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 a b s t r a c t

Multivariate time series (MTS) modeling plays a crucial role in understanding complex systems. However, exist-
ing Transformer-based approaches often struggle to capture essential temporal structures, leading to information 
loss and even attention dispersion. To address these challenges, we propose MVGFormer, a novel Transformer-
compatible Multivariate Time Series framework guided by Visibility Graph principles. By explicitly establishing 
connections between time points based on visibility criteria, we introduce a graph-based sparse Attention (VG-
Attention) mechanism, which selectively focuses on crucial temporal dependencies while filtering out irrelevant 
noise. This sparse Attention significantly mitigates the impact of quadratic complexity, improving scalability for 
larger time series data. Moreover, considering existing models often overlook the global dependencies within 
MTS, we extract consensus information across channels and aggregate the multiplex visibility graph into a con-
sensus graph, revealing potential cross-layer patterns. Compared to single-channel models, MSE decreases by 
2.82%, classification accuracy increases by 9.73%, and training speed improves by 67.48%. Experimental re-
sults across 25 real-world datasets demonstrate that MVGFormer outperforms most existing models in four main 
tasks, including forecasting, classification, imputation, and anomaly detection. Overall, our approach provides 
a fresh perspective on adapting Transformers to better understanding temporal dependencies within time series 
data.

1.  Introduction

In complex systems, multivariate time series (MTS) offer a richer 
and more comprehensive perspective compared to univariate analysis, 
enabling a better understanding of system behaviors. MTS analysis has 
been widely applied and extensively studied in numerous practical sce-
narios, such as physiological signal classification for medical diagnosis, 
meteorological factor prediction for weather forecasting, and anomaly 
detection in industrial maintenance monitoring data.

Recently, Transformer-based methods have demonstrated outstand-
ing performance in time series analysis. These methods primarily ex-
plore different tokenization paradigms, such as treating each time point 
as a token [1–5] or grouping multiple consecutive time points into a sin-
gle token [6–8]. This success can be attributed to the fact that both lan-
guage dependencies and temporal dependencies fundamentally explore 
“relationships” between data points (words or time points). However, 
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there is a key distinction between the two: language dependencies pri-
marily focus on the order and grammatical structure between words in a 
sentence, such as subject-verb agreement or syntactical rules. Whereas, 
temporal dependencies in time series are quite different, emphasizing se-
quential patterns such as periodicity, trends, and seasonality over time. 
For example, a time series might show a regular pattern of peaks and 
valleys (periodicity), or data points might gradually increase or decrease 
over time (trend).

The two types of dependencies, though involve connections between 
data points, differ significantly in how they are structured and how they 
evolve. As a result, methods like full-Attention or its variants, which 
rely on pairwise associations, struggle to directly capture meaningful 
temporal structures from scattered time points [2,9]. They may even in-
troduce noise and potential attention dispersion when applied to time 
series data. This noise can hinder the accurate understanding of tempo-
ral structures and lead to incomplete or inaccurate analysis of temporal 
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Fig. 1. A novel perspective for analyzing time series through the visibility graph criteria.

patterns, especially when temporal dependencies are deeply obscured 
in intricate patterns. Ultimately, it may result in meaningless attention 
maps and information loss.

To effectively recognize temporal patterns, this paper adopts a 
methodology inspired by the Visibility Graph criteria [10], which ex-
plicitly constructs temporal connections between time points based on 
sequential features, as depicted in Fig. 1. This conversion inherits sev-
eral intrinsic structural properties of the time series [11], and provides 
a global view to enhance the memory capabilities of the series. In con-
trast to the current GNN-based methods (GNN4TS) [12], which gener-
ate graphs either by heuristics or learning from the series, the visibility 
graph offers a fresh perspective in constructing time point connections. 
It possesses universal, theoretical, interpretable, simple, and effective 
attributes. Therefore, our goal is to address the limited temporal under-
standing of traditional Transformer, leveraging the strengths of visibility 
graph to enhance the Transformer’s ability to represent time series.

Specifically, our approach consists of two main stages: constructing 
the visibility graph of temporal relationships and encoding it with the 
Visibility Graph Transformer. In the first stage, to address the quadratic 
time complexity (𝑁2) of the visibility graph, we propose a sliding win-
dow approach that avoids redundant calculations of time point relation-
ships, achieving linear time complexity. Building upon this, we construct 
a consensus visibility graph for multivariate time series, which captures 
the common patterns or interactions across channels and reveals the 
global dependencies of MTS. In the second stage, we refine a new Atten-
tion similarity calculation by adopting the visibility graph-structured ap-
proach (VG-Attention), moving away from the fully connected learning 
typically used in standard Transformer mechanisms. This refinement en-
sures that our model focuses on the most significant relationships among 
scattered time points, reducing learning costs and mitigating attention 
dispersion. Experimental results show that MVGFormer outperforms ex-
isting methods, achieving state-of-the-art performance across four major 
time series analysis tasks. Our contributions can be summarized as fol-
lows:

• We introduce MVGFormer, a visibility graph-guided Transformer 
framework for better capturing both structural properties and tem-
poral variations of MTS.

• We propose a sliding window-based visibility graph (SVG), which 
reduces the computational complexity from (𝑁2) to (𝑁), making 
it more suitable for large-scale time series data.

• To capture global dependencies in MTS, we propose a con-
sensus visibility graph that integrates both temporal and 
channel-wise dependencies based on graph-theoretic consensus
relationships.

• Based on the consensus graph, we propose a Visibility Graph-based 
Attention (VG-Attention) mechanism, which focuses on learning cru-
cial structural relationships within temporal patterns, effectively ad-
dressing attention dispersion and information loss.

• As a universal model, MVGFormer consistently achieves state-of-the-
art performance in four mainstream time series analysis tasks, sur-
passing most of current Transformer-based methods.

2.  Related works

Multivariate time series analysis. In recent years, various deep learn-
ing models have been proposed for temporal modeling, such as MLP-
based, CNN-based, Graph-based, and Transformer-based models. A 
number of these methods have been designed for specific downstream 
tasks. For instance, in forecasting tasks, models like Rlinear [13] and 
DLinear [9] utilize a single layer of fully connected neural networks to 
model the relationships between past and future data points for multi-
step prediction. In classification tasks, methods like InceptionTime [14], 
Rocket [15], EEG-Inception [16], and TC-BPPV [17] treat multivariate 
time series as matrix and leverage Convolutional Neural Network or At-
tention architectures to generate a rich set of features for time series clas-
sification. From a graph perspective, approaches such as STGNN [18], 
Graph WaveNet [19], MTGNN [20], Copula-based Hybrid-GTS [21], and 
AutoGRN [22] integrate temporal dynamics with physical or relational 
structures, aiming to capture complex dependencies among variables 
to enhance predictive performance. Additionally, some models are de-
signed specifically for anomaly detection, such as the Anomaly Trans-
former [23], which focuses on capturing contextual deviations in time 
series data.

To overcome the limitations of task-specific models, TimesNet [11] 
introduces a task-general backbone called TimesBlock, which adaptively 
extracts multi-periodicity from time series. TimesNet has demonstrated 
outstanding performance on five main time series analysis tasks, in-
cluding short- and long-term forecasting, imputation, classification, and 
anomaly detection. Therefore, we hold the view that a strong tempo-
ral representation ability enables the model to identify anomalies and
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capture intricate temporal patterns, making it adaptable to various 
downstream tasks.
Visibility graph. The Visibility Graph [10] was first introduced in PNAS 
in 2008 and has since become a powerful tool for time series analysis, 
particularly in fields such as physiology [24,25], economics [26,27], 
and climate studies [28]. The core idea behind the visibility graph is to 
transform time series data into a graph, where each data point is rep-
resented as a node, and edges are formed based on geometric visibility 
criteria-two points are connected if they can “see” each other without 
any other points blocking the line of sight. This technique has proven 
effective in capturing the inherent structures of time series data and has 
been applied in various domains to analyze underlying dynamics. Build-
ing on this principle, several extensions of the visibility graph have been 
developed, including the Horizontal Visibility Graph (HVG) [29] and the 
Limited Penetrable Visibility Graph (LPVG) [30,31]. Furthermore, the 
visibility graph criterion has been successfully applied in image process-
ing [32], where it has been used to extract two-dimensional spatial fea-
tures, achieving promising results when compared to traditional models 
like ResNet [33].

Recent efforts have focused on combining visibility graphs with ad-
vanced techniques to address their limitations and enhance their ap-
plicability. For example, AVGNet [34] integrates visibility graphs with 
Graph Neural Networks (GNNs), creating a more adaptive graph struc-
ture for signal classification tasks. Additionally, MAGNN [35] combines 
multi-scale graph learning techniques with visibility graphs for multi-
variate time series forecasting, effectively preserving temporal depen-
dencies at different scales. These methods aim to improve the flexibility 
and scalability of visibility graphs while maintaining their interpretabil-
ity and simplicity. Moreover, recent reviews [36,37] have provided com-
prehensive analyses of visibility graph criteria and their applications, 
highlighting that network-based analytical techniques are valuable tools 
for extracting meaningful insights from time series data across diverse 
domains. However, visibility graphs still face challenges, particularly 
in terms of high computational complexity, which limits their appli-

cability to large-scale time series data. Meanwhile, the introduction of 
Transformer-based models presents a promising approach to enhance 
the visibility graph’s ability in understanding and modeling complex 
temporal relationships,allowing for a more effective capture of long-
term dependencies within time series data.
Transformer-based time series representation. Transformers have 
demonstrated excellent performance in time series forecasting [1,2,
6–8,38,39]. Through the Attention mechanism, these methods effec-
tively uncover the temporal dependencies between time points. No-
tably, Autoformer [2] uses an Auto-Correlation mechanism to cap-
ture series-wise temporal dependencies based on learned periods. To 
address complex temporal patterns, Autoformer employs a deep de-
composition architecture to extract seasonal and trend components 
from the input series. Later, FEDformer [5] incorporated a mixture-
of-expert design to improve seasonal-trend decomposition and intro-
duced sparse Attention in the frequency domain. Furthermore, to ad-
dress inter-variable correlations, iTransformer [40], TimeXer [7] and 
MultiPatchFormer [8] have innovatively use an inverse Transformer and 
cross Attention to capture multivariate dependencies, yielding excellent 
results. Previous Transformer-based methods have explored various ef-
fective techniques for time series. In this work, we aim to enhance the 
Transformer’s understanding of temporal dependencies by incorporat-
ing visibility graph criteria. This approach provides a fresh perspec-
tive, enabling the model to capture the complex network connections 
inherent in time series data and deepen its understanding of temporal
relationships.

3.  MVGFormer

Our proposed MVGFormer, illustrated in Fig. 2, comprises three 
stages: (1) Multiplex visibility graph: the projection of multivariate time 
series to a multi-layer network; (2) Channel-wise consensus information 
extraction, and (3) the Visibility graph transformer model for encoding 
time series representations.Temporal Embedding

Fig. 2. The framework of MVGFormer. (1) Projection stage: Converts multivarite time series into a multiplex visibility graph using visibility graph criteria.
(2) Consensus information extraction: Aggregate the multiplex graph into a single-layer graph, obtaining a aggregated graph  with channel-wise consensus 
relationships as the model input. (3) Encoding stage: Leverage the generated temporal topological structure, overlaying multiple Visibility Graph Transformer 
layers for iterative learning, involving Temporal Embedding, Visibility Graph Attention and Batch Normalization.
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Fig. 3. The process of mapping time series into a graph by visibility graph criteria.

3.1.  Preliminary

Visibility graph. For a univariate time series consisting of 𝑁 real-
valued data {𝐱(𝑡)}𝑁𝑡=1, following the visibility algorithm, nodes typically 
represent specific time points, and edges indicate the connection be-
tween these time points fulfilling visibility graph criteria:

𝑥(𝑡𝑐 ) < 𝑥(𝑡𝑏) +
(

𝑥(𝑡𝑎) − 𝑥(𝑡𝑏)
) 𝑡𝑏 − 𝑡𝑐
𝑡𝑏 − 𝑡𝑎

. (1)

where (𝑡𝑎, 𝑥(𝑡𝑎)
) and (𝑡𝑏, 𝑥(𝑡𝑏)

) are two arbitrary data values, with an 
additional data point (𝑡𝑐 , 𝑥(𝑡𝑐 )

) positioned between them. A straight line, 
termed the “visibility line”, connects points in the series data without 
intersecting any intermediate data heights, as depicted in Fig. 3.
The advantages of visibility graph. This conversion highlights the in-
herent ability of the visibility graph to capture both ordered and chaotic 
structures present in time-series data. The insights are drawn from the 
research of [10], which identified two core advantages: (1) Visibility 
criteria quantify the “receptive field” of each time point. Similar to the 
receptive field in Convolutional Neural Networks (CNNs), the “visibil-
ity line” offers a global view, allowing the model to assess the influ-
ence of each temporal point. As shown in Fig. 4, panel (a) illustrates 
that the influence range of periodic peaks is confined within each cycle, 
while in panel (b), the influence of sharp drops extends to all subse-
quent points. (2) The Visibility Graph is applicable to various types of 
time-series data, including both periodic and non-periodic series [10]. 
Specifically, ordered series are represented by regular graphs (visual-
ized in different colors for clarity), while random series correspond to 
exponential random graphs.

Fig. 4. Visibility graph criteria for periodic and non-periodic time series.

Table 1 
Notation table.
 Symbol  Definition
𝑁  Length of the time series (number of time points / nodes)
𝑀  Number of channels (variables) in the multivariate time series

 Number of layers in the multiplex visibility graph
𝑑  Embedding dimension (hidden size of node representations)
𝑥[𝛼](𝑡)  Value of the 𝛼-th channel at time point 𝑡
𝑡𝑖 , 𝑖  The 𝑖-th time point (node 𝑖)
𝐴[𝛼]  Adjacency matrix of the visibility graph for the 𝛼-th channel
  Multiplex visibility graph consisting of all channel-wise graphs
  Consensus visibility graph aggregated from 
 (𝑖)  Neighbor set of node 𝑖 in the visibility graph

3.2.  Multiplex visibility graph

In this section, we apply the visibility graph to multivariate time 
series. Firstly, to address the issue of high time complexity, we intro-
duce an improved approach, the Sliding Window Visibility Graph (SVG), 
which achieves linear complexity. Then, we construct a visibility graph 
for each variable, leading to the multiplex visibility graph for multivari-
ate time series, as illustrated in Fig. 2(b).

3.2.1.  Sliding window visibility graph
Traditional methods of constructing visibility graph for time series 

data require full traversal of the dataset to compute visibility relation-
ships between all pairs of points, resulting in a time complexity of (𝑁2), 
where 𝑁 is the sequence length. This approach becomes computation-
ally expensive and inefficient for large-scale datasets.

To address these limitations, we introduce the Sliding Window Visi-
bility Graph (SVG), which processes time series in a fixed-size and over-
lapping window, shown in Fig. 5. As the window slides across the time 
series, only the newly added time points and the removed time points 
are updated, significantly reducing the amount of recalculation. This 
results in an overall linear time complexity of (𝑁), offering a substan-
tial improvement over traditional methods. By combining the sliding 
window technique with traditional visibility graph algorithms, SVG en-
sures efficient, real-time updates and linear time complexity, making 
it highly suitable for large-scale time series analysis and real-time data 
streams. Additionally, for longer time series or lightweight scenarios, we 
can further explore the divide-and-conquer strategy proposed in [41], 
combined with the sliding window strategy, which can reduce the time 
complexity to (log𝑁).

3.2.2.  Multiplex visibility graph structure
Based on the proposed SVG, we extend the visibility approach 

to introduce a novel structure, termed the multiplex visibility graph 
[42], denoted as . This graph constructed from an 𝑀-channel 
time series {𝐱(𝑡)}𝑁𝑡=1. At any given time point 𝑡, each 𝐱(𝑡) is a vector 
(

𝑥[1](𝑡), 𝑥[2](𝑡),… , 𝑥[𝑀](𝑡)
)

∈ ℝ𝑀 , sourced from 𝑀 distinct sensors. The 

Knowledge-Based Systems 329 (2025) 114389 

4 



T. Chen et al.

Fig. 5. Sliding window visibility graph : Time complexity from 𝑂(𝑁2) to 𝑂(𝑁).

Fig. 6. Layer aggregation mechanisms: (a) Consensus Visibility Graph, which requires an edge in every layer to synchronize channel interactions across different 
time points, following the AND-based logic; and (b) Combined Visibility Graph, which preserves all edge relationships to allow diverse channel interactions across 
layers, following the OR-based logic.

structure of  is multi-layered, with each layer 𝛼 containing a visi-
bility graph that corresponds to the time series of a specific variable 
{

𝑥[𝛼](𝑡)
}𝑁
𝑡=1. Specifically, the multiplex visibility graph  comprises a 

composite of adjacency matrices, collectively represented as
 =

{

𝐴[1], 𝐴[2],… , 𝐴[𝑀]}, (2)

where each 𝐴[𝛼] is the 𝑁 ×𝑁 adjacency matrix corresponding to layer 
𝛼. In this multiplex graph, each matrix 𝐴[𝛼] = {𝑒[𝛼]𝑖𝑗 } denotes the connec-
tivity: 𝑒[𝛼]𝑖𝑗 = 1 signifies a link between nodes (time points) 𝑡𝑖 and 𝑡𝑗 in the 
𝛼-th layer, while 𝑒[𝛼]𝑖𝑗 = 0 indicates no link, applicable for all node pairs 
𝑡𝑖, 𝑡𝑗 = 1, 2,… , 𝑁 . To better describe the structure of the multiplex visi-
bility graph and simplify the notation, we uniformly use 𝑒[𝛼]𝑖𝑗  and node 
𝑖, 𝑗 in subsequent sections, where node 𝑖, 𝑗 corresponds to the time points 
𝑡𝑖, 𝑡𝑗 in the original time series. Furthermore, to ensure consistency and 
clarity of the symbols, the unified symbol definitions are provided in 
Table 1.

3.3.  Consensus information extraction

The multiplex visibility graph, with its layered structure and shared 
nodes, encapsulates the underlying correlations across different chan-
nels in multivariate time series. To better understand these relationships 
from a global perspective, we explore the common patterns or interac-
tions between layers using consensus relationships [43–47] in the con-
text of multiplex graphs. One intuitive idea is to construct an aggregated 
graph (we call the consensus visibility graph) by merging adjacency ma-
trices to capture the consensus information across all views, revealing 
the global dependencies of the multivariate time series.

For the aggregation algorithm, we draw inspiration from the classical 
concept of subgraph isomorphism in complex network analysis [48,49], 

which helps identify topological structures consistently present across 
all layers. These recurring subgraphs reveal structural consensus [50], 
capturing coordinated behaviors across channels and facilitating global 
temporal understanding. Based on this theoretical foundation, we define 
the Consensus Visibility Graph in Definition 1 as a unified representa-
tion that integrates multi-layer connectivity patterns derived from the 
multiplex visibility graph.
Definition 1  (Consensus visibility graph). To capture the joint visibil-
ity structure across all layers in the multiplex graph , we define the 
Consensus Visibility Graph as a single-layer fused graph , where each 
node corresponds to a time point, and the edge set 𝑒𝑖𝑗 ∈  is constructed 
based on inter-layer agreement. As shown in Fig. 6(a). an edge 𝑒𝑖𝑗 exists 
between nodes 𝑖 and 𝑗 if and only if the visibility condition is satisfied 
across all layers 𝛼 = 1,… ,𝑀 , according to the following rule when for 
each intermediate time instance 𝑡𝑘, with 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 :

 =
{

𝑒𝑖𝑗 ∣ ∀𝛼, 𝑥[𝛼](𝑡𝑘) < min
(

𝑥[𝛼](𝑡𝑖), 𝑥[𝛼](𝑡𝑗 )
)

, 𝛼 = 1,… ,𝑀
}

(3)

where  is the set of consensus edges, and 𝑒𝑖𝑗 = 1 signifies a consen-
sus link between time point 𝑖 and 𝑗 across all channels. In fact, we can 
approach the problem from a matrix perspective, drawing an analogy 
to the logical AND operation on adjacency matrix 𝐴[𝛼] to implement 
the consensus structure search. This allows us to simplify the multiplex 
graph  into a single-layer topology  using an AND-based aggregation 
mechanism (MVG-AND).

 = 𝜑AND() =
𝑀
∏

𝛼=1
𝐴[𝛼] (4)

For each pair of nodes 𝑖, 𝑗,

𝑖𝑗 = 𝜑AND
(

𝑖𝑗
)

=
𝑀
∏

𝛼=1
𝐴[𝛼]
𝑖𝑗 =

{

1, if 𝑒𝑖𝑗 = 1
0, otherwise

(5)

Knowledge-Based Systems 329 (2025) 114389 

5 



T. Chen et al.

To validate the effectiveness of this method, we compare it with the 
Combined Visibility Graph shown in Fig. 6(b), which emphasizes the di-
versity of connections by retaining edges present in any layer, according 
to the following rule when for each intermediate time instance 𝑡𝑘, with 
𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 :

 =
{

𝑒𝑖𝑗 ∣ ∃𝛼, 𝑥[𝛼](𝑡𝑘) < min
(

𝑥[𝛼](𝑡𝑖), 𝑥[𝛼](𝑡𝑗 )
)

, 𝛼 = 1,… ,𝑀
}

(6)

Similarly, the Combined Visibility Graph graph can be constructed 
using an OR-based aggregation mechanism (MVG-OR), as

 = 𝜑OR() =
𝑀
⋁

𝛼=1
𝐴[𝛼]

= 𝟏𝑁×𝑁 −
𝑀
∏

𝛼=1

(

𝟏𝑁×𝑁 − 𝐴[𝛼]),

(7)

where ⋁ represents the logical OR operation applied over the layers. 
𝟏𝑁×𝑁 ∈ ℝ𝑁×𝑁  is the matrix with all elements equal to one, and

𝑖𝑗 = 𝜑𝑂𝑅
(

𝑖𝑗
)

= 1 −
𝑀
∏

𝛼=1

(

1 − 𝐴[𝛼]
𝑖𝑗

)

. (8)

By comparing these two approaches, we assess the impact of focusing 
on commonality (AND-based) versus diversity (OR-based) in capturing 
key relationships in multivariate time series. In fact, the experiments 
show that MVG-AND outperforms MVG-OR, as illustrated in Fig. 9.

Based on this, we construct an consensus visibility graph  using 
Multiplex Visibility Graph (Section 3.2) and Consensus Relationship 
Extraction (Section 3.3), which integrates temporal dependencies and 
channel-wise consensus information. The overall process is shown in 
Algorithm 1.

Algorithm 1: Consensus visibility graph .
Input: 𝐗 ∈ ℝ𝑀×𝑁  (𝑀 variables, 𝑁 time points), sliding window 

size 𝑊SVG, Aggregation_type (“AND” or “OR”)
Output: consensus visibility graph 

1 Step 1: Multiplex visibility graph construction;
2 𝑤 ← 𝐗[1 ∶ 𝑊SVG] // Initialize window
3  ← BuildGraph(𝑤) // Initial visibility graph
4  ← [] // List of layer graphs
5 for 𝑖𝑑𝑥 = 𝑊SVG to 𝑁 do
6 𝑡𝑠 ← 𝐗[𝑖𝑑𝑥 −𝑊SVG + 1 ∶ 𝑖𝑑𝑥] // SVG
7 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒 ← 𝐗[𝑖𝑑𝑥];
8 𝑜𝑙𝑑_𝑛𝑜𝑑𝑒 ← 𝐗[𝑖𝑑𝑥 −𝑊SVG];
9  ← RemoveEdges(, 𝑜𝑙𝑑_𝑛𝑜𝑑𝑒);
10 if CheckVisibility(𝑛𝑒𝑤_𝑛𝑜𝑑𝑒,) then
11  ← AddEdge(, 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒);

12 .append();

13 Step 2: Consensus matrix extraction;
14  ← ∅ // Initialize aggregated graph
15 for 𝛼 = 1 to 𝑀 do
16 if Aggregation_type = “OR” then
17  ←  × (1 −[𝛼]);

18 else if Aggregation_type = “AND” then
19  ←  ×[𝛼];

20 if Aggregation_type = “OR” then
21 return 1 −;

22 else if Aggregation_type = “AND” then
23 return ;

3.4.  Visibility graph transformer

The consensus visibility graph , with both sequential and 
graph-based features, promises focused attention and significant

computational efficiency compared to traditional fully connected se-
quence methods, which have quadratic complexity. This section ex-
plains the learning mechanism of the proposed Visibility Graph Trans-
former architecture: Temporal Embedding, Visibility Graph Attention 
Mechanism, Batch Normalization and Feed Forward Network.
Temporal embedding. Initially, we prepare the input node embeddings 
to be passed to the Visibility Graph Transformer layer. For the consen-
sus graph , each node 𝑖 features node embeddings 𝛽𝑖 ∈ ℝ𝑀×1, where 𝑀
represents the number of variables. To address inconsistencies in units 
across variables and reduce distributional discrepancies among individ-
ual input time series, the input node 𝛽𝑖 undergoes 𝑍-score normalization 
along the temporal dimension, and then passes via a linear projection 
to be embedded into 𝑑-dimensional hidden features ℎ̂𝑖

0, as:
ℎ̂0𝑖 = 𝑊 0

𝑖 𝛽𝑖 + 𝑝0 (9)

where

𝛽𝑖 =
𝛽𝑖 − 𝜇
√

𝜎2 + 𝜖
, (10)

and 𝜇(𝑗)
 ← 1

𝑁
∑𝑁

𝑖=1 𝛽𝑖
(𝑗); 𝜎2

(𝑗)
← 1

𝑁
∑𝑁

𝑖=1

(

𝛽𝑖(𝑗) − 𝜇(𝑗)


)2
, 𝑗 = 1, 2,… ,𝑀 is 

the dimension index of multivariate time series, 𝑁 is the input series 
length, 𝜇, 𝜎 ∈ ℝ𝑀×1, correction factor 𝜖 is set to 1𝑒 − 5, and 𝑊 0

𝑖 ∈
ℝ𝑑×𝑀 , 𝑝0 ∈ ℝ𝑑 are the parameters of the linear projection layers. To 
capture temporal dependencies in time series, we embed pre-computed 
timestamp position encodings using the sinusoidal embedding method 
often used in NLP.

𝑇 (𝑗)
𝑖 =

{

sin
(

𝑖∕100002𝑘∕𝑑
)

,  if 𝑗 = 2𝑘
cos

(

𝑖∕100002𝑘∕𝑑
)

,  if 𝑗 = 2𝑘 + 1
(11)

where 𝑖 denotes the sequence position of the time points, 𝑗 denotes the 
dimension index, and 𝑑 denotes the dimension of the temporal encoding, 
𝑘 = 0, 1, 2,… , 𝑑∕2 − 1. And then add to the node features ̂ℎ0𝑖  to obtain the 
initial node embedding
ℎ0𝑖 = ℎ̂0𝑖 + 𝑇𝑖. (12)

Visibility graph attention mechanism. The standard (Dense) Trans-
formers Attention mechanism, as illustrated in Fig. 7, proves effective 
for language sequences due to the inherent challenge of pre-determining 
the inter-token relationships. In this context, it involves matrix multipli-
cation (⊗) for pairwise node similarity calculation, as:

Full-Attention(𝑄,𝐾, 𝑉 ) = softmax

(

𝑄⊗𝐾𝑇
√

𝑑

)

𝑉 , (13)

where 𝑄, 𝐾, and 𝑉  are linear projections of input embedding. We aim 
for Attention to focus on the intrinsic characteristics of time series (such 
as periodicity, trends, fractality, etc.). Therefore, compared to the fully 
connected Full-Attention mechanism, our approach incorporates reli-
able connections between time points, thus adding additional graph 
structure information into the input, as follows:
VG-Attention(𝑄,𝐾, 𝑉 ,) =

∑

(𝑖,𝑗)∈
𝛼𝑖𝑗𝑉𝑗 , (14)

Fig. 7. Visibility graph attention mechanism.
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Table 2 
Summary of experiment benchmarks.
 Tasks  Benchmarks  Metrics  Window Size (𝑊𝑆𝑉 𝐺)

 Long-term Forecasting  ETTh1, ETTh2, Weather, Exchange Rate, ILI  MSE, MAE  96 ∼ 720 (ILI: 24 ∼ 60)
 Short-term Forecasting  M4(6 subsets)  SMAPE, MASE, OWA  6 ∼ 48 
 Classification  UEA (17 subsets)  Accuracy  29 ∼ 1751
 Anomaly Detection  SMD, MSL, SMAP, SWaT, PSM  Precision, Recall, F1-Socre  100
 Imputation  ETTh1, ETTh2, ETTm1, ETTm2, Weather  MSE, MAE  96

where

𝛼𝑖𝑗 =
exp

(

𝑄𝑖𝐾𝑇
𝑗

√

𝑑

)

∑

𝑘∈ (𝑖) exp
(

𝑄𝑖𝐾𝑇
𝑘

√

𝑑

)

and (𝑖, 𝑗) denotes an edge between nodes 𝑖 and 𝑗 in consensus graph 
,  (𝑖) denotes the neighbor set of node 𝑖, and 𝑄𝑖, 𝐾𝑗 represents the 
feature vector of node 𝑖 and 𝑗, respectively. This approach will effec-
tively reduce the computational load and addresses the issue of atten-
tion dispersion, which often arises from superfluous relationships in the 
sequence. Specifically, the update of node ℎ𝓁𝑖  is formulated as: 

ℎ̂𝓁+1𝑖 = 𝑂𝓁
ℎ‖

𝐻
𝑘=1

⎛

⎜

⎜

⎝

∑

𝑗∈ (𝑖)
𝛼𝑘,𝓁𝑖𝑗 𝑉 𝑘,𝓁ℎ𝓁𝑗

⎞

⎟

⎟

⎠

, (15)

where 𝑄𝑘,𝓁 , 𝐾𝑘,𝓁 , 𝑉 𝑘,𝓁 ∈ ℝ𝑑𝑘×𝑑 , 𝑂𝓁
ℎ ∈ ℝ𝑑×𝑑 , 𝑘 = 1 to 𝐻 denotes the num-

ber of heads, and ‖ denotes concatenation.
Batch normalization & feed forward network. The attention outputs 
ℎ̂𝓁+1𝑖  are subsequently fed into a Feed Forward Network (FFN), which is 
surrounded by residual connections and normalization layers. Differing 
from the Layer Normalization typically used around the Transformer 
feed forward layers, we apply Batch Normalization for normalization 
since features from different channels being non-comparable; for exam-
ple, variables such as temperature, humidity, and atmospheric pressure 
in a multivariate weather dataset are not directly comparable. Batch 
Normalization allows us to focus more effectively on the distribution 
of different samples within the same channel, a decision supported by 
evidence from the ablation study presented in Table 11. The FFN then 
performs two linear transformations, incorporating the non-linear acti-
vation function ReLU to extract deeper-level features, as:
̂̂ℎ𝓁+1𝑖 = BatchNorm

(

ℎ𝓁𝑖 + ℎ̂𝓁+1𝑖
)

, (16)
̂̂ℎ𝓁+1𝑖 = 𝐹𝐹𝑁( ̂̂ℎ𝓁+1𝑖 ) = 𝑊 𝓁

2 ReLU
(

𝑊 𝓁
1
̂̂ℎ𝓁+1𝑖

)

, (17)

ℎ𝓁+1𝑖 = BatchNorm
( ̂̂ℎ𝓁+1𝑖 + ℎ̂𝓁+1𝑖

)

, (18)

where 𝑊 𝓁
1 ∈ ℝ2 𝑑×𝑑 ,𝑊 𝓁

2 ∈ ℝ𝑑×2𝑑 denote weight matrices, ̂̂ℎ𝓁+1𝑖 , ̂̂ℎ𝓁+1𝑖  de-
note intermediate representations. Finally, for the final layer 𝓁 + 1 of the 
Graph Transformer model, De-normalization is performed to revert the 
outputs to their original statistical properties, as:

ℎ𝑖 = (𝑊 𝓁+1
𝑖 ℎ𝓁+1𝑖 + 𝜇)

√

𝜎2 + 𝜖, (19)

where 𝑊 𝓁+1
𝑖 ∈ ℝ𝑀×𝑑 is employed to project the learned node vector 

representation back to the original feature dimension 𝑀 for utilization 
in downstream tasks.
Time complexity analysis. The time complexity of the Full-Attention 
and VG-Attention mechanisms differs significantly. Full-Attention has a 
time complexity of (𝑁2 𝑑), where 𝑁 is the number of nodes (or time 
points) and 𝑑 is the dimension of the node embedding. This complexity 
arises from the matrix multiplication 𝑄⊗𝐾𝑇 , the softmax operation, 
and the final matrix multiplication with 𝑉 , all of which scale quadrati-
cally with 𝑁 . In contrast, VG-Attention has a time complexity of (𝐸𝑑), 
where 𝐸 is the number of edges in the graph. This is linear with respect 

Table 3 
Experiment configuration of MVGFormer.
 Tasks / Configurations  Model Hyper-parameter  Training Process

 Layers  dmina  dmaxa  LRb  Batch Size  Epochs
 Long-term Forecasting  3  32  512 10−4  32  10–30
 Short-term Forecasting  3  16  64 10−3  16  30
 Imputation  3  64  128 10−3  16  10–30
 Classification  3  32  64 10−3  16  30
 Anomaly Detection  3  32  128 10−4  128  10
a 𝑑𝑚𝑜𝑑𝑒𝑙 = min

{

max
{

2
[

log2 𝐶
]

, 𝑑min

}

, 𝑑max

}

, where 𝐶 is input series dimen-
sion.
b LR means the initial learning rate.

to the number of edges, and the computation can be more efficient when 
the graph is sparse (i.e., 𝐸 ≪ 𝑁2). As a result, VG-Attention tends to be 
more efficient, particularly in sparse graphs, compared to the fully con-
nected Full-Attention mechanism.
Space Complexity Analysis. The introduction of the visibility graph 
requires additional memory to store the adjacency matrix. Specifically, 
for a multivariate time series input of shape 𝑀 ×𝑁 , where 𝑀 is the 
number of channels and 𝑁 is the number of time points, constructing 
visibility graphs independently for each channel requires storing 𝑀 ad-
jacency matrices of size 𝑁 ×𝑁 , resulting in a total space complexity 
of 𝑂(𝑀 ×𝑁2). However, by introducing the Consensus Visibility Graph 
mechanism, these multiple graphs are aggregated into a single fused ad-
jacency matrix, requiring only 𝑂(𝑁2) space. This significantly reduces 
memory usage and enhances scalability, particularly as the number of 
channels increases.

4.  Experiments

To verify the effectiveness of MVGFormer, we conducted exten-
sive comparison experiments following the settings of TimesNet [11]. 
The benchmark summary is presented in Table 2, and the experiment 
configurations are detailed in Table 3.The code is available at https:
//anonymous.4open.science/r/MVGFormer.
Dataset details. To evaluate the performance of the proposed MVG-
Former, we conduct experiments on 7 real-world datasets on forecasting 
task, including ETT (ETTh1, ETTh2, ETTm1, ETTm2), Exchange Rate, 
Weather and ILI, as shown in Table 2. And 17 UEA datasets1 on classifi-
cation task, including the gesture, action and audio recognition, medical 
diagnosis by heartbeat monitoring and other practical domain datasets. 
Moreover, we extend our approach on univariate time series like M4 
dataset2 to demonstrate the efficiency on all types of time series.
Baselines. We compare MVGFormer against well-established and ad-
vanced models across all five tasks, including CNN-based Model: Times-
Net [11], TCN [51]; MLP-based models: LightTS [52], DLinear [9] 

1 https://www.timeseriesclassification.com/
2 https://github.com/M4Competition/M4-methods/tree/master/Dataset
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Fig. 8. Model performance comparison with Transformer-based Models.

and WPMixer [53]; RNN-based models: LSSL [54]; GNN-based mod-
els: STGNN [18], Graph WaveNet [19] and MTGNN [20]; Transformer-
based models: Informer [1], Pyraformer [38], Autoformer [2], PatchTST 
[6], iTransformer [39] and TimeXer [7].

Among them, TimesNet is a task-general model known for handling 
multiple time series tasks, providing an effective backbone for learning 
periodicities and trends. It currently shows state-of-the-art (SOTA) per-
formance across a variety of tasks. iTransformer and TimeXer are cur-
rently a SOTA model in long-term forecasting tasks, demonstrating im-
pressive results. Additionally, Autoformer, Informer, STGNN and Graph 
WaveNet are classic Transformer-based or GNN-based variants that have 
served as important benchmarks in the field for time series forecasting.

Besides, we also compare the state-of-the-art models for each specific 
task, such as Anomaly Transformer [23] for anomaly detection, Rocket 
[15] and TodyNet [55] for classification. Overall, more than 25 base-
lines are included for a comprehensive comparison. All the models are 
trained/tested on a single Nvidia V100-32G GPU.

4.1.  Main results

As a task-general model, MVGFormer achieves consistent state-of-
the-art performance on five mainstream analysis tasks. To demon-
strate its strengths, we primarily compared it with existing point-wise 
Transformer-based models, such as FEDformer [5], Autoformer [2], In-
former [1], and others, as shown in Fig. 8.

Additionally, the sparse nature of the VG-Attention matrix means 
fewer parameters need to be stored and computed, improving memory 
efficiency. Therefore, as shown in Fig. 9, VG-Attention shows significant 
advantages in both runtime and memory consumption compared to the 
corresponding Attention variants (such as Full-Attention, ProbAttention 
[1], and AutoCorrelation [2]). Moreover, we can observe that the MVG-
AND layer aggregation strategy outperforms the MVG-OR strategy in 
both MSE and training time, as it better captures the consensus relation-
ship between channels. Therefore, the AND-based aggregation strategy 
is used in subsequent experiments.

4.2.  Long-term forecasting

Setup. To evaluate the model performance in forecasting task, we 
conduct experiments on five real-world benchmarks datasets, including 
Electricity (ETTh1, ETTh2) [1], Weather3, Exchange [56] and Illness 

3 https://www.bgc-jena.mpg.de/wetter/

Fig. 9. Comparison of the time and memory consumption between the Full-
Attention, the ProbAttention, AutoCorrelation and VG-Attention.

(ILI)4. Following the setting of TimesNet, the input sequence length is 
set as 36 for ILI and 96 for the others.
Results. MVGFormer demonstrates outstanding performance in more 
than 32.5% (13/40) cases in the forecasting task, as evidenced in 
Table 4, surpassing both general-purpose TimesNet and the advanced 
Transformer-based models. This superior performance may be at-
tributed to the global perspective provided by the visibility graph cri-
teria, which incorporate both historical and future information. Such
criteria enhances the model ability to extract periodic and trend pat-
terns, facilitating more accurate predictions for distant future time 
points.  Moreover, it is evident that no single model excels across 
all datasets. For example, TimeXer performs particularly well on the 
ETTh2 dataset, while DLinear shows strength primarily on the Exchange 
dataset. In contrast, MVGFormer exhibits uniform performance across 
all datasets, indicating its potential applicability to a broader range of 
scenarios and superior generalizability.

4.3.  Short-term forecasting

Setup. In this work, the proposed method MVGFormer is primar-
ily designed for multivariate time series data. Actually, it can also be 
applied to univariate time series data without the procedure of layer ag-
gregation. Therefore, we conducted comparative experiments using the 
univariate M4 dataset, which contains yearly, quarterly, and monthly
collected marketing data. For the short-term forecasting metric, we 
adopt the symmetric mean absolute percentage error (SMAPE), mean 
absolute scaled error (MASE) and overall weighted average (OWA) as 
the metrics, where OWA is a special metric used in M4 competition.
Results. The M4 dataset consists of 100,000 time series collected 
from various sources at different frequencies, leading to diverse tem-
poral variations and making forecasting more challenging. As shown in
Table 5, MVGFormer consistently outperforms advanced Transformer-
based and MLP-based models across all sampling frequencies. This is 
because the visibility graph, grounded in temporal features, is indepen-
dent of the sampling frequency. High-frequency data results in denser 
subgraphs, while low-frequency data shows sparser connections.

4.4.  Anomaly detection

Setup. Anomaly detection in industrial monitoring data is crucial 
for maintenance, but labeling challenges arise due to anomalies being 

4 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Fig. 10. Anomaly detection task. The F1-score (as %) is computed as evaluation 
metrics for each dataset, with higher values indicating superior performance.

obscured in large-scale datasets. We compare our model on five real-
world datasets, including MSL [57], SMD [58], SWaT [59], SMAP [57] 
and PSM [60]. Consistent with previous works, such as TimesNet [11] 
and Anomaly Transformer [23], we adopted the same preprocessing and 
evaluation methods, including sliding window segmentation, as well as 
the anomaly criterion and anomaly threshold setting. Specifically, we 
treat reconstruction as an unsupervised point-wise representation learn-
ing task, using reconstruction error as the anomaly detection criterion. 
To ensure fairness across experiments, we retain the same anomaly cri-
terion (reconstruction error) while varying the base models for recon-
struction.
Results. As depicted in Fig. 10, MVGFormer excels in anomaly detec-
tion, outperforming TimesNet and advanced Transformer-based mod-
els such as FEDformer [5], Pyraformer [38] and Autoformer [2]. By 
leveraging visibility criteria, MVGFormer effectively identifies anoma-
lies as high-degree nodes within visibility graphs, thereby centralizing 
attention on them. In contrast, standard Transformer methods often dis-
tribute attention across multiple edges due to pairwise correlation calcu-
lations, which can lead to weakened or overlooked anomaly detection. 
Our graph-based sparse attention mechanism ensures more focused and 
precise anomaly detection, thereby enhancing precision and reducing 
the likelihood of misinterpretation or oversight.

4.5.  Classification

Setup. To evaluate the model’s capacity in high-level representation 
learning, 17 multivariate time series datasets from UEA [61] are selected 
for sequence-level classification.
Results. As shown in Table 6, MVGFormer demonstrates superior per-
formance over existing methods, including the classical method Rocket 
[15], the deep-learning method InceptionTime [14], and the GNN-based 
method TodyNet [55]. Specially, it shows remarkable effectiveness in 
processing physiological signals, as seen with AtrialFibrillation, Stand-
WalkJump, SelfRegulationSCP2.

4.6.  Imputation

Setup. Real-world system malfunctions often lead to partial data 
missing from continuously collected time series, posing challenges for 
downstream analysis. Imputation thus becomes essential in practical 
scenarios. Following the setting (random mask ratios {12.5%, 25%, 
37.5%, 50%}) used in TimesNet, we conduct experiments on the ETT 
(4 subsets) [1] and Weather datasets, where missing data is prevalent.

Results. Table 7 shows that MVGFormer, using MSE and MAE met-
rics, outperforms most Transformer-based methods in 50% of the cases. 
This is attributed to the visibility graph extraction of temporal trends 
and the reliable sparse VG-Attention mechanism focusing on the crucial 
temporal structural dependency. These factors empower our algorithm 

to exhibit robust fitting capabilities, both locally and globally. And this 
fitting proficiency also proves advantageous in forecasting tasks.

4.7.  Model analysis

4.7.1.  Efficiency analysis
To provide a comprehensive comparison, we showcase the results 

of the forecasting task as depicted in Figs. 11 and 12. We can observe 
that MVGFormer exhibits stronger local fitting capabilities and trend 
judgment abilities, thanks to the “receptive field” of the visibility graph. 
This enables it to better adapt to temporal pattern extraction compared 
to Transformer-based methods such as Autoformer [2], Stationary [3] 
and Transformer.

4.7.2.  The benefit of VG-Attention
From the previous experimental results, we can see that MVGFormer 

demonstrated excellent performance in both forecasting and classifi-
cation tasks. To further analyze why VG-Attention works, specifically 
how the geometric visibility rules of the visibility graph guide Attention 
learning, we compare it with other Attention mechanisms, such as stan-
dard Full-Attention and the probabilistic sparse version of ProbAtten-
tion [1]. As shown in Figs. 13–15, we selected three typical time series 
types: periodic, trending, and random non-stationary, and visualized the 
learned Attention maps.

A closer look at these visualizations, we can see that, compared 
to standard Full-Attention and ProbAttention, VG-Attention concen-
trates its attention on specific key time points or time intervals, such 
as periodic local modules (Fig. 13(b)), long-term trending structures 
(Fig. 14(b)), and key fluctuations (Fig. 15(b)). In contrast, (1) the atten-
tion distribution of Full-Attention is relatively uniform, failing to focus 
on key time points. (2) ProbAttention, through its sparsification mech-
anism, reduces attention to less important time points, which, although 
decreasing computational load, may miss critical temporal dependen-
cies.Therefore, VG-Attention stands out for the more focused attention 
distribution, offering a novel paradigm for Transformer models to better 
capture and understand temporal sequences.

4.7.3.  The longer history length
Theoretically, due to its global perspective, the visibility graph is 

expected to be more suitable for long time series compared to other 
Transformer-based methods. To test this, we compared MVGFormer 
with FEDformer [5], Autoformer[2], Informer [1], and Transformer 
models to determine if they can capture more historical information 
and achieve better forecasting performance as the length of the histori-
cal time series increases. As shown in Fig. 16, we found that only MVG-
Former and Pyraformer [38] exhibit lower MSE as the input time series 
lengthens. Interestingly, traditional Transformer models perform worse 
as the input length increases, likely due to the fact that Full-Attention 
tends to capture more noise as the number of time series tokens grows, 
leading to dispersed attention.

4.7.4.  Representation capability
As shown in Fig. 17, we visualized the embedding representations of 

multivariate time series. The embeddings learned by MVGFormer align 
well with the characteristics of the time series. Specifically, the model 
captures key segments of the series (Fig. 17(a-b)), such as peaks and 
large fluctuations, with more prominent embeddings. For stable and pe-
riodic time series (Fig. 17(c)), the representations are more uniformly 
distributed. Additionally, we observed that MVGFormer effectively cap-
tures other complex temporal features, such as anomalies and multi-
periodicity (Fig. 17(d-e)). This further explains its strong performance 
in anomaly detection tasks. Furthermore, as seen in Fig. 18, MVGFormer 
demonstrates a strong representation capability in classification tasks, 
effectively distinguishing different categories of multivariate time series 
in the vector space.
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Fig. 11. Forecasting Performance: Visualization of ILI predictions from different models under the input-36-predict-24 setting. The x-axis represents the time 
dimension, and the y-axis represents the corresponding observed values. The blue lines represent the ground truth, while the orange lines represent the predicted 
values.

Fig. 12. Imputation Performance: Visualization of ETTh2 imputation results given by different models under the 12.5% mask ratio setting. The x-axis represents 
the time dimension, and the y-axis represents the corresponding observed values. The blue lines represent the ground truth and the orange lines represent predicted 
values.

Fig. 13. Visualization of learned temporal Attention for periodic time series. (b) is from our VG-Attention; (c) is from standard Full-Attention, fully connected 
learning; (d) is from Informer [1], a sparse attention algorithm.

Fig. 14. Visualization of learned temporal Attention for trend-based time series. (b) is from our VG-Attention; (c) is from standard Full-Attention, fully connected 
learning; (d) is from Informer [1], a sparse attention algorithm.
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Fig. 15. Visualization of learned temporal Attention for non-stationary time series. (b) is from our VG-Attention; (c) is from standard Full-Attention, fully connected 
learning; (d) is from Informer [1], a sparse attention algorithm.

Fig. 16. Impact of input horizon on forecasting results. The MSE results (Y-axis) of models with different lookback length (X-axis) and fixed prediction length 𝑇  on 
the ETTh1 (𝑇 = 96) and Illness (𝑇 = 24) datasets.

4.7.5.  Comparison with pure graph-based methods
To further validate the effectiveness of the visibility graph construc-

tion, we compare MVGFormer with other GNN-based models, includ-
ing the classic STGNN [18], Graph WaveNet [19] and MTGNN [20], 
as shown in Table 8. Using the Exchange Rate dataset and following 
the setup from the MTGNN model, we conduct one-step forecasting 
comparisons based on MAE, RMAE, and MAPE metrics, where Horizon 
(3,6,9,12) represents the predicted future time steps. The results demon-
strate that MVGFormer outperforms these GNN4TS methods, which we 
attribute to two main reasons: (1) STGNN and Graph WaveNet heavily 
rely on prior graph structure information, which is particularly effective 
in traffic-related tasks; (2) MTGNN constructs inter-channel structural 
relationships purely through a learning method but neglects temporal 
dependencies, leading to inferior performance in regression tasks com-
pared to Transformer-based methods. In contrast, MVGFormer compen-
sates for the shortcomings of both, thus achieving superior performance.

4.8.  Ablation studies

In this section, we conduct ablation studies to evaluate the effective-
ness of each individual component in our proposed method. By system-
atically removing or modifying different parts of the system, we aim to 
assess their contribution to the overall performance.

4.8.1.  Main ablation studies
We conduct the main ablation studies to assess the contribution of 

each core module in MVGFormer. As shown in Table 9, we focus on three 
primary components: layer aggregation, consensus visibility graph, and 
VG-Attention, as follows:

Table 8 
Comparison with GNN4TS methods.
 Horizon  Metric  STGCN  Graph WaveNet  MTGNN  MVGFormer
 3  MAE  1.58  1.44  1.07  0.33

 RMSE  3.27  2.99  2.12  0.51
 MAPE  4.59%  3.89%  2.31%  1.04%

 6  MAE  2.12  1.97  1.35  0.38
 RMSE  4.36  4.22  2.65  0.58
 MAPE  4.60%  3.55%  2.27%  1.23%

 9  MAE  2.24  1.97  1.47  0.38
 RMSE  4.39  3.97  2.80  0.59
 MAPE  4.91%  3.47%  2.24%  1.47%

 12  MAE  2.17  1.79  1.48  0.38
 RMSE  4.71  3.29  2.86  0.58
 MAPE  5.10%  3.57%  2.21%  1.52%

Table 9 
Performance comparison of MVGFormer and ablated variants (w/o layer ag-
gregation, consensus graph, VG-Attention) on various datasets. Best results in
bold.

 Model Variant  ETTh1  Weather  Exchange  ILI
 Metric  MSE  MAE  MSE  MAE  MSE  MAE  MSE  MAE
 MVGFormer  0.458  0.448  0.257  0.287  0.450  0.4392  1.957  0.931
 w/o Layer Aggregation  0.482  0.461  0.266  0.298  0.4725  0.451  2.014  0.963
 w/o Consensus Graph  0.473  0.459  0.263  0.295  0.466  0.446  2.003  0.955
 w/o VG-Attention  0.495  0.475  0.273  0.309  0.489  0.468  2.058  0.978
Results are averaged over four prediction lengths: 96, 192, 336, and 720 for 
ETTh1, Weather, Exchange; 24, 36, 48, and 60 for ILI.
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Fig. 17. Representation Capability (1):Visualization of multivariate time series embeddings across different datasets (a-c), highlighting anomalies and multi-period 
patterns in the AtrialFibrillation (AF) dataset (d-e).

• w/o Layer aggregation: Each channel is processed independently 
without multi-layer aggregation before being passed into VG-
Attention.

• w/o Consensus graph: The consensus visibility graph is replaced 
by a simple combined graph that merges all edges across layers and 
time.

• w/o VG-attention: The VG-Attention module is replaced with a 
standard linear projection layer.

These results clearly indicate that all three components are crucial 
to the effectiveness of MVGFormer. Notably, removing VG-Attention 
leads to the most significant performance drop, demonstrating its key 
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Fig. 18. Representation Capability (2): Embedding visualization using t-SNE on the PenDigits, NATOPS and ArticularyWordRecognition (AWR) from the UEA 
datasets, depicting the evolution of the learning process during model training.

Table 10 
The ablation study of channel-wise consensus information extraction using layer aggregation.

 Dataset  Dims  Aggregation  MSE/Accuracy  Training Time (s/epoch)

Forecasting

 Weather  21  w/o_Aggregation  0.234  4200.03s
 w_Aggregation  0.226  2226.09s

 ETTh1  7  w/o_Aggregation  0.457  325.61s
 w_Aggregation  0.451  135.97s

 Exchange  7  w/o_Aggregation  0.215  219.85s
 w_Aggregation  0.207  89.83s

Classification

 HandMovementDirection  10  w/o_Aggregation  43.40  32.75s
 w_Aggregation  45.31  3.62s

 FingerMovements  28  w/o_Aggregation  58.07  3.71s
 w_Aggregation  64.58  0.38s

 NATOPS  24  w/o_Aggregation  81.45  2.38s
 w_Aggregation  92.50  0.31s

role in modeling long-range temporal dependencies through the graph
structure.

4.8.2.  Impact of the channel-wise consensus
To further validate the advantages of channel-wise consensus infor-

mation extraction in terms of both performance and efficiency, we con-

ducted additional experiments to evaluate MVG-AND layer aggregation 
mechanism (with and without aggregation) on forecasting and classi-
fication tasks, as shown in Table 10. In the w/o_Aggregation scenario, 
the multivariate time series is treated as univariate, with each chan-
nel processed independently (Channel-Independent, CI) and encoded 
using VG-Attention. Interestingly, after applying MVG-AND for layer
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Table 11 
The ablation study for Batch Normalization and 
Layer Normalization on pred_len=96.
 Datasets  *_batch_norm  *_layer_norm
 Metric  MSE  MAE  MSE  MAE
 ETTh1  0.392  0.412  0.396  0.412
 ETTh2  0.323  0.369  0.335  0.371
 Weather  0.178  0.229  0.181  0.233
 Exchange  0.081  0.216  0.101  0.224
 ILI  1.654  0.839  2.297  1.022

aggregation to extracts consensus relationships between channels, both 
experimental performance and training speed improve significantly. The 
MSE is reduced by an average of 2.82%, classification accuracy in-
creases by an average of 9.73%, and training speed improves by an 
average of 67.48%. This demonstrates that strengthening the consensus 
relationships, leading to sparser connections, does not compromise tem-
poral dependencies but actually enhances inter-channel correlations. 
Furthermore, as the number of channels increases, performance im-
proves, further emphasizing the importance and necessity of extracting 
consensus relationships to get a global dependencies for multivariate 
time series.

4.8.3.  Batch normalization vs layer normalization
In MVGFormer, each token (node) corresponding to the values of dif-

ferent channels. Unlike traditional Transformers, which use LayerNorm, 
this approach requires a different normalization method because the fea-
tures in multivariate time series data may have different scales (units). 
BatchNorm normalizes each feature (i.e., each channel) across all time 
steps in the batch, addressing the issue of inconsistent feature scales and 
ensuring uniform scaling during training. In contrast, LayerNorm nor-
malizes all features at each time step, which does not effectively resolve 
the issue of scale inconsistency across time steps. As shown in Table 11, 
compared to LayerNorm, BatchNorm results in a 10.81% improvement 
in MSE and a 4.74% improvement in MAE. Therefore, BatchNorm is 
more suitable for MVGFormer.

5.  Case study: sensitivity to noise

Although the theoretical definition of the Visibility Graph is invari-
ant to affine transformations [10], it is still sensitive to high-frequency 
noise. For example, consider a periodic sequence 𝑇1 = {3, 1, 3, 1, 3, 1,…}, 
which, when noise is added, becomes 𝑇 ′

1 = {3.1, 1.3, 2.7, 1.2, 3.2, 1.1,…}. 
This noise may introduce unnecessary connections in the visibility 
graph, such as a spurious visibility connection between 3.1 (at 𝑡0) and 
3.2 (at 𝑡4). This disrupts the original periodic structure, adds edges that 
do not follow the periodicity, and degrades the graph’s interpretability 
and effectiveness.

To empirically examine this, we gradually added Gaussian noise to 
the normalized input time series from the ILI dataset5, which contains 
low-frequency, noise-free data. As shown in Table 12, the performance 
of MVGFormer steadily degrades as the noise level increases. This degra-
dation occurs because noise introduces spurious edges into the visibility 
graph, distorting the temporal structure and misguiding the Attention 
mechanism, which leads to a focus on non-informative points.

These results reveal a practical limitation of visibility graph-based 
methods in real-world noisy scenarios. Noise introduces errors that de-
grade model performance. Future work could address this by incorporat-
ing graph denoising strategies, such as denoising autoencoders or refin-
ing visibility graph construction to mitigate noise. Several studies have 

5 The ILI dataset, reports the weekly number of patients with influenza in 
the United States, collected by the Centers for Disease Control and Preven-
tion (CDC) from 2002 to 2021. Available at https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html.

Table 12 
Discussion on the sensitivity of Visibility Graph to noise.
 Noise Level  w/o noise 𝜎 = 0.05 𝜎 = 0.10 𝜎 = 0.20

 MSE  1.654  1.698  1.812  2.037
 MAE  0.839  0.861  0.910  0.993

proposed solutions to this issue, such as the Limited Penetrable Visibility 
Graph (LPVG) [30], and the Circular Limited Penetrable Visibility Graph 
(CLPVG) [31], both of which demonstrate improved noise resilience. 
Therefore, a promising direction for future research is the development 
of more robust visibility graph models to enhance model generalization 
under noisy conditions, enabling better handling of noisy time series 
data in real-world settings.

6.  Conclusion

MVGFormer, as a general-purpose model, surpasses most current 
state-of-the-art Transformer-based models, and even TimesNet, across 
four main tasks. This marks a significant advancement in time-series 
analysis by incorporating temporal structure into the Transformer ar-
chitecture, enhanced by the optimized VG-Attention mechanism. This 
approach provides a novel perspective on guiding Attention in multi-
variate time series models, utilizing complex network theory to address 
the challenges of attention dispersion inherent in standard Transformer 
architectures. Future work will focus on cross-variable visibility princi-
ple, further enhancing the representation capability of multivariate time 
series and uncovering the potential relationships between variables.
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