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Abstract—Datacenter demand response is a promising ap-
proach for mitigating operational instability faced by smart
grids. It enables significant potentials in peak load shedding
and facilitates the incorporation of distributed generation and
intermittent energy sources. This work considers two key aspects
towards realtime electricity pricing for eliciting demand response:
(i) Two-way electricity flow between smart grids and large
datacenters with hybrid green generation capabilities. (ii) The
geo-distributed nature of large cloud systems, and hence the
potential competition among smart grids that serve different
datacenters of the cloud. We propose a pricing scheme tailored
for geo-distributed green datacenters, from a multi-leader (smart
grids) single-follower (cloud) game point of view. At the cloud
side, in quest for scalability, robustness and performance, the
energy cost minimization problem is solved in a distributed
manner, based on the technique of alternating direction method of
multipliers (ADMM). At the smart grid side, a practical equilib-
rium of the multi-leader single-follower pricing game is desired.
To this end, we employ the technique of equilibrium problem
with equilibrium constraints (EPEC) and exact linearization,
to accurately transform the multi-leader single-follower pricing
game which is non-convex into a mixed integer linear system that
can be readily solved. The effectiveness of the proposed solutions
is evaluated based on real datacenter workload traces and IEEE
14-bus test systems with real generation and demand data.

Index Terms—Smart grids, geo-distributed datacenters, bilat-
eral pricing, lead-follower game.

I. INTRODUCTION

The recent years have witnessed new technology advances
in the ICT sector, two of which are of practical significance
and of particular interest to this work. The first is the Internet-
scale cloud services deployed over geographically distributed
datacenters, serving enterprises and end users, indispensable
for a wide variety of applications. The second is the evolution
of the traditional power grids to smart grids, enabling sustain-
able, cost-effective, and environment-friendly electric power
generation and consumption.

Further developments of both cloud computing and smart
grids are facing their respective challenges. In smart grids, the
integration of a large number of generation units (e.g., wind
turbines and solar arrays) incurs operation stability concerns
and hence economic issues, due to the intermittent nature of
such distributed generation [14]. For example, the enormous
wind generation in Germany in May 2014 resulted in continu-
ous negative electricity prices for five hours [4]. Furthermore,
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the soaring of peak demand exacerbates the vulnerability and
price fluctuation of a power grid. These operational issues can
be addressed by demand response from large loads, among
whom datacenters are natural candidates. For a datacenter, the
power drawn from the smart grid is often of very large volumes
yet exhibiting an elastic nature. An individual datacenter can
make up 50% of the load of a distribution grid nowadays
[21] (e.g., Facebook’s datacenter in Crook County, Oregon).
Despite its sheer volume, datacenter power consumption is a
natural target in demand response since it is driven by user
requests that can be split to geo-distributed datacenters, and
be served by multiple energy sources. Thus, the power drawn
by a datacenter from the smart grid can be flexibly adjusted
by changing the workload routed to the former, or modulating
the output of on-site generations.

In response to escalating pressure from economic and
environmental concerns, many cloud providers are installing
hybrid renewable energy systems that include off-site wind,
solar farms and on-site fuel cells. For economies of scale,
the installed capacity of wind and solar generation is often
very large, as illustrated in Table I. The farms are constructed
mostly at locations with desirable climate, and their realtime
output often significantly exceeds datacenter demand (usually
dozens of MW); e.g., as one of the world’s largest datacenters,
the capacity of Microsoft’s Chicago datacenter is 60MW [7],
much smaller than the 175 MW capacity of the nearby wind
farm. However, storing a large amount of excess wind or solar
power in energy storage device (ESD) is rather expensive,
and large capacity lead-acid ESD is not environment friendly.
Fortunately, by participating in the existing net metering [9]
program, the excess renewable power can be sold back to the
smart grid, eliminating the need of expensive large capacity
ESDs. Such an option is already adopted in reality, including
the cloud providers in Table I [8], [1], [6], [2]. Furthermore,
fuel cell generation is emerging as a reliable complement to
intermittent renewable energy such as wind or solar, with pre-
dictable and controllable output levels. Compared to traditional
on-site stand-by generation (e.g., diesel generators), datacenter
fuel cells typically run on carbon neutral direct biogas, and
hence is much more environment-friendly.

Given the soaring energy cost of cloud computing, it
is critical to coordinate multi-energy-resources as well as
datacenters geographically distributed at different regions, to
serve user demands in a cost-efficient manner. Specifically,
given a performance target in terms of user-perceived latency
of service, the energy cost of the cloud is expected to be
minimized. This goal can be achieved via a joint optimization
on geographically load balancing, i.e., at each front-end
server, determining the amount of workload distributed to each
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TABLE I: Renewable Generation at Large Datacenters.

Company Location Type Capacity Remark
Microsoft [8] Chicago, IL Wind 175MW 60MW datacenter capacity [7]
Facebook [2] Altoona, IA Wind 138MW 100% wind powered datacenter
Google [6] Mayes, OK Wind 48MW
Apple [1] Maiden, NC Solar 40MW 10MW additional fuel cells
Google [6] Council Bluffs, IA Wind 114MW

Microsoft [8] San Antonio, TX Wind 110MW

datacenter; and green capacity planning, i.e., determining the
amount of fuel cell generation, power drawn from and sold
back to the corresponding smart grid. Note that geographi-
cal load balancing leverages the spatial diversity of energy
prices across datacenters, while green capacity planning takes
advantage of the price differences of multi-energy-resources
within a datacenter, thus a joint optimization on these two
knobs efficiently reduce the energy cost of the cloud.

Datacenter with hybrid energy supplies can provide great
potential to demand response, by setting the appropriate
amount of energy drawn from or sold back to the smart grid.
Unfortunately, for a smart grid, despite the fact that datacenter
demand response can be obtained by adjusting the electricity
and/or net metering price in a real-time manner, eliciting a
desired amount of demand response from the hybrid green
datacenter is of great challenge. In particular, when a cloud
runs on top of geo-distributed datacenters and couples multiple
smart grids, a smart grid needs not only to anticipate the
cloud’s response to the price decisions, but also to consider
the impact of other smart grids’ price decisions on the cloud’s
response. In such competition scenarios, the price strategy of
one smart grid can influence the demand response at another
smart grid. Consequently, the pricing process becomes a non-
cooperative game. If we further consider the cloud’s response
to the prices, the entire process can then be captured by a
multi-leader single-follower game [20], in which each smart
grid acts as a leader and sets the prices, while the cloud acts
as the follower and responses to the prices by minimizing its
energy cost.

At the cloud side, to handle upgrades (e.g., installation of
new datacenters) and abrupt changes in system conditions
(e.g., datacenter outages), the energy cost of the cloud is
expected to be minimized in a distributed manner to offer
better scalability, robustness and performance. To this end,
alternating direction method of multipliers (ADMM) [12] is
applied to decompose the global cost minimization problem
into a set of small-scale subproblems that can be efficiently
solved by the facilities (front-end servers and datacenters)
locally. At the smart grid side, detecting an equilibrium of the
bilateral pricing game is particularly challenging, since each
leader’s strategy space is non-convex. To address this chal-
lenge, the methods of equilibrium problem with equilibrium
constraint (EPEC) [15] and exact linearization are employed
to transform the non-convex system into a mixed-integer linear
program (MILP) which can be readily solved.

To summarize, this work makes the following main contri-
butions:

• We initiate the study of bilateral electricity trade between
smart grids and geo-distributed datacenters, by model-
ing the pricing process as a multi-leader single-follower

game.
• For the cloud aiming to minimize energy cost, we present

an ADMM-based distributed algorithm to optimize the
geo-graphical load balancing and green capacity planing.

• For the smart grids interested in the price equilibrium, the
non-convex multi-leader single-follower game is trans-
formed into a MILP that can be readily solved.

• We evaluate the efficacy of the proposed solutions based
on real datacenter workload traces and IEEE 14-bus test
systems with real generation and demand data.

In the rest of the paper, we discuss related work in Sec. II,
and formulate the multi-leader single-follower game in Sec.
III. Sec. IV and Sec. V solve the cost minimization problem
at the cloud side and the smart grid side, respectively. Trace-
driven simulations are presented in Sec. VI. Sec. VII discusses
the limitations and the future work, Sec. VIII concludes the
paper.

II. RELATED WORK

Datacenter demand response lies at the intersection of two
research areas: energy efficiency in the datacenter and demand
response in the smart grid. A series of recent research was
devoted to exploiting the opportunities and addressing the
challenges in datacenter demand response.

Efficiently powering datacenters with green energy have
been extensively studied in the literature. For example, Chen et
al. [13] presented an online and distributed algorithm for joint
workload and energy management, aiming to minimize the
energy cost of geo-distributed datacenters with green energy
supply. Ibrahim et al. [17] investigated the effect of intermit-
tency of renewable energy availability, on a distributed storage
system whose file retrieval efficiency and node repair time
are optimized. When considering multiple energy resources
as well as the net metering for a single datacenter, Fan et
al. [19] proposed an framework to strike a judicious balance
among energy cost, carbon emission and service availability.
Different from the above work, our study further considers the
performance requirement (i.e., user perceived latency) at each
front-end server, the coupling effect of this constraint makes
our distributed algorithm design rather challenging. A variant
of ADMM, ADM-G, was applied to maximize utility of geo-
distributed datacenters equipped with fuel cells [35]; although
directly applicable to our problem, it has worse computational
efficiency. Instead, we first transform our problem to a clearer
form and then apply the light-weight ADMM to improve the
computational efficiency.

The market design for datacenter demand response has
attracted substantial attention. In terms of lead-follower game
(a.k.a. stackelberg game) theory, the concept is not new
and has been applied to datacenter demand response. For a
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colocation datacenter with multiple tenants, Tran et al. [27]
applied a single-leader multi-follower game approach. For
geo-distributed datacenters served by cooperative smarts grids,
Wang et al. [28] proposed to balance the electricity load
among those smart grids, based on a single-leader single-
follower pricing game. For geo-distributed datacenters served
by competing smarts grids, load reduction at each smart grid
is considered in [29] and [26], through a multi-leader single-
follower pricing game. Our work is different from and comple-
mentary to the above efforts in at least two important aspects:
(1) we explore the potential of datacenter demand response by
considering the capability of two-way electricity flow rather
than one-way power consumption, and (2) we develop a
more general approach to detect an equilibrium by blending
EPEC and linearization techniques, since our Stage-I problem
does not admit a closed-form solution and thus the backward
induction method applied in the above studies is not applicable
to our problem. In addition to lead-follower game theoretic
approaches, Liu et al. [21] designed a prediction-based pricing
rule for demand response of independent datacenters in one
smart grid, and auction solutions have been proposed to elicit
demand response from a colocation datacenter [32] and geo-
distributed datacenters [37].

The basic idea of this work has been partially presented in
an earlier 2-page version [36]. In the current paper, we further
present the solution details that include the improved models,
techniques and performance evaluations.

III. THE DEMAND RESPONSE MODEL

A. Overview of the Geo-distributed Cloud Platform

Consider a cloud provider running cloud services on a set
of N geographically dispersed datacenters D = {1, 2, ..., N}
that are inter-connected by internet backbones. Each datacenter
j ∈ D consists of Sj homogeneous processing servers. The
cloud deploys a set of M front-end servers, S = {1, 2, ...,M},
in a set of geographical regions, to direct user requests to
appropriate datacenters.

Following recent literature on datacenter modelling [31],
[37], [38], we adopt a discrete time-slotted model where the
bilateral electricity prices and the decision of the cloud are
updated during each time slot. In practice, real-time electricity
price is often updated at the time scale of every 15 minutes
or every hour. At each time slot t = (0, 1, 2, · · · ), the
total amount of incoming workload driven by user requests
(in number of processing servers required) at the front-end
server i is denoted as Di(t), and the amount of workload
distributed from front-end server i to datacenter j is dij(t).
In the short-term (e.g., 15 minutes or one hour), Di(t) can
be predicted rather accurately, by employing techniques such
as statistical machine learning and time series analysis [31].
Here we consider interactive workloads (e.g., web search and
online gaming) that can not be deferred and must be served
immediately. Thus, the decision making of both the smart grids
and the cloud is uncoupled from slot to slot, and we can
focus on a single time slot and drop index t for the analysis
henceforth.

B. Hybrid Renewable Energy Ecosystem

Data CenterFuel Cells Wind/Solar Farm

+ -

Smart Grid

Power Flow

Power draw

Net metering

Fig. 1: A hybrid green datacenter consisting of multiple energy sources:
large-scale wind/solar farms, carbon-free fuel cell generation, and power
drawn from a smart grid.

Fig. 1 is an overview of a green datacenter powered by
a hybrid renewable energy system that consists of multiple
power supplies, including off-site intermittent wind or solar
power, the emerging reliable and controllable fuel cell gen-
eration that runs on direct biogas, as well as power drawn
from the macro electricity grid. Different energy sources have
distinct characteristics in terms of economics, emission and
reliability, and can be jointly configured towards a specific
system-wide optimization goal.

Large-scale wind or solar farms: At modern cloud-scale
datacenters, in quest of stability, economies of scale and
datacenter extendibility, the installed capacity of wind or solar
power can be very large, substantially exceeding realtime
demand of a datacenter. However, the energy efficiency that
determines the real output of wind and solar power is closely
tied to ambient weather conditions. Consequently, wind and
solar farms are often placed at locations of desirable wind
speeds or solar irradiation, while not too far away from the
datacenter (up to tens of miles). Under good weather condi-
tions, the excess renewable energy can be of a large volume.
However, it is impractical and not so environment-friendly to
store the excess renewable energy in storage devices. Large
scale electricity storage devices are still expensive; further-
more, the commonly adopted lead-acid batteries are based on
polluting materials.

By participating in a program called net metering [9], excess
renewable energy can be sold back to the electricity grid,
while the unreleased Renewable Energy Certificates (RECs)
1 can still be used to offset the carbon footprint incurred
by brown power drawn from the electricity grid. Therefore,
when participating in net metering, though the datacenter
still draws brown power from the grid, datacenter carbon-
neutrality is achievable via keeping the RECs. Currently, this
is a common practice of internet giants such as Google and
Facebook. Constructing renewable power generation facilities
(wind or solar farms) is usually expensive, but operational
cost thereafter is relatively low. We hereafter use Rj to
denote the output of the large-scale renewable farm owned

1A Renewable Energy Certificate, a.k.a. a “green certificate” or a “renew-
able energy credit”, represents the generation of one MWh of electricity from
an eligible renewable source. RECs are tradable commodities in REC markets,
sold separately from underlying physical electricity.
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by datacenter j ∈ D, and use nj to represent the amount of
excess renewable power sold back to the smart grid via the
net-metering program, at price pn

j .
Fuel cell generation with carbon neutral biogas: A

latest focal point in renewable energy is fuel cell generation
from biogas. Recent technical advances have made fuel cells
cost competitive. Providers such as Google, Microsoft, Apple,
eBay and Facebook are investing in fuel cells to “clean up”
their cloud services. Fuel cells can provide extremely reliable
and high-quality power, with fully controllable output levels.
Furthermore, it runs on carbon neutral direct biogas, with no
environmental pressure on service providers. The cost of per-
unit fuel cell generation is stable, without dramatic fluctuations
over time. For datacenters, fuel cell generation also eliminates
the need of traditional backup equipment such as diesel
generators, UPS, batteries, and complex switchgear. This suite
of legacy components is still too expensive, unreliable, and
unclean. Fuel cell generation enables datacenter operators to
rely on a simpler and cleaner solution. We use pg to denote
the unit cost of fuel cell generation, gj and Gj to denote the
real output and capacity of fuel cells deployed at datacenter
j ∈ D, respectively.

Power drawn from the smart grid: Though the installed
capacity of wind or solar farms is large, and the power output
of fuel cell generation is reliable and controllable, cloud-scale
datacenters still can not be fully decoupled from the electricity
grid — realtime wind and solar output is volatile and low at
times, and the capacity of fuel cells is still limited by the
current low production of direct biogas. While one may argue
that brown power drawn from the electricity grid increases the
carbon footprint of a datacenter, such footprint can be offset
by the excess RECs produced by the large-scale wind and
solar farms. We use ej to denote power drawn from the smart
grid at datacenter j ∈ D, and pe

j to denote the electricity price
offered by the smart grid corresponding to datacenter j ∈ D.

C. Datacenter Cost Minimization in Stage-II

For large-scale geo-distributed datacenters, given the esca-
lating power demand and huge capital investment on renew-
able energy infrastructure (e.g., wind farm, solar farm, and
fuel cells), it is critical to curb the rising energy cost and
utilize the renewable energy in a cost-effective manner. This
goal can be achieved via the following two approaches: (1)
Geographical load balancing, cloud operator can exploit the
spacial diversity of electricity price and net metering price to
reduce the electricity bill or to increase the revenue of net
metering, by splitting the workload across the geo-distributed
datacenters. Due to the geo-distributed feature, different data-
centers usually exhibit diverse user-perceived latencies, energy
costs and even carbon emission, and thus geographical load
balancing determines the global latency, cost and emission at
the cloud level. Unfortunately, those objectives may conflict
and cannot be optimized simultaneously when performing
geographical load balancing, and recent studies such as [16]
have demonstrated how geo-graphical load balancing tunes the
potential tradeoff among those objectives. Note that different
from conventional electricity end-users such as factories and

buildings that provide demand response by shifting workload
in the temporal domain, for a cloud running on geo-distributed
data centres, the capability of geographical load balancing
further extends datacenter demand response to the spatial
domain. (2) Green capacity planning, at each datacenter,
exploiting the price diversity of different energy sources and
selecting the optimal amount of power from each of them.

With recent advances in datacenter efficiency, power con-
sumption at a datacenter can be shaped to be proportional to
the amount of workload processed, by dynamically turning
down idle servers and adjusting the voltage and frequency of
the processors [38]. For each datacenter j ∈ D, given the
amount of in-coming workload

∑
i∈S dij , the power demand

can be denoted as αj

∑
i∈S dij , where αj represents the en-

ergy usage efficiency and transforms the amount of workload
to power consumption. Here we assume that server-related
energy consumption dominates the energy consumption of the
cloud system, which is realistic for most cloud services such as
web-search and social networking. Note that for some services
such as video streaming that require few server resource but
incur huge amounts of traffic and power consumption inside
the datacenter LAN and the core WAN, our model is not
directly applicable.

Next, for each datacenter j ∈ D, given electricity
cost at the smart grid, ejpe

j , cost of fuel cell generation,
gjpg, and revenue from the net metering program, njpn

j ,
the aggregated energy cost of the geo-distributed cloud is∑

j∈D

{
ejp

e
j + gjpg − njp

n
j

}
, which is to be minimized. How-

ever, such minimization should avoid significantly degrading
the performance of cloud services. We aim to strike a judicious
balance between cost control and cloud quality assurance.

Performance of Cloud Service. For interactive cloud appli-
cations such as web search and social networking, latency
is a critical performance metric. We focus on the end-to-end
request latency from a front-end proxy server to a processing
datacenter in a wide-area network, which largely accounts for
user-perceived latency and outweighs other factors such as
queuing and processing delays at datacenters [31]. We assume
that our distributed system is connected by a private backbone,
as seen in real-world geo-distributed datacenters [23], such
as Google’s B4. The round-trip times (RTTs) within large
datacenters with tens of thousands of servers are typically
200 − 500µs [25]. At the same time, based on advances in
operation systems and hardware, intra-datacenter RTTs can
be as low as 1µs [25]. However, in a sharp contrast, the
wide-area network latency that involves propagation, queuing,
transmission, and nodal processing times in a geo-distributed
system is far longer, typically tens or hundreds of milliseconds.

The RTT Lij between the front-end server i and data-
center j can be obtained through active measurements [23].
Empirical studies have also demonstrated that, in backbone
networks, Lij can be approximated by geographical distance
tij between the front-end server i and datacenter j as:
Lij = tij×0.02ms/km [23]. The experienced average network
latency of the front-end proxy server i can be formulated
as

∑
j∈D dijLij/Di. To provide satisfiable experience to end

users, the user-perceived latency is generally enforced within
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a given bound:
∑

j∈D dijLij/Di ≤ Wi, where Wi is the
maximal tolerable response delay for front-end proxy server
i.

In the datacenter demand response program, given elec-
tricity price pe

j and net metering price pn
j at each datacenter

j ∈ D, the cloud minimizes the aggregated energy cost
while guaranteeing its performance, by solving the following
geographical load balancing and green capacity planning
problem (GLB-GCP). Here we do not consider the carbon
emission of the power drawn from the grid, since it can be
fully offset by unreleased RECs and thus carbon-neutrality can
be maintained, as we have explained in Sec. III-A.

GLB-GCP :

min
∑
j∈D

{
ejp

e
j + gjpg − njp

n
j

}
,

s.t.
∑
j∈D

dij = Di,∀i ∈ S, (1a)∑
i∈S

dij ≤ Sj , ∀j ∈ D, (1b)∑
j∈D

dijLij/Di ≤ Wi, ∀i ∈ S, (1c)

ej + gj +Rj − nj = αj

∑
i∈S

dij ,∀j ∈ D, (1d)

ej ≥ 0, 0 ≤ gj ≤ Gj , 0 ≤ nj ≤ Rj , ∀j ∈ D,(1e)
dij ≥ 0, ∀i ∈ S,∀j ∈ D. (1f)

(1a) is the workload conservation constraint that ensures all
requests are served. (1b) is the datacenter capacity constraint
that prevents the processed workload from exceeding datacen-
ter capacity. (1c) is the aforementioned performance constraint
ensuring that average user-perceived latency is within a tolera-
ble range. (1d) is the power balance constraint, which requires
that power demand equal to power supply. (1e) indicates
that the output of fuel cell generation and the renewable
power sold back to the smart grid do not exceed the installed
fuel cell generation capacity and the output of renewable
farm, respectively. Electricity loss in the transportation of
off-site renewable energy has not been incorporated into the
optimization framework, as off-site wind or solar farms are
typically placed not too far away from the datacenter (up to
tens of miles), in which case the loss is relatively small.

D. Non-cooperative Pricing Game in Stage-I

Before the cloud minimizes its aggregated cost by solving
GLB-GCP in Stage-II, the smart grid corresponding to each
datacenter j determines the realtime electricity price pe

j and
net metering price pn

j , and announces them to datacenter j
in advance in Stage-I. Changes in one smart grid’s strategy
ripple to other smart grids. The process of determining the
electricity price and the net metering price can be modeled as
a non-cooperative game.

To formulate the non-cooperative pricing game among the
smart grids, we assume that a single datacenter locates within
the geographical span of each regional smart grid, in line with
the fact that a smart grid often covers a moderate-sized district.
For the case of multiple datacenters locating within one smart
grid, or one datacenter trading to multiple smart grids, the
underlying problem does not change fundamentally, and we

can formulate a multi-leader single-follower game in which
multiple smart grids strategically trade with the geo-distributed
cloud.

At the beginning of each time slot, each regional smart
grid corresponding to datacenter j first computes the demand
response target, i.e., the desired power drawn and net metering
by datacenter j, Ej and Nj , respectively, which minimize the
voltage violation frequency of that smart grid. In practice,
when given the structure and profile of the power distribution
network (e.g., the SCE 47-bus network in [21], and the IEEE
14-bus network used in performance evaluation in Sec. VI),
the demand response target can be obtained by applying the
“branch flow” model [21] and exploring the feasible region of
power draw ej , net metering nj .

As we have explained in Sec. III-B, the off-site renewable
facility is generally built at a distance to the datacenter and
located at a different node of the smart grid, thus the smart grid
concerns the demand response targets at the datacenter side
and the renewable facility side separately. The difference be-
tween the power consumption target Ej and the actual power
consumption incurs an economic penalty, i.e., maintenance
cost caused by potential voltage violation, or cost incurred
by primary frequency control for realtime load-generation
balancing, captured by a cost function he

j(Ej − ej). We
assume that he

j(·) is convex, non-negative and has a global
minimum he

j(0) = 0, ∀j ∈ D. The widely-adopted concavity
assumption [21] captures increasing marginal maintenance
cost in practice. Equivalently, the difference between the net
metering target Nj and the actual value nj also incurs a similar
economic penalty hn

j(Nj − nj). We assume a quadratic cost
function as follows [21]:

he
j(Ej − ej) = βe

j(Ej − ej)
2,

hn
j(Nj − nj) = βn

j(Nj − nj)
2.

Here we adopt different penalty parameters βe
j and βn

j for the
differences Ej − ej and Nj − nj , respectively, as the nodes
connected to the datacenter and off-site renewable farm may
have different importance to the stability of the smart grid.
The above penalty can be reduced through datacenter demand
response. However, incentivizing datacenter demand response
in a realtime pricing manner impacts the smart grids’ profit
(cost) of selling (buying) electricity to (from) the datacenter.
Given the unit electricity cost P e

j and original net-metering
price P n

j , the profit of selling electricity to datacenter j can
be denoted as ej(pe

j − P e
j ), while the cost change of buying

electricity from datacenter j can be denoted as nj(pn
j − P n

j ).
Then, each smart grid corresponding to datacenter j deter-

mines pe
j and pn

j by minimizing the total cost as follows:

SGj : min βe
j(Ej − ej)

2 + βn
j(Nj − nj)

2

+ej(P
e
j − pe

j) + nj(p
n
j − P n

j ), (2a)
s.t. P e-

j ≤ pe
j ≤ P e+

j , (2b)
P n-
j ≤ pn

j ≤ P n+
j . (2c)

Here [P e-
j , P

e-
j ] and [P n-

j , P
n-
j ] are feasible ranges of the

electricity price and net metering price, respectively. Note that
ej and nj above are not constants. They are determined by
the datacenter cost minimization problem GLB-GCP latter
in Stage-II, and thus depend on the price decisions of other
smart grids. The process of determining pe

j and pn
j is a non-

cooperative game.
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IV. DISTRIBUTED GEOGRAPHICAL LOAD BALANCING
AND GREEN CAPACITY PLANNING

The linear optimization problem GLB-GCP is of large-
scale, since the number of datacenters and front-end servers
can be at the scale of 10 and 105, respectively [31]. While
it may be periodically solved at a central server, such a
centralized design makes the system less responsive to system
upgrade (e.g., installation of new datacenters) and sudden
changes in system conditions (e.g. link failures, datacenter
outages). We design a fully distributed solution instead, for
better scalability, robustness, performance, and to make use
of the redundant computing resources at each datacenter and
front-end server.

A classic approach to distributed algorithm design is the
dual decomposition method, which relaxes selected primal
constraints and then employ dual decomposition to break the
problem into many sub-problems. However, dual decompo-
sition requires the objective function to be strictly convex,
the linear objective function of GLB-GCP rules out the
application of dual decomposition based approachs.

In this work, we adopt the alternating direction method of
multipliers (ADMM) [12], which overcomes the drawbacks
of dual decomposition and offers fast convergence with mild
assumptions on the objective function. By decoupling the
green capacity planning subproblem at each datacenter from
the global problem GLB-GCP, we are able to derive the
former’s closed-form solution. After substituting this solution
at each datacenter into GLB-GCP, we take ADMM to solve
the remaining geographical load balancing problem in a dis-
tributed manner.

A. Green Capacity Planning per Datacenter
Through inspecting the original problem GLB-GCP, we can

find that if the total workload at each datacenter (
∑

i∈S dij) is
known, then each datacenter only needs to solve the following
green capacity planning subproblem GCP locally.

GCP : min ejp
e
j + gjpg − njp

n
j ,

s.t. ej + gj − nj = αj

∑
i∈S

dij −Rj ,∀j ∈ D,

ej ≥ 0, 0 ≤ gj ≤ Gj , 0 ≤ nj ≤ Rj , ∀j ∈ D.

Insight: The problem GCP admits a natural economic
interpretation: given the total power demand αj

∑
i∈S dij at

each datacenter j ∈ D, how much power to choose from each
source, for minimizing the aggregated energy cost.

An intuitive solution is to always choose the cheapest power
until it is exhausted. For example, if net metering price pnj
is cheaper than fuel cell generation price pg and electricity
price pej , then we first choose the off-site renewable energy.
While if the electricity price pej is cheaper than net metering
price pnj and fuel cell generation price pg, then we should
always choose the grid electricity to power the datacenter, and
sell all the off-site renewable energy back to the smart grid.
Furthermore, to ensure that GCP has a unique solution, we
assume that when two of the three power sources have the
same price, the datacenter makes power source selection in
the following order: grid power first, wind and solar power
second, and finally fuel cell generation.

The above intuition inspires the solution of GCP. Consid-
ering different price combinations, we list the optimal solution
to GCP in Table II. With Table II, we can further obtain
the aggregated energy cost at each datacenter j (denote as
Cj(

∑
i∈S dij)). Furthermore, the relation between Cj(∗) and∑

i∈S dij is depicted in Fig. 2.

Fig. 2: The relation between the aggregated energy cost Cj(
∑

i∈S dij)
and the total power demand αj

∑
i∈S dij , under different combinations

of prices.

We can see that regardless of the price relation, the aggre-
gated energy cost Cj(

∑
i∈S dij) is always convex on dij . An

intuitive explanation is that the marginal aggregated energy
cost (i.e., the first order derivative of Cj(

∑
i∈S dij)) is non-

decreasing, since the optimal solution of problem GCP always
chooses the cheapest energy sources first.

B. Distributed Geographical Load Balancing

We now substitute the solution to the problem GCP into
the original problem GLB-GCP, then the problem GLB-GCP
that minimizes the total cost of the cloud is now casted as the
following master geographical load balancing problem GLB.

GLB : min
∑
j∈D

Cj

(∑
i∈S

dij
)
,

s.t.
∑
j∈D

dij = Di, ∀i ∈ S, (3a)∑
i∈S

dij ≤ Sj ,∀j ∈ D, (3b)∑
j∈D

dijLij/Di ≤ Wi,∀i ∈ S, (3c)

dij ≥ 0,∀i ∈ S, ∀j ∈ D. (3d)

Given the convexity of Cj(∗), we propose a new distributed
algorithm to solve the master GLB efficiently based on
ADMM [12], a simple yet powerful algorithm for convex
optimization that witnessed successful applications in image
processing, machine learning and applied statistics. ADMM
works well for linearly constrained convex problems whose
objective function is separable into two individual convex
functions with non-overlapping variables. It alternatively op-
timizes part of the objective with one block of variables to
reach the optimum with fast convergence.

Given a convex optimization problem in the form:

ADMM :
{
min f(x) + h(z), s.t. Ax+Bz = c|x ∈ K1, z ∈ K2

}
,
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TABLE II: Solution of green capacity planning for each datacenter, given the solution of geographical load balancing.
Price Comparison Grid Power (ej) Fuel-cell Generation (gj) Net Metering (nj)

pe
j ≤ pg < pn

j α
∑

i dij 0 Rj

pe
j ≤ pn

j ≤ pg α
∑

i dij 0 Rj

pg < pe
j ≤ pn

j max{0, α
∑

i dij −Gj} min{Gj , α
∑

i dij} Rj

pg < pn
j < pe

j max{0, α
∑

i dij −Rj −Gj} min{Gj , α
∑

i dij} max{0, Rj −max{0, α
∑

i dij −Gj}}
pn
j ≤ pg < pe

j max{0, α
∑

i dij −Rj −Gj} min{Gj ,max{0, α
∑

i dij −Rj}} max{Rj − α
∑

i dij , 0}
pn
j < pe

j ≤ pg max{α
∑

i dij −Rj , 0} 0 max{Rj − α
∑

i dij , 0}

with variables x ∈ Rm and z ∈ Rn, where A ∈ Rl×m and
B ∈ Rl×n are relation matrices, c ∈ Rl is a relation vector.
f : Rm → R and h : Rn → R are convex functions, and
K1,K2 are non-empty polyhedral sets. Functions f and h are
not required to be strictly convex.

The augmented Lagrangian of ADMM above can be formed
by introducing an extra L2 norm term ∥Ax+Bz− c∥22 to the
objective:

Lρ(x, z, y) = f(x) + h(z) + yT (Ax+Bz − c)

+(ρ/2)∥Ax+Bz − c∥22, (4)

which can be viewed as the unaugmented Lagrangian with an
extra penalty term ρ > 0. Consequently the minimization of
Lρ(x, z, y) is equivalent to the original ADMM. The quadratic
penalty term is introduced to ensure strong convexity of Lρ,
even if f and h are affine. In return, this design eliminates
strong assumptions on f and g, and further substantially
improves the convergence of ADMM.

At each iteration t + 1, the ADMM algorithm updates the
original variables x, z and dual variable y in an alternating
fashion:

xt+1 = argmin
x∈K1

Lρ(x, z
t, yt),

zt+1 = argmin
z∈K2

Lρ(x
t+1, z, yt),

yt+1 = yt + ρ(Axt+1 +Bzt+1 − c).

However, it is challenging to solve the simplified problem
GLB in a distributed manner, since the quadratic penalty terms
in the augmented Lagrangian of GLB is not directly decom-
posable. The constraints (3a)–(3c) couple the variables dij
in two dimensions: the per-front-end workload conservation
constraints (3a) and the performance constraint (3c) couple dij
across datacenters, and the per-datacenter capacity constraint
(3b) couples all dij across front-end servers.

Fortunately, the above challenge can be addressed by intro-
ducing a set of auxiliary variables aij = dij , ∀i ∈ S, ∀j ∈ D,
and reformulating GLB into the following problem, GLB∗:

GLB∗ min
∑
j∈D

Cj

(∑
i∈S

aij

)
,

s.t.
∑
j∈D

dij = Di,
∑
j∈D

dijLij/Di ≤ Wi,∀i ∈ S,∑
i∈S

aij ≤ Sj , aij = dij ,∀i ∈ S,∀j ∈ D,

dij ≥ 0, aij ≥ 0,∀i ∈ S, ∀j ∈ D.

In the new problem GLB∗, auxiliary variables aij determine
the objective functions with only the datacenter capacity
constraints, which couple aij across i. The original variables
dij control the workload conservation constraints and the
performance constraints, which couple dij across j. This is

the key idea that makes the minimization of the augmented
Lagrangian decomposable.

The augmented Lagrangian Lρ of GLB∗ can be readily
obtained from (4). By omitting the irrelevant terms, we find
that at each iteration t + 1, the d-minimization step is de-
composable over i into M per-front-end server subproblems,
while the a-minimization step is decomposable into N per-
datacenter sub-problems. The reformulated problem GLB∗ can
be efficiently computed in a fully distributed manner: each
datacenter and front-end server first solves a rather small-
scale subproblem; then, the front-end servers and datacenters
exchange messages with each other, such local computation
iterates towards convergence to the global optimum of GLB.

Our proposed distributed ADMM algorithm is shown in
Algorithm 1, whose output is the optimal geographical load
balancing dij , i.e., the amount of workload routed from front-
end server i to datacenter j. Then, based on dij and the
equations listed in Table II, each datacenter j computes the
optimal solution of green capacity panning, i.e., the amount
of power drawn from the grid, sold back to the grid, and
generated by the on-site fuel cells. Note that both the per-front-
end server subproblem (5) and the per-datacenter subproblem
(6) are of a much smaller scale than GLB∗, with only N
and M variables, respectively. The objectives of the problems
described above are strongly convex, so problem (5) and
problem (6) can be efficiently solved with standard convex
optimization techniques such as the interior-point method.

Implementation issues: The computation of the distributed
ADMM algorithm can be undertaken by each local facility.
However, such a fully localized implementation would make
the broadcast operations at each iteration travel across the
WAN that interconnects the front-end servers and datacenters,
incurring heavy usage of the expensive WAN bandwidth and
prolonged communication time of the broadcast operations.
To address this issue, we can put the computations into a
designated datacenter that has abundant server resources, and
split those subproblems to the numerous servers, on which
the subproblems can be solved in a parallel manner. Thanks
to the high-speed intra-datacenter network that has abundant
bandwidth, the bandwidth cost and communication time of the
broadcast operations can be greatly reduced.

V. SOLVING THE MULTI-LEADER SINGLE-FOLLOWER
GAME

Solving the smart grid cost minimization problem SGj

directly is computationally prohibitive, as ej and nj in SG
are implicitly determined by the datacenter cost minimization
problem GLB-GCP. Furthermore, the output of GLB-GCP is
the input of SGj . Thus, to solve SGj , each smart grid needs to
anticipate the response of the cloud. To address the above chal-
lenge, we model such two-stage multi-leader single-follower
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Algorithm 1 Distributed Geographical Load Balancing
1: Each datacenter j ∈ D initializes aij and yij to 0, ∀i ∈ S. Each

front-end server i ∈ S initializes dij to 0, ∀j ∈ D.
2: d-minimization: Each front-end server i solves the following

sub-problem for dt+1
ij , and broadcasts it to all the datacenters:

min
∑
j∈D

(
yt
ijdij +

ρ

2
(d2ij − 2at

ijdij)
)
, (5)

s.t.
∑
j∈D

dij = Di,
∑
j∈D

dijLij/Di ≤ Wi, dij ≥ 0.

3: a-minimization: Each datacenter j solves the following sub-
problem for at+1

ij , and broadcasts it to all the front-end servers:

min Cj

(∑
i∈S

aij

)
+

∑
i∈S

(ρ
2
(a2

ij − 2aijd
t+1
ij )− yt

ijaij

)
,

s.t.
∑
i∈S

aij ≤ Sj , aij ≥ 0. (6)

4: Dual update: Each datacenter j updates yij for the equality
constraint dij = aij , and broadcasts yt+1

ij to all the front-end
servers:

yt+1
ij = yt

ij + ρ(dt+1
ij − at+1

ij ).

5: Return to step 2 until convergence.

game as an Equilibrium Problem with Equilibrium Constraints
(EPEC) [15], and aim to efficiently find an equilibrium point
where no player can improve his/her objective by changing
his/her strategy unilaterally.

For each smart grid corresponding to datacenter j, it solves
the following bilevel problem BL whose upper-level is the
problem SGj , and the lower-level is the problem GLB-GCP.

BL : min βe
j(ej − Ej)

2 + βn
j(nj −Nj)

2

+ej(P
e
j − pe

j) + nj(p
n
j − P n

j ),

s.t. P e-
j ≤ pe

j ≤ P e+
j , P n-

j ≤ pn
j ≤ P n+

j ,

(e⃗, n⃗) solves problem GLB-GCP.

A. MPEC Formulation

Given the linearity and thus convexity of the lower-level
problem GLB-GCP, we can replace it with its first-order
optimality conditions. The optimality conditions of a linear op-
timization problem can be formulated through two alternative
approaches: (1) Karush-Kuhn-Tucker (KKT) conditions [15];
and (2) Primal-dual transformation [15], i.e., enforcing primal
constraints, dual constraints and the strong duality equality.

Since the complementarity conditions derived from KKT
conditions are non-convex, we adopt the primal-dual approach
to transform the original bilevel problem BL to a single-level
problem. As illustrated in Fig. 3, we replace the lower-level
problem GLB-GCP with the corresponding primal constraints,
dual constraints and strong duality conditions, and obtain a
mathematical program with equilibrium constraints (MPEC)
for each smart grid. The transformed problem MPECk for the
smart grid corresponding to datacenter k is given in Appendix
A.

Note that constraints (13c)–(13h) correspond to the primal
constraints of the lower-level problem GLB-GCP, while con-
straints (13i)–(13m) are the dual constraints of the lower-level
problem GLB-GCP. Finally, the strong duality theorem that

Minimize 2a

subject to:

1) The constraints (2b) and (2c)

2) The problem 

Minimize 2a

subject to:

1) The constraints (2b) and (2c)

2) Primal constraints of : (13c)-(13h)

3) Dual constraints of : (13i)-(13m)

4) Strong duality equality of : (13n)

P
r
im

a
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d
u

a
l 

tr
a
n

sf
o
r
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a
ti

o
n

Problem for each smart grid

Problem pertaining to each smart grid

Fig. 3: From bilevel problem to single-level MPEC, via primal-dual
transformation.

enforces the equality of the primal and dual objective function
is denoted by constraint (13n).

The dual variables of the problem MPECk are indicated
at their corresponding constraints in (13a)–(13n), following a
colon. The dual variables associated to the shared constraints
(13c)–(13n) are considered specific to each smart grid, i.e.,
they include the subscript k.

B. EPEC Formulation

The joint consideration of the MPECs across all smart
grids constitutes an Equilibrium Problem with Equilibrium
Constraints (EPEC). The solution to the EPEC identifies
the equilibrium of the multi-leader single-follower game. To
obtain such a solution, the optimality conditions of the smart
grid MPECs are to be first derived.

1 2 N

KKTs of

1

KKTs of

2

KKTs of 

N

KKT conditions for each 

EPEC

Optimality conditions of the EPEC

Fig. 4: EPEC and its optimality conditions.

In Sec. V-A, when replacing the lower-level problem GLB-
GCP with its optimality conditions, we have avoided the non-
convex and complicated complementarity conditions by rely-
ing on primal-dual transformation. However, for the problem
MPECk, we can see that it is nonlinear, thus the application
of the primal-dual transformation is not straightforward here.
Hence we resort to the KKT conditions to replace each
problem MPECk with its optimality conditions for each smart
grid, and to attain the optimality conditions of the EPEC, as
shown in Fig. 4.

The optimality conditions associated with EPEC include the
following three types.

1) Primal equality constraints of the problem MPECk for
each smart grid.
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2) Equality constraints generated by differentiating the
corresponding Lagrangian associated to each problem
MPECk.

3) Complementarity conditions related to the inequality
constraints of problem MPECk.

Specifically, the primal equality constraints of the problem
MPECk consist of:

(13c), (13f), (13i)− (13l), (13n), ∀k ∈ D. (7)

By differentiating the Lagrangian function Lk of the prob-
lem MPECk, we further obtain the equality constraints (14)
corresponding to the second type of conditions (Appendix B).

The complementarity conditions included in the KKT con-
ditions associated to the EPEC are given by (15) in Appendix
C. Here the complementarity condition x ≥ 0, y ≥ 0 and
xy = 0 is denoted in the form of 0 ≤ x ⊥ y ≥ 0.

Remark: The products of decision variables and comple-
mentarity conditions make the optimality conditions (7), (14),
(15) nonlinear and non-convex, and thus highly challeng-
ing. Though those non-convexity can be tackled by existing
methods [20] such as PATH and Nonlinear Programming
Reformulation with small amount of computation, a critical
disadvantage of these methods is that even they terminate
properly, they can only guarantee to find a local equilibrium.
On the other hand, smart grids generally deploy sufficient
computing capacity to run their business, and computation
burden is not a primary concern. Thus, towards accurate and
efficient solutions, we propose to exactly linearize the optimal-
ity conditions of EPEC, and derive the resulting conditions that
are mixed-integer and linear.

C. Reformulating as a Linear Problem Without Approximation

The optimality conditions (7),(14),(15) contain the follow-
ing non-linearities:

1) The complementarity conditions (15).
2) The products of decision variables (ejpe

j and njp
n
j) in

the strong duality equalities (13m) included in (7).
3) The products of decision variables in (14a), (14b),

(14d), (14e), (14f) and (14g). The common variables
of such non-linear terms are the dual variables ψk that
correspond to the strong duality equalities (13m).

Linearizing the complementarity conditions (15): Each
complementarity condition in the form 0 ≤ x ⊥ y ≥ 0 can be
replace by the equivalent disjunctive formulation

x ≥ 0, y ≥ 0, x ≤ θMx, y ≤ (1− θ)My, θ ∈ {0, 1}. (8)

where Mx and My are large enough positive constants.
Linearizing the strong duality equalities (13n): As ex-

plained in Sec. V-A, the strong duality equality from the
primal-dual transformation is equivalent to the set of comple-
mentarity conditions obtained through KKT conditions. For
linearity, we replace the strong duality equalities (13n) with
their equivalent complementarity conditions below related to
the inequality constraints. These complementarity conditions
can be linearized through (8).

0 ≤ (Sj −
∑
i∈S

dij) ⊥ νS
j ≥ 0,∀j, (9a)

0 ≤ (Wi −
∑
j∈D

dijLij/Di) ⊥ νW
i ≥ 0,∀i, (9b)

0 ≤ ej ⊥ νe
j ≥ 0, 0 ≤ dij ⊥ νd

ij ≥ 0, ∀i, j, (9c)
0 ≤ gj ⊥ νg-

j ≥ 0, 0 ≤ (Gj − gj) ⊥ νg+
j ≥ 0, ∀j, (9d)

0 ≤ nj ⊥ νn-
j ≥ 0, 0 ≤ (Rj − nj) ⊥ νn+

j ≥ 0,∀j, (9e)

Using complementarity conditions to replace strong duality
equality (13n) may seem against the statement made in Sec.
V-A, i.e., the primal-dual formulation is more computationally
efficient than the KKT conditions. However, such efficiency is
embodied when deriving (14)–(15) from the MPEC, since the
strong stationary conditions (7), (14), (15) would have been
much more complicated if we replace the lower-level problem
GLB-GCP with its KKT conditions.

Linearizing the nonlinear terms involving ψk: We pro-
pose to parameterize the problem in the variables ψk, since
these are dual variables associated to problem MPEC, and
the set of dual variables at any solution forms a ray and has
some degrees of freedom [18]. Moreover, as there is only one
ψk for each smart grid, the parameterizations can be easily
implemented to characterize the feasible region of the problem.

Hence, the nonlinear terms in (14a), (14b), (14d), (14e),
(14f) and (14g) become linear if parameterizing problem (7),
(14), (15) in dual variables ψk. As for the selection of the
value of the dual variables ψk, note that the combination of
the constraints requires that the dual variables ψk to be non-
negative.

In the above way, we transform the nonlinear EPEC into
a system of linear equations and inequalities that involve
continuous and binary variables, which we refer to as the linear
version of EPEC. Since the above linearization is performed
without approximation, the linear EPEC is equivalent to
the nonlinear EPEC, and thus the original multi-leader
single-follower game. However, the transformed linear system
generally has multiple solutions, and choosing a meaningful
equilibrium for the game may be challenging.

D. Classification of Equilibrium
In order to find a particular meaningful equilibrium among

all the possible equilibriums of the EPEC, we define a linear
classification function which serves as the objective function of
the new MILP whose constraints consist of the linear version
of the EPEC. Note that this additional objective function is not
the objective function of either the lower or the upper level.
The proposed MILP structure is:

min Linear classification function,
s.t. MILP version of the conditions (7), (14), (15).

A wide range of classification functions are possible in the
cloud-smart grid interaction scenario. For example: Total cost
of all the smart grids; Aggregated energy cost of the geo-
distributed cloud; or Social cost of all the smart grids and the
geo-distributed cloud.

However, all the three objective functions above contain
non-linear terms. For example, the aggregated energy cost
of the geo-distributed cloud contains the products of decision
variables (e.g., pe

jej), and the cost of each smart grid contains
both quadric terms and products of decision variables (e.g.,
(ej − Ej)

2 and pe
jej , respectively). Fortunately, both the

quadric terms and products of decision variables can be well-
approximated using linear objective functions. For example,
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the product of two decision variables can be linearized by
discretizing one of the decision variables, while the quadratic
term can be approached by a piecewise linear function.

As a case study, we describe in detail how to linearize the
total cost of all the smart grids, and then yield the linear
approximation of the classification function.

Discretize grid power draw. We now deal with the prod-
ucts of decision variables, like pe

jej . The basic idea is to
approximate the continuous variable ej by a set of discrete
values {ejm,m = 0, 1, ..., U}, where U = 2L1 for some non-
negative integer L1. For example, given that the variables ej
are in the range [0, αjSj ], the discrete approximation is written
as ej = ∆1

j

∑L1

l1=0 2
lqjm, where ∆1

j = αjSj/U is the stepsize,
and qjm is a binary variable. The above expression is called
a binary expansion [30], multiplying both sides by pe

j , and
replacing qjmpe

j with a new variable w1
jm, we obtain:

pe
jej = ∆1

j

L1∑
l=0

2lw1
jm. (10)

This expression allows us to replace the product pe
jej with the

linear expression on the right-hand side. In turn, the product
of variables in w1

jm = qjmp
e
j is transformed to the IF-THEN

relation: if qjm = 0, then w1
jm = 0; if qjm = 1, then w1

jm =
pe
j . This relation can be modeled as:

0 ≤ w1
jm ≤ Meqjm, 0 ≤ pe

j − w1
jm ≤ Me(1− qjm). (11)

Where Me is a scalar value that is large enough. Similarly,
we can also approximate pn

jnj by ∆2
j

∑L2

l2=0 2
l2w2

jm.

Piecewise linear function. We formulate a piecewise linear
function to approximate the quadratic terms. Given nj ∈
[0, Rj ], at a set of points {0, Rj

V , 2
Rj

V , ..., Rj} the curve
(nj −Nj)

2 is approximated by the tangent lines. Let us refer
to the x-axis value of the intersection points of these lines as
IPjs, where s ∈ {0, 1, 2, ..., V } is the index of intersection
points (including the start point IPj0 = 0 of the first tangent
line and the end point IPjV = Rj of the last tangent line) and
LSjs represents the slope of tangent lines in a total number
of V . We use LDjs to represent the part of ej between the
intersection points s−1 and s. The binary variable bjs is one if
the variable LDjs is at its upper bound IPjs − IPjs−1, then
we define n̄j to linearly approximate the quadratic function
(nj −Nj)

2 as follows:

(IPjs − IPjs−1)bjs ≤ LDjs, ∀j, s = 1, 2, ..., V, (12a)
(IPjs − IPjs−1)bjs ≥ LDjs, ∀j, s = 1, 2, ..., V, (12b)

nj =
V∑

s=1

LDjs,∀j, (12c)

n̄j = E2
j +

V∑
s=1

LDjsLSjs, ∀j, (12d)

LSjs = 2(
Rj

V
s− Ej), ∀j, s, (12e)

IPj0 = 0, IPjV = Rj , ∀j; (12f)

IPjs =
Rj

2V
(2s− 1), ∀j, s = 1, 2, ..., V − 1. (12g)

Similarly, we can also approximate (ej − Ej) with ēj .
Finally, applying the above results to the cost function of each
smart grid, yielding a linear classic function that represents
the approximation of the total cost of all the smart grids. And
the MILP that aims to find a meaningful equilibrium can be

summarized as:

min
∑
j∈D

{
β1ēj + β2n̄j −∆1

j

L1∑
l1=0

2l1w1
jm +∆2

j

L2∑
l2=0

2l2w2
jm

}
,

s.t. (1): Linearize products decision variables, of the
form (10)–(11),

(2): Linearize quadratic function, of the form (12),
(3): Linear version of the EPEC.

Though the above MILP is of larger scale than GLB-GCP,
it can be efficiently solved using conventional branch-and-cut
techniques in a parallel manner [24].

VI. PERFORMANCE EVALUATION

We have conducted trace-driven simulations to evaluate the
practical economic benefits of the proposed incentive mech-
anism. The simulations are based on real-world datacenter
workload traces and IEEE 14-bus test systems with real-world
generation and demand data.
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Fig. 5: Normalized CPU usage trace from a Google cluster.

Fig. 6: Topology of the IEEE 14-bus test system.

A. Simulation Setup

Geo-distributed cloud: we consider six Google datacenters
in the U.S. as a representative geo-distributed cloud. Following
a recent report on the number of servers owned by Google,
each datacenter’s capacity is set to 2×105 processing servers.
We use the CPU usage extracted from Google cluster-usage
data [5], as shown in Fig. 5 to represent the request traffic
of an interactive cloud service. The workload exhibits great
variability and a clear diurnal pattern, typical for interactive
cloud service. To imitate the geographical distribution of
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requests, we split this total workload among the M = 10 front-
end servers following a normal distribution [31]. Each round-
trip time Lij is calculated according to the aforementioned
empirical approximation Lij = tij × 0.02ms/Km, where the
geographical distance tij is obtained from Google Maps. We
set the energy usage efficiency parameter αj = 250W for each
datacenter j, i.e., each unit amount of request that demands one
server leads to 250W power consumption of the datacenter. We
also enforce the average perceived latency at each front-end
server i to be within Wi = 50ms.

Smart grids: we use the IEEE 14-bus test system [11]
illustrated in Fig. 6 to represent a smart grid that serves
a datacenter. The arrows in Fig. 6 represent various power
loads such as datacenter power demand, the synchronous
condensers at buses 3, 6 and 8 can be replaced by power
loads or renewable generators, and two other generators are
connected to buses 1 and 2. To distinguish among the six
smart grids, we place the datacenters at different buses of
the test system, and use different configurations of renewable
generations and power demands. The demand profiles and
renewable generations are taken form the SCE load profile [21]
and the NREL datasets [10], respectively. The desired levels of
datacenter power consumption and net metering that minimize
the voltage violation frequency, Ej and Nj , respectively, are
computed by using MatPower [21]. Unit electricity cost at
each smart grid is set to 0.6X the 2011 annual average day-
ahead on peak price at the corresponding local markets [31].
The original net metering price is set to the unit electricity
cost. The location of each datacenter and the corresponding
unit electricity cost and original net metering price are listed
in Table III.

TABLE III: Unit electricity cost and original net metering price
($USD/MWh) at different datacenter locations.

Council Bluffs, IA 42.73 Berkeley County, SC 44.44
The Dalles, OR 32.57 Lenoir, NC 40.68
Mayes County, OK 36.41 Douglas County, GA 39.97

B. Performance Evaluation

For comparison, we further implement and evaluate a
benchmark approach, in which the smart grids only update
the electricity price via the multi-leader single-follower game
in a realtime manner as in [28], [29], [26], while the net
metering price is fixed at some percentage of the electricity
cost. Hereinafter, we call the benchmark Unilateral and our
solution Bilateral.
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Fig. 7: Total cost of each smart grid under different pricing schemes.

Efficiency of the bilateral electricity trade pricing. We
first examine the efficiency of the proposed bilateral electricity
trade pricing scheme, in terms of cost reduction. Fig. 7 plots
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Fig. 8: Time-averaged aggregated demand deficit for each smart grid
under different schemes.

the total cost of each smart grid under different pricing
schemes. It can be seen that, by pricing the two-way electricity
flow in a realtime manner, the cost of all the smart grids can be
effectively reduced. We further demonstrate the efficiency of
the proposed pricing scheme in improving the smart grids’
stability in a more straightforward manner. We define the
aggregated demand deficit (quantified by |ej−Ej |+|nj−Nj |)
as the gap between the j-th datacenter’s actual capacity profile
(ej , nj) and the most stable capacity profile (Ej , Nj) to
capture the stability of the smart grids. Fig. 8 shows that the
stability of each smart grid can be largely improved when
realtime pricing for bilateral electricity trade is introduced.
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Fig. 9: Total cost for each smart grid under different performance target
Wi.
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Fig. 10: Time-averaged aggregated demand deficit of each smart grid
under different performance target Wi.

Impact of the performance target of the cloud service
on smart grids. Fig. 9 compares the total cost of each smart
grid under different performance targets (i.e., the Wi discussed
in Sec. III-C) of the cloud service. We have the following
observations: (1) Except for the smart grid at OR, the total
cost of each of the other five smart grids declines as the
performance target Wi increases. (2) However, for the smart
grid at OR, the total cost ascends with the increase of Wi. The
intuition behind this exception is that the increase of Wi incurs
excessive workload being distributed to the datacenter located
at OR with the lowest unit electricity cost, and exacerbates
the stability of the smart grid at OR. We further compare the
time-averaged aggregated demand deficit for each smart grid
under different performance target in Fig. 10, we observe that
the time-averaged aggregated demand deficit of each smart
grid declines as the performance target Wi increases. This is
because a tighter performance target requires more workload
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to be served by closer datacenters, and hence reduces the
flexibility of geographical load balancing on demand response.
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Fig. 11: Total energy cost of the cloud under different performance target
Wi.

Impact of the performance target on the energy cost of
the cloud. It is intuitive that if the prices of grid power and
net metering do not depend on the performance target of the
cloud, then the cloud can save more energy cost with a looser
performance target, by making the geographical load balancing
price-aware. However, when the price decisions consider the
performance target, as the game presented in this work, does
the above intuition still hold? To answer this question, we plot
the total energy cost of the cloud under various performance
targets in Fig. 11. We can see that as the energy cost of the
cloud reduces as its performance target Wi increases. This is
easy to interpret from the view of economic, i.e., the more
budget the customers have, they would benefit more from the
full competition among many producers.
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Fig. 12: CDF of the number of iterations till convergence.

Convergence of the distributed geographical load bal-
ancing. We now examine the convergence of our ADMM
based distributed geographical load balancing algorithm.
Fig. 12 plots the CDF of the number of iterations our algorithm
takes to achieve convergence for the 168 runs. The algorithm
is able to converge within 50 iterations for 90% of the total
runs. Furthermore, the fastest run takes only 8 iterations,
and our algorithm takes at most 98 iterations to converge.
This demonstrates the fast convergence of our ADMM based
algorithm.

Running time. Since we do not have enough server re-
source to experiment with a parallel implementation, we eval-
uate the ADMM algorithm on an Intel Xeon E5-2670 server
with 8-core CPU (2.6G) and 8GB DDR3 memory, where each
per-front-end server and per-datacenter sub-problem is solved
sequentially. We observe that one hourly instance takes 0.13s
on average, considering there are 10 front-end servers and 6
datacenters, thus if implemented in a fully parallel manner,
each hourly instance takes about 0.008 seconds. For the MILP
algorithm, we observe that one hourly instance takes 2.54
seconds on average. Note that in realistic cloud systems, up

to tens of thousand of front-end servers may be deployed. In
this case, a parallel implementation of the MILP algorithm
is desired to reduce the computation time, and we leave
the algorithm design amenable to parallel implementation as
future work.

VII. LIMITATION AND FUTURE WORK

Ramping constraints for fuel cells. For some traditional
thermal generators such as steam turbine, gas turbine, and even
solid oxide fuel cell (SOFC), power generation is constrained
by ramping cost/time and start-up cost/time [22], due to the
requirement of extremely high operating temperatures. While
for proton exchange membrane fuel cell (PEMFC) that is
being used to power datacenters [33], it can work in a low
temperature range with rather short start-up time (as low
as 1 second [3]) and fast ramping rate (e.g., 192W/s for
a 10 kW PEMFC system [33]), leading to very low start-
up cost and ramping cost. Thus, for simplicity, as in recent
study on power datacenters with fuel cells [33], the above
operation constraints are not considered in our model. In the
future, to make our model more general and applicable to
other fuel cell systems, we would like to incorporate the
above operational constraints into our model. In particular, the
formulation of those complicated constraints can be obtained
by adapting the formulation for traditional thermal generators
[22], efficient distributed energy cost minimization for the
cloud and meaningful price equilibriums for the smart grids
are to be investigated.

Parallel implementation of the MILP algorithm. The
MILP is solved in a centralized fashion in the evaluations.
However, some realworld clouds have up to tens of thousand of
front-end servers, thus the corresponding MILP would have a
very large scale. Then, a parallel implementation of the MILP
algorithm is expected to efficiently reduce the computation
time. Though the classic branch-and-cut method for MILP
can be parallelized [25] to reduce computation time, it is still
difficult to do this in such as way that: (1) the amount of time
to solve each of the resulting smaller MILPs is approximately
equal, in case that some servers will become idle before the
solution has been found; and (2) the total amount of power
required to solve the subproblems should not far exceed the
amount of power required to solve the original problem on a
single server. We hope to address these challenges in future
work.

Joint optimization on the servers and networks. In this
paper, we focus on the server-related energy consumption and
ignore the energy consumption of the intra-datacenter network
and the wide-area network. While for applications such as
video streaming, they require few server resource but incur
huge amounts of traffic and power consumption at the network
side. For such applications, network side energy optimization
is critical and the recent work has proposed energy-efficient
routing scheme [34]. However, for geo-distributed datacenters,
the joint energy optimization on both the server and network
sides has been rarely studied, and we hope to tackle this
problem in future work.
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VIII. CONCLUDING REMARKS

This work presented a realtime pricing design for demand
response from a geo-distributed cloud, based on a multi-
leader single-follower model. Two important considerations
are embodied in the model: (i) Two-way electricity flow
between smart grids and large datacenters with hybrid on-
site generation capabilities. (ii) The geo-distributed nature
of large cloud systems, and hence the potential competition
among smart grids that serve different datacenters of the cloud.
At the datacenter side, by using the technique of alternating
direction of multipliers, the geographical load balancing and
green capacity planning are performed in a distributed manner
to minimize the energy cost of the cloud. At the smart grid
side, in quest for a practical equilibrium of the game, we
transform the multi-leader single-follower game into a much
simpler mixed-integer linear programming problem, by em-
ploying techniques such as mathematical programming with
equilibrium constraints, equilibrium problem with equilibrium
constraints and exact linearization. Extensive trace-driven eval-
uations running on the IEEE 14-bus test system demonstrate
the economical benefits of the proposed realtime pricing.
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APPENDIX

A. The problem MPEC
We use νD

i , ν
S
j , ν

W
i , νj , ν

e
j , ν

g-
j , ν

g+
j , ν

n-
j , ν

n+
j , ν

d
j to denote the

Lagrangian multipliers of the constraints (1a)–(1f) in problem
GLB-GCP, respectively. Then, the problem MPECk for each
smart grid k defined in Sec. V-A is given as follows:

MPECk

min βk(ek − Ek)
2 + βk(nk −Nk)

2

+(P e
k − pe

k)ek + (pn
k − P n

k)nk,

s.t. P e-
k ≤ pe

k ≤ P e+
k : µ

pe-
k , µ

pe+
k , (13a)

P n-
k ≤ pn

k ≤ P n+
k : µ

pn-
k , µ

pn+
k , (13b)∑

j∈D
dij = Di : µD

ik, ∀i, (13c)

∑
i∈S

dij ≤ Sj : µS
jk, ∀j, (13d)

∑
j∈D

dijLij/Di ≤Wi : µW
ik, ∀i, (13e)

ej + gj +Rj − nj = αj

∑
i∈S

dij : µjk,∀j, (13f)

ej ≥ 0, 0 ≤ gj ≤ Gj , 0 ≤ nj ≤ Rj ,

: µe
jk, µ

g-
jk, µ

g+
jk, µ

n-
jk, µ

n+
jk, ∀j, (13g)

dij ≥ 0 : µd
ijk,∀i, j, (13h)

pe
j − νe

j + νj = 0 : ϕe
jk,∀j (13i)

pg + νj − ν
g-
j + ν

g+
j = 0 : ϕ

g
jk,∀j, (13j)

−pn
j − νj − νn-

j + νn+
j = 0 : ϕn

jk,∀j, (13k)

νD
i + νS

j +
Lij

Di
νW
i − αjνj − νd

ij = 0 : ϕd
ijk, ∀i, j,(13l)

νS
j , ν

W
i , ν

e
j , ν

g-
j , ν

g+
j , ν

n-
j , ν

n+
j , ν

d
ij ≥ 0,

: φS
jk, φ

W
ik, φ

e
jk, φ

g-
jk, φ

g+
jk, φ

n-
jk, φ

n+
jk, φ

d
ijk,∀i, j,(13m)∑

j∈D

{
ejp

e
j + gjpg − njp

n
j

}
+

∑
i∈S

νW
i Wi

+
∑
j∈D

{
νS
jSj + ν

g+
j Gj + νn+

j Rj

}
= 0 : ψk. (13n)

B. Differentiating the Lagrangian
By differentiating the Lagrangian function Lk of the prob-

lem MPEC, we obtain the equality constraints (14):
∂Lk

∂pe
k

= −ek − µ
pe-
k + µ

pe+
k + ϕe

jk + ψkek = 0,∀k, j = k (14a)

∂Lk

∂pn
k

= nk − µ
pn-
k + µ

pn+
k − ϕn

jk − ψknk = 0,∀k, j = k (14b)

∂Lk

∂dij
= µD

ik + µS
jk +

Lij

Di
µW
ik + αjµjk − µd

ijk = 0,∀i, j, k, (14c)

∂Lk

∂ej
= µjk − µe

jk + ψkp
e
j = 0, ∀j ̸= k, k, (14d)

∂Lk

∂ej
= 2βe

k(ek − Ek) + P e
k − pe

k + µjk − µe
jk + ψkp

e
j = 0,∀j = k, k,

(14e)
∂Lk

∂nj
= −µjk − µn-

jk + µn+
jk − ψkp

n
j = 0,∀j ̸= k, k, (14f)

∂Lk

∂nj
= 2βn

k(nk −Nk) + pn
k − P n

k − µjk − µn-
jk + µn+

jk − ψkp
n
j = 0,

∀j = k, k, (14g)
∂Lk

νD
i

=
∑
j

ϕd
ijk = 0,

∂Lk

νW
i

=
∑
j

Lij

Di
ϕd
ijk − φW

ik = 0,∀i, k, (14h)

∂Lk

∂gj
= µjk − µ

g-
jk + µ

g+
jk + ψkpg = 0,∀j, k, (14i)

∂Lk

νS
j

=
∑
i

ϕd
ijk − φS

jk + ψkSj = 0,∀j, k, (14j)

∂Lk

νe
j

= −ϕe
jk − φe

jk = 0,∀j, k, (14k)

∂Lk

νd
ij

= −ϕd
ijk − φd

ijk = 0, ∀i, j, k, (14l)

∂Lk

ν
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j

= −ϕg
jk − φ

g-
jk = 0,∀j, k, (14m)

∂Lk

ν
g+
j

= ϕ
g
jk − φ

g+
jk + ψkGj = 0,∀j, k, (14n)

∂Lk

νn-
j

= −ϕn
jk − φn-

jk = 0,∀j, k, (14o)

∂Lk

νn+
j

= ϕn
jk − φn+

jk + ψkRj = 0,∀j, k. (14p)

C. Complementarity Conditions
The complementarity conditions included in the KKT con-

ditions associated to the EPEC are given by (15):

0 ≤ (pe
k − P e-

k ) ⊥ µ
pe-
k ≥ 0, 0 ≤ (P e+

k − pe
k) ⊥ µ

pe+
k ≥ 0,∀k, (15a)

0 ≤ (pn
k − P n-

k ) ⊥ µ
pn-
k ≥ 0, 0 ≤ (P n+

k − pn
k) ⊥ µ

pn+
k ≥ 0,∀k, (15b)

0 ≤ (Sj −
∑
i∈S

dij) ⊥ µS
jk ≥ 0, 0 ≤ gj ⊥ µ

g-
jk ≥ 0,∀j, k, (15c)

0 ≤ (Wi −
∑
j∈D

dijLij/Di) ⊥ µW
ik ≥ 0, 0 ≤ νW

i ⊥ φW
ik ≥ 0,∀i, k,

(15d)

0 ≤ (Gj − gj) ⊥ µ
g+
jk ≥ 0, 0 ≤ νS

j ⊥ φS
jk ≥ 0,∀j, k, (15e)

0 ≤ dij ⊥ µd
ijk ≥ 0, 0 ≤ νd

ij ⊥ φd
ijk ≥ 0,∀i, j, k, (15f)

0 ≤ ej ⊥ µe
jk ≥ 0, 0 ≤ nj ⊥ µn-

jk ≥ 0,∀j, k, (15g)

0 ≤ (Rj − nj) ⊥ µn+
jk ≥ 0, 0 ≤ νn-

j ⊥ φn-
jk ≥ 0,∀j, k, (15h)



14

0 ≤ νn+
j ⊥ φn+

jk ≥ 0, 0 ≤ νe
j ⊥ φe

jk ≥ 0,∀j, k, (15i)

0 ≤ ν
g-
j ⊥ φ

g-
jk ≥ 0, 0 ≤ ν

g+
j ⊥ φ

g+
jk ≥ 0, ∀j, k. (15j)
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