is terminated.

To effectively train the DNN model, we build a serverless
DDNN training framework in a public cloud platform (i.e.,

1. Resource limitations can be increased over time. The maximum
function memory size is increased to 10, 240 MB and 4, 096 MB for AWS
Lambda and Google Cloud Functions, respectively, when our paper is
accepted on January 17th, 2021.

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 3

1728 2048 2368 2688 3008
100

200

300

400

500

600

Memory size (MB)

Tr
ai

ni
ng

 ti
m

e
(s
ec
o
nd
s)

4 functions
8 functions
16 functions
32 functions

the same training time

(a)

Time (seconds)
0 50 100 150 200 250 300 350

N
et

w
or

k
th

ro
ug

hp
ut

 (
M

B
/s

)

0

200

400

600

800

1,000

1,200
4 functions
8 functions
16 functions
32 functions

Bandwidth saturation

(b)

Fig. 2: (a) Training time of the MobileNet model and (b) network through-
put of PS over time, under different provisioning plans of function re-
sources (i.e., number and memory size of functions).

AWS Lambda [4]) as shown in Fig. 1. We adopt the PS archi-
tecture due to two facts. First, the PS architecture has been
widely used in production machine learning clusters [20].
Second, serverless functions are not allowed to communi-
cate with each other directly, which makes another widely-
adopted Ring-AllReduce training architecture nontrivial to
implement in serverless platforms [21]. Accordingly, to ef-
ficiently aggregate the gradients collected from functions
(i.e., workers), we simply use VM instances with sufficient
resources as the PS. In more detail, the training input data
are initially stored in the distributed storage (e.g., Amazon
S3 [22]). The data are evenly partitioned and dispatched to
the provisioned functions when the training of DNN model
starts. For each iteration, the functions first calculate and
push the model gradients to the PS for aggregation. The PS
then updates the model parameters once it has received all
the model gradients. Finally, the functions pull the updated
model parameters from the PS for the next training iteration.
In particular, the workers communicate with the PS through
TCP connections. The training process above is iteratively
executed, until the training loss reaches an objective value or
a given number of training epochs have been processed [23].

Though serverless computing can ease the resource man-
agement and scaling, how to provision the number and mem-
ory size of functions to guarantee the performance of serverless
DDNN training still remains challenging, even for a cloud
expert. As DDNN training workloads commonly consume
lots of computing resources, cloud users rely on their own
experience to provision an adequate number of functions
always with the largest-size memory [21] to serverless deep
learning workloads. Nevertheless, such a naive provisioning
strategy [21] is likely to underutilize the function resources
(i.e., CPU, memory, I/O), thereby leading to cost inefficiency
of function resource provisioning.

2.2 Characterizing Performance of Serverless DDNN
Training Workloads
To explore the key factors that influence the performance of
serverless DDNN training workloads, we conduct our moti-
vation experiments by training representative DNN models
(e.g., MobileNet [24], ResNet50 [25]) on TensorFlow 1.3.1
using AWS Lambda functions [4]. Specifically, we launch
a cluster of functions in the AWS region of N. Virginia (i.e.,
us-east-1). We vary the number of provisioned functions
from 4 to 32, and the function memory size from 1, 728
MB (i.e., the minimum memory size to train the MobileNet
model) to 3, 008 MB. To achieve fast convergence of DNN

Local batch size
4 8 16 32 64 128 256 5121024

T
ra

in
in

g
ra

te
 (

sa
m

pl
es

/s
ec

)

20

30

40

50

60

70

80

90

100

C
P

U
 u

til
iz

at
io

n
(%

)

20

30

40

50

60

70

80

90

100
training rate
CPU utilization

Fig. 3: Characterizing the rela-
tionship between the training rate,
CPU utilization of a single function
and local batch size for MobileNet.

1728 2048 2368 2688 3008
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Memory size (MB)

M
on

et
ar

y
co

st
 ($

) 4 functions
8 functions
16 functions
32 functions

Fig. 4: Monetary cost of functions
under different resource provision-
ing plans for training the MobileNet
model.

TABLE 2: Average CPU utilization and network throughput of a function
(i.e., worker) during the training period of the MobileNet model under
different resource provisioning plans.

Resource provisioning plans CPU Network
#functions (#batch) #memory utilization throughput

4 functions (local
batch size: 256)

1, 728 MB 92.1% 3.85 MB/s
2, 368 MB 84.4% 3.95 MB/s
3, 008 MB 79.7% 4.08 MB/s

16 functions (local
batch size: 64)

1, 728 MB 70.0% 9.03 MB/s
2, 368 MB 60.8% 9.08 MB/s
3, 008 MB 53.0% 8.98 MB/s

32 functions (local
batch size: 32)

1, 728 MB 46.6% 7.56 MB/s
2, 368 MB 38.1% 7.59 MB/s
3, 008 MB 25.7% 7.65 MB/s

model training, we fix the global batch size as 1, 024, and the
number of training iterations as 100 (i.e., 2 epochs).

Performance of serverless DDNN training: As shown
in Fig. 2(a), we observe that: First, the DDNN training time
decreases as a larger amount of memory is allocated to
functions. This is simply because a larger function memory
size indicates more CPU cycles to process DDNN training
workloads [4]. Second, provisioning more functions can ex-
pectedly speed up the DDNN training process. Interestingly,
16 and 32 functions have a slower improvement in DDNN
training performance compared with 4 and 8 functions.
Moreover, 32 functions slightly increase the DDNN training
time compared to 16 functions when allocated with over
2, 048 MB memory. We conjecture that: as more functions
(i.e., 16, 32 functions) are provisioned, (a) the network I/O
bandwidth of PS becomes bottleneck, and (b) a smaller local
batch size of training data is processed on each function,
as well as (c) the performance interference of functions
might become severe [8]. The three factors above inevitably
underutilize the CPU resource of provisioned functions (as
shown in Table 2), and thus offset the performance gains of
increased function resources.

Resource bottleneck of PS: To verify our analysis above,
we further examine the system-level metrics including CPU
utilization and network throughput of functions and PS
with different resource provisioning plans. Specifically, we
normalize the CPU utilization of functions by dividing the
measured utilization data (i.e., executing the top command
every 0.5 seconds) to the allocated proportion of CPU capac-
ity (e.g., 3, 008 MB memory corresponds to 3,008

1,792×2 = 0.839
of CPU capacity). Also, we measure the network throughput
of PS and functions by tracing the network I/O statistics

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 4

in the proc file system. As listed in Table 2, we observe
that the function CPU utilization gradually decreases from
92.1% to 25.7% as more function resources are provisioned.
This implies that the PS network bandwidth becomes bottle-
neck as more functions are provisioned, which is evidenced
by Fig. 2(b) that the PS bandwidth becomes saturated at
around 1, 200 MBps for over 16 functions. Moreover, our
measurement study shows that the network throughput of
functions surprisingly remains unchanged as the amount of
allocated function memory increases (from 1, 152 to 3, 008
MB in Table 2). As a result, the data communication becomes
dominating the serverless DDNN training process as the
more function resources are provisioned, which in turn
degrades the CPU utilization of functions.

Small local batch size: As more functions are provisioned,
the fixed global batch size can lead to a smaller local batch
size per function, thereby degrading the training rate on
each function [10]. To verify that, we examine the function
training rate and CPU utilization of the MobileNet model
trained on a single function which connects to a PS node.
As shown in Fig. 3, the function training rate gradually
converges to a peak value (i.e., 90 samples/sec) as the local
batch size increases, which is highly related to the CPU
utilization of a function. As the local batch size gets smaller
(i.e., less than 64), it negatively degrades the function CPU
utilization below 80%. Accordingly, it would be challenging
to find local and global batch sizes good enough to achieve
both fast training rate and model convergence.

Performance interference of functions: We experimen-
tally examine the severity of performance interference [8]
among functions. Specifically, we launch 200 different AWS
Lambda functions with 128 MB memory, and then use the
sysbench benchmark to measure the CPU, memory and
disk I/O performance of functions. Surprisingly, we identify
stable function performance and thus the performance vari-
ation can be negligible among functions (e.g., the average
function written throughput is 12.78 MB/s with a negligible
standard deviation of 0.60). We further run the uname
command in functions to obtain the underlying host VM’s
IP [26]. We find that all these 200 Lambda functions have
different host VM’s IPs, which implies that these functions
are distributed among different VMs (i.e., not colocated).
Our experimental results above are consistent with a latest
work [11], which reports that AWS Lambda [4] has recently
launched a lightweight VM monitor named Firecracker [11]
to significantly mitigate the performance interference and
achieve isolation among functions.

Monetary cost of serverless DDNN training: As ana-
lyzed above, we conclude that blindly over-provisioning more
function resources can be cost-inefficient. As shown in Fig. 4,
the largest memory allocation (i.e., 3, 008 MB) increases the
monetary cost by 45.3% compared to the lowest memory
allocation (i.e., 1, 728 MB) when allocated with 32 functions,
while the training time is reduced only by 18.4%. This is
mainly because the function resources are underutilized (i.e.,
wasted) as analyzed in Table 2. Interestingly, 8 functions
with 2, 688 memory and 3, 008 memory have almost the
same DDNN training performance with 16 functions and
32 functions with 1, 728 memory (as shown in Fig. 2(a)),
respectively, but the former resource provisioning plans can
reduce 22.5% – 121.1% of monetary cost over the latter

TABLE 3: Comparison of the ResNet50 model training time and mone-
tary cost of resources with different resource provisioning approaches.
The first four strategies provision function resources while the last two
DDNN training architectures are used for GPU instance resources.

Approaches
Provisioning plans Time Cost

#functions (#batch) #memory (seconds) (10−2$)

Random 4 (local batch: 64) 1, 536 MB Failure N/A
Naive [21] 8 (local batch: 64) 3, 008 MB 703.95 29.40

Siren [16] 9 (local batch: 128) 2, 816 MB 528.96 23.19

λDNN 8 (local batch: 128) 2, 560 MB 573.34 20.36

PS two ml.p3.8xlarge instances 189.67 154.77

Horovod two ml.p3.8xlarge instances 243.33 198.56

ones. This brings us an opportunity to judiciously provision
function resources to serverless DDNN training workloads,
with the aim of guaranteeing the objective DDNN training
performance while minimizing the monetary cost.

An illustrative example: To achieve predictable server-
less DDNN training performance and cost-efficient resource
provisioning of functions, we propose λDNN in Sec. 4 and
illustrate its effectiveness by conducting another motivation
experiment with the ResNet50 model [25]. We train the
model with 1 epoch and set the objective DDNN training
time as 600 seconds. As listed in Table 3, the random
strategy randomly selects 4 functions allocated with 1, 536
MB memory and it fails to train the ResNet50 model. This is
because the allocated function resources of 1, 536 MB are too
small to process the training of ResNet50. Though the naive
strategy [21] chooses the largest memory size, it exceeds the
objective training time by 17.3% with the highest budget,
as it chooses an inadequate small local batch size. Siren [16]
and λDNN both can train the workload within the objective
training time, but Siren [16] causes a higher monetary cost
by 13.9% compared with our λDNN strategy. As a result,
our λDNN strategy can finish the DDNN training within
the objective training time in a cost-efficient manner.

To obtain complementary insights, we have com-
pared the DDNN training performance and monetary cost
achieved on GPU instances with that on serverless func-
tions. Specifically, we deploy two ml.p3.8xlarge instances
(each is equipped with 4 GPUs and 32 vCPUs) to train the
ResNet50 model with Horovod and the PS architecture on
Amazon SageMaker [27]. As listed in Table 3, the DDNN
training time with Horovod and the PS architecture (i.e.,
GPU clusters) is 243.33 seconds and 189.67 seconds, respec-
tively, which are much (i.e., 1.35 – 2.02×) faster than that
with serverless functions. However, the serverless functions
can cut down a significant amount (i.e., 86.84% – 89.75%) of
monetary cost as compared with the GPU instances, while
guaranteeing the objective DDNN training performance.
Accordingly, provisioning serverless functions is a cost-
effective approach to execute DDNN training workloads.

Discussion: As the maximum memory size of functions
has recently increased to 10, 240 MB for AWS Lambda,
we have also re-conducted our motivation experiments by
allocating function memory with 4, 816 MB, 6, 624 MB,
8, 432 MB, and 10, 240 MB, respectively. As expected, our
experiment results confirm that the resource bottleneck of
PS still exists and the monetary cost is significantly in-

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 5

creased as large function memory is allocated, which are
consistent with our findings in Fig. 2, Fig. 4, and Table 2
above. Though the increase in function memory limitations
allows the resource-intensive workloads running in server-
less platforms, it in turn exacerbates resource underutiliza-
tion of functions and expands the searching space of the
optimal function resource provisioning plan. Fortunately,
our λDNN strategy is promising to provide cost-efficient
function resource provisioning plans to serverless DDNN
training workloads.

Summary: First, the serverless DDNN training perfor-
mance is essentially determined by the PS network band-
width and function CPU utilization. In particular, the re-
source bottleneck of PS and small local batch size are the
main factors that underutilize the function resources and
thus slow down the training rate. Second, judiciously opti-
mizing the resource provisioning of serverless functions can
achieve significant cost saving while delivering predictable
performance for DDNN training workloads.

3 MODELING DDNN TRAINING PERFORMANCE IN
SERVERLESS PLATFORMS

In this section, we first build an analytical model to predict
the serverless DDNN training performance, by explicitly
considering the network bandwidth of PS and CPU uti-
lization of provisioned functions. Next, we formulate the
function resource provisioning problem to minimize the
monetary cost with an objective DDNN training time, and
then analyze the problem complexity. The key notations in
our performance model are summarized in Table 4.

3.1 Predicting DDNN Training Time with Serverless
Function Resources
Serverless DDNN training can be divided into data loading
process and model training process, as illustrated in Fig. 1.
Specifically, each function (i.e., worker) first fetches a batch
of training data samples from Amazon S3 storage. Then, the
functions iteratively calculate the model gradients based on
a batch of fetched data samples, and upload the computed
model gradients to the PS where the gradients from all
functions are aggregated. Finally, the functions download
the updated model parameters from the PS to complete one
training iteration. In general, the DNN model requires a
number of iterations (denoted by k) to converge to an ob-
jective training loss value. Accordingly, the DDNN training
time T can be calculated by summing up the loading time
tload of data samples, and the computation time tcomp of
model gradients, as well as the communication time tcomm
of model parameters and gradients [2], which is given by

T = tload + k · (tcomp + tcomm). (1)

Given the number of training data samples nt, the number
of training epochs e (where one epoch denotes the training
of the whole nt data samples), and the global batch size bg ,
the number of training iterations k can be calculated by

k =
nt · e
bg

. (2)

Data loading process. To achieve fast convergence, we
consider the data communication of functions follows Bulk

TABLE 4: Key notations in our serverless function-based DDNN training
performance model.

Notation Definition

Bp
f Available network bandwidth between a function and PS

Bs
f Available network bandwidth between a function and S3

Bp Network bandwidth of the PS nodes
Bs Disk I/O bandwidth of the S3 storage
R Training rate of a single function
m Allocated function memory size
n Number of provisioned functions

bl, bg Local, global batch size of training data samples
dt, nt Size, number of training data samples
dm Size of model parameters and model gradients
k, e Number of training iterations, epochs
tcomp Computation time for each training iteration
tcomm Data communication time for each training iteration
tload Data loading time of training data samples

Synchronous Parallel (BSP) protocol, which has been widely
used in production machine learning clusters [20]. To effec-
tively train the DNN model, we also simply assume that
the training data samples are evenly partitioned across the
provisioned functions. Accordingly, tload is calculated as

tload =
dt

n ·Bsf
, (3)

where Bsf denotes the available network bandwidth be-
tween the function and S3 storage. dt is the size of training
dataset and n denotes the number of provisioned functions.

Model training process. For each iteration, each provi-
sioned function trains a set of data samples with the local
batch size (denoted by bl). Given a local batch size, the
total number of data samples processed in one iteration (i.e.,
global batch size bg = bl ·n) gets larger as more functions are
provisioned. Moreover, the training rate (i.e., the processing
rate of data samples, denoted by R) of a function is consid-
ered as the same over the iterations with the BSP protocol.
Accordingly, given n provisioned functions, we estimate the
computation time tcomp of model gradients as

tcomp =
bg
n ·R

=
bl
R
. (4)

In addition, the data communication time tcomm of each it-
eration includes the network transfer time to upload (push)
model gradients to the PS and download (pull) the model
parameters from the PS, as shown in Fig. 5. Given the size
of model parameters dm, which is practically the same as
the size of model gradients [23], we can calculate the data
communication time tcomm as

tcomm =
2 · dm
Bpf

, (5)

where Bpf denotes the available network bandwidth be-
tween a function and PS nodes.

We proceed to model the training rate R of a single
function and the network bandwidth (i.e., Bpf , Bsf). As
discussed in Sec. 2.1, the CPU capacity of functions is actu-
ally proportional to the allocated memory of functions [4].
Accordingly, the computation time is highly related to (i.e.,

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 6

λ

...
S3 storage

PS

...

training data samples

model gradients &
parameters

Fig. 5: Data communication between functions and PS nodes, as well
as the training data loading between functions and S3.

in proportion to) the function memory size m, as evidenced
by Sec. 2.2. We formulate the training rate of a function as

R = α1 ·m+ β1, (6)

where α1 and β1 are model coefficients. In particular, the
network bandwidth Bpf between a function and PS (i.e., EC2
instances) is actually independent of the function memory
as evidenced by our experiment results in Table 2. Accord-
ingly, it is bounded by the PS network bandwidth for each
function Bp

n , as the network bandwidth of PS can become
bottleneck (as analyzed by Sec. 2.2). Meanwhile, the network
bandwidth Bsf between a function and S3 is linear to the
function memory, and it is bounded by the I/O bandwidth
of S3 storage Bs. As a result, we formulate Bpf and Bsf as

Bpf = min
(
Bmaxf ,

Bp
n

)
, (7)

Bsf = min(Bf , Bs) = min
(
α2 ·m+ β2, Bs

)
, (8)

where α2 and β2 are model coefficients, and Bmaxf denotes
the fixed network bandwidth between a function and an EC2
instance. By substituting Eq. (2) – Eq. (8) into Eq. (1), we find
that the DDNN training time T is actually decided by the
number n and memory size m of provisioned functions as
well as the local batch size bl, which is denoted by a triple
〈n, m, bl〉. While simple, our model is effective enough to
predict the serverless DDNN training performance. We will
evaluate the model accuracy in Sec. 5.2.

Obtaining model parameters: Based on the above, the
parameters of our DDNN training performance model in-
clude five workload-specific parameters dt, nt, dm, αi, βi, and
three platform-specific parameters Bp, Bmaxf , Bs. Specifically,
the input dataset size dt, the number of data samples
nt, and the model size dm can be easily obtained, once
the DDNN training workload (i.e., the DNN model and
training dataset) is submitted to the serverless platform.
Furthermore, the model coefficients αi, βi in Eq. (6) and
Eq. (8) can be obtained by workload profiling. Specifically,
we profile (i.e., train) the DNN model on a single one
function with a small number (i.e., 50) of iterations, and
we record the training rates and the network bandwidth
between the function and S3 under different function mem-
ory sizes. To acquire model coefficients, we fit the recorded
data including the training rates and network bandwidth
using the linear regression method [28]. In addition, the
network bandwidth Bp and Bmaxf can be measured running
the netperf tool in an EC2 instance (i.e., the PS node) and
a function, respectively. The disk I/O bandwidth Bs of S3

Epoch
0 2 4 6 8 10

T
ra

in
in

g
lo

ss
 v

al
ue

0

0.5

1

1.5

2

2.5
b = 512
b = 128
b = 32

Fig. 6: Fitting training loss of cifar10 DNN model with different global
batch sizes (e.g., bg = 512, 128, 32).

storage can be obtained by transferring data from an EC2
instance to S3 by AWS CLI.

Identifying local and global batch sizes: To examine the
relationship between DDNN training loss and global batch
size, we collect the training loss values of cifar10 DNN
model2 with six different global batch sizes (i.e., 16, 32, 64,
128, 256, and 512). As shown in Fig. 6, the training loss
highly depends on the number of epochs e and the global
batch size bg [23]. The model requires more epochs to reach
an objective training loss value (i.e., converges slowly), as
bg gets larger (when bl is fixed and more functions are pro-
visioned). To guarantee fast model convergence, we simply
set a maximum global batch size bmaxg (e.g., 1, 024) [10] for
DDNN training. Meanwhile, we identify a local batch size
bfl for the DNN model to achieve relatively high function
CPU utilization (as evidenced by Sec. 2.2), as long as the
global batch size (i.e., bfl · n) is below bmaxg . Accordingly, the
local batch size bl can be set as

bl =

{
bfl bfl · n ≤ bmaxg ,
bmax
g

n otherwise.
(9)

We obtain bfl for each DNN model to achieve high function
CPU utilization (e.g., ≥ 80%) during the workload profiling
on a single function.

3.2 Analyzing Resource Provisioning Optimization
Problem of Serverless Functions
Based on our DDNN training performance model above,
we further formulate the resource provisioning optimization
problem of serverless functions. Such an optimization prob-
lem is defined as follows: Given the unit price of functions p
and the objective DDNN training time To, how can we provision
the number n and memory size m of functions to guarantee the
performance of DDNN training workloads, while minimizing the
monetary cost of provisioned function resources. Accordingly,
our optimization problem can be formally defined as

min
m,n

C = m · n · p · T (10)

s.t. T ≤ To, (11)

m ∈ {mstep · j | j ≤
mmax

mstep
, j ∈ Z+}, (12)

n ∈ Z+, (13)

where Eq. (10) defines our objective function which mini-
mizes the monetary cost of function resource provisioning,

2. The tutorial DNN model [29] defined in the project path “/mod-
els/tutorials/image/cifar10/” of Tensorflow.

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 7

subject to the following three constraints. Specifically, Con-
straint (11) guarantees the DDNN training time below the
objective time To. Constraint (12) denotes that the allocated
function memory is below the maximum size mmax with
the memory increment ofmstep (e.g., 64 MB). Constraint (13)
indicates that the number of provisioned functions requires
to be a positive integer.

Problem analysis: By substituting Eq. (1) – Eq. (9) into
Eq. (10), the monetary cost C is actually affected by m and
n. Obviously, the training time T in Constraint (11) and the
monetary cost C is non-linear with m and n. Accordingly,
our optimization problem turns out to be in the form of non-
linear integer programming, which is NP-hard to solve [30].
We turn to designing a heuristic algorithm in Sec. 4 to solve
such a resource provisioning optimization problem.

To improve the algorithm efficiency, we proceed to ana-
lyze the lower bound nlower and upper bound nupper of pro-
visioned functions. According to Eq. (7), the network band-
width of functions can be underutilized as more functions are
provisioned and thus saturates the PS network bandwidth.
To avoid the resource bottleneck of PS and fully utilize the
function resources (i.e., CPU, network bandwidth), we have
Bp

n ≥ Bmaxf . Accordingly, the upper bound of provisioned
functions nupper is calculated as

nupper =

⌊
Bp

Bmaxf

⌋
. (14)

According to Constraint (11) (i.e., T ≤ To), we substitute
Eq. (3) – Eq. (5) into Eq. (1), and calculate the lower bound
of provisioned functions nlower as follows:

nlower =


⌈
λ
κ + µ

bfl ·κ

⌉
bfl · n ≤ bmaxg ,

max

(⌊
bmax
g

bfl

⌋
,
⌈

bmax
g ·λ

bmax
g ·κ−µ

⌉)
otherwise,

(15)
where λ = Bpf · (R · dt+nt · e ·Bsf), κ = To ·R ·Bsf ·B

p
f , and

µ = 2 · dm · nt · e ·Bsf ·R denote the coefficients to calculate
nlower. In fact, two model parameters (i.e., Bsf , R) are the
functions of m, according to Eq. (6) and Eq. (8). In more
detail, when nlower >

bmax
g

bfl
, it indicates that the objective

training time To can only be achieved by fixing the global
size as bmaxg , so that the model training convergence can

be guaranteed. When nupper ≤
bmax
g

bfl
, it implies that we can

meet the objective training time by fixing the local batch size
as bfl , while achieving high function utilization. As a result,
we are able to narrow down the search space of provisioned
functions within the range from nlower to nupper by Eq. (14)
and Eq. (15), given an allocated function memory size m.

4 DESIGN OF λDNN: GUARANTEEING PERFOR-
MANCE OF SERVERLESS DDNN TRAINING WORK-
LOADS

Based on our serverless DDNN performance model and re-
source provisioning optimization problem defined in Sec. 3,
we further present λDNN in Alg. 1, a simple yet effective
function resource provisioning strategy in the serverless
platform (e.g., AWS Lambda [4]). Our λDNN strategy aims
to provide predictable performance for serverless DDNN

Algorithm 1: λDNN: Cost-efficient function re-
source provisioning strategy for predictable perfor-
mance of serverless DDNN training workloads.

Input: DDNN training workload with its input dataset size dt,
number of data samples nt, model size dm, and the
objective training time To and number of epochs e.

Output: Cost-efficient function resource provisioning plan
(i.e., the number n and memory size m of functions).

1: Initialize: Cmin ←∞; m← 0; n← 0;
2: Acquire platform-specific parameters Bp, Bmax

f , and Bs;
3: Obtain model-specific parameters αi, βi, and bfl , as well as

the minimum memory size mmin to train the DNN model,
through workload profiling on a single function;

4: Set mi ← mmin;
5: while mi ≤ the maximum memory size mmax do
6: Calculate the DDNN training rate R← Eq. (6), and

function network bandwidth Bs
f ← Eq. (8);

7: Calculate the lower bound nlower ← Eq. (15), and the
upper bound nupper ← Eq. (14);

8: for all ni in [nlower, nupper] do
9: Calculate T ← Eq. (1), and C ← Eq. (10);

10: if T ≤ To && C < Cmin then
11: Record the resource provisioning plan m← mi,

n← ni, and its monetary cost Cmin ← C;
12: break;
13: end if
14: end for
15: Set mi ← mi +mstep;
16: end while

training workloads, while minimizing the monetary cost of
function resource provisioning.

4.1 Algorithm Design
How does λDNN work? Given a DDNN training workload
(i.e., the DNN model and training dataset) with the objective
training time To and the number of training epochs e,
λDNN first initializes the number and allocated memory
size of provisioned functions as well as the monetary cost.
According to the parameter acquisition method elaborated
in Sec. 3.1, λDNN then obtains the platform-specific parame-
ters (i.e., Bp, Bmaxf , Bs) and model-specific parameters (i.e.,
αi, βi, b

f
l) through the workload profiling on a single

function (lines 1-3). To speedup the algorithm execution,
λDNN also identifies the minimum function memory size
mmin to train the DNN model, and it iteratively allocates
the function memory size to the maximum value mmax

with the memory increment of mstep (e.g., 64 MB) (lines
4-5). For each allocated function memory size mi, λDNN
further calculates the DDNN training rate R by Eq. (6), and
the network bandwidth Bsf between a function and S3 by
Eq. (8). To narrow down the search space of the number of
provisioned serverless functions, λDNN proceeds to calcu-
late the upper and lower bounds of n (lines 6-7). By iterating
all the possible numbers of provisioned functions in the
range from nlower to nupper , λDNN is able to calculate the
DDNN training time T by Eq. (1) and the monetary cost C
using Eq. (10) (lines 8-9). Finally, λDNN identifies the cost-
efficient function resource provisioning plan including the
number of serverless functions n and the allocated memory
size m, with the guaranteed training time (T ≤ To) and the
minimum monetary cost (lines 10-13).

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 8

Remark: The complexity of Alg. 1 is in the order of
O(p·q), where p = nupper−nlower+1 denotes the cardinality
of search space of n, and q denotes the number of possible
function memory sizes, which is equal to mmax−mmin

mstep
+ 1.

The minimum function memory size mmin can improve
the algorithm efficiency, as the DNN model size is large
in common (e.g., mmin is 2, 432 MB for ResNet50 [25]).
Accordingly, the complexity of Alg. 1 can be reduced to
O(p), which indicates that the computation overhead of
our λDNN strategy can be well controlled, even when the
maximum memory size mmax is increased to 10, 240 MB. In
particular, λDNN identifies a sub-optimal function resource
provisioning plan, as we narrow down the search space of
function numbers and memory sizes. We will validate the
lightweight runtime overhead of λDNN in Sec. 5.4.

4.2 Implementation of λDNN
We implement a prototype of λDNN framework running on
AWS Lambda [4], with over 1, 500 lines of Python, C++, and
Linux Shell codes which are publicly available on GitHub3.
To enable efficient network communication between the
functions and PS, we adopt an open-source asynchronous
messaging library ZeroMQ4. Specifically, λDNN comprises
two pieces of modules: a training performance predictor and
a function resource provisioner as illustrated in Fig. 7. Specif-
ically, users first submit a DDNN training workload (i.e.,
the DNN model and training dataset) and the objective
training time to the λDNN portal, which can be deployed
on either an EC2 instance or a Lambda function. With the
model parameters obtained by λDNN portal, the performance
predictor then predicts the DDNN training time using our
performance model designed in Sec. 3. To guarantee the
objective DDNN training time, the resource provisioner fur-
ther identifies the cost-efficient serverless function resource
provisioning plan using Alg. 1 devised in Sec. 4. Once the
cost-efficient resource provisioning plan is determined, the
function allocator finally sets up a number of functions with
an appropriate amount of memory using the command-line
tools for serverless platforms (e.g., AWS CLI). In particular,
we provision the serverless functions within one Amazon
Virtual Private Cloud (VPC)5 to avoid network traffic across
different Availability Zones.

Why to deploy λDNN? The benefit of deploying λDNN
in serverless platforms is twofold. From the user’s perspec-
tive, λDNN can guarantee the DDNN training performance
while saving the training budget. Accordingly, deploy-
ing λDNN can attract the cloud users to migrating their
DDNN training workloads to serverless platforms. From
the provider’s perspective, λDNN can achieve the objective
DDNN training time by provisioning less function resources
compared with the state-of-the-art function resource provi-
sioning strategies (i.e., Siren [16]). As a result, λDNN can
reduce the resource cost to complete a DDNN training
workload, thereby serving more DDNN training requests
for a serverless computing platform. We will evaluate the
benefits of λDNN from both the perspectives of users and
providers in Sec. 5.3.

3. https://github.com/icloud-ecnu/lambdadnn
4. https://zeromq.org
5. https://aws.amazon.com/vpc/

Training Performance
Predictor �6HF����

Function Resource
Provisioner (Sec. 4)

Submit the DNN model,
training dataset, and the
objective training time

λDNN portal

λDNN

Function Allocator

λ λ

AWS CLI

Serverless computing platform
(e.g., AWS Lambda)

DNN model, training dataset

Cost-efficient function
resource provisioning

plan (i.e., n, m)

Model-specific, and
platform-specific parameters

Guarantee the objective
DDNN training time

Amazon VPC

Fig. 7: λDNN prototype in serverless computing platforms.

We discuss two practical issues related to the imple-
mentation of λDNN as follows. First is how to deal with the
timeout of serverless functions. As illustrated in Table 1, the
serverless functions are terminated once the function expires
at a certain amount of time (e.g., 900 seconds for Lambda
functions), which brings unpredictable performance over-
head to the long-running DDNN training workloads. λDNN
simply leverages the proactive checkpointing technique to mit-
igate such performance overhead in a lightweight manner.
Specifically, λDNN first leverages the performance model in
Sec. 3 to predict the number of iterations kcheck that can
be successfully trained before the expiration of functions
(e.g., 30 seconds ahead of function expirations). After kcheck
iterations, λDNN then proactively checkpoints the function
state (e.g., the current iteration number, local batch size,
and model parameters) to the S3 storage [22]. Finally, the
function allocator of λDNN relaunches a set of functions to
download the function states and training dataset from S3,
and restores the DDNN training process. In particular, the
function relaunch process is lightweight (i.e., warm start [31])
as the relaunched functions can be online within several
seconds in our experiments.

Second is how to train large DNN models in λDNN. λDNN
currently supports data parallelism, and it requires to be
extended to support model parallelism when extremely large
DNN models are trained in serverless functions. For in-
stance, the VGG19 model (with the model size of 576
MB) generates too large temporary files that require to be
stored in the /tmp directory of functions (with the storage
limitation of 512 MB as listed in Table 1). Accordingly, the
large DNN model requires splitting into small partitions
(i.e., model parallelism) so that each partition of the DNN
model can be fitted and trained in the function.

5 PERFORMANCE EVALUATION

In this section, we evaluate λDNN by carrying out a set
of prototype experiments with four representative DNN
models (as listed in Table 5) trained on AWS Lambda [4],
as well as large-scale simulations driven by the Microsoft
Azure trace [32]. Our prototype experiments and trace-
driven simulations seek to answer the following questions:

• Accuracy: Can our λDNN performance model accu-
rately predict the performance of serverless DDNN
training workloads? (Sec. 5.2)

• Effectiveness: Can our λDNN resource provisioning
strategy deliver predictable performance to server-

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 9

960 1472 1984 2496 3008
20

30

40

50

60

70

80

Memory size (MB)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) λDNN Predicted

Observed

(a)

2496 2624 2752 2880 3008
300

350

400

450

500

550

Memory size (MB)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) λDNN Predicted

Observed

(b)

Fig. 8: λDNN prediction for the training time of (a) 1DCNN model and
(b) ResNet50 model with different function memory sizes.

4 6 8 10 12
0

200

400

600

800

Number of functions

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) λDNN Predicted

Observed

(a)

4 6 8 10 12

200

400

600

800

Number of functions

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) λDNN Predicted

Observed

(b)

Fig. 9: λDNN prediction for the training time of (a) ESPCN model and
(b) MobileNet model with different numbers of provisioned functions.

TABLE 5: Configurations and model-specific parameters of four repre-
sentative DDNN training workloads.

Model ESPCN 1DCNN MobileNet ResNet50

Dataset BSDS500 IMDB cifar10 cifar10

#dataset (MB) 128.7 41.1 148 148

#model (MB) 0.34 2 18 98

bfl 16 32 64 128

bmax
g 256 512 512 1, 024

α1, β1 0.001, −2.3 0.1, −8.8 0.03, 5.6 0.003, 11.3

less DDNN training workloads, while saving the
monetary cost? (Sec. 5.2 & Sec. 5.3)

• Overhead: How much runtime overhead does
λDNN practically bring? (Sec. 5.4)

5.1 Experimental Setup
Configurations of serverless DDNN training cluster: We
set up a serverless training cluster according to Fig. 1 in
the us-east-1 region. Specifically, we use an m5.large
EC2 instance (equipped with 2 vCPUs, 8 GB memory) to
serve as the PS, and the Lambda functions are served as the
workers. We set up an S3 bucket to store the training dataset
in us-east-1 to save the budget. In particular, we measure
the three platform-specific parameters (i.e., Bp, Bmaxf , Bs) us-
ing the netperf tool and Boto3 SDK6 according to Sec. 3.1.
The network bandwidth of PS Bp and a function Bmaxf is
set as 1.2 GBps and 84 MBps, respectively, and the disk I/O
bandwidth of S3 Bs is set as 115 MBps.

DDNN training workloads and datasets: We select four
representative DNN models as listed in Table 5, which
includes (1) the ESPCN model [33] trained on the BSDS500
dataset for super-resolution image reconstruction, (2) the
1DCNN model [34] trained on the IMDB dataset for text
classification, and (3) the MobileNet model [24] trained on
the cifar10 dataset for image classification, as well as (4)
the ResNet50 model [25] trained on the cifar10 dataset
for image classification. Through workload profiling on a
single function, we are able to obtain the key model-specific
parameters as elaborated in Table 5.

Comparable function provisioning strategies and met-
rics: We compare λDNN with the following two strategies:
(1) Naive provisioning [21], which always provisions the
largest memory size to functions and randomly chooses
the number of functions for DDNN training workloads; (2)

6. https://boto3.amazonaws.com/v1/documentation/api/latest/
index.html

Modified Siren [16], which leverages the DRL method to
select the adequate number and memory size of functions
for achieving predictable performance while minimizing the
monetary cost of DDNN training workloads, as the stock
Siren strategy [16] aims to reduce the DDNN training time
given a budget. We focus on two key metrics including
the DDNN training time and the monetary cost for each
resource provisioning plan. We illustrate the DDNN train-
ing performance with error bars of standard deviation by
repeating the DDNN training workload for three times.

5.2 Effectiveness of λDNN
Can λDNN accurately predict the serverless DDNN train-
ing time? We first examine our λDNN predicted training
time of 1DCNN and ResNet50 by varying the function
memory size with a fixed number (i.e., 8) of functions.
Specifically, we train 1DCNN and ResNet50 for 3 epochs
and 1 epoch, respectively. We start the minimum function
memory sizemmin as 960 MB for 1DCNN and 2, 496 MB for
ResNet50, respectively. As shown in Fig 8, our performance
model can well predict the DDNN training time with a
prediction error of 0.98% – 6.0%, as the function memory
increases to 3, 008 MB7. Fig 8(a) depicts that our predicted
training time of 1DCNN is basically faster than the ob-
served time. This is because small DNN models (dm = 2
MB for 1DCNN) cannot fully utilize the function network
bandwidth, which makes our performance model overes-
timate the training performance especially for small DNN
models. Moreover, Fig. 8(b) shows that λDNN first overes-
timates and then underestimates the training performance
for ResNet50, which implies that our performance model is
insensitive to the allocated function memory for ResNet50.
This is because the serverless training performance of large
DNN models is unstable with a large standard deviation
(i.e., up to 34.98 seconds), which inevitably makes our work-
load profiling inaccurate for ResNet50. To effectively train
large DNN models in functions, we will extend λDNN to
support model parallelism (i.e., splitting models into several
parts) of DDNN training, as discussed in Sec. 4.2.

We further examine the λDNN predicted training time
for ESPCN and MobileNet by varying the number of
functions from 4 to 12 with a fixed amount of function
memory (i.e., 3, 008 MB). We train ESPCN and MobileNet
for 5 epochs and 3 epochs, respectively. As depicted in
Fig. 9, λDNN can basically predict the DDNN training

7. Our experiments are conducted on July 2020 (mmax = 3, 008 MB),
and λDNN can still work well in the scenario of mmax = 10, 240 MB
when our paper has been accepted on January 17th, 2021.

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 10

(3 0 0 8 , 1 0) (3 0 0 8 , 2) (3 0 0 8 , 1)

(2 6 2 4 , 8)
(2 3 0 4 , 4) (2 2 4 0 , 9)

(1 0 8 8 , 1 0)
(1 3 4 4 , 7)

(1 7 9 2 , 5)

9 0 1 5 0 2 1 01 0 2 4
1 5 3 6
2 0 4 8
2 5 6 0
3 0 7 2
3 5 8 4
4 0 9 6

Me
mo

ry
siz

e(
MB

)

O b j e c t i v e t r a i n i n g t i m e (s e c o n d s)

N a i v e
M o d i f i e d S i r e n
� � � �

0
5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Tra
inin

g t
im

e(
se

co
nd

s)

o b j e c t i v e
t i m e

(a)

(3 0 0 8 , 6) (3 0 0 8 , 5) (3 0 0 8 , 8)

(2 8 1 6 , 9) (2 7 5 2 , 9)

(3 0 0 8 , 7)

(2 5 6 0 , 8)

(2 8 1 6 , 6)
(2 7 5 2 , 6)

6 0 0 7 0 0 8 0 02 3 0 4

2 5 6 0

2 8 1 6

3 0 7 2

3 3 2 8

3 5 8 4

Me
mo

ry
siz

e(
MB

)

O b j e c t i v e t r a i n i n g t i m e (s e c o n d s)

o b j e c t i v e t i m e

N a i v e
M o d i f i e d S i r e n
� � � �

Tra
inin

g t
im

e(
se

co
nd

s)

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

(b)

Fig. 10: Comparison of provisioned function resources and the obtained
DDNN training performance achieved by the naive, modified Siren,
and λDNN strategies, for training (a) the 1DCNN model and (b) the
ResNet50 model.

90 150 210
0.000

0.008

0.016

0.024

0.032

Objective training time (seconds)

M
on

et
ar

y
co

st
 ($

)

Naive
Modified Siren
λDNN

(a)

600 700 800
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Objective training time (seconds)

M
on

et
ar

y
co

st
 ($

)

Naive
Modified Siren
λDNN

(b)

Fig. 11: Comparison of monetary cost of provisioned function resources
by the naive, modified Siren, and λDNN strategies for training (a) the
1DCNN model and (b) the ResNet50 model.

performance with a prediction error of 0.20% – 10.27%,
as the number of provisioned functions increases. Specifi-
cally, Fig. 9(a) shows that λDNN slightly overestimates the
DDNN training performance for ESPCN simply because its
model size is small (i.e., 348 KB) as discussed in Fig. 8(a).
In particular, Fig. 9(b) illustrates that the prediction error of
our performance model gets large (from 0.43% to 8.6%) as
the function number increases. This is because the PS has to
wait for all functions to perform the gradient aggregation,
and such a parameter synchronization [20] overhead cannot
be overlooked as more functions are provisioned.

Can λDNN guarantee the objective DDNN training
time? We evaluate the predictability of DDNN training
performance under the naive [21], modified Siren [16], and
λDNN resource provisioning strategies with two typical
DNN models (i.e., 1DCNN and ResNet50). Specifically, we
train 5 epochs for 1DCNN and 1 epoch for ResNet50. We
set three different objective training time as 90, 150, 210
seconds for 1DCNN and 600, 700, 800 seconds for ResNet50,
respectively. As shown in Fig. 10, we observe that our λDNN
strategy can leverage less provisioned function resources to
guarantee the objective training time, as compared with the
other two strategies. Though the modified Siren strategy can
achieve the least DDNN training time, it over-provisions the
function resources and thus degrades the function resource
utilization as analyzed in Sec. 2.2. In addition, the naive
strategy is likely to violate the objective training time as it
randomly selects provisioned function resources.

In more detail, with the objective time of 90 seconds for
1DCNN in Fig 10(a), the naive strategy always allocates the
largest memory size (i.e., 3, 008 MB) and randomly provi-
sions 10 functions. The observed training time of such a pro-
visioning plan is 53.6 seconds which is almost the same as
that of another (2, 624, 8) provisioning plan (i.e., 2, 624 MB
memory and 8 functions) obtained by the modified Siren
strategy. Though λDNN achieves the largest model training
time (i.e., 86.2 seconds), it provisions the least amount of
function resources (1, 088, 10) while completing the job
before the objective training time. Our experiment results
obtained on ResNet50 in Fig. 10(b) are similar to that on
1DCNN. As a result, over-provisioning function resources
is likely to degrade the DDNN training performance and
incur large monetary cost of provisioned function resources,
which will be analyzed as follows.

Can λDNN minimize the monetary cost of serverless
functions? As shown in Fig. 11, we observe that λDNN
always achieves the minimum monetary cost of resource

provisioning for DDNN training. Specifically, λDNN can
save the monetary cost by up to 19.7% and 57.9%, as
compared with the naive [21] and modified Siren [16]
provisioning strategies, respectively. Fig. 11(a) shows that
the naive strategy has the largest monetary cost because it
incurs resource over-provisioning (3, 008, 10) for 90 seconds
or under-provisioning (3, 008, 1) for 210 seconds. As an
example, though the naive strategy can save 38.7% training
time under the objective training time of 90 seconds, its
monetary cost is 57.9% higher than λDNN. As shown in
Fig. 11(b), the modified Siren still has higher monetary
cost than λDNN simply because it always over-provisions
function resources, as we have illustrated in Fig 10(b). The
rationale is that the modified Siren [16] adopts the DRL
method, which highly depends on the quality of training
data samples of DRL model. To achieve good performance,
the modified Siren is likely to train DRL model for each
DNN model using a number of data samples, while λDNN
builds a lightweight analytical performance model based on
the workload profiling for each DNN model only once.

Can λDNN handle the timeout of serverless functions?
To extend the DDNN training time to exceeding 15 minutes,
we set the training epochs of MobileNet model as 6, and its
objective training time To as 1, 200 seconds. To guarantee the
training performance, our λDNN strategy provisions 7 func-
tions with 1, 728 memory size, while the modified Siren [16]
and naive [21] strategies provision 10 functions with 2, 752
memory size and 4 functions with 3, 008 memory size, re-
spectively. The training time of MobileNet under λDNN and
modified Siren is 967.5 seconds and 738.9 seconds (both are
within 1, 200 seconds), respectively, while the naive strategy
cannot complete the DDNN training process because it does
not handle the function timeout. In particular, the modified
Siren over-provisions function resources compared with
λDNN so that the training process of MobileNet does not
encounter the function timeout (within 900 seconds). Nev-
ertheless, the modified Siren slightly incurs more monetary
cost than λDNN by 66.7%, and also the stock Siren [16]
does not reveal the implementation details on dealing with
the function timeout. In contrast, λDNN leverages proactive
checkpointing to deal with the function timeout, as elaborated
in Sec. 4.2. As shown in Fig. 12, we observe that the function
training rate is slightly impacted by our proactive check-
pointing for around 6 seconds (i.e., three iterations from
840 seconds to 846 seconds). As a result, λDNN brings an
acceptable checkpointing and restoration overhead to the
DDNN training performance.

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 11

Time (seconds)
700 750 800 850 900 950

T
ra

in
in

g
ra

te
 (

sa
m

pl
es

/s
ec

)

10

20

30

40

50

Restoration endsCheckpointing starts

Training ends

Fig. 12: Function training rate over
time during MobileNet training with
λDNN as function timeout occurs.

Function resources (n * MB)#104
0 4 8 12 16

C
D

F
 (

%
)

of
 J

ob
s

0

20

40

60

80

100

6DNN
Modified Siren
Naive

(a)

Training time (seconds)
400 600 800 1000 1200 1400

C
D

F
 (

%
)

of
 J

ob
s

0

20

40

60

80

100

6DNN
Modified Siren
Naive

Range of objective
training time

(b)

P r o v i d e r ' s U s e r ' s0

3 0

6 0

9 0

1 2 0

1 5 0

Re
so

urc
e c

os
t (M

B/s
ec

) N a i v e
 M o d i f i e d S i r e n
 � � � �

0 . 0

0 . 3

0 . 6

0 . 9

1 . 2

1 . 5

Mo
ne

tar
y c

os
t ($

)

P e r s p e c t i v e s
(c)

Fig. 13: CDF of (a) provisioned function resources and (b) DDNN training time of 117, 325 production jobs
from Microsoft Azure trace, and (c) the benefits of λDNN from the perspectives of both users and providers.

5.3 Large-scale Simulations Driven by Microsoft Azure
Trace

To illustrate the benefits of λDNN from the perspectives of both
cloud users and providers and obtain complementary insights,
we conduct large-scale simulations driven by the real-world
deep learning job trace [32] from Microsoft Azure. Specifi-
cally, we set up our simulation environment using 117, 325
production deep learning jobs from the real-world trace,
and 50, 000 functions with a maximum amount of 3, 008
memory. We randomly set the objective DDNN training
time in the range from 600 to 1, 200 seconds, and we extract
the submitted_time field in the production job trace [32]
as the start time for each job in our simulation.

As shown in Fig. 13(a), we observe that the modi-
fied Siren [16] and naive [21] strategies significantly over-
provision function resources (i.e., the product of function
number and memory size) to the jobs, while λDNN provi-
sions adequate function resources to guarantee the objective
DDNN training time. Specifically, our simulation results
reveal that λDNN can cut down the amount of provisioned
function resources by 68.5% and 77.2% on average for each
job, compared with the modified Siren and naive strategies,
respectively. Though the average training time for each job
under λDNN strategy is increased by 17.3% – 25.4% than
the other two strategies, λDNN can guarantee the objective
DDNN training time (i.e., the training time achieved by
λDNN is within the range from 600 to 1, 200 seconds), while
the naive strategy violates the objective time goals for a
number of jobs, as shown in Fig. 13(b). As revealed by our
simulation results, the modified Siren and naive strategies
complete the DDNN training before the objective time for
91.3% and 79.5% of jobs, respectively. In contrast, λDNN
can guarantee the objective training time for 99.98% of jobs.
This is because the DRL method [16] relies on the quality of
model training samples and its resource provisioning plans
cannot guarantee the given objective time. In particular,
λDNN fails to guarantee the performance of 0.02% of train-
ing jobs in the trace, simply because the function resources
are totally occupied by the current jobs and thus there lacks
available resources for these jobs.

Based on our simulation analysis above, we further
illustrate the benefits of λDNN in Fig. 13(c) from the per-
spectives of both cloud users and providers. Specifically, we use
the resource cost to represent the unit cost for serverless
computing providers, which indicates the average amount
of resources required to execute DDNN training workloads
for one second. Under the circumstances of guaranteeing
the objective training time, the less resource cost will make

the provider save more function resources and serve more
DDNN training requests. As an example in Fig. 10(b), to
train ResNet50 within 800 seconds, the resource cost for the
providers is 44.3 MB/sec, 36.2 MB/sec, and 24.3 MB/sec
with the naive, modified Siren, and λDNN strategies, re-
spectively. Similarly in our trace-driven simulation, λDNN
can save the resource cost for the providers by 74.9% and
80.6% on average for each job, compared with the modified
Siren and naive strategies, respectively. Meanwhile, we cal-
culate the average monetary cost for serverless computing
users, λDNN can save the monetary cost by 60.7% and
72.1% on average for each job, compared with the modified
Siren and naive strategies, respectively. Such a simulation re-
sult is consistent with our prototype experiments in Sec. 5.2.

5.4 Runtime Overhead of λDNN
We evaluate the runtime overhead of λDNN in terms of the
profiling overhead of serverless DDNN training workloads
and the computation time of λDNN resource provisioning
strategy (i.e., Alg. 1). Specifically, we launch a Lambda
function allocated with 3, 008 MB memory to profile the
DDNN training workload. With a small set (e.g., 2%) of
data samples, we train each DNN model on the single
launched function for 50 iterations. The profiling time for
the training of ESPCN [33], 1DCNN [34], MobileNet [24],
and ResNet50 [25] models is 114.37, 15.72, 128.36, and
310.34 seconds, respectively. The result above shows that
the profiling overhead highly depends on the type of DNN
models and can be within several minutes. After obtain-
ing the performance model parameters, we also run our
λDNN strategy in Alg. 1 on the single launched function.
The computation overhead of λDNN for ESPCN, 1DCNN,
MobileNet, and ResNet50 models is 0.99, 1.38, 1.15, and
0.61 milliseconds, respectively. Even when the maximum
function memory size mmax is increased to 10, 240 MB, the
computation overhead of λDNN is within 5.27 milliseconds
for the four workloads. This is because the computation
time of Alg. 1 is linear to the lower and upper bounds of
the number and memory size of provisioned functions, as
analyzed in Sec. 4.1. As a result, the runtime overhead of our
λDNN strategy is well controlled and practically negligible.

6 RELATED WORK

Performance characterization and optimization of server-
less applications: There have been works on characterizing
the function performance from the user’s perspective (i.e., out-
side of serverless platforms) [35]. For instance, two empirical

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 12

studies are conducted on public serverless platforms such as
AWS Lambda [4] and Azure Functions [6], in order to evalu-
ate the performance of distributed data processing [36] and
DNN inference workloads [31], respectively. To particularly
optimize DDNN training performance, Feng et al. [37] de-
sign a multi-layer PS architecture with serverless functions
to reduce the latency of transferring gradients. As functions
cannot directly communicate with each other, however, such
a hierarchical PS structure tends to bring much communica-
tion overhead to DDNN training. To tackle such function
communication barriers, a recent work named Cirrus [21]
deploys a cloud VM as the data store (i.e., the PS) to facilitate
the execution of end-to-end serverless machine learning
workloads. λDNN differs from prior works above in that:
(1) We characterize serverless DDNN training performance
in terms of PS network bandwidth, function CPU utilization,
and local batch size. (2) We focus on guaranteeing DDNN
training performance in serverless platforms, through the
cost-efficient provisioning of function resources.

To particularly optimize the performance of serverless
applications from the provider’s perspective (i.e., inside the
serverless platforms), Shahrad et al. [38] fully identify a set
of system-level performance overheads such as container-
ization, cold-start latency, and inter-function interference. To
mitigate the performance overhead of function cold starts,
Catalyzer [13] designs a generic serverless sandbox system
to restore functions from the checkpoint image. Shahrad et
al. [39] further optimize the keep-live value and pre-warm
functions based on the invocation patterns of real-world
function workloads. To provide resource isolation among
functions, EMARS [40] designs a predictive model to limit
the function memory size according to the workload usage,
and FAASM [12] develops a lightweight isolation abstrac-
tion for data-intensive serverless computing. To achieve
predictable performance for serverless applications, several
works (e.g., [41]) propose the centralized resource scheduler
that can balance the load of functions [42], and dynami-
cally allocates adequate amounts of CPU and memory re-
sources to functions [43]. Orthogonal to prior works above,
λDNN focuses on optimizing the function resource provi-
sioning plans to deliver predictable performance to server-
less DDNN training workloads from the user’s perspec-
tive, while reducing the resource cost from the provider’s
perspective. Besides, we experimentally identify negligible
function performance interference in AWS Lambda [4].

Resource provisioning of serverless functions: There
have been several recent studies devoted to provisioning
adequate function resources to serverless applications. For
example, an open-source resource provisioning tool named
AWS Lambda Power Tuning [44] leverages Step Functions8

to help users fine-tune the optimal memory allocation of
Lambda functions. However, it requires running the user’s
workload with all the possible memory configurations,
which inevitably brings non-negligible profiling overhead.
To improve the cost efficiency of resource provisioning,
MArk [15] and SplitServe [45] jointly provision VM in-
stances and serverless functions for machine learning infer-
ence workloads and complex workloads (e.g., Spark jobs),
respectively. To meet the workload delay constraint and

8. https://aws.amazon.com/step-functions/

minimize user budget, COSE [19] leverages Bayesian Op-
timization to find the optimal memory size for serverless
functions, while λDNN relies on a simple analytical per-
formance model to find cost-efficient serverless resources
solely for DDNN training workloads. To optimize the per-
formance of machine learning training workloads under a
given budget in serverless platforms, a more recent work
named Siren [16] adopts the DRL method to dynamically
adjust the number and memory size of provisioned func-
tions. Our work differs from Siren [16] in that: (1) Siren relies
on a black-box method (i.e., DRL) to provision serverless
functions, while λDNN explicitly builds an analytical model
to predict DDNN training performance. (2) Siren stores
model parameters in the shared storage (e.g., S3), where the
gradient aggregation cannot be directly calculated and thus
causes non-negligible model update overhead. (3) λDNN
explicitly considers the performance degradation caused by
the PS resource bottleneck and inadequate small local batch
size, which severely impacts the function CPU utilization in
serverless platforms.

Cache management in serverless platforms: Several
works focus on designing a cache storage system to fa-
cilitate the communication among functions. For example,
Pocket [46] leverages the storage of different VM instance
types to build a cost-effective ephemeral storage system for
serverless applications. Locus [47] judiciously combines the
slow but cheap storage (i.e., Amazon S3 [22]) and fast but
expensive storage (i.e., Redis) to achieve the best perfor-
mance with lower cost for serverless analytics jobs. Instead
of Amazon S3 and ElastiCache9, a recent work [26] designs
an elastic cost-effective caching system named InfiniCache,
which leverages the ephemeral serverless function memory
resources to cache objects in the cloud. Orthogonal to the
prior works above, λDNN can adopt these caching systems
to make serverless DDNN training more cost-effective. To
particularly handle the function timeout, Kappa [48] adopts
the traditional checkpointing mechanism to store the func-
tion state in Amazon S3 or Redis, while λDNN develops a
proactive checkpointing technique to significantly reduce the
checkpointing overhead, as validated in Sec. 5.2.

Performance modeling of DDNN Training: A number
of works are devoted to predicting DDNN training perfor-
mance. For example, Yan et al. [49] and Paleo [50] both build
a fine-grained model to predict the training time of DNN
models using a set of factors like DNN architecture, choices
of parallelism methods and hardware, as well as communi-
cations strategies. Without a prior knowledge of the training
model and hardware, Optimus [23] and CM-DARE [51] build
a resource-performance regression model by online fitting
the training speed. However, such model fitting brings non-
negligible overhead and the model accuracy relies on the
quality of fitting data samples. A more recent work named
Cynthia [2] predicts the DDNN training performance in
cloud VMs by considering the CPU and network bandwidth
bottleneck and hardware heterogeneity. Different from prior
works above, our performance model in λDNN builds a
high-level DDNN training performance model which solely
works in serverless platforms, by leveraging the PS network
bandwidth and function CPU utilization.

9. https://aws.amazon.com/elasticache/

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 13

7 CONCLUSION AND FUTURE WORK

To achieve predictable performance and save the training
budget for serverless DDNN training workloads, this pa-
per presents the design and implementation of λDNN, a
cost-efficient function resource provisioning framework in
serverless platforms. Leveraging the network bandwidth of
PS and function CPU utilization, λDNN builds a lightweight
analytical DDNN training performance model, which ex-
plicitly considers the performance degradation caused by
the resource bottleneck of PS and small local batch size.
Based on such a performance model, λDNN is able to pro-
vision an adequate number and memory size of functions
to train the DNN model within an objective training time,
while minimizing the monetary cost of provisioned func-
tion resources. Extensive prototype experiments on AWS
Lambda and large-scale trace-driven simulations demon-
strate that, λDNN can achieve predictable DDNN training
performance and save the monetary cost of provisioned
functions by up to 66.7%, in comparison to the state-of-the-
art function resource provisioning strategies.

We plan to extend λDNN in the following directions: (1)
implementing the model parallelism to support extremely
large DNN model training in λDNN, and (2) supporting
the GPU or TPU architecture once the serverless platforms
release the GPU or TPU-based functions.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC under
grant No.61972158, in part by the Science and Technol-
ogy Commission of Shanghai Municipality under grant
No.20511102802 and No.18DZ2270800, and in part by the
Tencent Corporation. Li Chen’s work was supported by
a grant from BoRSF-RCS under the contract LEQSF(2019-
22)-RD-A-21. Zhi Zhou’s work was supported in part
by the NSFC under grant No.61802449. Fangming Liu’s
work was supported in part by the NSFC under Grant
61722206 and 61761136014 (and 392046569 of NSFC-DFG)
and 61520106005, in part by National Key Research & De-
velopment (R&D) Plan under grant 2017YFB1001703, in part
by the Fundamental Research Funds for the Central Univer-
sities under Grant 2017KFKJXX009 and 3004210116, in part
by the National Program for Support of Top-notch Young
Professionals in National Program for Special Support of
Eminent Professionals.

REFERENCES

[1] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A Survey on Distributed Machine Learn-
ing,” ACM Computing Surveys, vol. 53, no. 2, pp. 1–33, 2020.

[2] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-
Efficient Cloud Resource Provisioning for Predictable Distributed
Deep Neural Network Training,” in Proc. of ICPP, Aug. 2019, pp.
1–11.

[3] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al.,
“Cloud Programming Simplified: A Berkeley View on Serverless
Computing,” arXiv preprint arXiv:1902.03383, 2019.

[4] AWS Lambda. [Online]. Available: https://aws.amazon.com/
lambda/

[5] Google Cloud Functions. [Online]. Available: https://cloud.
google.com/functions/

[6] Azure Functions. [Online]. Available: https://azure.microsoft.
com/en-us/services/functions/

[7] X. C. Lin, J. E. Gonzalez, and J. M. Hellerstein, “Serverless Boom
or Bust? An Analysis of Economic Incentives,” in Proc. of USENIX
HotCloud, Jul. 2020.

[8] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
Behind the Curtains of Serverless Platforms,” in Proc. of USENIX
ATC, Jul. 2018, pp. 133–146.

[9] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Heller-
stein, and J. M. Faleiro, “A Fault-Tolerance Shim for Serverless
Computing,” in Proc. of ACM Eurosys, Apr. 2020, pp. 1–15.

[10] A. Or, H. Zhang, and M. J. Freedman, “Resource Elasticity in
Distributed Deep Learning,” in Proc. of MLSys, Mar. 2020, pp. 1–12.

[11] A. Agache, M. Brooker, A. Florescu, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D.-M. Popa, “Firecracker:
Lightweight Virtualization for Serverless Applications,” in Proc. of
USENIX NSDI, Feb. 2020, pp. 419–434.

[12] S. Shillaker and P. Pietzuch, “FAASM: Lightweight Isolation for
Efficient Stateful Serverless Computing,” in Proc. of USENIX ATC,
Jul. 2020, pp. 419–433.

[13] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-millisecond Startup for Serverless Computing
with Initialization-less Booting,” in Proc. of ACM ASPLOS, Mar.
2020, pp. 467–481.

[14] E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures,” in Proc. of ACM ICPE, Apr. 2018, pp.
21–24.

[15] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting Cloud
Services for Cost-Effective, SLO-Aware Machine Learning Infer-
ence Serving,” in Proc. of USENIX ATC, Jul. 2019, pp. 1049–1062.

[16] H. Wang, D. Niu, and B. Li, “Distributed Machine Learning with
a Serverless Architecture,” in Proc. of IEEE Infocom, Apr. 2019, pp.
1288–1296.

[17] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless Linear
Algebra,” in Proc. of ACM SOCC, Oct. 2020, pp. 281–295.

[18] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A Scalable and Locality-Enhanced Framework for
Serverless Parallel Computing,” in Proc. of ACM SOCC, Oct. 2020,
pp. 1–15.

[19] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring
Serverless Functions using Statistical Learning,” in Proc. of IEEE
Infocom, Apr. 2020, pp. 1–10.

[20] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and
Efficient GPU Cluster Scheduling,” in Proc. of USENIX NSDI, Feb.
2020, pp. 289–304.

[21] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“Cirrus: a Serverless Framework for End-to-end ML Workflows,”
in Proc. of ACM SOCC, Nov. 2019, pp. 13–24.

[22] AWS S3. [Online]. Available: https://aws.amazon.com/s3/
[23] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient

dynamic resource scheduler for deep learning clusters,” in Proc. of
ACM EuroSys, Apr. 2018, pp. 1–14.

[24] MobileNet and MobileNetV2. [Online]. Available: https://keras.
io/api/applications/mobilenet/

[25] ResNet and ResNetV2. [Online]. Available: https://keras.io/api/
applications/resnet/

[26] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skour-
tis, V. Tarasov, F. Yan, and Y. Cheng, “InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory
Cache,” in Proc. of USENIX FAST, Feb. 2020, pp. 267–281.

[27] Amazon SageMaker. [Online]. Available: https://aws.amazon.
com/sagemaker

[28] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge
University Press, 2009.

[29] Tensorflow tutorials: CIFAR-10. [Online]. Avail-
able: https://github.com/tensorflow/docs/blob/master/site/
en/tutorials/images/cnn.ipynb

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[31] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving Deep
Learning Models in A Serverless Platform,” in Proc. of IEEE IC2E,
Apr. 2018, pp. 257–262.

[32] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of Large-Scale Multi-Tenant GPU Clusters for
DNN Training Workloads,” in Proc. of USENIX ATC, Jul. 2019, pp.
947–960.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://aws.amazon.com/s3/
https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/resnet/
https://keras.io/api/applications/resnet/
https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/images/cnn.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/images/cnn.ipynb

XU et al.: λDNN: ACHIEVING PREDICTABLE DISTRIBUTED DNN TRAINING WITH SERVERLESS ARCHITECTURES 14

[33] Image Super-Resolution using an Efficient Sub-Pixel CNN.
[Online]. Available: https://keras.io/examples/vision/super
resolution sub pixel/

[34] 1D CNN for text classification. [Online]. Available: https:
//keras.io/zh/examples/imdb cnn/

[35] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin,
and H. Chen, “Characterizing Serverless Platforms with Server-
lessBench,” in Proc. of ACM SOCC, Oct. 2020, pp. 30–44.

[36] H. Lee, K. Satyam, and G. C. Fox, “Evaluation of Production
Serverless Computing Environments,” in Proc. of IEEE CLOUD,
Jul. 2018, pp. 827–830.

[37] L. Feng, P. Kudva, D. D. Silva, and J. Hu, “Exploring serverless
computing for neural network training,” in Proc. of IEEE CLOUD,
Dec. 2018, pp. 334–341.

[38] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural Implica-
tions of Function-as-a-Service Computing,” in Proc. of IEEE/ACM
Micro, Oct. 2019, pp. 1063–1075.

[39] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the Wild: Characterizing and Optimizing the Server-
less Workload at a Large Cloud Provider,” in Proc. of USENIX ATC,
Jul. 2020, pp. 205–218.

[40] A. Saha and S. Jindal, “EMARS: Efficient Management and Alloca-
tion of Resources in Serverless,” in Proc. of IEEE CLOUD, Jul. 2018,
pp. 827–830.

[41] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized Core-
granular Scheduling for Serverless Functions,” in Proc. of ACM
SOCC, Nov. 2019, pp. 158–164.

[42] A. Singhvi, K. Houck, A. Balasubramanian, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Archipelago: A Scalable Low-
Latency Serverless Platform,” arXiv preprint arXiv:1911.09849,
2019.

[43] M. R. HoseinyFarahabady, A. Y. Zomaya, and Z. Tari, “A
Model Predictive Controller for Managing QoS Enforcements
and Microarchitecture-Level Interferences in a Lambda Platform,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 7,
pp. 1442–1455, 2018.

[44] AWS Lambda Power Tuning. [Online]. Available: https://github.
com/alexcasalboni/aws-lambda-power-tuning

[45] A. Jain, A. F. Baarzi, N. Alfares, G. Kesidis, B. Urgaonkar, and
M. Kandemir, “SplitServe: Efficiently Splitting Complex Work-
loads Across FaaS and IaaS,” in Proc. of ACM SOCC, Nov. 2019,
pp. 487–487.

[46] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless
Analytics,” in Proc. of USENIX OSDI, Oct. 2018, pp. 427–444.

[47] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, Fast and
Slow Scalable Analytics on Serverless Infrastructure,” in Proc. of
USENIX NSDI, Feb. 2019, pp. 193–206.

[48] W. Zhang, V. Fang, A. Panda, and S. Shenker, “Kappa: A Pro-
gramming Framework for Serverless Computing,” in Proc. of ACM
SOCC, Oct. 2020, pp. 328–343.

[49] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance Mod-
eling and Scalability Optimization of Distributed Deep Learning
Systems,” in Proc. of ACM SIGKDD, Aug. 2015, pp. 1355–1364.

[50] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in Proc. of ICLR, Apr. 2017.

[51] S. Li, R. J. Walls, and T. Guo, “Characterizing and Modeling Dis-
tributed Training with Transient Cloud GPU Servers,” in Proc. of
IEEE ICDCS, Jul. 2020, pp. 1–11.

Fei Xu received the PhD degree in computer
science and engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 2014. He received Outstanding Doc-
toral Dissertation Award in Hubei province,
China, and ACM Wuhan & Hubei Computer
Society Doctoral Dissertation Award in 2015.
He is currently an associate professor with the
School of Computer Science and Technology,
East China Normal University, Shanghai, China.
His research interests include cloud computing

and datacenter, virtualization technology, and distributed systems.

Yiling Qin is currently working toward the mas-
ter’s degree in the School of Computer Science
and Technology, East China Normal University,
Shanghai, China. Her research interests focus
on cloud computing and distributed machine
learning systems.

Li Chen received the BEngr degree from the De-
partment of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, China, in 2012 and the MASc degree from
the Department of Electrical and Computer En-
gineering, University of Toronto, in 2014 and the
PhD degree in computer science and engineer-
ing from the Department of Electrical and Com-
puter Engineering, University of Toronto, in 2018.
She is currently an assistant professor with
the Department of Computer Science, School

of Computing and Informatics, University of Louisiana at Lafayette,
Lafayette, USA. Her research interests include big data analytics sys-
tems, cloud computing, datacenter networking, and resource allocation.

Zhi Zhou received the BS, ME, and PhD de-
grees all from the School of Computer Science
and Technology, Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 2012, 2014, and 2017, respectively. He is
currently a research associate fellow with the
School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China. In 2016,
he has been a visiting scholar with the Uni-
versity of Gottingen. His research interests in-
clude edge computing, cloud computing, and

distributed systems. He is a member of the IEEE.

Fangming Liu (S’08, M’11, SM’16) received the
B.Eng. degree from the Tsinghua University, Bei-
jing, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Hong
Kong. He is currently a Full Professor with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests in-
clude cloud computing and edge computing, dat-
acenter and green computing, SDN/NFV/5G and
applied ML/AI. He received the National Natu-
ral Science Fund (NSFC) for Excellent Young

Scholars, and the National Program Special Support for Top-Notch
Young Professionals. He is a recipient of the Best Paper Award of
IEEE/ACM IWQoS 2019, ACM e-Energy 2018 and IEEE GLOBECOM
2011, the First Class Prize of Natural Science of Ministry of Education
in China, as well as the Second Class Prize of National Natural Science
Award in China.

https://keras.io/examples/vision/super_resolution_sub_pixel/
https://keras.io/examples/vision/super_resolution_sub_pixel/
https://keras.io/zh/examples/imdb_cnn/
https://keras.io/zh/examples/imdb_cnn/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning

	Introduction
	Background and Motivation
	DDNN Training with Serverless Functions
	Characterizing Performance of Serverless DDNN Training Workloads

	Modeling DDNN Training Performance in Serverless Platforms
	Predicting DDNN Training Time with Serverless Function Resources
	Analyzing Resource Provisioning Optimization Problem of Serverless Functions

	Design of DNN: Guaranteeing Performance of Serverless DDNN Training Workloads
	Algorithm Design
	Implementation of DNN

	Performance Evaluation
	Experimental Setup
	Effectiveness of DNN
	Large-scale Simulations Driven by Microsoft Azure Trace
	Runtime Overhead of DNN

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Fei Xu
	Yiling Qin
	Li Chen
	Zhi Zhou
	Fangming Liu

