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ARTICLE INFO ABSTRACT

Keywords: Multivariate time series (MTS) modeling plays a crucial role in understanding complex systems. However, exist-
M“.lﬁ"’f“iate time series ing Transformer-based approaches often struggle to capture essential temporal structures, leading to information
Vmblhtylgraph loss and even attention dispersion. To address these challenges, we propose MVGFormer, a novel Transformer-
i:::f;;);:msetrructure compatible Multivariate Time Series framework guided by Visibility Graph principles. By explicitly establishing

connections between time points based on visibility criteria, we introduce a graph-based sparse Attention (VG-
Attention) mechanism, which selectively focuses on crucial temporal dependencies while filtering out irrelevant
noise. This sparse Attention significantly mitigates the impact of quadratic complexity, improving scalability for
larger time series data. Moreover, considering existing models often overlook the global dependencies within
MTS, we extract consensus information across channels and aggregate the multiplex visibility graph into a con-
sensus graph, revealing potential cross-layer patterns. Compared to single-channel models, MSE decreases by
2.82 %, classification accuracy increases by 9.73 %, and training speed improves by 67.48 %. Experimental re-
sults across 25 real-world datasets demonstrate that MVGFormer outperforms most existing models in four main
tasks, including forecasting, classification, imputation, and anomaly detection. Overall, our approach provides
a fresh perspective on adapting Transformers to better understanding temporal dependencies within time series
data.

Representation learning
Task-general model

1. Introduction there is a key distinction between the two: language dependencies pri-

marily focus on the order and grammatical structure between words in a

In complex systems, multivariate time series (MTS) offer a richer
and more comprehensive perspective compared to univariate analysis,
enabling a better understanding of system behaviors. MTS analysis has
been widely applied and extensively studied in numerous practical sce-
narios, such as physiological signal classification for medical diagnosis,
meteorological factor prediction for weather forecasting, and anomaly
detection in industrial maintenance monitoring data.

Recently, Transformer-based methods have demonstrated outstand-
ing performance in time series analysis. These methods primarily ex-
plore different tokenization paradigms, such as treating each time point
as a token [1-5] or grouping multiple consecutive time points into a sin-
gle token [6-8]. This success can be attributed to the fact that both lan-
guage dependencies and temporal dependencies fundamentally explore
“relationships” between data points (words or time points). However,
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sentence, such as subject-verb agreement or syntactical rules. Whereas,
temporal dependencies in time series are quite different, emphasizing se-
quential patterns such as periodicity, trends, and seasonality over time.
For example, a time series might show a regular pattern of peaks and
valleys (periodicity), or data points might gradually increase or decrease
over time (trend).

The two types of dependencies, though involve connections between
data points, differ significantly in how they are structured and how they
evolve. As a result, methods like full-Attention or its variants, which
rely on pairwise associations, struggle to directly capture meaningful
temporal structures from scattered time points [2,9]. They may even in-
troduce noise and potential attention dispersion when applied to time
series data. This noise can hinder the accurate understanding of tempo-
ral structures and lead to incomplete or inaccurate analysis of temporal
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Transformer

Visibility Graph

Fig. 1. A novel perspective for analyzing time series through the visibility graph criteria.

patterns, especially when temporal dependencies are deeply obscured
in intricate patterns. Ultimately, it may result in meaningless attention
maps and information loss.

To effectively recognize temporal patterns, this paper adopts a
methodology inspired by the Visibility Graph criteria [10], which ex-
plicitly constructs temporal connections between time points based on
sequential features, as depicted in Fig. 1. This conversion inherits sev-
eral intrinsic structural properties of the time series [11], and provides
a global view to enhance the memory capabilities of the series. In con-
trast to the current GNN-based methods (GNN4TS) [12], which gener-
ate graphs either by heuristics or learning from the series, the visibility
graph offers a fresh perspective in constructing time point connections.
It possesses universal, theoretical, interpretable, simple, and effective
attributes. Therefore, our goal is to address the limited temporal under-
standing of traditional Transformer, leveraging the strengths of visibility
graph to enhance the Transformer’s ability to represent time series.

Specifically, our approach consists of two main stages: constructing
the visibility graph of temporal relationships and encoding it with the
Visibility Graph Transformer. In the first stage, to address the quadratic
time complexity ©O(N?) of the visibility graph, we propose a sliding win-
dow approach that avoids redundant calculations of time point relation-
ships, achieving linear time complexity. Building upon this, we construct
a consensus visibility graph for multivariate time series, which captures
the common patterns or interactions across channels and reveals the
global dependencies of MTS. In the second stage, we refine a new Atten-
tion similarity calculation by adopting the visibility graph-structured ap-
proach (VG-Attention), moving away from the fully connected learning
typically used in standard Transformer mechanisms. This refinement en-
sures that our model focuses on the most significant relationships among
scattered time points, reducing learning costs and mitigating attention
dispersion. Experimental results show that MVGFormer outperforms ex-
isting methods, achieving state-of-the-art performance across four major
time series analysis tasks. Our contributions can be summarized as fol-
lows:

e We introduce MVGFormer, a visibility graph-guided Transformer
framework for better capturing both structural properties and tem-
poral variations of MTS.

e We propose a sliding window-based visibility graph (SVG), which
reduces the computational complexity from O(N?) to O(N), making
it more suitable for large-scale time series data.

e To capture global dependencies in MTS, we propose a con-
sensus visibility graph that integrates both temporal and
channel-wise dependencies based on graph-theoretic consensus
relationships.

¢ Based on the consensus graph, we propose a Visibility Graph-based
Attention (VG-Attention) mechanism, which focuses on learning cru-
cial structural relationships within temporal patterns, effectively ad-
dressing attention dispersion and information loss.

¢ Asa universal model, MVGFormer consistently achieves state-of-the-
art performance in four mainstream time series analysis tasks, sur-
passing most of current Transformer-based methods.

2. Related works

Multivariate time series analysis. In recent years, various deep learn-
ing models have been proposed for temporal modeling, such as MLP-
based, CNN-based, Graph-based, and Transformer-based models. A
number of these methods have been designed for specific downstream
tasks. For instance, in forecasting tasks, models like Rlinear [13] and
DLinear [9] utilize a single layer of fully connected neural networks to
model the relationships between past and future data points for multi-
step prediction. In classification tasks, methods like InceptionTime [14],
Rocket [15], EEG-Inception [16], and TC-BPPV [17] treat multivariate
time series as matrix and leverage Convolutional Neural Network or At-
tention architectures to generate a rich set of features for time series clas-
sification. From a graph perspective, approaches such as STGNN [18],
Graph WaveNet [19], MTGNN [20], Copula-based Hybrid-GTS [21], and
AutoGRN [22] integrate temporal dynamics with physical or relational
structures, aiming to capture complex dependencies among variables
to enhance predictive performance. Additionally, some models are de-
signed specifically for anomaly detection, such as the Anomaly Trans-
former [23], which focuses on capturing contextual deviations in time
series data.

To overcome the limitations of task-specific models, TimesNet [11]
introduces a task-general backbone called TimesBlock, which adaptively
extracts multi-periodicity from time series. TimesNet has demonstrated
outstanding performance on five main time series analysis tasks, in-
cluding short- and long-term forecasting, imputation, classification, and
anomaly detection. Therefore, we hold the view that a strong tempo-
ral representation ability enables the model to identify anomalies and
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capture intricate temporal patterns, making it adaptable to various
downstream tasks.

Visibility graph. The Visibility Graph [10] was first introduced in PNAS
in 2008 and has since become a powerful tool for time series analysis,
particularly in fields such as physiology [24,25], economics [26,27],
and climate studies [28]. The core idea behind the visibility graph is to
transform time series data into a graph, where each data point is rep-
resented as a node, and edges are formed based on geometric visibility
criteria-two points are connected if they can “see” each other without
any other points blocking the line of sight. This technique has proven
effective in capturing the inherent structures of time series data and has
been applied in various domains to analyze underlying dynamics. Build-
ing on this principle, several extensions of the visibility graph have been
developed, including the Horizontal Visibility Graph (HVG) [29] and the
Limited Penetrable Visibility Graph (LPVG) [30,31]. Furthermore, the
visibility graph criterion has been successfully applied in image process-
ing [32], where it has been used to extract two-dimensional spatial fea-
tures, achieving promising results when compared to traditional models
like ResNet [33].

Recent efforts have focused on combining visibility graphs with ad-
vanced techniques to address their limitations and enhance their ap-
plicability. For example, AVGNet [34] integrates visibility graphs with
Graph Neural Networks (GNNs), creating a more adaptive graph struc-
ture for signal classification tasks. Additionally, MAGNN [35] combines
multi-scale graph learning techniques with visibility graphs for multi-
variate time series forecasting, effectively preserving temporal depen-
dencies at different scales. These methods aim to improve the flexibility
and scalability of visibility graphs while maintaining their interpretabil-
ity and simplicity. Moreover, recent reviews [36,37] have provided com-
prehensive analyses of visibility graph criteria and their applications,
highlighting that network-based analytical techniques are valuable tools
for extracting meaningful insights from time series data across diverse
domains. However, visibility graphs still face challenges, particularly
in terms of high computational complexity, which limits their appli-
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cability to large-scale time series data. Meanwhile, the introduction of
Transformer-based models presents a promising approach to enhance
the visibility graph’s ability in understanding and modeling complex
temporal relationships,allowing for a more effective capture of long-
term dependencies within time series data.

Transformer-based time series representation. Transformers have
demonstrated excellent performance in time series forecasting [1,2,
6-8,38,39]. Through the Attention mechanism, these methods effec-
tively uncover the temporal dependencies between time points. No-
tably, Autoformer [2] uses an Auto-Correlation mechanism to cap-
ture series-wise temporal dependencies based on learned periods. To
address complex temporal patterns, Autoformer employs a deep de-
composition architecture to extract seasonal and trend components
from the input series. Later, FEDformer [5] incorporated a mixture-
of-expert design to improve seasonal-trend decomposition and intro-
duced sparse Attention in the frequency domain. Furthermore, to ad-
dress inter-variable correlations, iTransformer [40], TimeXer [7] and
MultiPatchFormer [8] have innovatively use an inverse Transformer and
cross Attention to capture multivariate dependencies, yielding excellent
results. Previous Transformer-based methods have explored various ef-
fective techniques for time series. In this work, we aim to enhance the
Transformer’s understanding of temporal dependencies by incorporat-
ing visibility graph criteria. This approach provides a fresh perspec-
tive, enabling the model to capture the complex network connections
inherent in time series data and deepen its understanding of temporal
relationships.

3. MVGFormer

Our proposed MVGFormer, illustrated in Fig. 2, comprises three
stages: (1) Multiplex visibility graph: the projection of multivariate time
series to a multi-layer network; (2) Channel-wise consensus information
extraction, and (3) the Visibility graph transformer model for encoding
time series representations.Temporal Embedding

(Forecasting) (Ciassification) (Imputation)

Node Embedding

Batch Norm

01 ..1
Channel-wise

Visibility Graph
Attention

éj‘ &
a <

(3) Visibility Graph Transformer

Fig. 2. The framework of MVGFormer. (1) Projection stage: Converts multivarite time series into a multiplex visibility graph using visibility graph criteria.
(2) Consensus information extraction: Aggregate the multiplex graph into a single-layer graph, obtaining a aggregated graph .4 with channel-wise consensus
relationships as the model input. (3) Encoding stage: Leverage the generated temporal topological structure, overlaying multiple Visibility Graph Transformer
layers for iterative learning, involving Temporal Embedding, Visibility Graph Attention and Batch Normalization.
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3.1. Preliminary

Visibility graph. For a univariate time series consisting of N real-
valued data {x(7)} fl Iy following the visibility algorithm, nodes typically
represent specific time points, and edges indicate the connection be-

tween these time points fulfilling visibility graph criteria:

th - tc
x(t.) < x(t) + (x(1,) = (1)) — @
=

tH

where (1,,x(1,)) and (1;,x(1,)) are two arbitrary data values, with an
additional data point (1., x(t.)) positioned between them. A straight line,
termed the “visibility line”, connects points in the series data without
intersecting any intermediate data heights, as depicted in Fig. 3.

The advantages of visibility graph. This conversion highlights the in-
herent ability of the visibility graph to capture both ordered and chaotic
structures present in time-series data. The insights are drawn from the
research of [10], which identified two core advantages: (1) Visibility
criteria quantify the “receptive field” of each time point. Similar to the
receptive field in Convolutional Neural Networks (CNNs), the “visibil-
ity line” offers a global view, allowing the model to assess the influ-
ence of each temporal point. As shown in Fig. 4, panel (a) illustrates
that the influence range of periodic peaks is confined within each cycle,
while in panel (b), the influence of sharp drops extends to all subse-
quent points. (2) The Visibility Graph is applicable to various types of
time-series data, including both periodic and non-periodic series [10].
Specifically, ordered series are represented by regular graphs (visual-
ized in different colors for clarity), while random series correspond to
exponential random graphs.

Time Series Visibility Graph Visibility Graph

200

(a) periodic series.

Time Series Visibility Graph Visibility Graph

0 100 200 300 400 500 600 0 100 200 300 400 500 600

(b) non-periodic series.

Fig. 4. Visibility graph criteria for periodic and non-periodic time series.

Table 1
Notation table.
Symbol  Definition
N Length of the time series (number of time points / nodes)
M Number of channels (variables) in the multivariate time series
Number of layers in the multiplex visibility graph
d Embedding dimension (hidden size of node representations)
xl(t) Value of the a-th channel at time point ¢
1,0 The i-th time point (node i)
Al Adjacency matrix of the visibility graph for the a-th channel
M Multiplex visibility graph consisting of all channel-wise graphs
A Consensus visibility graph aggregated from M
N (i) Neighbor set of node i in the visibility graph

3.2. Multiplex visibility graph

In this section, we apply the visibility graph to multivariate time
series. Firstly, to address the issue of high time complexity, we intro-
duce an improved approach, the Sliding Window Visibility Graph (SVG),
which achieves linear complexity. Then, we construct a visibility graph
for each variable, leading to the multiplex visibility graph for multivari-
ate time series, as illustrated in Fig. 2(b).

3.2.1. Sliding window visibility graph

Traditional methods of constructing visibility graph for time series
data require full traversal of the dataset to compute visibility relation-
ships between all pairs of points, resulting in a time complexity of O(N?),
where N is the sequence length. This approach becomes computation-
ally expensive and inefficient for large-scale datasets.

To address these limitations, we introduce the Sliding Window Visi-
bility Graph (SVG), which processes time series in a fixed-size and over-
lapping window, shown in Fig. 5. As the window slides across the time
series, only the newly added time points and the removed time points
are updated, significantly reducing the amount of recalculation. This
results in an overall linear time complexity of O(N), offering a substan-
tial improvement over traditional methods. By combining the sliding
window technique with traditional visibility graph algorithms, SVG en-
sures efficient, real-time updates and linear time complexity, making
it highly suitable for large-scale time series analysis and real-time data
streams. Additionally, for longer time series or lightweight scenarios, we
can further explore the divide-and-conquer strategy proposed in [41],
combined with the sliding window strategy, which can reduce the time
complexity to O(log N).

3.2.2. Multiplex visibility graph structure

Based on the proposed SVG, we extend the visibility approach
to introduce a novel structure, termed the multiplex visibility graph
[42], denoted as M. This graph constructed from an M-channel
time series {x(t)}fi . At any given time point 7, each x(¢) is a vector
(=@, xP @), ..., xM(1)) € RM, sourced from M distinct sensors. The
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Fig. 6. Layer aggregation mechanisms: (a) Consensus Visibility Graph, which requi:
time points, following the AND-based logic; and (b) Combined Visibility Graph, whi
layers, following the OR-based logic.

structure of M is multi-layered, with each layer a containing a visi-
bility graph that corresponds to the time series of a specific variable
{x[’”(t)}fil. Specifically, the multiplex visibility graph M comprises a
composite of adjacency matrices, collectively represented as

M= {AM AR AT @

where each Al?l is the N x N adjacency matrix corresponding to layer
«. In this multiplex graph, each matrix Al*! = {e,[;']} denotes the connec-
tivity: e,[,;‘] = 1 signifies a link between nodes (time points) #; and ¢; in the
a-th layer, while el[”.’] = 0 indicates no link, applicable for all node pairs
t;,1; =1,2,..., N. To better describe the structure of the multiplex visi-
bility graph and simplify the notation, we uniformly use el[j’] and node
i, j in subsequent sections, where node i, j corresponds to the time points
1;,; in the original time series. Furthermore, to ensure consistency and
clarity of the symbols, the unified symbol definitions are provided in
Table 1.

3.3. Consensus information extraction

The multiplex visibility graph, with its layered structure and shared
nodes, encapsulates the underlying correlations across different chan-
nels in multivariate time series. To better understand these relationships
from a global perspective, we explore the common patterns or interac-
tions between layers using consensus relationships [43-47] in the con-
text of multiplex graphs. One intuitive idea is to construct an aggregated
graph (we call the consensus visibility graph) by merging adjacency ma-
trices to capture the consensus information across all views, revealing
the global dependencies of the multivariate time series.

For the aggregation algorithm, we draw inspiration from the classical
concept of subgraph isomorphism in complex network analysis [48,49],
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01 0
LR AL SR R RS AT T 4 — 1
(a) Consensus (AND-based) q ﬂ -
= B 01 . 1

Nl — -

(b) Combined (OR-based)

res an edge in every layer to synchronize channel interactions across different
ch preserves all edge relationships to allow diverse channel interactions across

which helps identify topological structures consistently present across
all layers. These recurring subgraphs reveal structural consensus [50],
capturing coordinated behaviors across channels and facilitating global
temporal understanding. Based on this theoretical foundation, we define
the Consensus Visibility Graph in Definition 1 as a unified representa-
tion that integrates multi-layer connectivity patterns derived from the
multiplex visibility graph.

Definition 1 (Consensus visibility graph). To capture the joint visibil-
ity structure across all layers in the multiplex graph M, we define the
Consensus Visibility Graph as a single-layer fused graph A, where each
node corresponds to a time point, and the edge set ¢;; € A is constructed
based on inter-layer agreement. As shown in Fig. 6(a). an edge e;; exists
between nodes i and j if and only if the visibility condition is satisfied
across all layers a = 1, ..., M, according to the following rule when for
each intermediate time instance #,, with #; <1, <t;:

A= {e;; | Yo, x1(t,) < min (x1(t), x1N¢ ), e =1,..., M} (3)

where A is the set of consensus edges, and ¢;; = I signifies a consen-
sus link between time point i and j across all channels. In fact, we can
approach the problem from a matrix perspective, drawing an analogy
to the logical AND operation on adjacency matrix Al*! to implement
the consensus structure search. This allows us to simplify the multiplex
graph M into a single-layer topology .A using an AND-based aggregation
mechanism (MVG-AND).
M

A= ppnpM) =[] A @
a=1
For each pair of nodes i, j,
M .
_ _ [a] _ 1, ife, =1
Aij = @AND (Mz‘j) = HAi; = {0 oth’(jerwise 5
a=1 ’
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To validate the effectiveness of this method, we compare it with the
Combined Visibility Graph shown in Fig. 6(b), which emphasizes the di-
versity of connections by retaining edges present in any layer, according
to the following rule when for each intermediate time instance t;, with
<t <t

A= {e; | 3, x@) < min (x@), xM@t)), a=1,..., M} (6)

Similarly, the Combined Visibility Graph graph can be constructed
using an OR-based aggregation mechanism (MVG-OR), as
M
A= pop(M) = \/ Al

a=1

)

M
=1yun = H (1N><N - Am)*
a=1
where \/ represents the logical OR operation applied over the layers.
1yyn € RV js the matrix with all elements equal to one, and

M
Ai/:fPOR(Mi/):1‘H<1‘A1L?J)- ®)
a=1

By comparing these two approaches, we assess the impact of focusing
on commonality (AND-based) versus diversity (OR-based) in capturing
key relationships in multivariate time series. In fact, the experiments
show that MVG-AND outperforms MVG-OR, as illustrated in Fig. 9.

Based on this, we construct an consensus visibility graph A using
Multiplex Visibility Graph (Section 3.2) and Consensus Relationship
Extraction (Section 3.3), which integrates temporal dependencies and
channel-wise consensus information. The overall process is shown in
Algorithm 1.

Algorithm 1: Consensus visibility graph A.

Input: X € RM*N (M variables, N time points), sliding window
size Wgy g, Aggregation_type (“AND” or “OR”)

Output: consensus visibility graph A

Step 1: Multiplex visibility graph construction;

w < X[1 : Wgygl // Initialize window

G < BuildGraph(w) // Initial visibility graph

M < [G] // List of layer graphs

for idx = Wsyg to N do

ts < X[idx — Wgyg + 1

new_node < X[idx];

old_node « X[idx — Wgygl;

G <« RemoveEdges(G, old_node);

if CheckVisibility(new_node, G) then

L G <« AddEdge(G, new_node);

| M.append(Q);

13 Step 2: Consensus matrix extraction;

14 A< @ // Initialize aggregated graph
15 fora=1to M do

16 if Aggregation type = “OR” then

1 idx] // SVG

O 0 N o U A W N =

-
- o

—
N

17 | A< AX(1 - Mlal)
18 else if Aggregation type = “AND” then
19 L A < AX Mlal;

20 if Aggregation_ type = “OR” then
21 L return 1 — A;

22 else if Aggregation type = “AND” then
23 L return A;

3.4. Visibility graph transformer

The consensus visibility graph .4, with both sequential and
graph-based features, promises focused attention and significant
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computational efficiency compared to traditional fully connected se-
quence methods, which have quadratic complexity. This section ex-
plains the learning mechanism of the proposed Visibility Graph Trans-
former architecture: Temporal Embedding, Visibility Graph Attention
Mechanism, Batch Normalization and Feed Forward Network.
Temporal embedding. Initially, we prepare the input node embeddings
to be passed to the Visibility Graph Transformer layer. For the consen-
sus graph 4, each node i features node embeddings §; € RM*! where M
represents the number of variables. To address inconsistencies in units
across variables and reduce distributional discrepancies among individ-
ual input time series, the input node g; undergoes Z-score normalization
along the temporal dimension, and then passes via a linear projection
to be embedded into d-dimensional hidden features ﬁio, as:

h) =wPB, +p° )
where
B = ﬁ'__”B (10)

\/Gé+e

and 4¥) %Z,{ilﬁ[_(j);o.é(j) - %ZI{L (ﬂ,-(’) —#}’;))2, j=12,...,Mis
the dimension index of multivariate time series, N is the input series
length, up, 03 € RMX1, correction factor e is set to le — 5, and W €
R>M 0 ¢ RY are the parameters of the linear projection layers. To
capture temporal dependencies in time series, we embed pre-computed
timestamp position encodings using the sinusoidal embedding method
often used in NLP.

70 _ [ sin (i/100002/9),
= | cos (i/10000%/4),

if j =2k

if j=2k+1 an

i
where i denotes the sequence position of the time points, j denotes the
dimension index, and d denotes the dimension of the temporal encoding,
k=0,1,2,...,d/2 - 1. And then add to the node features 7? to obtain the
initial node embedding

RO =h0 +T,. (12)

Visibility graph attention mechanism. The standard (Dense) Trans-
formers Attention mechanism, as illustrated in Fig. 7, proves effective
for language sequences due to the inherent challenge of pre-determining
the inter-token relationships. In this context, it involves matrix multipli-
cation (®) for pairwise node similarity calculation, as:

Full-Attention(Q, K. V') = softmax(QL\/fT>v, 13)
d

where Q, K, and V are linear projections of input embedding. We aim
for Attention to focus on the intrinsic characteristics of time series (such
as periodicity, trends, fractality, etc.). Therefore, compared to the fully
connected Full-Attention mechanism, our approach incorporates reli-
able connections between time points, thus adding additional graph
structure information into the input, as follows:

VG-Attention(Q, K.V, )= Y a,V}, a4
(i,j))eA

Full-Attention

pair-wise fully connect

mﬂwm
eeveevececc oo

Time)p

VG-Attention

Fig. 7. Visibility graph attention mechanism.
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Table 2
Summary of experiment benchmarks.
Tasks Benchmarks Metrics Window Size (W)
Long-term Forecasting ETTh1, ETTh2, Weather, Exchange Rate, ILI MSE, MAE 96 ~ 720 (ILL: 24 ~ 60)
Short-term Forecasting M4(6 subsets) SMAPE, MASE, OWA 6~ 48
Classification UEA (17 subsets) Accuracy 29 ~ 1751
Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100
Imputation ETTh1, ETTh2, ETTm1, ETTm2, Weather MSE, MAE 96
where Table 3
0.KT Experiment configuration of MVGFormer.
]
ex
P< Vd > Tasks / Configurations Model Hyper-parameter — Training Process
;=
Y oKl Layers dmin® dmax® LR® Batch Size Epochs
LkeN (i) ©XP Vi -
Long-term Forecasting 3 32 512 1074 32 10-30
and (i, j) denotes an edge between nodes i and j in consensus graph Short-term Forecasting 3 16 64 10 16 30
A, N(i) denotes the neighbor set of node i, and Q;, K ; represents the -
K . . . . Imputation 3 64 128 1073 16 10-30
feature vector of node i and j, respectively. This approach will effec-
. . . i 3 -3
tively reduce the computational load and addresses the issue of atten- Classification 3 32 64 107 16 30
tion dispersion, which often arises from superfluous relationships in the Anomaly Detection 3 32 128 10 128 10
sequence. Specifically, the update of node hf is formulated as:
2 d,odel = Min {max {2[10& <l doin } dax }, where C is input series dimen-
£+l ¢ H Kty kit pt sion.
Y2 Lkt pt s .
hi™ =04l -, Z & 4 h,' g 15) b LR means the initial learning rate.
JEN ()

where QK¢ Kk ke e Rdxd Oi € R4k =1to H denotes the num-
ber of heads, and || denotes concatenation.

Batch normalization & feed forward network. The attention outputs
izif +1 are subsequently fed into a Feed Forward Network (FFN), which is
surrounded by residual connections and normalization layers. Differing
from the Layer Normalization typically used around the Transformer
feed forward layers, we apply Batch Normalization for normalization
since features from different channels being non-comparable; for exam-
ple, variables such as temperature, humidity, and atmospheric pressure
in a multivariate weather dataset are not directly comparable. Batch
Normalization allows us to focus more effectively on the distribution
of different samples within the same channel, a decision supported by
evidence from the ablation study presented in Table 11. The FFN then
performs two linear transformations, incorporating the non-linear acti-
vation function ReLU to extract deeper-level features, as:

;zf“ = BatchNorm (h! + h¢*!), (16)
B+ = FENGE*) = W ReLU(W{ (1), an
hH = BatchNorm(izierl + izf”), 18)

where VVl’f) € R2dxd VV; € R¥*%4 denote weight matrices, ;zf +1 ;zf +1 de-
note intermediate representations. Finally, for the final layer £ + 1 of the
Graph Transformer model, De-normalization is performed to revert the
outputs to their original statistical properties, as:

hy =W/ M 4 )y [0k +e, (19)

where Wi‘”rl € RM*d js employed to project the learned node vector
representation back to the original feature dimension M for utilization
in downstream tasks.

Time complexity analysis. The time complexity of the Full-Attention
and VG-Attention mechanisms differs significantly. Full-Attention has a
time complexity of O(N? d), where N is the number of nodes (or time
points) and d is the dimension of the node embedding. This complexity
arises from the matrix multiplication Q ® K7, the softmax operation,
and the final matrix multiplication with V/, all of which scale quadrati-
cally with N. In contrast, VG-Attention has a time complexity of O(Ed),
where E is the number of edges in the graph. This is linear with respect

to the number of edges, and the computation can be more efficient when
the graph is sparse (i.e., E < N2). As a result, VG-Attention tends to be
more efficient, particularly in sparse graphs, compared to the fully con-
nected Full-Attention mechanism.

Space Complexity Analysis. The introduction of the visibility graph
requires additional memory to store the adjacency matrix. Specifically,
for a multivariate time series input of shape M x N, where M is the
number of channels and N is the number of time points, constructing
visibility graphs independently for each channel requires storing M ad-
jacency matrices of size N x N, resulting in a total space complexity
of O(M x N?). However, by introducing the Consensus Visibility Graph
mechanism, these multiple graphs are aggregated into a single fused ad-
jacency matrix, requiring only O(N?) space. This significantly reduces
memory usage and enhances scalability, particularly as the number of
channels increases.

4. Experiments

To verify the effectiveness of MVGFormer, we conducted exten-
sive comparison experiments following the settings of TimesNet [11].
The benchmark summary is presented in Table 2, and the experiment
configurations are detailed in Table 3.The code is available at https:
//anonymous.4open.science/r/MVGFormer.

Dataset details. To evaluate the performance of the proposed MVG-
Former, we conduct experiments on 7 real-world datasets on forecasting
task, including ETT (ETTh1, ETTh2, ETTm1, ETTm2), Exchange Rate,
Weather and ILI, as shown in Table 2. And 17 UEA datasets' on classifi-
cation task, including the gesture, action and audio recognition, medical
diagnosis by heartbeat monitoring and other practical domain datasets.
Moreover, we extend our approach on univariate time series like M4
dataset® to demonstrate the efficiency on all types of time series.

Baselines. We compare MVGFormer against well-established and ad-
vanced models across all five tasks, including CNN-based Model: Times-
Net [11], TCN [51]; MLP-based models: LightTS [52], DLinear [9]

1 https://www.timeseriesclassification.com/
2 https://github.com/M4Competition/M4-methods/tree/master/Dataset
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Fig. 8. Model performance comparison with Transformer-based Models.

and WPMixer [53]; RNN-based models: LSSL [54]; GNN-based mod-
els: STGNN [18], Graph WaveNet [19] and MTGNN [20]; Transformer-
based models: Informer [1], Pyraformer [38], Autoformer [2], PatchTST
[6], iTransformer [39] and TimeXer [7].

Among them, TimesNet is a task-general model known for handling
multiple time series tasks, providing an effective backbone for learning
periodicities and trends. It currently shows state-of-the-art (SOTA) per-
formance across a variety of tasks. iTransformer and TimeXer are cur-
rently a SOTA model in long-term forecasting tasks, demonstrating im-
pressive results. Additionally, Autoformer, Informer, STGNN and Graph
WaveNet are classic Transformer-based or GNN-based variants that have
served as important benchmarks in the field for time series forecasting.

Besides, we also compare the state-of-the-art models for each specific
task, such as Anomaly Transformer [23] for anomaly detection, Rocket
[15] and TodyNet [55] for classification. Overall, more than 25 base-
lines are included for a comprehensive comparison. All the models are
trained/tested on a single Nvidia V100-32G GPU.

4.1. Main results

As a task-general model, MVGFormer achieves consistent state-of-
the-art performance on five mainstream analysis tasks. To demon-
strate its strengths, we primarily compared it with existing point-wise
Transformer-based models, such as FEDformer [5], Autoformer [2], In-
former [1], and others, as shown in Fig. 8.

Additionally, the sparse nature of the VG-Attention matrix means
fewer parameters need to be stored and computed, improving memory
efficiency. Therefore, as shown in Fig. 9, VG-Attention shows significant
advantages in both runtime and memory consumption compared to the
corresponding Attention variants (such as Full-Attention, ProbAttention
[1], and AutoCorrelation [2]). Moreover, we can observe that the MVG-
AND layer aggregation strategy outperforms the MVG-OR strategy in
both MSE and training time, as it better captures the consensus relation-
ship between channels. Therefore, the AND-based aggregation strategy
is used in subsequent experiments.

4.2. Long-term forecasting
Setup. To evaluate the model performance in forecasting task, we

conduct experiments on five real-world benchmarks datasets, including
Electricity (ETTh1, ETTh2) [1], Weather®, Exchange [56] and Illness

3 https://www.bgc-jena.mpg.de/wetter/
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Fig. 9. Comparison of the time and memory consumption between the Full-
Attention, the ProbAttention, AutoCorrelation and VG-Attention.

(ILI)*. Following the setting of TimesNet, the input sequence length is
set as 36 for ILI and 96 for the others.

Results. MVGFormer demonstrates outstanding performance in more
than 32.5% (13/40) cases in the forecasting task, as evidenced in
Table 4, surpassing both general-purpose TimesNet and the advanced
Transformer-based models. This superior performance may be at-
tributed to the global perspective provided by the visibility graph cri-
teria, which incorporate both historical and future information. Such
criteria enhances the model ability to extract periodic and trend pat-
terns, facilitating more accurate predictions for distant future time
points. Moreover, it is evident that no single model excels across
all datasets. For example, TimeXer performs particularly well on the
ETTh2 dataset, while DLinear shows strength primarily on the Exchange
dataset. In contrast, MVGFormer exhibits uniform performance across
all datasets, indicating its potential applicability to a broader range of
scenarios and superior generalizability.

4.3. Short-term forecasting

Setup. In this work, the proposed method MVGFormer is primar-
ily designed for multivariate time series data. Actually, it can also be
applied to univariate time series data without the procedure of layer ag-
gregation. Therefore, we conducted comparative experiments using the
univariate M4 dataset, which contains yearly, quarterly, and monthly
collected marketing data. For the short-term forecasting metric, we
adopt the symmetric mean absolute percentage error (SMAPE), mean
absolute scaled error (MASE) and overall weighted average (OWA) as
the metrics, where OWA is a special metric used in M4 competition.
Results. The M4 dataset consists of 100,000 time series collected
from various sources at different frequencies, leading to diverse tem-
poral variations and making forecasting more challenging. As shown in
Table 5, MVGFormer consistently outperforms advanced Transformer-
based and MLP-based models across all sampling frequencies. This is
because the visibility graph, grounded in temporal features, is indepen-
dent of the sampling frequency. High-frequency data results in denser
subgraphs, while low-frequency data shows sparser connections.

4.4. Anomaly detection

Setup. Anomaly detection in industrial monitoring data is crucial
for maintenance, but labeling challenges arise due to anomalies being

4 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Avg F1 (1)
MVGFormer(Ours) |, ¢3!

TimesNet(2023)
DLinear(2023)
FEDformer(2022)
LightTS(2022)
Stationary(2022) $2.08
LSSL(2022)
Autoformer(2021)
Pyraformer(2021)

76.74
84.26

82.57
Anomaly(2021)
Informer(2021)
Reformer(2020)
TCN(2019)
LogTrans(2019)

80.5
78.83
77.31
7724

Transformer(2017)
LSTM(1997)

76.88
71.97

Fig. 10. Anomaly detection task. The F1-score (as %) is computed as evaluation
metrics for each dataset, with higher values indicating superior performance.

obscured in large-scale datasets. We compare our model on five real-
world datasets, including MSL [57], SMD [58], SWaT [59], SMAP [57]
and PSM [60]. Consistent with previous works, such as TimesNet [11]
and Anomaly Transformer [23], we adopted the same preprocessing and
evaluation methods, including sliding window segmentation, as well as
the anomaly criterion and anomaly threshold setting. Specifically, we
treat reconstruction as an unsupervised point-wise representation learn-
ing task, using reconstruction error as the anomaly detection criterion.
To ensure fairness across experiments, we retain the same anomaly cri-
terion (reconstruction error) while varying the base models for recon-
struction.

Results. As depicted in Fig. 10, MVGFormer excels in anomaly detec-
tion, outperforming TimesNet and advanced Transformer-based mod-
els such as FEDformer [5], Pyraformer [38] and Autoformer [2]. By
leveraging visibility criteria, MVGFormer effectively identifies anoma-
lies as high-degree nodes within visibility graphs, thereby centralizing
attention on them. In contrast, standard Transformer methods often dis-
tribute attention across multiple edges due to pairwise correlation calcu-
lations, which can lead to weakened or overlooked anomaly detection.
Our graph-based sparse attention mechanism ensures more focused and
precise anomaly detection, thereby enhancing precision and reducing
the likelihood of misinterpretation or oversight.

4.5. Classification

Setup. To evaluate the model’s capacity in high-level representation

learning, 17 multivariate time series datasets from UEA [61] are selected
for sequence-level classification.
Results. As shown in Table 6, MVGFormer demonstrates superior per-
formance over existing methods, including the classical method Rocket
[15], the deep-learning method InceptionTime [14], and the GNN-based
method TodyNet [55]. Specially, it shows remarkable effectiveness in
processing physiological signals, as seen with AtrialFibrillation, Stand-
WalkJump, SelfRegulationSCP2.

4.6. Imputation

Setup. Real-world system malfunctions often lead to partial data
missing from continuously collected time series, posing challenges for
downstream analysis. Imputation thus becomes essential in practical
scenarios. Following the setting (random mask ratios {12.5%, 25 %,
37.5%, 50 %}) used in TimesNet, we conduct experiments on the ETT
(4 subsets) [1] and Weather datasets, where missing data is prevalent.

Results. Table 7 shows that MVGFormer, using MSE and MAE met-
rics, outperforms most Transformer-based methods in 50 % of the cases.
This is attributed to the visibility graph extraction of temporal trends
and the reliable sparse VG-Attention mechanism focusing on the crucial
temporal structural dependency. These factors empower our algorithm

11

Knowledge-Based Systems 329 (2025) 114389

to exhibit robust fitting capabilities, both locally and globally. And this
fitting proficiency also proves advantageous in forecasting tasks.

4.7. Model analysis

4.7.1. Efficiency analysis

To provide a comprehensive comparison, we showcase the results
of the forecasting task as depicted in Figs. 11 and 12. We can observe
that MVGFormer exhibits stronger local fitting capabilities and trend
judgment abilities, thanks to the “receptive field” of the visibility graph.
This enables it to better adapt to temporal pattern extraction compared
to Transformer-based methods such as Autoformer [2], Stationary [3]
and Transformer.

4.7.2. The benefit of VG-Attention

From the previous experimental results, we can see that MVGFormer
demonstrated excellent performance in both forecasting and classifi-
cation tasks. To further analyze why VG-Attention works, specifically
how the geometric visibility rules of the visibility graph guide Attention
learning, we compare it with other Attention mechanisms, such as stan-
dard Full-Attention and the probabilistic sparse version of ProbAtten-
tion [1]. As shown in Figs. 13-15, we selected three typical time series
types: periodic, trending, and random non-stationary, and visualized the
learned Attention maps.

A closer look at these visualizations, we can see that, compared
to standard Full-Attention and ProbAttention, VG-Attention concen-
trates its attention on specific key time points or time intervals, such
as periodic local modules (Fig. 13(b)), long-term trending structures
(Fig. 14(b)), and key fluctuations (Fig. 15(b)). In contrast, (1) the atten-
tion distribution of Full-Attention is relatively uniform, failing to focus
on key time points. (2) ProbAttention, through its sparsification mech-
anism, reduces attention to less important time points, which, although
decreasing computational load, may miss critical temporal dependen-
cies.Therefore, VG-Attention stands out for the more focused attention
distribution, offering a novel paradigm for Transformer models to better
capture and understand temporal sequences.

4.7.3. The longer history length

Theoretically, due to its global perspective, the visibility graph is
expected to be more suitable for long time series compared to other
Transformer-based methods. To test this, we compared MVGFormer
with FEDformer [5], Autoformer[2], Informer [1], and Transformer
models to determine if they can capture more historical information
and achieve better forecasting performance as the length of the histori-
cal time series increases. As shown in Fig. 16, we found that only MVG-
Former and Pyraformer [38] exhibit lower MSE as the input time series
lengthens. Interestingly, traditional Transformer models perform worse
as the input length increases, likely due to the fact that Full-Attention
tends to capture more noise as the number of time series tokens grows,
leading to dispersed attention.

4.7.4. Representation capability

As shown in Fig. 17, we visualized the embedding representations of
multivariate time series. The embeddings learned by MVGFormer align
well with the characteristics of the time series. Specifically, the model
captures key segments of the series (Fig. 17(a-b)), such as peaks and
large fluctuations, with more prominent embeddings. For stable and pe-
riodic time series (Fig. 17(c)), the representations are more uniformly
distributed. Additionally, we observed that MVGFormer effectively cap-
tures other complex temporal features, such as anomalies and multi-
periodicity (Fig. 17(d-e)). This further explains its strong performance
in anomaly detection tasks. Furthermore, as seen in Fig. 18, MVGFormer
demonstrates a strong representation capability in classification tasks,
effectively distinguishing different categories of multivariate time series
in the vector space.



Knowledge-Based Systems 329 (2025) 114389

*paAdIye sedueuLofad 1s3q JO IPqUINU ) sjussaIdar JUno) ki,

0 0 0 € 0 0 1 S 0 0 4 0 0 9 noy 1
SS°0S 1198 99°'1S ¥2°0S +0°CS 18 L9°1S SE'1S CT’'LS 88°¢S 00°SS 68'€S 8L'CS €9°09 zdosuonemaayypes
94’68 SL'€8 S9'9S 1194 6978 18 20'98 SS'98 £0°68 8L'06 08'68 ST'I6 65'C8 CE'16 TdDoSuonem3ayyRs
L8°'18 9G'9L 90’61 SE'88 8¢'88 6€'88 1€'16 €v'v6 SC'18 0€'S8 00°S8 S'L8 8€'V8 69'69 AIRIQITRINISODIARBMN
000t vy Ly €€'€S £9'8¢ 00°0€ 11°se L9°0% 9G°'SH €€'ee 99'9% 0L'9% 09 00°0t £9°99 dumpyrepmpuels
CS'S8 1Tv8 9208 €216 L0'68 0t°L8 9'06 6406 S9'SL 81'98 0€°08 19'64 L6'9L €9°06 spodgiavoey
CC'86 (441 Ch'86 966 S.'86 0086 61°L6 95°66 €1'S8 1€'86 04’86 906 81'96 9L'96 susiquad
P¥'68 99'18 SG'SL 1T°26 Yr'v6 06'€6 S8'C8 5’88 2T’'c6 99'16 02T’ L6 8L'L8 (444 05°26 SdOLVN
9L'8¢ 08°C€ 98°Cch ¥6°Ch 1cve €EYY 8¢S ST°€9 8G'1€ CS'SE 0S'19 161 ¥9'CS 10°6S ISST
0008 €€'€9 SS'SL 1I'v6 19'€8 89'¢8 82°06 1906 faaas] SG'SL 00°S8 0006 vr'6L 29'0L se1qry
9L°LT S€'Ce Iv'ST 8L'6S ¥8'Ly S6°CE 1v°0S £9'9S 8G'81 01°Ce 09°¢y 81°'L¢C 81'ST 61'8¢ SunumpueH
15°€9 yeey 68’11 0e'cy oy yece 6L’LE 65V 15°€9 0t°'SS 069 LTS 11'8S €Sy UONIRIIIUSWSAONPUBH
00'%9 00°8S 00°'SS 09°'1S 06°'SS €€'1S LLES LTSS 00°4S 00'vS 00°4S 9S 00°€S 8S°v9 SJUSUIdAOIN IS UL
04'€6 LE°08 ¢eeL 61°L8 0126 €26 9C'v6 S0°'86 81’18 96°C6 05’16 96°'C6 £9'96 €028 Suryg
09°C8 12°s9 92'8L 81'66 €v°S6 60'96 001 80°66 L6°LS S0'v8 0T'£L6 ¥8'89 81°€6 vv'86 Asdanidy
0S'C6 00T 0S°LS 00T 00T 00T 00T 00°66 0S°48 00°S6 00T <8 00°04 00t suonojdIseq
00°0% €€°ee 99'9% €€'SE 00°0% 2T0€ €€'6C 68'vC 00°0¢ 00°0% 0L'9% €€°ee L9'9% £9'99 uoneuqIierny
€€'96 00°68 €€'SS 92’86 €586 04’86 66°L6 9566 €€°L6 0086 04’86 €€ £9'S6 C6'L6 uonugodaypIoMATRNONIY
(1202) (1202) (1202) (6102) (0z02) (0202) (0202) (1202) (€202) (€202) (€202) (¥202) (¥202) (sinQ)

JawLiojug JPulLojelfd  Iouwlojony  J9NSOY swrpuondsdou;  19Ndel, ALOD-AAIH 19Yo0Y  Ieduryq  J9NSOW],  JONAPOJ  IOWLIOJSURILT  ISIYded  JOULIOIDAIN sjasereq

T. Chen et al.

‘PIOq UT S}[NSaI 159q Y3 YIIM I[NSAI 1) Se (%) AdeIndde uonedyIssed ay3 110dax 9p) Mse) UonedyIsse[)
9 91qeL

12



Knowledge-Based Systems 329 (2025) 114389

‘pasaryoe sedueurIojrad 1s3q Jo BqUINU Y} sjuasaIdar Junod I,

0 0 0 0 L €l 0 0 0 0 0 0c Wnoy 1
68€°0 9¥C'0 €SE'0 O0IT0 €€E€0 0020 0950 89S0 6IT0 SE00 8OT'0 0€00 9420 9ST'0 Lvc0 TIET'0 PLI'0O 6S0°0 1ICH0 €TE0 €€C0 8IT'0 #OIL'0 620°0 S0
96€°0 0S¢0 1c€0 8I'0 €620 GSI'0 12S0 8Zk0 80T0 €00 €0I'0 Zg0'0 1€2°0 OIT'0 ¢ZZ'0 90T'0 6SI'0 1IS0'0 9SE€'0 4LECO0 SOTO0 1600 960°0 SC0'0 SLE0
¢or’'0 €92°0 90€°0 6SI'0 ¢LZ’0 GSET'0 ¢8%'0 Igvk'0 TOT'0 9200 9600 200 GS6I'0 0800 9610 S800 €¥I'0 <CPO'0 ¥6C0 +I9T'0 641°0 TL0'0 1600 €20°0 ral]
IPP'0  L0€0 860 ST'0 4Z0 €E€T'0 040 +6E€0 T600 €200 8800 1200 6SIT'0 9S00 991'0 2900 4TI'0 #E00 6£C0 80T'0 CTSI'0 TSO'0 480°0 0200 SCT°0 CWLLd
96¥'0 61S'0 920 6CI'0 8IC0 €600 S090 0440 ¥L1'0 4900 SPI'0 LPO'O 8ITO 6800 8¥C'0 <CET'0 SST0 ¥ET'0 €2E€0 9810 €€C0 800 OYI'0 1S0O°0 S0
66v°'0 9IS'0 9¥C°'0 O9IT'0 0020 6400 1850 LELO T9T'0 4S00 1IET'0 6€00 TI6T°0 6900 6IC0 €0T0 1I€C0 €IT0 1420 €ET0 8610 6400 TIEL'0 8E00 SLE0
00S'0 8IS0 SE€C'0 90T'0 08T'0 €900 €SS0 6890 +H+FT'0 900 6IT°0 TEO'0 9910 <TSO'0 €610 800 90C20 €600 6CC0 9600 €L1°0 1900 8IL'0 €€0°0 ST0
€6¥'0 OIS0 1€20 T0T'0 SST'0 4Z¥0'0 1¥SO 0490 +CI'0 +€E0'0 ZOT'0 9200 GET'0 SE0'0 ¢91°0 8S0'0 O8I0 SZ0°'0 88T'0 4900 8YI'0 9%¥0°'0 9010 STO'0 SCro TWLLA
€0€°0 G610 €CI'0 +S0°0 HIT'O €SO0 6VC0 HI9T'0 490°0 LEO'O 890°0 LEO'O0 <CTIEO0 €8I0 VET'0O 9900 €ET'0 S90°0 £0TO <COT'0 SITO 1ICI'0 0400 00 S0
182°0 ¢LT'0 <CIT0 4LPO'O TIIT'0 600 ObCO 9ST'0 0900 ©2CE€0'0 <T90'0 €€0'0 6220 LOT'0O LIT'0 4SO0'0 TZI'0 8S0'0 08I0 1800 6ST'0 4Z0°0 S90°0 000 SLEO
€6C°0 4810 #OT'0 <C¥0'0 00T'0 ¢CKO'0 6220 LVT'0O +S0°0 0€0'0 9500 6200 €910 +#90°0 €010 800 IIT'0 ¢SO0 SST'0 S90°0 9IT'0 <TS0'0 0900 £EO'O Bral]
/4820 94T'0 S60°0 9200 €600 LEO'O 02C0 OVI'0O 4bO'O 9200 1S0°0 4200 L0T'0 T1¥0O0 +800 6€£00 TI0T'0 4ZPO'O TIPTI'0O 4LSO0 1600 TIFO'0 SSO'0 SE0°0 GCI'0  Ieyiesm
6CS'0 L9%'0 €CS'0 ¥8F'0 TLKYO 69€0 880 €6T'T €L1T'0 8900 0LI'0 S90°0 TI¥E0 <TETO 66C0 €8T'0 8920 O9€T'0 TLSO0 <CTO9'0 SOE0 4L6T°0 SLI'O0O 4900 S0
86¥'0 6CF'0 6CS0 4L8F'0 TOY'0 €SE0 0080 ZOL'T €9T°0 0900 8ST'0 9S00 +0E0 4L8T'0 942°0 8ST'0 4STO0 921’0 S9%°0 ¥'0 €420 LST'0 ¥»SI'0 9S0°0 SLE0
06v°'0 6IF'0 SES0 480 Pbb'0 TTEO ¥$LL0 LEO'T 6FT'0 0S00 ALbI'0O 6400 8STO LET'O0 LVCO 4LZT'0 9¥C0 SITO0 6€0 6420 ¥HbC0O 9210 SST'0 €SO0 S0
¥6v'0 OTF'0 GSS'0 1250 IE€V'0 SOE0 HSLO0 9460 8ET'0 +HO'0 €ET'0 CTHO'0 CTIZTO S60°0 9120 O00T'0 1I€C0 TOT'0 6IE0 4L8T'0 €IT0 8600 TEL'0 TIH0°0 SCT°0 CULLd
4850 8¥9'0 €LV'0 €¥P'0 SCE0 SITO0 1690 #S80 8¥C0 LET'0O 0OVCO0 €ET°0 6620 S9T'0 LbEO 4LSTO POP'O +EE'O0 COV'0 €620 ¥HIEOD L6T'0 6€C0 8CTL'O S0
LL50 8290 1I9v'0 1TICh'0 €620 +ALI'0O SZ9°0 0€8°0 <¢TCZC0 6010 TITO0 ¢<TOL'0 8SC0 HCI'0 8IEOD SITO TBED 9620 LVED 0TCTO 940 €ST'0 1TT0 LOT'O SLEO
£9S5°0 0190 9S¥'0 CI¥F'0 ©T92°0 OvI'0 ¢TL90 680 €020 0600 68I'0 0800 9€2°0 90T°'0 T6C0 O08T'0 $9€0 S9C°0 PFOEOD 6910 LVCO <TCI'0 80CTO TZ0°0 ST0
$SS'0 6650 19v'0 <ck'0 HECTO0 YIT'0 6090 LS80 <¢8T'0 +400 S9T'0 090°0 0610 0400 4920 1IST'0 SPE0 O0OFPCO €920 9210 8IT0O 9600 9410 190°0 Scro TYLLA

HVIN SN IVIN SN IVIN SN IV dSIN dVIA dSIN VI ISIN IVIN  ISIN HVIN  HSIN  HVIN  dSIN  HVIN SN HVIN  HSIN  AVIA HSIN  onel ysewr sjeseleq

(6102) (¢202) (1202) (1202) (1202) (2202) (2202) (€202) (2202) (z202) (¥202) (smQ)
NDL ISST JIauLIOju] JouLojeIAd JIDULIOJOINY Areuonels Iowojadd Teauriq SIySrT IDWIOJSIH  JOULIOJSUBRILI IJWLIOIDAIN S[OPOIN

T. Chen et al.

‘PaUI[ISpUN 159 PUODIS PUB PJOQ UT I SIMNSAI 1539 YL “{% 0S ‘% S'LE ‘% ST % S'T1} $9218p Jurssiur JuaIoyIp Jopun dueuLIojrad [apour a3 aredurod ap “ysey uonendury
L3]qeL

13



Knowledge-Based Systems 329 (2025) 114389

T. Chen et al.
[ crounamuan . v
X 50
Prediction "
A
I /\ 45 W 45 s
. V 40 40 40
A X
35 55 035
E 3 E 2
3 >3.0 S30 z —— GroundTruth
> > 30 Prediction
25 25 25
2 2.0 2.0 2.0
15 15 15
— GroundTutn — GroundTutn
1 1.0 Prediction 1.0 Prediction 1.0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time Time Time
(a) MVGFormer(Ours) (b) TimesNet (c) Autoformer (d) Transformer
35 35 35 35
—— — GroundTun — Grounamutn r — GrownaTun
prediction redicton rediction rediction
30 30 30 | 30
|
25 25 25 [ 25
E] E] E [ E]
= = = =
>20 >20 \ =20 >2.0
10 10 10 10
0s 0s 05 05
T % w % T b % » @ % 3 S R S S I
Time Time Time

30
Time

(e) MVGFormer(Ours) (h) Transformer

(f) TimesNet (g) Autoformer
Fig. 11. Forecasting Performance: Visualization of ILI predictions from different models under the input-36-predict-24 setting. The x-axis represents the time
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Fig. 15. Visualization of learned temporal Attention for non-stationary time series. (b) is from our VG-Attention; (c) is from standard Full-Attention, fully connected
learning; (d) is from Informer [1], a sparse attention algorithm.
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the ETTh1 (T = 96) and Illness (T = 24) datasets.

4.7.5. Comparison with pure graph-based methods Table 8
To further validate the effectiveness of the visibility graph construc- Comparison with GNN4TS methods.

tion, we compare MVGFormer with other GNN-based models, includ-

ing the classic STGNN [18], Graph WaveNet [19] and MTGNN [20],

as shown in Table 8. Using the Exchange Rate dataset and following 8 m; ;Z? ;‘g; ;(I)Z g'zi’

the setup from the MTGNN model, we conduct one-step forecasting MAPE ] ' ) )

Horizon Metric STGCN Graph WaveNet ~ MTGNN MVGFormer

459%  3.89% 2.31% 1.04%
comparisons based on MAE, RMAE, and MAPE metrics, where Horizon
(3,6,9,12) represents the predicted future time steps. The results demon- 6 MAE 212 1.97 1.35 0.38
y : RMSE 4.36 4.22 2.65 0.58

strate that MVGFormer outperforms these GNN4TS methods, which we MAPE  4.60%  3.55% 297%  1.23%
attribute to two main reasons: (1) STGNN and Graph WaveNet heavily

1 . h inf . hichi icularly effecti 9 MAE 2.24 1.97 1.47 0.38
rely on prior grap structure information, whic is particularly effective RMSE 439 3.97 2.80 0.59
in traffic-related tasks; (2) MTGNN constructs inter-channel structural MAPE  4.91%  3.47% 2.24% 1.47 %
relatlonshlPs purely throtfgh a learning methot.i but neg?ects temporal 12 MAE 517 179 a8 0.38
dependencies, leading to inferior performance in regression tasks com- RMSE 471 3.29 2.86 0.58
pared to Transformer-based methods. In contrast, MVGFormer compen- MAPE  5.10% 3.57% 2.21% 1.52%
sates for the shortcomings of both, thus achieving superior performance.
Table 9
4.8. Ablation studies Performance comparison of MVGFormer and ablated variants (w/o layer ag-
gregation, consensus graph, VG-Attention) on various datasets. Best results in
In this section, we conduct ablation studies to evaluate the effective- bold.
ness of each 1n.dlv1dua1 co.rnl.)oner}t in our proposed method. By sys.tern- Model Variant ETThl Weather Exchange LI
atically removing or modifying different parts of the system, we aim to )
assess their contribution to the overall performance. Metric MSE MAE MSE MAE MSE MAE MSE MAE
MVGFormer 0.458 0.448 0.257 0.287 0.450 0.4392 1.957 0.931
4.8.1. Main ablation studies w/o Layer Aggregation 0.482 0.461 0.266 0.298 0.4725 0.451 2.014 0.963
. . . . . w/o Consensus Graph  0.473 0.459 0.263 0.295 0.466 0.446 2.003 0.955
We conduct the main ablation studies to assess the contribution of w/o VG-Attention 0.495 0.475 0.973 0.309 0.489 0463 2058 0978

each core module in MVGFormer. As shown in Table 9, we focus on three

primary components: layer aggregation, consensus visibility graph, and Results are averaged over four prediction lengths: 96, 192, 336, and 720 for
VG-Attention. as follows: ETTh1, Weather, Exchange; 24, 36, 48, and 60 for ILI.
, :
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Fig. 17. Representation Capability (1):Visualization of multivariate time series embeddings across different datasets (a-c), highlighting anomalies and multi-period
patterns in the AtrialFibrillation (AF) dataset (d-e).

e w/o Layer aggregation: Each channel is processed independently e w/0 VG-attention: The VG-Attention module is replaced with a
without multi-layer aggregation before being passed into VG- standard linear projection layer.
Attention.

¢ w/o Consensus graph: The consensus visibility graph is replaced
by a simple combined graph that merges all edges across layers and
time.

These results clearly indicate that all three components are crucial
to the effectiveness of MVGFormer. Notably, removing VG-Attention
leads to the most significant performance drop, demonstrating its key
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Fig. 18. Representation Capability (2): Embedding visualization using t-SNE on the PenDigits, NATOPS and ArticularyWordRecognition (AWR) from the UEA
datasets, depicting the evolution of the learning process during model training.

Table 10
The ablation study of channel-wise consensus information extraction using layer aggregation.
Dataset Dims  Aggregation MSE/Accuracy  Training Time (s/epoch)
Weather 21 w/0_Aggregation 0.234 4200.03s
w_Aggregation 0.226 2226.09s
Forecasting ETTh1 7 w/o0_Aggregation  0.457 325.61s
w_Aggregation 0.451 135.97s
Exchange 7 w/0_Aggregation  0.215 219.85s
w_Aggregation 0.207 89.83s
HandMovementDirection 10 w/0_Aggregation 43.40 32.75s
w_Aggregation 45.31 3.62s
Classification  FingerMovements 28 w/o_Aggregation  58.07 3.71s
w_Aggregation 64.58 0.38s
NATOPS 24 w/0_Aggregation 81.45 2.38s
w_Aggregation 92.50 0.31s
role in modeling long-range temporal dependencies through the graph ducted additional experiments to evaluate MVG-AND layer aggregation
structure. mechanism (with and without aggregation) on forecasting and classi-
fication tasks, as shown in Table 10. In the w/0_Aggregation scenario,
4.8.2. Impact of the channel-wise consensus the multivariate time series is treated as univariate, with each chan-
To further validate the advantages of channel-wise consensus infor- ~ nel processed independently (Channel-Independent, CI) and encoded
mation extraction in terms of both performance and efficiency, we con- using VG-Attention. Interestingly, after applying MVG-AND for layer
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Table 11
The ablation study for Batch Normalization and
Layer Normalization on pred_len =96.

Datasets *_batch_norm * layer_norm

Metric MSE MAE MSE MAE
ETTh1 0.392 0.412 0.396 0.412
ETTh2 0.323 0.369 0.335 0.371
Weather 0.178 0.229 0.181 0.233
Exchange 0.081 0.216 0.101 0.224
ILI 1.654 0.839 2.297 1.022

aggregation to extracts consensus relationships between channels, both
experimental performance and training speed improve significantly. The
MSE is reduced by an average of 2.82%, classification accuracy in-
creases by an average of 9.73 %, and training speed improves by an
average of 67.48 %. This demonstrates that strengthening the consensus
relationships, leading to sparser connections, does not compromise tem-
poral dependencies but actually enhances inter-channel correlations.
Furthermore, as the number of channels increases, performance im-
proves, further emphasizing the importance and necessity of extracting
consensus relationships to get a global dependencies for multivariate
time series.

4.8.3. Batch normalization vs layer normalization

In MVGFormer, each token (node) corresponding to the values of dif-
ferent channels. Unlike traditional Transformers, which use LayerNorm,
this approach requires a different normalization method because the fea-
tures in multivariate time series data may have different scales (units).
BatchNorm normalizes each feature (i.e., each channel) across all time
steps in the batch, addressing the issue of inconsistent feature scales and
ensuring uniform scaling during training. In contrast, LayerNorm nor-
malizes all features at each time step, which does not effectively resolve
the issue of scale inconsistency across time steps. As shown in Table 11,
compared to LayerNorm, BatchNorm results in a 10.81 % improvement
in MSE and a 4.74 % improvement in MAE. Therefore, BatchNorm is
more suitable for MVGFormer.

5. Case study: sensitivity to noise

Although the theoretical definition of the Visibility Graph is invari-
ant to affine transformations [10], it is still sensitive to high-frequency
noise. For example, consider a periodic sequence 7| = {3,1,3,1,3,1, ... },
which, when noise is added, becomes Tl’ ={3.1,1.3,2.7,1.2,32,1.1,... }.
This noise may introduce unnecessary connections in the visibility
graph, such as a spurious visibility connection between 3.1 (at ;) and
3.2 (at 74). This disrupts the original periodic structure, adds edges that
do not follow the periodicity, and degrades the graph’s interpretability
and effectiveness.

To empirically examine this, we gradually added Gaussian noise to
the normalized input time series from the ILI dataset®, which contains
low-frequency, noise-free data. As shown in Table 12, the performance
of MVGFormer steadily degrades as the noise level increases. This degra-
dation occurs because noise introduces spurious edges into the visibility
graph, distorting the temporal structure and misguiding the Attention
mechanism, which leads to a focus on non-informative points.

These results reveal a practical limitation of visibility graph-based
methods in real-world noisy scenarios. Noise introduces errors that de-
grade model performance. Future work could address this by incorporat-
ing graph denoising strategies, such as denoising autoencoders or refin-
ing visibility graph construction to mitigate noise. Several studies have

5 The ILI dataset, reports the weekly number of patients with influenza in
the United States, collected by the Centers for Disease Control and Preven-
tion (CDC) from 2002 to 2021. Available at https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html.
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Table 12

Discussion on the sensitivity of Visibility Graph to noise.
Noise Level w/onoise ¢ =0.05 =010 0¢=020
MSE 1.654 1.698 1.812 2.037
MAE 0.839 0.861 0.910 0.993

proposed solutions to this issue, such as the Limited Penetrable Visibility
Graph (LPVG) [30], and the Circular Limited Penetrable Visibility Graph
(CLPVG) [31], both of which demonstrate improved noise resilience.
Therefore, a promising direction for future research is the development
of more robust visibility graph models to enhance model generalization
under noisy conditions, enabling better handling of noisy time series
data in real-world settings.

6. Conclusion

MVGFormer, as a general-purpose model, surpasses most current
state-of-the-art Transformer-based models, and even TimesNet, across
four main tasks. This marks a significant advancement in time-series
analysis by incorporating temporal structure into the Transformer ar-
chitecture, enhanced by the optimized VG-Attention mechanism. This
approach provides a novel perspective on guiding Attention in multi-
variate time series models, utilizing complex network theory to address
the challenges of attention dispersion inherent in standard Transformer
architectures. Future work will focus on cross-variable visibility princi-
ple, further enhancing the representation capability of multivariate time
series and uncovering the potential relationships between variables.
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