
spotDNN: Provisioning Spot Instances for
Predictable Distributed DNN Training in the Cloud

Ruitao Shang†, Fei Xu†∗, Zhuoyan Bai†, Li Chen‡, Zhi Zhou§, Fangming Liu¶
†Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University.

‡University of Louisiana at Lafayette. §Sun Yat-sen University.
¶Huazhong University of Science and Technology, and Peng Cheng Laboratory.

Abstract—Distributed Deep Neural Network (DDNN) training
on cloud spot instances is increasingly compelling as it can
significantly save the user budget. To handle unexpected in-
stance revocations, provisioning a heterogeneous cluster using
the asynchronous parallel mechanism becomes the dominant
method for DDNN training with spot instances. However, blindly
provisioning a cluster of spot instances can easily result in unpre-
dictable DDNN training performance, mainly because bottlenecks
occur on the parameter server network bandwidth and PCIe
bandwidth resources, as well as the inadequate cluster hetero-
geneity. To address the challenges above, we propose spotDNN,
a heterogeneity-aware spot instance provisioning framework
that provides predictable performance for DDNN training in
the cloud. By explicitly considering the contention for bottle-
neck resources, we first build an analytical performance model
of DDNN training in heterogeneous clusters. It leverages the
weighted average batch size and convergence coefficient to quantify
the DDNN training loss in heterogeneous clusters. Through a
lightweight workload profiling, we further design a cost-efficient
instance provisioning strategy which incorporates the bounds
calculation and sliding window techniques to effectively guarantee
the training performance service level objectives (SLOs). We have
implemented a prototype of spotDNN and conducted extensive
experiments on Amazon EC2. Experiment results show that
spotDNN can deliver predictable DDNN training performance
while reducing the monetary cost by up to 68.1% compared to
the existing solutions, yet with acceptable runtime overhead.

Index Terms—distributed DNN training, predictable perfor-
mance, spot instance provisioning, heterogeneous clusters

I. INTRODUCTION

As Deep Neural Network (DNN) models get deeper and
the training datasets get larger, distributed DNN (DDNN)
training in the cloud becomes increasingly compelling [1].
To improve resource utilization [2], cloud providers offer
users with idle computing resources at a 60%-80% discount,
such as AWS spot instances, Google Spot VMs, and Azure
Spot VMs [3]. Though at highly reduced prices, deploying
DDNN training workloads on spot resources can suffer from
severe performance degradation [4], which is mainly caused
by unexpected instance revocations [5] and insufficient spot

∗Corresponding author: Fei Xu (fxu@cs.ecnu.edu.cn). This work was
supported in part by the NSFC under Grant 61972158, the Science and Tech-
nology Commission of Shanghai Municipality under Grants 20511102802
and 22DZ2229004, the BoRSF under Grants LEQSF(2019-22)-RD-A-21
and LEQSF(2021-22)-RD-D-07, the NSF under Grant OIA-2019511, the
Guangdong Basic and Applied Basic Research Foundation under Grant
2023B1515020120, the National Key Research & Development (R&D) Plan
under Grant 2022YFB4501703, and the Major Key Project of PCL under
Grant PCL2022A05.

Current
training status

parameters

Predicted training time

 provisioning plan

spotDNN Portal
DNN model

Training Performance
Predictor (Sec. III)

Spot Instance
Provisioner (Sec. IV-B)

Parameter Profiler
 (Sec. III)

spotDNN

Revocation Detector
(Sec. IV-C)

Instance
Launcher

spotspot spotspot

VPC

Performance SLOs
and user quotas

AWS CLI

Fig. 1: Overview of spotDNN.

capacity due to user quotas [6]. To alleviate such performance
degradation for DDNN training, provisioning a heterogeneous
cluster of spot instances using the asynchronous parallel (ASP)
mechanism [7] is becoming the first choice for cloud users.

However, finding the cost-efficient provisioning plan of het-
erogeneous clusters (i.e., identifying the type and the number
of spot instances) still remains challenging, even for sophisti-
cated cloud users. They often rely on their own experience and
intuition to provision spot instances for DDNN training [8].
Unfortunately, blindly provisioning heterogeneous instances
can result in unpredictable DDNN training performance due
to the following two facts. First, the network bandwidth of
the parameter server (PS) [9] and the limited PCIe bandwidth
inside the instance can easily become bottleneck resources.
As evidenced by our motivation experiment in Sec. II-B,
the training time of VGG-19 can be prolonged by up to
65.7% as more spot instances are provisioned. Second, the
inadequate cluster heterogeneity can impact the convergence
rate of DDNN training due to the gradient staleness. Another
motivation experiment in Sec. II-B shows that the convergence
rate of ResNet-50 can vary by up to 39.8% as tuning the
configuration of heterogeneous clusters. Accordingly, how to
adequately provision spot instances to alleviate such unpre-
dictable performance becomes the main obstacle to training
DNN models cost-efficiently in the cloud.

To tackle such performance issues above, many efforts have
been devoted to scheduling training jobs (e.g., Gavel [10]),
tuning the batch size (e.g., LB-BSP [11]), migrating tasks with
spot price prediction (e.g., FarSpot [12]), and online batching
(e.g., DOLL [13]) in homogeneous DDNN training clusters.
However, relatively little attention has been paid to adequately
provision spot instances and guaranteeing the DDNN training
performance in heterogeneous clusters. There have recently
been works (e.g., CM-DARE [8]) on modeling the training

mailto:fxu@cs.ecnu.edu.cn

performance of heterogeneous clusters. Nevertheless, they
imprecisely predict the training time due to neglecting the per-
formance degradation caused by bottleneck resources. Though
a more recent work (i.e., Srifty [14]) leverages regression
models and exhaustive search to identify the optimal instance
provisioning plan in a heterogeneous cluster, it is hard to be
applied in practice due to the heavy algorithm computation
overhead. Moreover, characterizing the DDNN training loss
in heterogeneous clusters has surprisingly been received little
attention. As a result, scant research has been devoted to
providing predictable DDNN training performance (i.e., time
and loss) by adequately provisioning a heterogeneous cluster
of spot instances in a lightweight manner.

In this paper, we present spotDNN in Fig. 1, a heterogeneity-
aware spot instance provisioning framework that guarantees
DDNN training performance service level objectives (SLOs)
in terms of objective training time and loss, while saving the
training budget. By leveraging the parameters obtained through
a lightweight workload profiling by the parameter profiler,
we first devise an analytical performance model of DDNN
training workloads in a heterogeneous cluster. The training
performance predictor in spotDNN explicitly considers the
performance degradation caused by bottleneck resources in-
cluding the PS network bandwidth and limited PCIe band-
width. It also leverages the weighted average batch size and
the convergence coefficient to quantify the training loss in
a heterogeneous cluster. Second, we design a cost-efficient
instance provisioning strategy in spot instance provisioner
to guarantee the training performance SLOs and minimize
the training budget. It utilizes bounds calculation and sliding
window to significantly reduce the algorithm computation
overhead. By periodically checking the status of DDNN train-
ing and spot instances in the revocation detector, spotDNN
is able to consider the performance impact of unexpected
instance revocations, and it provisions takeover spot instances
to guarantee the performance SLOs.

Finally, we implement a prototype1 of spotDNN on AWS
EC2 [6] and conduct extensive prototype experiments using
four representative DNN models and seven types of spot
instances. Experimental results demonstrate that spotDNN can
deliver predictable performance for DDNN training while
saving the user budget by up to 68.1% compared to the existing
solutions, yet with a speedup of 10× in computation overhead
compared to the cutting-edge solution (i.e., Srifty [14]).

The rest of the paper is organized as follows. Sec. II
presents the background and motivation of this paper. Sec. III
formulates our DDNN analytical performance model, which
guides the design and implementation of our spotDNN in-
stance provisioning strategy in Sec. IV. Sec. V evaluates
the effectiveness and runtime overhead of spotDNN. Sec. VI
discusses related work and Sec.VII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first seek to explore the key factors that
impact the DDNN training performance in a heterogeneous

1https://github.com/icloud-ecnu/spotDNN

Performance
degradation

(a)

Speed
slowdown

(b)

Fig. 2: Training speed of VGG-19 on ImageNet obtained by (a) an n-
worker cluster consisting of n

2
g3.4xlarge instances and n

2
g4dn.4xlarge

instances, and (b) a G4dn instance with various number of GPUs.

cluster. We then present a motivation example to show how to
provision heterogeneous spot instances to save the user budget
while guaranteeing the training performance SLOs.

A. DDNN Training with Cloud Spot Instances

Though DDNN training with spot instances can significantly
save the user budget, it is challenging because spot instances
can be revoked at any time and the number of spot requests
has a stringent limit (i.e., user quota) [6]. To cope with such
challenges above, we simply adopt a heterogeneous cluster of
spot instances for DDNN training due to the following two
facts. First, provisioning spot instances with one type is un-
likely to meet workload performance requirements due to the
user quotas. Second, heterogeneous instances can take over the
training tasks of revoked instances as different instance types
are commonly not revoked at the same time [5]. To efficiently
train DNN models on heterogeneous spot instances, we focus
on the ASP [15] mechanism under the PS architecture [9].
We have the following three benefits. First, ASP allows each
worker2 to communicate with the PS individually, and thus it
breaks the synchronization barrier in the heterogeneous envi-
ronment. Second, the training process will not be interrupted in
ASP even when most of the workers are revoked [8]. Third, the
newly-launched takeover instances can pull the latest model
parameters directly from the PS, so as to reduce the recovery
time of instance revocations.

B. Characterizing DDNN Training Performance in Heteroge-
neous Clusters

To explore the key factors of DDNN training performance
in a heterogeneous cluster, we conduct motivation experiments
on EC2 spot instances [6], by deploying P3, P2, G4dn, and G3
GPU instance types as workers and an m5.xlarge on-demand
instance as the PS. We run three representative DDNN training
workloads including ResNet-50 and ResNet-110 [16] on the
CIFAR-100 [17] dataset, as well as VGG-19 [18] on a portion
of the ImageNet [19] dataset. We illustrate the observed
experiment results with error bars of standard deviation by
repeating experiments 3 times.

Training Speed. To accelerate DDNN training, we simply
set the batch size to fully utilize the GPU resource for each
GPU type [11]. As shown in Fig. 2(a), the observed cluster

2We use workers and instances interchangeably in this paper.

2

0 2000 4000 6000
Normalized iterations

1.0

2.5

4.0

5.5

Tr
ai

ni
ng

 lo
ss

WA batch size = 128
WA batch size = 256
WA batch size = 512

(a)

0 2000 4000 6000
Normalized iterations

1.0

2.5

4.0

5.5

Tr
ai

ni
ng

 lo
ss

7×p3.2xl, 3×p2.xl (CC:0.93)
5×p3.2xl, 5×p2.xl (CC:0.90)
3×p3.2xl, 7×p2.xl (CC:0.87)
1×p2.xl (CC:0)

(b)

Fig. 3: Training loss of ResNet-50 on CIFAR-100 achieved by (a) various
WA batch sizes on a heterogeneous cluster consisting of 6 workers
(i.e., 3× g3.4xl, 3× g4dn.4xl), and (b) various CCs on a heterogeneous
cluster consisting of 10 workers with the WA batch size set as 256.

speed first increases and then surprisingly decreases by up
to 65.7% as the number of workers increases from 2 to 8
compared with the linear speedup curve. This is because the PS
network bandwidth can easily become a bottleneck resource
as the number of workers increases. To validate our analysis
above, we record the PS network throughput over time, and the
results show that the PS network bandwidth becomes saturated
(i.e., reaching up to 1.2 GBps) as the number of workers grows
to around 8. Such an observation confirms our analysis of
PS network bandwidth as a bottleneck resource even when
training with the ASP mechanism in a heterogeneous cluster.

Moreover, the limited PCIe bandwidth within a worker is
another key factor that affects the training speed. As shown
in Fig. 2(b), the worker training speed slows down by up to
25.6% compared to the linear speedup curve, as the number
of GPUs inside a worker varies from 2 to 8. This is because
multiple GPUs in a worker contend for the limited PCIe
bandwidth resource, prolonging the gradient aggregation time
(linearly) with the number of GPUs. Accordingly, the PCIe
bandwidth contention can cause a moderate speed slowdown,
resulting in a non-linear acceleration of the training speed on
a multiple-GPU instance.

Training Loss. To characterize DDNN training in hetero-
geneous clusters, we use a weighted average (WA) batch size
to denote the average data size trained in an iteration. It
can be defined as the amount of trained data samples per
unit time divided by iterations trained per unit time. Deriving
from Eq. (4) in Sec. III, the weight can be considered as the
reciprocal of the worker iteration time. Accordingly, we define
a normalized iteration as training a WA batch of data samples
in a heterogeneous cluster. In particular, the WA batch size in
a homogeneous cluster (i.e., a special case of a heterogeneous
cluster) is actually reduced to the batch size of a worker. As
shown in Fig. 3(a), the DDNN training loss converges faster as
the WA batch size increases. This is because a larger WA batch
size generates a more accurate training gradient, achieving
the objective training loss value with fewer iterations [20].
Accordingly, we can leverage the WA batch size to quantify
the DDNN training loss in heterogeneous clusters.

Interestingly, we find that the cluster heterogeneity can
impact the training loss by varying the numbers of p3.2xlarge
and p2.xlarge instances in a 10-worker heterogeneous cluster,
as illustrated in Fig. 3(b). Since workers can miss more

TABLE I: Comparison of the training time, monetary cost, and com-
putation overhead of ResNet-110 with different instance provisioning
strategies.

Cost / Overhead
Strategies Provisioning plans Time (secs)

Money ($) Comp (secs)

On-demand 5×g3.8xl, 3×g3.16xl 2, 549.02 17.75 0.02

CM-DARE+ 4×g3.8xl, 3×g3.16xl 2, 710.85 5.16 0.02

Srifty+ 2×g4dn.4xl, 5×g3.8xl, 2×g3.16xl 2, 597.34 4.97 0.21

spotDNN 5×g3.8xl, 3×g3.16xl 2,549.02 5.33 0.02

fresh parameter updates in the ASP mechanism as the cluster
scale increases [21], the local training with a single worker
achieves the optimal loss convergence rate. To characterize
the performance impact of cluster heterogeneity, we define a
convergence coefficient (CC) as the Euclidean distance be-
tween the parameter update vector W =

[
w1, w2, . . . , w|N |

]
in a heterogeneous cluster N and the local training Wlocal =
[1, 0, . . . , 0]. In particular, we calculate the percentage of
parameter updates wi over the training process for each worker
i ∈ N , which denotes the convergence contribution of the
worker to the model training. Accordingly, a smaller CC
indicates a more localized model training where the training
process is mainly distributed among fewer workers, thereby
speeding up the convergence of training loss.

C. A Motivation Example

Blindly configuring heterogeneous clusters can either under-
provision or over-provision instance resources, which can
adversely affect the training performance. In response, we
design spotDNN in Sec. IV to identify a cost-effective instance
provisioning plan with predictable DNN training performance.
We conduct a motivation experiment on ResNet-110 to il-
lustrate its effectiveness. Specifically, we adopt g4dn.4xlarge,
g3.8xlarge, g3.16xlarge, and p2.8xlarge instances each with a
user quota of 5. The objective training loss is set as 0.8 and
the objective training time is set as 2, 600 seconds.

As shown in Table I, the CM-DARE+ strategy, which
combines the performance model of CM-DARE [8] with the
spotDNN instance provisioning plan, produces a provisioning
plan that exceeds the training objective time by 110.85 sec-
onds. This is because CM-DARE+ neglects the bottlenecks
on PS network and PCIe bandwidth resources during the
training process. It then overestimates the training performance
and under-provisions spot instances. Furthermore, the Srifty+

strategy, which combines the performance model of spotDNN
and instance provisioning strategy (i.e., exhaustive search with
a high complexity) of Srifty [14], configures 9 workers with
the lowest budget but 10 times more computation overhead
(i.e., 0.21 seconds) than spotDNN. In contrast, spotDNN meets
the training performance SLOs and saves the monetary cost
by up to 69.9% compared to the cluster provisioned with on-
demand instances (i.e., the On-demand strategy with spotDNN
instance provisioning plan).

Summary. First, the PS network bandwidth and the PCIe
bandwidth can easily become bottleneck resources for DDNN
training even in a heterogeneous cluster with the ASP mech-

3

TABLE II: Key notations in our analytical performance model in hetero-
geneous clusters.

Notation Definition

N Set of provisioned heterogeneous workers

j Number of normalized iterations for a DNN model

T i Iteration time of a worker i

Texp Expected iteration time of a heterogeneous cluster

bw WA batch size of a heterogeneous cluster

v Training speed of a heterogeneous cluster

R CC of a heterogeneous cluster

T i
comm Communication time in each iteration of a worker i

Sparm Parameter size of a DNN model

gi Number of GPUs in a worker i

Bi
wk Available network bandwidth between a worker i and PS

Bpcie Available PCIe bandwidth in a worker

Bps Available bandwidth of a PS node

anism. Second, the DDNN training loss essentially depends
on the WA batch size, the CC, and the number of workers in
a heterogeneous cluster. Finally, judiciously provisioning spot
instances can significantly save monetary cost while guaran-
teeing performance SLOs for DDNN training workloads.

III. MODELING DDNN TRAINING PERFORMANCE IN
HETEROGENEOUS CLUSTERS

In this section, we first model the training loss using the
WA batch size and the configuration of heterogeneous clusters
(i.e., the CC and the number of workers). We then predict the
DDNN training time by explicitly considering the PS network
and PCIe bandwidth resource bottlenecks. The notations in our
performance model are summarized in Table II.

In general, the iteration time of DDNN training with the
ASP mechanism can be different for heterogeneous workers.
As elaborated in Sec. II, we characterize the DDNN training
process in a heterogeneous cluster with j normalized itera-
tions, and each iteration requires an expected iteration time
Texp. Therefore, we formulate the DDNN training time T as

T = j · Texp, (1)

where Texp is considered as the expectation of the iteration
time of heterogeneous workers. Accordingly, Texp can be
formulated as the reciprocal of the number of iterations per
unit time in a heterogeneous cluster, which is given by

Texp =
1∑

i∈N
1
T i

, (2)

where N is the set of provisioned workers, and 1
T i denotes

the number of iterations per unit time on a worker i.
Modeling DDNN Training Loss. As discussed in Sec. II-B,

the DDNN training loss converges faster as the WA batch size
bw gets larger and the CC R gets smaller. The convergence rate
slows down as more workers are provisioned. Moreover, the
DDNN training loss is inversely proportional to the normalized
iterations j and converges at a rate of O(1j) [22]. According

to our motivation experiment in Fig. 3, we empirically fit the
training loss in a heterogeneous cluster as

floss (bw, R,N , j) =
(γ2 ·bw+γ3)

√
(R+γ4) |N |

j + γ1
+ γ5, (3)

where γ1, · · · , γ5 are the model coefficients, and γ2 <0.
We continue to model the WA batch size bw. As defined in

Sec. II-B, the amount of data samples trained per unit time is
considered as the cluster training speed (i.e., v). The number
of iterations trained per unit time can be identified as the
reciprocal of the expected iteration time Texp, according to
Eq. (2). Accordingly, bw is formulated as

bw =
v
1

Texp

= v · Texp. (4)

As workers communicate with the PS without a synchro-
nization barrier under the ASP mechanism, we can calculate
v =

∑
i∈N v

i =
∑
i∈N

bi

T i , where vi, bi, and T i denote the
training speed, batch size, and iteration time of a worker i,
respectively. According to the definition in Sec. II-B, the CC
R can be formulated as

R =

√
(w1 − 1)

2
+ (w2 − 0)

2
+ . . .+

(
w|N | − 0

)2
, (5)

where wi = vi

v denotes the percentage of parameter updates
for a worker i.

Modeling Iteration Time of a Worker. Each iteration of
DDNN training is divided into two phases: gradient com-
putation and parameter communication. They are processed
sequentially under the ASP mechanism. Accordingly, we for-
mulate the iteration time T i of a worker i as

T i = T icomm + T icomp, (6)

where T icomm and T icomp denote the communication time and
GPU computation time in an iteration of worker i, respectively.
In particular, the GPU computation time T icomp is determined
by the GPU type and batch size. Accordingly, we consider it
as a constant value as long as the instance GPU types stay the
same due to the same batch size for identical GPUs. We can
calculate it as T i − T icomm by the workload profiling.

The communication phase consists of the gradient ag-
gregation through PCIe and the parameter communication
through the network. In general, the pushing and pulling of
parameters can be considered as equal, and the size of model
gradients is the same as that of model parameters (i.e., Sparm).
Accordingly, the communication time T icomm of a worker i can
be calculated as

T icomm =
2 · Sparm
Biwk

+
2 · gi · Sparm

Bpcie
, (7)

where Biwk denotes the available network bandwidth between
a worker i and PS, and Bpcie denotes the available PCIe
bandwidth in a worker with gi GPUs.

As analyzed in Sec. II-B, Biwk is restricted by the PS
network bandwidth Bps, which becomes a resource bottleneck
as more workers are provisioned. As shown in Fig. 4, the

4

BW sufficient
BW light contention
BW heavy contention

Worker 1

Communication time

Worker 2

Worker 3

Fig. 4: Resource contention of PS network bandwidth (BW) over time as
the communication between the worker and PS starts or ends.

contention for PS network bandwidth only occurs during part
of the communication phase because workers communicate
with the PS at different times. Accordingly, we formulate the
available network bandwidth Biwk of a worker i as

Biwk =

{
P · Bps

|N | + (1− P) ·Breq Breq >
Bps

|N | ,

Breq Breq <
Bps

|N | ,
(8)

where Breq denotes the network bandwidth requirement be-
tween a worker and PS when there is only one worker in
the cluster. Besides, P ∈ [0, 1] denotes the probability of PS
network bandwidth bottleneck, which is positively correlated
with the number of provisioned workers. We formulate it as

P = min
(
α1 ·

√
|N |+ β1, 1

)
, (9)

where α1 and β1 are model coefficients. In particular, P = 1
when the bandwidth competition reaches its peak.

Identifying Batch Sizes for Heterogeneous GPUs. To fully
utilize the GPU resource, we assign a GPU of type k with its
largest batch size bk, which is usually a power of 2 and is
limited by the GPU memory size. The relationship between
bk and the GPU memory usage memk can be formulated as

bk = 2blog2(α2·memk+β2)c, (10)

where α2 and β2 are model coefficients that can be obtained
by workload profiling. We acquire bk by setting memk as the
GPU memory size. Accordingly, the batch size of a worker i
with gi GPUs of type k can be calculated as bi = gi · bk.

Obtaining Model Parameters. Based on the model above,
we have 5 workload-specific parameters (i.e., Sparm, Breq,
αi, βi, γi) and 4 instance-specific parameters (i.e., T icomp, gi,
Bpcie, Bps). Specifically, the number of GPUs gi in a worker
i, the available PCIe bandwidth Bpcie, and the available band-
width of the PS Bps can be found in the instance configuration
file of cloud providers. Then, we fit the model coefficients α2

and β2 by running the DNN model on a single worker with
30 iterations and recording the GPU memory usage under
different batch sizes. Meanwhile, the model parameter size
Sparm can be measured as the PS network data traffic divided
by the number of iterations. The required network bandwidth
Breq of workers can be obtained using the nethogs tool. To
fast acquire the iteration time of different GPUs and the model
coefficients (i.e., α1, β1, and γi), we perform 3 epochs on three
heterogeneous clusters with various numbers of workers (i.e.,
2, 4, 7) in parallel using the regression method [23]. With the
obtained parameters above, the computation time T icomp of
different GPUs can be calculated by Eqs. (6)-(7) accordingly.

IV. GUARANTEEING DDNN TRAINING PERFORMANCE
WITH CLOUD SPOT INSTANCES

In this section, we first formulate the provisioning optimiza-
tion problem of heterogeneous spot instances. We then design
and implement our spotDNN instance provisioning strategy to
provide predictable DDNN training performance.

A. Optimizing Spot Instance Provisioning

Given a set of available instance typesM, user quotas Lim
(i.e., the available number of instances for each type), and
performance SLOs (i.e., training time Tobj and loss value Lobj)
for a DNN model, how can we adequately provision a set of
spot instancesN to guarantee the DDNN training performance
while minimizing the monetary cost. The optimization prob-
lem can be formulated as

min
N

C = T ·
∑
m∈M

nm · pm (11)

s.t. floss (bw, R,N , j) = Lobj , (12)
T ≤ Tobj , (13)
nm ≤ Limm, ∀m ∈M, nm ∈ Z (14)

where nm and pm denote the provisioned number and the unit
price of an instance type m, respectively. The outputN is a list
of the provisioned instances with a length of

∑
m∈M nm. The

remaining objective training time Tobj requires re-calculation
when instance revocations occur. Constraints (12) and (13)
guarantee the training performance SLOs in terms of Lobj and
Tobj . Constraint (14) denotes that the number of provisioned
instances is below the user quota for each type m.

Problem Analysis. According to Eq. (11), the monetary
cost C is actually impacted by the number of provisioned
workers |N | and the training time T . By substituting Eqs. (2)-
(10) into Constraint (13), we conclude that the constraint on
the training time T is non-linear. As a result, our optimization
problem in Eq. (11) turns out to be a non-linear integer
programming, which is an NP-hard problem [24]. Accordingly,
we turn to designing a heuristic algorithm to solve our instance
provisioning problem.

To narrow down the solution search space, we design two
optimization techniques. First is to analyze the lower bound
nlower and upper bound nupper of the number of provisioned
workers |N |. As evidenced in Sec. II-B, the PS network
bandwidth contention negatively impacts the training speed as
more workers are provisioned. To avoid severe performance
degradation, we let P < 1. According to Eq. (9), we calculate
the upper bound nupper as

nupper =

⌊(
1− β1
α1

)2
⌋
. (15)

To meet the objective loss (i.e., Constraint (12)), we can
infer from Eq. (3) that the minimum number of normalized
iterations is

(
(γ2·bmin+γ3)

√
γ4

Lobj−γ5 − γ1
)

, where bmin = min
i∈N

bi is
the minimum batch size of all available instances. To meet the

5

Algorithm 1: spotDNN: Heterogeneity-aware instance
provisioning strategy for predictable performance of
DDNN training with cloud spot instances.

Input: Performance SLOs (i.e., training time Tobj and loss value
Lobj) of a DNN model, a set of available instance types M,
user quotas Lim, and a list of existing instances E.

Output: Instance provisioning plan N and the monetary cost C.
1: Acquire instance-specific parameters (i.e., T k

comp, gi, Bpcie,
Bps), and workload-specific parameters (i.e., Sparm, Breq , αi,
βi, γi) by lightweight workload profiling;

2: Initialize: C ←∞; N ← ∅; Put all the available instances into
the list I;

3: Calculate the batch size bk ← Eq. (10) and the computation
time T k

comp ← Eq. (6) of GPU type k on a single-GPU
instance;

4: Calculate the upper bound nupper ← Eq. (15), the lower
bound nlower ← Eq. (16), and the iteration time T i ← Eq. (6)
of a worker i with the required network bandwidth Breq;

5: Sort the available instances list I in descending order by T i;
6: for all n ∈ [nlower, nupper] do
7: for all idx ∈ [0, |I| − n] do
8: Acquire N̂ ← E + I [idx, idx+ n− 1] by sequentially

selecting n instances from the idx-th instance in the
available instances list I; // sliding window

9: Calculate the WA batch size bw ← Eq. (4), the CC
R← Eq. (5), and the number of normalized iterations j
to meet the objective loss value
floss(bw, R, N̂ , j)← Lobj ;

10: Calculate T̂ ← Eq. (1), Ĉ ← Eq. (11);
11: if a revocation occurs then
12: T̂ ← T̂ + Tohd; // add revocation overhead
13: end if
14: if T̂ ≤ Tobj && Ĉ < C then
15: Record the monetary cost C ← Ĉ and the instance

provisioning plan N ← N̂ ;
16: end if
17: end for
18: end for

objective training time (i.e., Constraint (13)), we can calculate
the lower bound nlower as

nlower =

bmin ·

(
(γ2·bmin+γ3)

√
γ4

Lobj−γ5 − γ1
)

vmax · Tobj

 , (16)

where vmax = max
i∈N

bi

T i is the maximum training speed of
the available instances. Second is to provision a set of spot
instances with small differences in iteration time. We make
the decision because such workers introduce a lower degree of
gradient staleness [21], which makes the training loss converge
more steadily. Accordingly, we store all the available instances
in a list by sorting their iteration time in descending order. We
then adopt a sliding window to select the adjacent instances
with small differences in iteration time in the sorted list.

B. Design of spotDNN Instance Provisioning Strategy

Given a DNN model with the performance SLOs, a set of
available instance typesM, the user quotas Lim, and a list of
existing instances E, spotDNN first obtain the model parame-
ters using the profiling method elaborated in Sec. III (line 1).

After initializing several algorithm variables, spotDNN then
calculates the batch size bk and the computation time T kcomp
for a GPU type k, as well as the upper and lower bounds of the
number of provisioned workers (lines 2-4). By iterating each
possible number n of provisioned workers, spotDNN leverages
a sliding window to select the possible provisioning plans N̂
(lines 5-8). It further calculates the number of normalized
iterations j to meet the objective training loss value Lobj
and then obtains the estimated training time and monetary
cost (lines 9-10). In particular, spotDNN adds an instance
revocation overhead Tohd (e.g., less than 30 seconds) to the
estimated training time T̂ when a revocation occurs (lines
11-13). Finally, spotDNN identifies a cost-efficient instance
provisioning plan N that guarantees the objective time Tobj
and minimizes the monetary cost C (lines 14-18).

Remark. The complexity of Alg. 1 is in the order of
O(x · y), where x = nupper −nlower +1 denotes the possible
search space of the number of provisioned workers |N |, and
y = |I| − ni + 1 denotes the candidate provisioning plan
under each possible number ni. As a result, the computation
overhead of spotDNN is well controlled and will be validated
in Sec. V-D. In addition, the user quotas Lim can be adjusted
online according to the availability of spot instances over time.

C. Implementation of our spotDNN Prototype

We implement a prototype of spotDNN on Amazon EC2
based on TensorFlow [25] v1.15.0 with over 1, 000 lines of
Python and Linux Shell codes, which are publicly available
on GitHub. To avoid network traffic across Availability Zones,
we place all PS and worker instances within one Amazon
Virtual Private Cloud (VPC). We use the AWS CLI command
to provision spot instances, particularly setting the subnetID
according to the VPC information. To timely capture revoca-
tion events, our revocation detector periodically checks the
instance status (e.g., every 15 seconds) using the Amazon
instance metadata service3. Once an instance revocation is
detected, it first sends the current model training status (i.e., the
remaining instances and unfinished performance SLOs) to the
training performance predictor. Then, spotDNN re-predicts the
performance and launches takeover spot instances to guarantee
the training performance. To achieve dynamic worker addition
without interrupting the training process, spotDNN leverages
sparse mapping [7] to store all the available IPv4 addresses
in the VPC. It configures the newly added workers within
the same VPC to enable efficient network communication. In
particular, spotDNN can support other cloud platforms (e.g.,
Google GCP, Microsoft Azure) by simply substituting AWS-
related commands and metadata service APIs.

Discussion. First, how does spotDNN deal with the predic-
tion error of our performance model? To mitigate the impact
of SLO violations, spotDNN overpredicts the network con-
tention in Eq. (9) by an empirical value (e.g., 1− 5%), which
is the fluctuating range of network bandwidth Biwk based on

3https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-
instance-metadata.html

6

TABLE III: Configurations of EC2 instances used in our experiment.

Instance type
GPU

Max quota
Unit price ($)

devices spot4 on-demand

p3.2xlarge 1× V100 10 1.25 3.06

p2.8xlarge 8× K80 10 2.16 7.20

g4dn.12xlarge 4× T4 10 1.22 3.91

g4dn.4xlarge 1× T4 10 0.36 1.20

g3.16xlarge 4× M60 10 1.37 4.56

g3.8xlarge 2× M60 10 0.69 2.28

g3.4xlarge 1× M60 10 0.34 1.14

our experiments in Sec. II-B. It can cause an underestimation
of the cluster training speed, making the training process
faster than expected. As evidenced in Fig. 5, our bandwidth
overprediction can basically offset the prediction error of the
performance model. Second, how to use spotDNN in multi-
PS scenarios? spotDNN is applicable in multi-PS scenarios.
Though adding more PS can alleviate the PS network bottle-
neck, the bottleneck still remains as it is intrinsic to the PS
architecture. By simply replacing Bps with the total network
bandwidth that multi-PS provides, our performance model can
readily be applied to multi-PS scenarios.

V. PERFORMANCE EVALUATION

In this section, we evaluate spotDNN by carrying out a set
of prototype experiments on Amazon EC2 [6]. We seek to
answer the following questions:
• Accuracy: Can our performance model in spotDNN

predict the DDNN training performance (i.e., time and
loss) in heterogeneous clusters? (Sec. V-B)

• Effectiveness: Can our instance provisioning strategy in
spotDNN provide predictable training performance while
saving the monetary cost? (Sec. V-C)

• Overhead: How much runtime overhead of workload
profiling and algorithm computation does spotDNN prac-
tically bring? (Sec. V-D)

A. Experimental Setup
Training Cluster Configurations. We deploy an m5.xlarge

on-demand instance to serve as the PS. We provision hetero-
geneous workers with 7 representative instance types listed
in Table III. To reduce the network traffic cost, we configure
the provisioned instances within a VPC in the AWS us-east-1b
region. In addition, the available bandwidth for the PS and the
available PCIe bandwidth inside a worker is set as 1.2 GBps
and 10 GBps, respectively.

Configurations of DNN Training Workloads. We select
four representative DNN models as listed in Table. IV. Due to
the budget limit, we only adopt CIFAR-100 [17] as the training
dataset for VGG-19 [18], Inception-v3 [26], and ResNet-
110 [16] models for image classification. We also choose
an NLP DNN model (i.e., EsperBERTo [27]) trained on the
Esperanto portion of the OSCAR dataset5.

4We list the spot price during the period of our experiments (Jan. 2023).
5https://oscar-corpus.com/

TABLE IV: Workload-specific parameters of representative DNN models.

Workload ResNet-110 EsperBERTo VGG-19 Inception-v3

Dataset CIFAR-100 OSCAR CIFAR-100 CIFAR-100

Sparm (MB) 11.54 336 574 98

Breq (MBps) 142 543 620 562

4 8 16
Number of GPUs per worker

250

750

1250

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

VGG-19
4 8 1630

110
190
270 ResNet-110 Observed

spotDNN
CM-DARE

(a)

2 4 8200
600

1000
1400 Inception-v3 Observed

spotDNN
CM-DARE

2 4 8
Number of workers

200

1200

2200

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

EsperBERTo

(b)

Fig. 5: Comparison of the observed and predicted training time with
spotDNN and CM-DARE by using (a) a P2 instance by varying the num-
ber of GPUs per instance from 4 to 16, and (b) n-worker heterogeneous
clusters consisting of n

2
g4dn.4xlarge and n

2
g3.16xlarge workers.

Baselines and Metrics. We compare spotDNN with the
three strategies as discussed in Sec. II-C. In brief, CM-DARE+

considers the cluster speed as the sum of ideal GPU training
speeds [8]. Srifty+ can be considered as the optimal solution
based on the exhaustive search [14]. We focus on three key
metrics including the DDNN training time, the monetary cost,
and the algorithm computation overhead.

B. Validating Training Performance Model in spotDNN

Can spotDNN well predict the DDNN training time?
We train the ResNet-110, VGG-19, Inception-v3, and Esper-
BERTo models for 10, 5, 6, and 1.5 epochs, respectively.
As shown in Fig. 5(a), we observe that spotDNN can well
predict the DDNN training time on a GPU instance, with a
prediction error from 0.2% to 2.5%. In contrast, CM-DARE
poorly predicts the DDNN training time as it overlooks the
performance impact of PCIe bandwidth bottleneck during the
gradient aggregation. The prediction error of the VGG-19
achieved by CM-DARE gets larger (i.e., from 13.7% to 28.5%)
as the number of GPUs on a worker increases from 4 to 16.
This is because the PCIe bandwidth contention within a worker
increases the gradient aggregation time, thereby causing a non-
linear speedup of the training speed.

Furthermore, Fig. 5(b) shows that spotDNN can accurately
predict the DDNN training time in a heterogeneous cluster
with a prediction error of 1.8% to 6.9% as the cluster scale
varies from 2 to 8. However, CM-DARE fails to predict the
training time with a prediction error reaching up to 73.5%.
The rationale is that the contention of PS network bandwidth
among workers gets severe as the number of provisioned
workers and the parameter size increase, which is ignored
by CM-DARE and thus leads to inaccurate training time
prediction. As the number of workers increases from 4 to 8, the
PS network bandwidth contention among workers dominates

7

2.4 1.9 1.4 0.9
Objective loss

1000

5000

9000

13000

No
rm

al
ize

d
ite

ra
tio

ns Observed
spotDNN

(a) ResNet-110

7.2 6.4 5.6 4.8
Objective loss

3000

11000

19000

27000

No
rm

al
ize

d
ite

ra
tio

ns Observed
spotDNN

(b) EsperBERTo

Fig. 6: Comparison of the observed and predicted number of normalized
iterations under different objective loss values with a heterogeneous
cluster consisting of 4 g4dn.4xlarge and 4 g3.16xlarge workers.

0.9 0.8 0.7
Objective loss

1500

2350

3200

4050

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Objective time
On-demand
CM-DARE +

Srifty +

spotDNN

0

6

12

18

M
on

et
ar

y
co

st
 ($

)Monetary cost

(a) ResNet-110

1.2 1.1 1.0
Objective loss

4000

5500

7000

8500

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Objective time
On-demand
CM-DARE +

Srifty +

spotDNN

3

18

33

48

M
on

et
ar

y
co

st
 ($

)Monetary cost

(b) Inception-v3

Fig. 7: Comparison of DDNN training time and monetary cost of various
instance provisioning strategies under different performance SLOs.

the training process of EsperBERTo, thereby increasing the
DDNN training time.

Can spotDNN well predict the DDNN training loss? We
further evaluate the accuracy of our DDNN training loss model
in an 8-worker heterogeneous cluster by setting the objective
loss value as 2.4, 1.9, 1.4, 0.9 for ResNet-110 and 7.2, 6.4,
5.6, 4.8 for EsperBERTo, respectively. As shown in Fig. 6,
we observe that spotDNN can basically predict the number
of normalized iterations to converge to different objective
loss values. Specifically, spotDNN achieves a prediction error
of 4.8% – 11.7% for EsperBERTo, which is higher than
that of ResNet-110 (i.e., 3.1% – 7.1%). This is because
large models (i.e., EsperBERTo) consume more bandwidth
resources to transfer gradients in the communication phase.
It leads to severe contention of the PS network bandwidth and
PCIe bandwidth, making the training performance fluctuate
moderately (i.e., up to 1, 261 normalized iterations).

C. Effectiveness of spotDNN Instance Provisioning Strategy

Can spotDNN guarantee the DDNN training perfor-
mance while minimizing the monetary cost? To examine
the efficacy of our instance provision strategy, we set three
different training performance SLOs listed in Table V for
ResNet-110 and Inception-v3. As shown in Fig. 7, we observe
that spotDNN can well meet the objective training time under
different objective loss values, while saving the monetary cost
by up to 68.1% compared with the three strategies. Specifi-
cally, CM-DARE+ can hardly provide predictable training per-
formance for DNN models, because it neglects the bottlenecks
on PS network and PCIe bandwidth resources. In contrast,
both spotDNN and Srifty+ can guarantee training performance
while reducing the budget. In most cases, spotDNN can obtain
the optimal resource provisioning plans with Srifty+, as listed

TABLE V: Comparison of instance provisioning plans achieved by
on-demand, CM-DARE+, Srifty+, and spotDNN for ResNet-110 and
Inception-v3. The provisioning plan in the array is defined as [#p3.2xl,
#g4dn.4xl, #g3.8xl, #g3.16xl, #p2.8xl].

Workloads/ Performance SLOs (loss value, training time)
Strategies (0.9, 1900) (0.8, 2400) (0.7, 3700)

R
es

N
et

-1
10 On-demand [2, 0, 2, 0, 0] [2, 0, 4, 0, 0] [2, 1, 4, 0, 0]

CM-DARE+ [2, 0, 2, 0, 0] [2, 0, 3, 0, 0] [2, 0, 3, 0, 0]
Srifty+ [2, 0, 2, 0, 0] [2, 0, 4, 0, 0] [2, 1, 3, 0, 0]
spotDNN [2, 0, 2, 0, 0] [2, 0, 4, 0, 0] [2, 1, 4, 0, 0]

(1.2, 4500) (1.1, 5400) (1.0, 6700)

In
ce

pt
io

n-
v3 On-demand [2, 0, 0, 3, 0] [2, 0, 0, 2, 0] [2, 0, 1, 0, 0]

CM-DARE+ [2, 0, 0, 1, 0] [0, 5, 2, 0, 0] [0, 5, 2, 0, 0]
Srifty+ [2, 0, 0, 3, 0] [2, 0, 0, 2, 0] [2, 0, 2, 0, 0]
spotDNN [2, 0, 0, 3, 0] [2, 0, 0, 2, 0] [2, 0, 1, 0, 0]

4.6 4.0 3.6
Objective loss

500

5500

10500

15500

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Objective time
Homo-slow
Homo-fast
spotDNN

0

3

6

9

M
on

et
ar

y
co

st
 ($

)Monetary cost

(a) VGG-19

6.4 5.6 4.8
Objective loss

1000

3000

5000

7000

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Objective time
Homo-slow
Homo-fast
spotDNN

0

4

8

12

M
on

et
ar

y
co

st
 ($

)Monetary cost

(b) EsperBERTo

Fig. 8: Comparison of DDNN training time and monetary cost achieved
by spotDNN and two homogeneous instance provisioning strategies.

in Table V. The rationale is that spotDNN simply uses a sliding
window to capture the majority of near-optimal solutions, as
discussed in Sec. IV-A. Furthermore, spotDNN can generate
the instance provisioning plans much faster than Srifty+ by
84.6% (i.e., 0.2 seconds vs. 1.3 seconds) when the user quota
is set as 25. We will elaborate the computation overhead of
spotDNN in a large cluster in Sec. V-D.

Can spotDNN outperform homogeneous instance pro-
visioning strategies? To illustrate the training efficiency of
heterogeneous clusters, we evaluate spotDNN against two
homogeneous instance provisioning strategies (i.e., Homo-
slow, Homo-fast). Homo-slow provisions a cluster of instances
with the slowest training speed, while Homo-fast provisions
instances with the fastest training speed in the spotDNN
provisioning plan. Both strategies provision the same number
of workers as spotDNN. By setting three training perfor-
mance SLOs listed in Table VI, we observe from Fig. 8
that spotDNN outperforms both Homo-slow and Homo-fast
strategies. Specifically, Homo-slow violates the time constraint
due to the inefficiency of slower instances and the longer
training time required by the clusters with larger CCs. Though
Homo-fast can guarantee the performance SLOs as spotDNN,
its monetary cost increases by up to 18.5% due to the
high unit price of instances. In contrast, spotDNN configures
heterogeneous clusters with smaller CCs than homogeneous
strategies. It ensures fast convergence even with several slower
instances while saving the training budget.

8

TABLE VI: Comparison of instance provisioning plans and the cor-
responding CCs achieved by spotDNN, Homo-slow, and Homo-fast
strategies for VGG-19 and EsperBERTo. The provisioning plan in the
array is defined the same as Table V.

Workloads/ Performance SLOs (loss value, training time)

Strategies (4.6, 2700) (4.0, 7000) (3.6, 11000)

V
G

G
-1

9 Homo-slow [0, 2, 0, 0, 0] / 0.71 [0, 3, 0, 0, 0] / 0.82 [0, 3, 0, 0, 0] / 0.82

Homo-fast [2, 0, 0, 0, 0] / 0.71 [3, 0, 0, 0, 0] / 0.82 [3, 0, 0, 0, 0] / 0.82

spotDNN [1, 1, 0, 0, 0] / 0.51 [2, 1, 0, 0, 0] / 0.75 [2, 1, 0, 0, 0] / 0.75

(6.4, 2100) (5.6, 4000) (4.8, 7000)

E
sp

er
B

E
R

To Homo-slow [0, 0, 3, 0, 0] / 0.82 [0, 0, 4, 0, 0] / 0.87 [0, 0, 4, 0, 0] / 0.87

Homo-fast [0, 0, 0, 3, 0] / 0.82 [0, 0, 0, 4, 0] / 0.87 [0, 0, 0, 4, 0] / 0.87

spotDNN [0, 0, 1, 2, 0] / 0.59 [0, 0, 1, 3, 0] / 0.83 [0, 0, 1, 3, 0] / 0.83

Can spotDNN guarantee DDNN training performance
even when revocations occur? As shown in Fig. 9, spotDNN
starts the training of ResNet-110 by provisioning 3 g3.16xlarge
and 5 g3.8xlarge instances. At the 29.8-th minute, the revoca-
tion detector in spotDNN captures the revocation signal, and
it identifies 5 g3.8xlarge instances will be revoked. Leverag-
ing the current training status (i.e., remaining 3 g3.16xlarge
instances, remaining training time as 810 seconds, and loss
value as 0.9), the performance predictor further works with
the instance provisioner in spotDNN to generate a new pro-
visioning plan. Specifically, spotDNN launches 3 p3.2xlarge
instances to takeover the unfinished model training work. In
particular, the 3 newly added workers only spend 2.1 minutes
joining the training process, which is slightly longer than
the 2-minute notification [6] (i.e., the 5 g3.8xlarge instances
are revoked at the 31.4-th minute). Due to the fast failover
mechanism of spotDNN, the performance degradation only
lasts for 29.6 seconds (i.e., from the 31.4-th to 31.9-th minute),
as depicted in Fig. 9. spotDNN successfully achieves the
training performance SLOs of ResNet-110 by completing the
training process at the 41.9-th minute.

D. Runtime Overhead of spotDNN

We evaluate the runtime overhead of spotDNN in terms of
the workload profiling overhead and the computation overhead
of Alg. 1. Specifically, we launch a p2.xlarge EC2 instance to
profile the workload-specific parameters (i.e., Sparam, Breq,
α2, β2). By training the four DNN models for 30 iterations, the
profiling time of ResNet-110 [16], Inception-v3 [26], VGG-
19 [18], and EsperBERTo [27] models are merely 114, 75, 141,
and 21.9 seconds, respectively. The remaining parameters (i.e.,
α1, β1, γi) are profiled in parallel on 3 heterogeneous clusters
with 2, 4, 7 workers. The profiling time of the four workloads
is 0.6, 5.8, 12.8, and 11.7 minutes, respectively. Such job
profiling overhead is negligible compared to the several hours
required by a typical DDNN training workload.

To illustrate the computation overhead of spotDNN, we con-
duct another experiment by provisioning a ResNet-110 model
using 70 available instances (i.e., the maximum user quota)
in Table III. spotDNN can achieve the optimal provisioning
plan as Srifty+ with a negligible computation overhead (i.e.,
0.3 seconds). In contrast, the computation overhead of Srifty+

Time

5 * g3.8xlarge

3 * p3.2xlarge

29.8 min
Revocation signal

detected

31.9 min
New workers join

41.9 min
Training
finishes

2.0 min
Training
starts

43.3 min
Objective
time

31.4 min
Revocations
occur

3 * g3.16xlarge

In
st
an
ce
s

Fig. 9: Timeline of spotDNN dealing with multiple instance revocations,
during the training process of ResNet-110 with an objective loss of 0.8
and an objective time of 2, 600 seconds.

increases to 1, 503.7 seconds, due to the exhaustive search with
the complexity in the order of O

(∏
i∈M Limi

)
. Accordingly,

spotDNN can be applicable to large-scale clusters and its
runtime overhead is practically acceptable.

VI. RELATED WORK

Resource Provisioning of DDNN Training. To improve
the DDNN training performance, Proteus [28] scales the
cluster resources with on-demand and spot instances. FC2 [29]
aims to save the budget by considering the capacity and
utilization of network bandwidth during resource provisioning.
λDNN [30] and Cynthia [1] provision homogeneous workers
with serverless functions and EC2 instances, respectively.
However, we focus on the heterogeneous clusters while han-
dling spot instance revocations without interruption. A more
recent work Srifty [14] leverages the exhaustive search method
to provision heterogeneous spot instances for DDNN training
with the AllReduce architecture. In contrast, spotDNN designs
a heuristic algorithm to dramatically reduce the computation
overhead as evidenced in Sec. V-D. Also, spotDNN constructs
an analytical performance model to predict training speed and
loss, while Srifty relies on regression models which highly
depend on the quality of training data and model features.

Performance Modeling of DDNN Training. Several works
focus on modeling the training performance of homogeneous
clusters, such as predicting the training time of DNN oper-
ations [31], simulating the interaction between the PS and
workers [32], and predicting the training loss through online
fitting [22]. CM-DARE [8] performs regression fitting on the
training speed of heterogeneous clusters without considering
the performance degradation caused by bottleneck resources.
Jiang et al. [33] qualitatively analyze the impact of cluster
heterogeneity on the DDNN training loss. Unlike prior works,
spotDNN quantitatively models the training loss by intro-
ducing the WA batch size and CC. Moreover, it models the
DDNN training time of heterogeneous clusters by explicitly
considering the contention of PS network bandwidth and PCIe
bandwidth with the ASP mechanism.

Fault Tolerance of Cloud Spot Instances. To enhance the
spot instance availability, Spotlake [34] builds a random forest
model based on historical spot price datasets. To handle spot

9

instance revocations, checkpointing is a straightforward and
intuitive solution [3]. The checkpointing frequency can be op-
timized through online profiling of checkpointing overhead [4]
or building a three-stage revocation probability model [35].
Bamboo [36] adds redundant computations to avoid data loss.
Spotnik [37] designs an adaptive collective communication and
synchronization mechanism for Ring-AllReduce. Orthogonal
to these works above, we focus on the ASP mechanism
under the PS architecture, which can intrinsically maintain the
DDNN training process even when instance revocations occur.
Moreover, we implement a revocation detector to provision
takeover instances without interrupting the training process.

VII. CONCLUSION

This paper presents spotDNN, a heterogeneity-aware spot
instance provisioning framework for achieving predictable
DDNN training performance in the cloud. By explicitly con-
sidering the severe contention for the bottleneck bandwidth
resources, spotDNN devises a lightweight analytical perfor-
mance model for DDNN training in heterogeneous clusters. It
leverages the WA batch size and CC to characterize the DDNN
training loss in heterogeneous clusters. Such a performance
model further guides the design of our cost-efficient spot
instance provisioning strategy in spotDNN, which utilizes
bounds calculation and sliding window to effectively identify
the appropriate provisioning plan. Extensive prototype experi-
ments on AWS EC2 demonstrate that spotDNN can deliver
predictable DDNN training performance, while saving the
monetary cost by up to 68.1% compared to existing solutions.

REFERENCES

[1] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-
efficient cloud resource provisioning for predictable distributed deep
neural network training,” in Proc. of ICPP, Aug. 2019, pp. 1–11.

[2] S. M. Iqbal, H. Li, S. Bergsma, I. Beschastnikh, and A. J. Hu, “Cospot:
a cooperative vm allocation framework for increased revenue from spot
instances,” in Proc. of SOCC, Nov. 2022, pp. 540–556.

[3] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou, “Cost-
effective cloud server provisioning for predictable performance of big
data analytics,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 5, pp. 1036–1051, 2018.

[4] J. Mohan, A. Phanishayee, and V. Chidambaram, “CheckFreq:
Frequent,Fine-Grained DNN Checkpointing,” in Proc. of USENIX FAST,
Feb. 2021, pp. 203–216.

[5] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Analysis and exploitation of dynamic pricing in the public
cloud for ml training,” in Proc. of VLDB Workshop, Aug. 2020, pp. 1–8.

[6] Amazon. (2023, Feb.) Amazon EC2 Spot Instances. [Online]. Available:
https://aws.amazon.com/cn/ec2/spot/

[7] S. Li, R. J. Walls, L. Xu, and T. Guo, “Speeding up deep learning with
transient servers,” in Proc. of USENIX ICAC, Jun. 2019, pp. 125–135.

[8] S. Li, R. J. Walls, and T. Guo, “Characterizing and Modeling Distributed
Training with Transient Cloud GPU Servers,” in Proc. of IEEE ICDCS,
Nov. 2020, pp. 943–953.

[9] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
Proc. of NIPS, Dec. 2014, pp. 1–9.

[10] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-Aware Cluster Scheduling Policies for Deep
Learning Workloads,” in Proc. of USENIX OSDI, Nov. 2020, pp. 481–
498.

[11] C. Chen, Q. Weng, W. Wang, B. Li, and B. Li, “Accelerating Distributed
Learning in Non-Dedicated Environments,” IEEE Transactions on Cloud
Computing, vol. preprint, pp. 1–17, 2021.

[12] A. C. Zhou, J. Lao, Z. Ke, Y. Wang, and R. Mao, “Farspot: Optimizing
monetary cost for hpc applications in the cloud spot market,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, pp. 2955–
2967, 2021.

[13] H. Jiang, X. Zhang, and C. Joe-Wong, “Doll: Distributed online learning
using preemptible cloud instances,” ACM SIGMETRICS Performance
Evaluation Review, vol. 50, no. 2, pp. 21–23, 2022.

[14] L. Luo, P. West, P. Patel, A. Krishnamurthy, and L. Ceze, “SRIFTY:
Swift and Thrifty Distributed Neural Network Training on the Cloud,”
in Proc. of MLSys, Aug. 2022, pp. 833–847.

[15] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” in Proc. of NIPS, Dec. 2012, pp. 1–9.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of IEEE CVPR, Jun. 2016, pp. 770–778.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Ontario, Technical Report, 2009.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. of ICLR, May 2015, pp. 1–14.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[20] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Proc. of NIPS, Dec. 2015, pp.
2737–2745.

[21] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” in Proc. of ICLR Workshop, May 2016,
pp. 1–10.

[22] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of
EuroSys, Apr. 2018, pp. 1–14.

[23] G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley &
Sons, 2012.

[24] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: a system for
Large-Scale machine learning,” in Proc. of USENIX OSDI, Aug. 2016,
pp. 265–283.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. of IEEE CVPR,
Jun. 2016, pp. 2818–2826.

[27] J. Chaumond. (2020, Feb.) How to train a new language model
from scratch using Transformers and Tokenizers. [Online]. Available:
https://huggingface.co/blog/how-to-train

[28] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: agile ml elasticity through tiered reliability in dynamic re-
source markets,” in Proc. of EuroSys, Apr. 2017, pp. 589–604.

[29] N. B. D. Ta, “FC2: cloud-based cluster provisioning for distributed
machine learning,” Cluster Computing, vol. 22, no. 4, pp. 1299–1315,
2019.

[30] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λDNN: Achieving
Predictable Distributed DNN Training With Serverless Architectures,”
IEEE Transactions on Computers, vol. 71, no. 2, pp. 450–463, 2022.

[31] X. Y. Geoffrey, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A
Runtime-Based Computational Performance Predictor for Deep Neural
Network Training,” in Proc. of USENIX ATC, Jul. 2021, pp. 503–521.

[32] Z. Li, W. Yan, M. Paolieri, and L. Golubchik, “Throughput prediction
of asynchronous sgd in tensorflow,” in Proc. of ACM/SPEC ICPE, Apr.
2020, pp. 76–87.

[33] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proc. of ACM SIGMOD, May 2017, pp. 463–478.

[34] S. Lee, J. Hwang, and K. Lee, “Spotlake: Diverse spot instance dataset
archive service,” in Proc. of IISWC, Nov. 2022, pp. 242–255.

[35] J. Kadupitige, V. Jadhao, and P. Sharma, “Modeling the temporally
constrained preemptions of transient cloud vms,” in Proc. of ACM
HPDC, Jun. 2020, pp. 41–52.

[36] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang, R. Netravali,
and G. H. Xu, “Bamboo: Making preemptible instances resilient for
affordable training of large dnns,” arXiv preprint arXiv:2204.12013,
2022.

[37] M. Wagenlander, L. Mai, G. Li, and P. Pietzuch, “Spotnik: Designing
distributed machine learning for transient cloud resources,” in Proc. of
USENIX HotCloud, Jul. 2020, pp. 1–8.

10

https://aws.amazon.com/cn/ec2/spot/
https://huggingface.co/blog/how-to-train

	Introduction
	Background and Motivation
	DDNN Training with Cloud Spot Instances
	Characterizing DDNN Training Performance in Heterogeneous Clusters
	A Motivation Example

	Modeling DDNN Training Performance in Heterogeneous Clusters
	Guaranteeing DDNN Training Performance with Cloud Spot Instances
	Optimizing Spot Instance Provisioning
	Design of spotDNN Instance Provisioning Strategy
	Implementation of our spotDNN Prototype

	Performance Evaluation
	Experimental Setup
	Validating Training Performance Model in spotDNN
	Effectiveness of spotDNN Instance Provisioning Strategy
	Runtime Overhead of spotDNN

	Related Work
	Conclusion
	References

