
It Takes Two to Tango: Serverless Workflow Serving
via Bilaterally Engaged Resource Adaptation

Jing Wu1, Lin Wang2, Quanfeng Deng1, Chen Yu1, Dong Zhang3, Bingheng Yan3, Fangming Liu*1,4

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
2Paderborn University, Paderborn, Germany

3Inspur Data Co., Ltd., Jinan, China
4Peng Cheng Laboratory, Shenzhen, China

Email: wujinghust@hust.edu.cn, lin.wang@uni-paderborn.de, quanfengdeng@foxmail.com,
yuchen@hust.edu.cn, {zhangdong, yanbh}@inspur.com, fangminghk@gmail.com

Abstract—Serverless platforms typically adopt an early-
binding approach for function sizing, requiring developers to
specify an immutable size for each function within a work-
flow beforehand. Accounting for potential runtime variability,
developers must size functions for worst-case scenarios to ensure
service-level objectives (SLOs), resulting in significant resource
inefficiency. To address this issue, we propose Janus, a novel
resource adaptation framework for serverless platforms. Janus
employs a late-binding approach, allowing function sizes to be
dynamically adapted based on runtime conditions. The main
challenge lies in the information barrier between the developer
and the provider: developers lack access to runtime information,
while providers lack domain knowledge about the workflow.
To bridge this gap, Janus allows developers to provide hints
containing rules and options for resource adaptation. Providers
then follow these hints to dynamically adjust resource allocation
at runtime based on real-time function execution information,
ensuring compliance with SLOs. We implement Janus and con-
duct extensive experiments with real-world serverless workflows.
Our results demonstrate that Janus enhances resource efficiency
by up to 34.7% compared to the state-of-the-art.

I. INTRODUCTION

Serverless computing has become a popular approach for
implementing various cloud applications including web ser-
vices [1], data processing [2], [3] and more recently machine
learning training/inference [4], [5]. Serverless computing al-
lows the developer to offload infrastructure management tasks
to the cloud provider and ensures high resource elasticity
through horizontal auto-scaling. Applications developed as
serverless workflows can be represented by directed acyclic
graphs (DAGs) where a node presents a function and an
edge represents the data exchange between functions. When
triggered by an event (i.e., a request), the functions will be
executed according to the data flow specified by the DAG.
Moreover, horizontal auto-scaling takes care of the number of
function instances based on the real-time request intensity. Yet,
the size (e.g., CPU cores and memory size) of each function
instance is typically decided with an early-binding approach—
the developer sets it according to the service-level objective
(SLO), e.g., meeting the end-to-end latency target at the 99th
percentile (P99) in the DAG [6], [7].

The early-binding approach shoots for the worst case for
SLO guarantee and hence leads to considerable resource
over-provisioning. Empirically, we observe that the worst-
case execution time can be orders of magnitude larger than
that of the best case. For example, the gap between the 95th
percentile and the 25th percentile of the workflow execution
time of Microsoft Durable Functions can be as high as 80
times on average [6]. Such variability can be attributed to
various runtime dynamics including varying input working set
size [6]–[14] and performance interference [15]–[22]. When
the size of the function is decided based on the worst case, the
resource utilization will be low for most requests. For example,
production serverless traces from Huawei Cloud reveal that
half of the deployed functions have CPU and memory usage
at merely 10% and 19.5%, respectively [23].

One promising approach for addressing such resource in-
efficiency is to allow for runtime resource adaptation at the
request level. However, the practicality of such an approach
is limited by the information barrier between the application
developer and the serverless provider. Specifically, application
developers do not have real-time access to runtime information
necessary for per-request resource adaptation1. Meanwhile, the
serverless provider lacks the necessary domain knowledge of
the application to fine-tune the resources without violating
the SLO. Existing works like Kraken [26] and Xanadu [27]
employ proactive and reactive resource scalers simultaneously
to provision dynamic DAGs where only a subset of functions
are invoked per request. Fifer [28] and BATCH [29] allow
adjusting function sizes dynamically to achieve high resource
utilization with SLO guarantee. While being effective in
addressing resource inefficiency, all of them ignore the afore-
mentioned information barrier in real-world systems, rendering
them impractical for the current serverless service model.

We propose Janus, a novel runtime resource adaptation
framework for serverless workflows. The goal of Janus is to
achieve high resource efficiency while guaranteeing workflow

1Monitoring services like Azure Monitor [24] and AWS CloudWatch [25]
can report function runtime metrics only at one-minute intervals.

SLOs. To this end, Janus adopts a late-binding approach where
the developer synthesizes hints containing rules and options
for resource adaptation for the serverless provider to perform
runtime adaptation on their behalf following the hints passed
to them. During the execution of the serverless workflow,
when a function in the application DAG finishes, the serverless
platform collects the execution time of that function and
derives the time budget for the rest of the workflow. Based on
the derived time budget, Janus adjusts the sizes of downstream
functions using the hints provided by the developer which are
ensured to meet the SLO requirement.

The developer synthesizes the hints through comprehensive
profiling. Different from current practice which uses P99 of
function execution time to calculate the resource allocation,
Janus allows the developer to explore different percentiles
and obtain the corresponding resource demands as part of
the hints. Such detailed hints allow the serverless platform to
perform fine-grained resource adaptation, exploiting runtime
information to optimize resource allocation to its maximum
potential. However, sharing the detailed profiling information
and letting the serverless platform search in a large space
at runtime for the best resource configuration come with
significant space and time overhead. Janus addresses this issue
by condensing the hints while retaining their quality.

Overall, this paper makes the following contributions. After
introducing the background and motivating the idea (§II), we

• present the design of Janus—a novel runtime resource
adaptation framework for serverless workflows to achieve
high resource efficiency following a late-binding ap-
proach (§III),

• present effective algorithms for synthesizing, condensing,
and utilizing hints to realize resource- and time-efficient
runtime resource adaptation (§IV),

• implement Janus and perform extensive experiments with
two real-world serverless workflows (§V). Experiment
results show that Janus is able to to improves resource
efficiency by 29.9% and 34.7% on average respectively,
compared with the state-of-the-art serverless system,
while guaranteeing latency SLOs.

§VI discusses related work and §VII draws final conclusions.

II. BACKGROUND AND MOTIVATION

We introduce the background on serverless workload serv-
ing and motivate the use of runtime resource adaptation to
address resource inefficiency in existing serverless platforms.

A. Resource Inefficiency with Early Binding

Current serverless workflow platforms (e.g., AWS Step
Functions [30] and Azure Durable Functions [31]) offer the
opportunity for developers to build various applications with
advanced logic like chaining, branching, and parallel exe-
cution. These applications can be defined by JSON-based
structured languages (e.g., Amazon States Language) or other
programming languages. Meanwhile, developers require to
specify resource configurations, including memory size, CPU

cores, and scaling options, for individual functions—an early-
binding approach. The serverless platform is responsible for
monitoring the workload intensity and resource usage at
runtime and scaling out/in function instances accordingly. To
account for potential runtime variability, developers must size
the functions in their application workflow accounting for the
worst case in order to provide SLO guarantees over the end-
to-end delay of request processing, e.g., the 99th percentile
(P99) of the end-to-end delay must be within a given target.
After deployment, the function sizes become immutable. The
worst case is not representative and over-shoots most of the
time, leading to resource inefficiency.

To verify this claim, we conduct a data-driven analysis with
a dataset from Microsoft Azure Functions [32] to explicitly
demonstrate the resource inefficiency issue. To quantify the
inefficiency, we define a metric called slack—the margin
between the actual execution time and the SLO, which is
calculated as 1 − l/T with l and T representing end-to-end
latency and SLO, respectively. Under certain SLO defined with
P99 latency as done by existing works (e.g., [6], [7]), we can
see from Figure 1a that more than 60% function invocations
have slacks over 60%. Particularly, we analyze slacks of the
top 100 most popular functions, whose invocations account for
81.6% of the total function invocations. The result shows that
only 20% of the invocations of the popular functions (blue
line in Figure 1a) have slacks less than 40%. This means
the majority of requests are processed faster than necessary.
Notably, in DAG-based workloads (i.e., Azure Durable Func-
tions), the resource inefficiency further deteriorates wherein
the ratio between the 95th percentile and 50th percentile is by
up to three times [7].

B. Runtime Dynamics

The resource inefficiency caused by the large slack can be
mainly attributed to the over-provisioning of resources by the
developer. This is to ensure that the SLO is guaranteed even
in the worst case (i.e., P99). However, normal cases deviate
from the worst case significantly due to runtime dynamics. In
particular, we observe that functions face two major dynamic
factors at runtime: varying working sets and inevitable perfor-
mance interference. These two factors contribute significantly
to the variance of the function execution time.

Varying working sets. The working set, i.e., input data
like videos, audios, and texts, can have varying sizes. Tak-
ing Microsoft Azure Function Blobs (storage service) as an
example, their data size difference can be as high as nine
orders of magnitude [33]. Such a large difference results in
substantial variance of the execution time even for the same
function [10], [34]. Specifically, we measure the execution
time of three functions under different working sets (detailed in
§V-A). Figure 1b illustrates the results, where we can observe
a variance of up to 3.8 times in function execution caused by
varying working set sizes.

Performance interference. For simplicity and security,
commercial serverless platforms, such as Alibaba Function
Compute, Microsoft Azure, and AWS Lambda, exclusively

0 0.2 0.4 0.6 0.8 1
Slack

0
0.2
0.4
0.6
0.8

1

CD
F

Popular func.
All func.

(a)
OD QA TS0

1
2
3
4

La
te

nc
y

(s
) P99

P1

(b)
CPU Memory IO Network0

2
4
6
8

10

La
te

nc
y

 (n
or

m
al

iz
ed

)

(c)

Fig. 1: (a) slacks of function invocations in production traces, (b) function latency variance caused by varying input worksets
for functions object detection (OD), question answering (QA), and and text-to-speech (TS), respectively, (c) performance
interference attributed to co-location of homogeneous function with different dominant resource demands.

deploy function instances belonging to the same tenant, or
even belonging to the same function, in the same virtual
machine [35], [36]. For example, the empirical study in [35]
shows that in Alibaba Function Compute 65% of the virtual
machines exclusively deploy instances of the same function.
This co-location of homogeneous function instances, however,
can incur severe resource contention on the same resource
dimensions, particularly for network bandwidth and mem-
ory bandwidth of virtual machines [35]–[38]. To verify this
observation, we use a virtual machine to run a function
increasing the number of co-located instances from one to
six while measuring the execution time of four different
functions with resource dominance on different dimensions
namely computing, I/O, network, and memory, respectively
(detailed in §V-A). As shown in Figure 1c, the co-location
of homogeneous functions leads to substantial resource con-
tention and performance interference, prolonging the function
execution time up to 8.1 times. The performance interference
is often hard to model and predict.

C. Runtime Resource Adaptation

To tackle the aforementioned resource inefficiency issue,
we can adopt a late-binding approach through runtime re-
source adaptation, which resizes functions on the fly based on
runtime information (e.g., function slacks), achieving higher
resource efficiency without violating SLO. For example, given
a workflow as a chain of functions, the resource allocation
of the downstream functions can be adjusted when the first
function finishes execution. This way, the slack from the first
function can be exploited to optimize resource efficiency.

The idea sounds straightforward and has been considered
in some existing works [2], [26]–[28], [39]. However, most
of these works make an unrealistic assumption that either
the developer performs the adaptation decision with access
to runtime information or the serverless platform provider
performs the adaptation with domain knowledge of the ap-
plication workflow. These assumptions render these solutions
impractical to deploy in real-world serverless systems. The
information barrier between the developer and the provider
calls for a new solution.

We identify the following challenges and opportunities for
a full-fledged design for runtime resource adaptation.

Skewed function execution time distribution. Resource
allocation for a serverless workflow is typically done by lever-
aging performance profiles of all the functions in the workflow.
During the offline profiling, the execution time distribution for
each function is first obtained by running the function with a
variety of sample inputs under different resource conditions.
Then, given a time budget, existing approaches typically use
P99 of the function execution time as a target and calculate
the corresponding resource demands. However, due to the high
runtime variability, the distribution of the function execution
time is highly skewed where the difference between P50 and
P99 can be as high as 100 times [23]. This means that if
only the function execution time at a single percentile (P50 or
P99) is used for resource allocation, there will be significant
resource under-provisioning and over-provisioning for most
requests at runtime. To address this issue, our idea is to allow
for the exploration of the function execution time at diverse
percentiles during resource allocation.

Dependencies of adaptation decisions. As the function exe-
cution progresses, a sub-workflow will be generated by remov-
ing the finished function(s) from the workflow. Within each
sub-workflow, the resource adaptation decisions for remaining
functions are dependent on each other due to the constraint
imposed by the end-to-end latency SLO. For example, under-
provisioning a function will result in a reduction of the time
budget for executing its downstream functions, thus calling
for more resources for these downstream functions to avoid
SLO violations. Meanwhile, the selection of the percentile for
the execution time of each function dictates resource-latency
tradeoff for that function. For example, a higher percentile
means that more resources will be allocated to ensure that
more requests processed by the function will finish within
the given time budget. On the contrary, a lower percentile
means that more requests will risk SLO violation, but at the
benefits of reduced resource consumption. To address such
complex dependencies, we propose the following ideas: (1)
We introduce two metrics (i.e., the timeout metric and the
resilience metric detailed in §III-B) to balance the resource
adaptation decisions of the head function of the current sub-
workflow and those of the remaining downstream functions.
These metrics help us connect the decision making across sub-
workflows and avoids sub-optimal adaptation decisions in each

0 10 20 30 40 50
Request ID

0.0
0.6
1.2
1.8
2.4
3.0
3.6

E2
E

(s
)

Early-binding Late-binding SLO

0 10 20 30 40 50
Request ID

0.0
0.4
0.8
1.2
1.6
2.0

C
PU

 c
or

es

 (N
or

m
al

iz
ed

)

Fig. 2: Performance comparison between early-binding
(left) [41] and late-binding (runtime resource adaptation),
where the CPU consumption (right) is normalized by the
optimal obtained with exhaustive search.

sub-workflow. (2) We explore lower percentiles for the head
function and a high percentile (i.e., P99) for other functions
in each sub-workflow. Using lower percentiles maximizes
the opportunity for resource optimization since any over-time
execution of the head function can later be compensated by
resource adaptation in the next round. The high percentile
ensures that the resource adaptation is not too radical to cause
SLO violations.

Tight resource adaptation window. Runtime resource adap-
tation requires to calculate a new resource allocation decision
for the remaining sub-workflow immediately when a function
finishes execution. Since serverless functions are typically
short-lived (less than 1s on average) [23], [35], [36], [40],
the window for resource adaptation is quite tight. Assuming
the serverless platform will perform the runtime adaptation on
behalf of the developer since the platform has access to full
runtime information, the resource adaptation decision making
should be fast without involving complex calculations and
logic or exploring a large space. As discussed before, the
serverless platform provider does not have domain knowledge
of the serverless workflow. Hence, the developer must pass the
necessary information to the serverless platform for runtime
adaptation decision making. Our idea is to let the developer
synthesize critical hints containing resource allocation rules
and options, which the serverless platform provider utilizes
to perform runtime resource adaptation. The hints should
be highly condensed so the serverless platform can make
adaptation decisions quickly enough.

To demonstrate the potential of runtime resource adapta-
tion incorporating all the above ideas, we take a real-world
serverless workflow (explained in §V-A) as an example, and
evaluate its end-to-end latency (denoted by E2E) and resource
consumption (CPU cores). As illustrated in Figure 2, the late-
binding (blue triangle) reduces the resource consumption by up
to 42.2% compared with existing early-binding solutions (or-
ange circle), while ensuring SLO guarantees. This highlights
the significant gains from runtime resource adaptation.

III. JANUS SYSTEM DESIGN

We present Janus—a novel resource adaptation framework
for serving serverless workflows. The goal of Janus is to

maximize resource efficiency while limiting SLO violations.
Janus achieves this goal via a bilaterally engaged approach
to combat the information barrier between the application
developer and the serverless platform provider.

A. Overview

Figure 3 depicts an overview of the system architecture.
Janus consists of three core components: profiler, synthesizer,
and adapter. Specifically, the profiler and synthesizer are
deployed on the developer side, which are run offline, while
the adapter runs online on the provider side at runtime.

The general procedure of Janus is as follows: First, the
profiler interacts with the developer to collect the domain
knowledge of the application, such as the workflow structure,
constitutional functions execution time under varying CPU
cores and concurrency settings (i.e., batch sizes), and SLO
requirements. Afterwards, the profiler extracts functions’ exe-
cution time distribution (to be used as the profiles) from the
collected data using different percentiles. Then, the synthesizer
takes the profiles and generates the hints table, which contains
rules and options for runtime resource adaptation. This table
is submitted to the adapter on the serverless platform. During
the execution of the serverless workflow, when a function
finishes, the serverless platform collects the execution time
of that function and derives the time budget for the rest of the
workflow. This derived time budget is reported to the adapter,
which then searches in the received hints table and notifies
the platform about the adaptation decision for downstream
functions. In addition, the adapter plays the role as supervisor
who carefully monitors the number of table hit/miss rates. If
the miss rate exceeds a predefined threshold, the adapter sends
feedback to the developer.

Note that the developer and the provider do not generally re-
quire online, continuous interaction. The coordination happens
mostly only at the beginning of workflow deployment. It is
expected that the submitted hints will be effective throughout
the execution of the workflow. This is because the hints table
contains fine-grained entries for time budgets produced by
a comprehensive exploration of the synthesizer (detailed in
§IV-A). In very rare cases where hints table misses are severe
(i.e., the miss rate exceeds a given threshold), the adapter
notifies the developer and proposes re-triggering the profiler
and synthesizer to regenerate the hints table. This regeneration
process is done asynchronously while workflow execution is
still in progress, albeit with sub-optimal adaptation decisions
from the adapter (explained in §III-D).

Janus performs per-workflow resource adaptation that re-
stricts the exploitation of runtime slack within the same
workflow. While this design may miss some cross-workflow
optimization opportunities, it allows Janus to easily support
complex scenarios, such as those involving highly parallel
workflows. In a multi-user scenario, the hints are managed
separately for each tenant and each workflow.

offline

generate2a condense2b

Profiler1

A
B

C C
D

L
at

en
cy

P99
P75
P1

Synthesizer2

of CPU

SLO
violation

resource
efficiency

A B C D

15ms 3 2 1
310ms 2 1 3

2ms 1
5ms 1 2

3ms 1

of CPUbudget

online

developer

Adapter 3

#
 o

f C
P

U

time

A
B
C
D

la
te

n
cy actual

profiled

hints table

start sizeend
2ms 13ms

ABCD

provider

Fig. 3: An overview of the system architecture of Janus. The proposed runtime resource adaptation framework bilaterally
engages the application developer and the serverless platform provider, where the developer is responsible for the offline part
while the provider is responsible for the online part.

B. Profiler

The profiler is responsible for collecting the execution time
of functions under varying resources (i.e., CPU cores) and
concurrency levels (i.e., batch sizes) while extracting execution
time distribution by using different percentiles. The percentiles
can be configured based on SLO requirements. By default, we
follow the widely used approach of meeting the end-to-end
latency target at the 99th percentile (P99) as latency SLO [6],
[7]. Therefore, we use percentiles ranging from 1% to 99%
with a step of 5% and the latency profiling of functions is
done between P1 and P99. Latency numbers out of the P1-
P99 range are not accounted for by Janus for optimization.
Janus can accommodate more stringent SLO targets (e.g., at
P99.9) by instructing the profiler and synthesizer to use higher
percentiles (P99.9).

The diversity in percentiles brings more opportunities to
achieve higher resource efficiency but comes at a higher risk
of SLO violations. Specifically, when setting percentiles lower
than 99%, it may cause under-estimation of function execution
time, making functions prone to over-time execution, i.e., their
actual execution time exceeds the profiled execution time.
To quantify the degree of potential over-time execution, we
propose a metric called timeout, which is expressed as

D(p, k) = L(99, k)− L(p, k), (1)

where L(p, k) represents the profiled execution time, with
percentiles and CPU cores denoted as k and p, respectively.
For preventing SLO violations, Janus must provision more
processing resources for downstream functions to absorb such
timeouts. To this end, we propose a metric called resilience to
quantify the absorption capability, which is expressed as

R(p, k) = L(p,Kmax)− L(p, k), (2)

where Kmax denotes the maximum available resources. Any
timeout must be restricted within the upper bound of re-
silience, such that guaranteeing the SLO is still possible.

C. Synthesizer

The synthesizer provides the intelligence of the system
by generating and condensing hints in the form of a table.

The goal of the synthesizer is to produce hints with high
hit rates and maximum resource efficiency. To this end, the
synthesizer evaluates potential time budgets across a broad
range considering achievable execution time of individual
functions. Based on that, the synthesizer explores diverse
percentiles for functions to enhance their resource efficiency.
Moreover, the synthesizer leverages timeout and resilience—
metrics to quantify the risk of SLO violations as detailed in
§III-B—to regulate the above exploration, aiming to provide
SLO compliance.

On the other hand, to keep hints tables’ efficiency in both
space and searching, the synthesizer makes full use of the
discreteness in resource adaptation to condense the generated
hints (detailed in §IV-B). Finally, the synthesizer provides a
highly compact hints table with three simple fields: start, end,
and size. This means any workflow with their time budget
between start and end should be provisioned with resource
amounts as size, which can ensure the maximum resource
efficiency without violating the available time budget.

D. Adapter

After a function in the workflow finishes, the adapter derives
the available time budget for the remaining functions, and
searches the hints table accordingly to figure out the appropri-
ate resource allocation, such that the required time budget can
be met with the minimum resource consumption. If the above
search results in a miss possibly due to unexpected runtime
dynamics (detailed in §II-B), the adapter will scale functions
up to the maximum available resources, to prevent SLO
violations. Afterwards, the adapter notifies the platform about
the adaptation decision. This highly streamlined decision-
making process enhances Janus’s scalability.

On the other hand, the adapter continuously counts the
hits and misses during hint table searches. In rare cases
where the miss rate exceeds a predefined threshold, it assumes
that the execution time distribution may have changed. In
that case, the adapter notifies the developer and suggests
triggering the profiler and synthesizer to regenerate hints tables
asynchronously. This asynchronous regeneration can strike the
trade-off between resource- and time-efficiency in adaptation.

IV. SYNTHESIZER

We now elaborate on the workings of the synthesizer. The
hints synthesis process consists of two steps: hints generation
and hints condensing.

A. Hints Generation

To generate hints tables with high hit rates and high resource
efficiency, the synthesizer requires a twofold effort. First, it
must explore all potential runtime time budgets for individual
sub-workflows. Second, the synthesizer needs to balance the
trade-off between higher resource efficiency and the risk of
SLO violation. To this end, we reveal the following insights.

Insight-1: broad time budget range. The time budgets are
calculated based on all possibilities between the 1st and 99th
percentile (P1-P99) of the function execution time under a
wide range of resource allocations, aiming to achieve high hit
rates. The range of time budgets therefore are formulated as

Tmin =
N∑
i=1

Li(1,Kmax), Tmax =

N∑
i=1

Li(99,Kmin), (3)

where Kmin/Kmax represents the minimum/maximum avail-
able resources, and N represents the numbers of functions in
the given sub-workflows. Within this range, the synthesizer
explores the potential time budgets with finer granularity in
milliseconds, while evaluating their corresponding resource
allocation. The synthesizer can also be configured with higher
percentiles (e.g., P99.9) to meet more stringent SLO targets.

Insight-2: Moderate percentile exploration. Diverse per-
centiles provide more opportunities for resource optimization,
but come with exponentially higher time complexity for run-
time resource adaptation. Here, our insight is to only open
percentile exploration for the head function of the current
sub-workflow while fixing other functions with P99. This
moderate percentile exploration benefits the synthesizer with
higher resource efficiency, derived from its attempt at lower
percentiles for the head function. Meanwhile, it effectively
reduces the search space for non-head functions, allowing the
synthesizer to achieve high time efficiency.

Insight-3: Resilience-aware. Despite the potential of higher
resource efficiency, diverse percentile exploration may put
functions at the risk of timeouts, making workflows prone to
SLO violations. To address this shortcoming, the synthesizer
strictly restricts the timeout within the resilience (the achiev-
able reduction in function execution time by scaling resource
up to the maximum possible). Within this “safety zone”, the
synthesizer tries its best to maximize resource efficiency.

Insight-4: Heavier head. As explained in §II-C, facing sub-
stantial variability of execution performance, runtime resource
adaptation requires to carry out (head) function by (head)
function, so as to keep its high accuracy. This, however, may
lead to sub-optimal decisions due to the mismatch between
the local objective and the global objective. Specifically, the
local objective is to maximize the sub-workflow’s resource
efficiency, while the global objective is to maximize the
whole workflow’s resource efficiency. The whole efficiency

is determined by that of each sub-workflow’s head function,
rather than that of sub-workflows. To address this issue, the
synthesizer magnifies the local objective’s weight for head
functions, aiming to calibrate for the mismatch.

As for how to set the weight, our insight is to increase
the weight when facing loose SLOs, and vice versa. This
is because loose SLOs indicate lower resource requirements,
which brings about higher resilience (depicted in Figure 7b).
Increasing the weight can better utilize this higher resilience
to explore lower percentiles, such that the workflow achieves
higher resource efficiency with SLO guarantees.

Hints demonstrates explicit resource allocation that can en-
sure the sub-workflow with its maximum resource efficiency,
i.e., the minimum resource consumption, under given time
budgets. This problem thus is formulated as follows:

min Wk1 + p

N∑
i=2

ki + (1− p)(N − 1)Kmax (4)

subject to L1(p, k1) +

N∑
i=2

Li(99, ki) ≤ T, (5)

D1(p, k1) ≤
N∑
i=2

Ri(99, ki), (6)

1 ≤ p ≤ 99, p ∈ Z, (7)
Kmin ≤ ki ≤ Kmax, ki ∈ R, ∀i. (8)

where W is the weight for the head function (Insight-4),
and T and N denote the time budget and the number of
functions in the sub-workflow, respectively. Notably, only
the head function can explore lower percentile p (Insight-2).
Equation 4 expresses the sub-workflow’s expected resource
consumption. Specifically,

∑N
i=2 ki and (N − 1)Kmax denote

non-head functions’ resource requirement without and with the
head function’s timeout, the probability of which is p and 1−p,
respectively. Equation 5 ensures the sub-workflow’s execution
latency within the time budget. Equation 6 restricts that the
possible timeout of the head function can not exceed the total
resilience of downstream functions (Insight-3).

The algorithm for generating hints is listed in Algorithm 1.
To ensure hints tables with high hit rates, the synthesizer
explores all time budgets comprehensively (lines 2–4). Specif-
ically, for a given sub-workflow F, the synthesizer first deter-
mines the percentiles P that can ensure F’s execution time
below the required time budget t, with assuming the maximum
available CPU cores for each function (lines 8–9). Then, the
synthesizer explores the resource allocation for both head and
non-head functions, denoted as k and Z, under given percentile
p. Its goal is to minimize the expected resource consumption
s, while promising timeout D(p, k) restricted within resilience∑

R(Z, P99) (lines 12–17). To accelerate the generation, the
synthesizer explores different percentiles concurrently.

B. Hints Condensing

The synthesizer fully utilizes the discreteness in both
decision-making and decision-executing to condense hints.

Algorithm 1: Offline hints generation
Input: F = ⟨f1, . . . , fN ⟩: (sub-)workflow
Input: [Tmin, Tmax]: time budget range
Input: W,P: weight and candidate percentiles for head

function f1
Output: H = {⟨t, {k1, . . . , kN}⟩}: functions’ provisioned

CPU cores under given time budget t, i.e., hints
table

1 H← ∅, P← ∅
2 foreach t ∈ [Tmin, Tmax] do
3 H← H ∪ {⟨t, generate(F, t,P)⟩}
4 return H

5 Function generate(F, t,P):
6 if |F| = 1 then
7 return min_resource(f1, t)

8 if P = ∅ then
9 P =explore_percentile(F, t,Kmax)

10 smin ←∞, K← ∅
11 foreach p ∈ P do
12 foreach k ∈ [Kmin,Kmax] do
13 Z← generate(F \ f1, t− L1(p, k), {P99})
14 if Z ̸= ∅ ∧D(p, k) ≤

∑
R(Z, P99) then

15 s←Wk + p
∑

Z+ (1− p)(|F| − 1)Kmax

16 if s ≤ smin then
17 smin ← s,K← {k} ∪ Z

18 return K

Insight-5: Repeated hints. There are various discrete vari-
ables, such as batch sizes and CPU cores, involved in resource
adaptation. This leads to a significant number of redundant
hints that share the same adaptation decisions despite having
different time budgets.

Insight-6: Unused fields. The dependencies of adaptation
(explained in §II-C) compels Janus to rely solely on the fields
for head functions in given hints to maintain adaptation accu-
racy. Consequently, removing the fields for non-head functions
helps compact the hints without compromising accuracy.

The algorithm for condensing hints is listed in Algorithm 2.
Specifically, the synthesizer first sorts the given hints H
in descending order by their time budget (line 2). Then, it
gradually fuses the hints H[l] that share the identical size for
head function k1 as shown in line 4–10. Finally, it warps hints
into a table with three fields: Tstart, Tend, and k, indicating
that the head function of the target sub-workflow should be
resized to k when the sub-workflow’s time budgets is between
Tstart and Tend.

In addition, the weight for head functions impacts the
decision-making. Thus, the synthesizer maintains individual
hint tables for different weights. We will evaluate the effec-
tiveness of condensing algorithm in §V-F, which suggests a
outstanding compression ratio without hurting accuracy.

V. EVALUATION

A. Setup and Implementation

Testbed. Our system uses a server equipped with Intel(R)
Xeon(R) CPU E5-2678 v3 2.50GHz with 24 physical CPU

Algorithm 2: Offline hints condensing
Input: H = {⟨t,K⟩}: raw hints table
Output: U = [⟨Tstart, Tend, k⟩]: condensed hints table

1 Function condense(H):
2 H← sort(H)
3 U← ∅, q, i, j ← 0
4 foreach l ∈ [0, |H|] do
5 t, ⟨k1, . . . , kN ⟩ ← H[l]
6 if q = 0 ∨ k1 = q then
7 j ← j + 1

8 else
9 U← U ∪ {⟨H[i].t,H[j].t, q⟩}

10 i, j ← l, q ← k1

11 return U

cores as the local server running Ubuntu 18.04, where Janus
synthesizes hints tables. Meanwhile, we use another server
equipped with Intel(R) Xeon(R) Platinum 8269CY CPU
2.50GHz with 52 physical CPU cores, running Ubuntu 18.04,
as a serverless platform. In this platform, we implement Janus
into an open-source framework as Fission [42] (V1.16) for
serverless functions on Kubernetes. We use Fission Pool-
Manager [43] to spin up function pods, due to its excellent
performance against cold starts.

Implementation. Janus has a frontend side and a (remote)
backend side. To facilitate seamless coordination, we imple-
ment the profiler and synthesizer as two distinct functions on
the frontend side, while deploying the adapter as a service on
the backend side. Moreover, the adapter can be equipped with
automatic horizontal scaling for enhancing Janus’s scalability.
The frontend interacts with the developer and depends on their
domain knowledge (detailed below) to synthesize hints tables.
We leverage packages pandas.DataFrame to represent
hints tables. As for the backend side, we develop a lightweight
server using Python Flask [44], Redis [45], Fission APIs [46],
and Fission HTTP trigger [47]. The server spawns a process
to trace each request’s execution. Upon completion of any
function in the workflow, this process will re-evaluate the time
budget for the remaining functions while accessing hints tables
to decide on proper resource adaptation.

Workflows. We evaluate the effectiveness of Janus with
two real-world serverless workflows namely Intelligent As-
sistant (IA) and Video Analyze (VA). Specifically, IA is a
chain constituted by three functions: object detection (OD,
for short) [48], question answer (QA) [49], and text-to-
speech (TS) [50], which analyzes images randomly sampled
from COCO2014 [51] and answers questions sampled from
SQuAD2.0 [52]; finally, the answers return in the form as
audios. VA as another workflow chain includes three functions
as frame extraction (FE) [53], image classification (ICL) [54],
and image compression (ICO) [55]. Its inputs are YouTube
videos with identical duration and resolution, sourced from
ORION [6]. Additionally, the four functions in §II-B as
CPU-, Memory-, Network-, and IO-intensive conduct AES
encryption [17], data read (from a Redis based in-memory

database) [56], socket communication [56], and data write (to
local disks) [36], respectively.

Runtime dynamics. Our testing workloads contain runtime
dynamics, encompassing varying working sets and perfor-
mance interference. Specifically, the input data for IA, i.e.,
images and texts from COCO2014 and SQuAD2.0 respec-
tively, are with varying working sets. The empirical study
shows that the number of objects per image in COCO2014
ranges from 1 to 15 [57], while the number of words per text
in SQuAD2.0 ranges from 35 to 641. As shown in Figure 1b,
these varying sets result in significant variance in function
execution time. On the other hand, VA extracts frames from
videos, followed by image classification and compression. To
accelerate processing, VA implements parallelism for each
function, incurring cross-function performance interference
inevitably. The profiles reveal that, for the three functions in
VA, the average ratio of execution time between P99 and P50
is 1.46 times, 1.56 times, and 1.37 times, respectively.

Domain knowledge. We collect the execution time of IA’s
and VA’s functions with respect to CPU cores, ranging from
1000 millicores to 3000 millicores with a step of 100 mil-
licores. After data collection, Janus adopts diverse percentiles,
ranging from 1% to 99% with a step as 5%, to profile execution
time distribution. To assess Janus’s performance over higher
loads, we additionally profile IA’s execution performance over
higher concurrency (i.e., batch size) as two and three. As
for VA, we only profile its performance with concurrency
as one because FE and ICO cannot process frames in batch
form. Here, we exclude memory as a knob. This is because
Janus focuses on latency-critical workflows. Our empirical
tests show that memory has no impact on execution time.

Baselines. Janus proposes bilaterally engaged resource
adaptation to provide efficient serverless workflows serving,
aiming to maximize resource efficiency, i.e., minimize re-
source consumption, with SLO guarantees. Here, we use three
early-binding approaches and three late-binding approaches as
our baselines. The early-binding approaches include the state-
of-the-art serverless workflow serving system ORION [6],
GrandSLAM [41] and its enhanced version GrandSLAM+.
Specifically, GrandSLAM+ improves GrandSLAM by remov-
ing the latter’s constraints in identical sizes for all functions.
The late-binding approaches include Janus−, Janus+, and
Optimal. Optimal represents the best that can be achieved in
any late-binding solution.

The differences between Janus, Janus-, and Janus+ are
as follows: Janus allows exploring diverse percentiles for
the head (first) function in workflows. Janus− disables this
exploration and adopts a fixed percentile, P99. Janus+ extends
the exploration to both the head function and the next-to-head
function. In summary, compared to Janus, Janus− has com-
promised resource efficiency due to its smaller optimization
space. Janus+ can have higher resource efficiency (e.g., 0.6%
higher than Janus for IA) owing to a larger optimization space
but at the expense of considerable time cost (by up to 107.2
times) in synthesizing hints (§V-C).

Notably, existing late-binding approaches including Fifer,

TABLE I: Overall resource reduction (normalized by Optimal)
by Janus compared to baselines when serving IA and VA,
respectively.

ORION GrandSLAM+ GrandSLAM Janus− Janus+

IA(%) 22.6 31.3 31.3 2.9 0
VA(%) 26.9 35.2 32.4 4.7 -0.2

Kraken, Xanadu, and Cypress [9] mostly overlook the infor-
mation barrier between the developer and provider, raising
practicality concerns. Additionally, as highlighted by Cypress,
Fifer, Kraken, and Xanadu assume that function execution time
does not have large variance, and hence they adopt mean exe-
cution time to perform runtime resource adaptation. However,
this assumption contradicts our empirical observations from
serverless production traces, which exhibit significant variance
in execution time (§II). Consequently, these approaches are
easily prone to under provisioning and severe SLO violations.
Thus, we exclude them as the baselines.

Setup. Considering our testbed’s capacity and the short-
lived nature of functions [23], [40], we set SLOs for IA and
VA as 3s and 1.5s, respectively. We set the weight for each
function as one unless otherwise specified. We explore Janus’s
performance under varying SLOs and weights in §V-G and
§V-E, respectively. When a hints table miss occurs, we scale
functions up to 3000 millicores to prevent SLO violations.
The miss rate threshold is set as 1% by default. To ensure
experimental results’ statistical significance, we evaluate the
performance of Janus and baselines over 1000 requests.

B. Overall Performance

End-to-end latency distribution. Figure 4 shows the end-
to-end latency (E2E) distribution of IA and VA under the
concurrency as one, as well as that of IA under the concurrency
as two and three respectively. We observe that Janus can fulfill
the SLO requirements in all cases despite relatively higher
E2E. This is because Janus aims to improve resource efficiency
while meeting latency SLOs. Under the premise of fulfilling
SLOs, Janus trades in time for resource efficiency.

Resource consumption. We compare the resource consump-
tion of Janus and baselines when serving IA and VA given
SLO as 3s and 1.5s respectively, with the concurrency as
one. Table I shows the average resource reduction of Janus,
normalized by Optimal, when compared with baselines, and
Figure 5a illustrates the detailed comparison. We can see that
Janus outperforms GrandSLAM+, GrandSLAM, and ORION
significantly. This is because Janus fully uses slacks at runtime
to improve resource efficiency. Compared with Janus−, Janus
achieves further resource reduction as 2.9% and 4.7% for
IV and VA respectively, due to Janus’s exploration of lower
percentiles for head functions. Additionally, Janus incurs a
negligible increase in resource consumption, i.e., 0.2%, com-
pared to Janus+.

We also assess Janus’s performance under higher loads.
Here, we increase IA’s concurrency up to two and three. For a

00 11 22 33
Latency (s)

0
0.9

0.99
0.999

0.9999
E2

E
C

D
F

IA
Conc.=1

0.0 0.5 1.0 1.5
Latency (s)

VA
Conc.=1

Optimal ORION GrandSLAM+ GrandSLAM Janus Janus+ Janus

00 11 22 33 44
Latency (s)

IA
Conc.=2

00 11 22 33 44 55
Latency (s)

IA
Conc.=3

Fig. 4: End-to-end latency distribution of IA under the concurrency (i.e., batch size) as one, two and three respectively, with
different SLOs (red dashed line). The concurrency of VA is limited to one due to its non-batchable functions (i.e., FE and
ICO).

IA
0

1500
3000
4500
6000

C
PU

 (M
illi

co
re

)

VA

Optimal
ORION
Janus

Janus+
Janus

GrandSLAM+
GrandSLAM

(a)

Concurrency=2 Concurrency=30.0
0.5
1.0
1.5
2.0

C
PU

 (N

or
m

al
iz

ed
)

ORION
Janus

Janus+
Janus

GrandSLAM+
GrandSLAM

(b)

Fig. 5: Resource consumption of (a) IA (left) and VA (right)
under the concurrency as one, respectively, and of (b) IA under
the concurrency as two (left) and three (right), respectively.

fair comparison, we increase SLOs to 4s and 5s respectively,
to promise GrandSLAM and GrandSLAM+ with feasible
function sizes. Figure 5b shows the resource consumption
normalized by Optimal. We find that the three early-binding
systems, i.e., GrandSLAM, GrandSLAM+, and ORION, suf-
fer over-allocation by up to 1.75 times. This is because
the increase of the concurrency further enlarges the runtime
variability. For example, the gap between P99 and P50 of QA
(the second function in IA) increases from 2.17 times to 2.32
times on average. This higher variability magnifies the early-
binding’s over-provisioning. As a contrast, Janus relies on its
runtime adaptation to capture the variance and resize functions
correspondingly, thus reaping higher resource efficiency.

C. Effectiveness of Moderate Percentile Exploration

Here, we assess the effectiveness of the moderate explo-
ration approach (§IV-A) adopted by Janus, which restricts

3 4 5 6 7
SLO (s)

0
1000
2000
3000
4000
5000
6000

C
PU

 (M
illi

co
re

) Janus+ Janus

(a)

50
100

Ti
m

e
co

st
 (s

)

Janus+ Janus

3 4 5 6 7
SLO (s)

0

1

(b)

Fig. 6: (a) Workflow sizes and (b) time costs of Janus+ and
Janus respectively, with SLOs ranging from 3s to 7s.

the exploration of lower percentiles (below P99) to head
functions within sub-workflows. This strategy aims to balance
the trade-off between the time- and resource-efficiency of
resource adaptation. We compare Janus with Janus+, which
extends percentile exploration to both the head function and
the next-to-head function. While this expansion of percentile
exploration can yield higher resource efficiency, it comes at the
expense of significant time cost in synthesizing hints tables.

Taking IA as an instance, we observe from Figure 6a that
compared with Janus, Janus+ decreases resource consumption
merely by 0.6% on average. This means the optimization space
of wider percentile exploration for IA is limited. However, this
limited reduction in resource comes at a significant time cost
in synthesizing hints, by up to 107.2 times higher than Janus,
as depicted in Figure 6b.

Additionally, Janus’s time costs increases marginally as
SLO grows. This is because higher SLOs brings in more
candidate adaptation plans. Janus needs to efficiently evaluate
these plans, and figure out the one with the minimum resource
consumption, thus incurring higher time costs. Notably, the
above time costs only happen during hints generation. When
coming to online adaptation, its overhead is merely less than
3ms (explained in §V-H).

D. Timeout and Resilience

We propose timeout and resilience to quantify the risk
of SLO violations (detailed in §IV-A). Owing to space
constraints, we use TS from IA as an example, and other

10001500200025003000
CPU (Millicore)

0.0
0.4
0.8
1.2
1.6

Ti
m

eo
ut

 (s
)

Perc.=25
Perc.=50

Perc.=75

(a)

10001500200025003000
CPU (Millicore)

0
1
2
3
4
5
6

R
es

ilie
nc

e
(s

)

Conc.=1
Conc.=2

Conc.=3

(b)

Fig. 7: (a) Timeout and (b) resilience of TS under varying
CPU cores.

TABLE II: Resource consumption and percentiles for the head
function of IA with the weight as one and three, respectively.

weight=1 weight=3

CPU (Millicore) 1442.9 1228.6
Percentile (%) 94.4 91.3

functions exhibit similar patterns. We observe from Figure 7a
that timeout decreases as either percentiles or available CPU
cores increase. This is because additional resources enhance
functions’ capability to handle both runtime interference and
variability of working sets [35], thus reaping lower timeout.

As for resilience, Figure 7b shows a marginal reduction
as the number of provisioned CPU cores increase. This is
attributed to non-parallelizable operations within functions,
leading to diminishing returns on execution time despite the
addition of more resources. Additionally, higher concurrency
enhances higher resilience. This is due to the increased
computing load, which heightens functions’ sensitivity to
resources, thereby boosting resilience.

E. Impact of Weight

Higher weights for head functions is introduced to further
improve the resource efficiency of Janus (detailed in §IV-A).
Taking IA as an example, we evaluate its resource consump-
tion with SLOs ranging from 4s to 10s under the weight as one
and three, respectively. The results show that when the SLO is
less than 8s the moderate weight consumes less resources by
2.9% on average. Conversely, as the SLO becomes relaxed, the
higher weight allows to further reduce resource by 1% owing
to its larger optimization space.

We also examine the impact of weights on resource con-
sumption and percentile selection for head functions. Table II
shows that Janus tends to decrease both resource allocation and
percentiles under higher weights. This is because with higher
weights the objective focuses more on decreasing the size
of head functions, rather than that of sub-workflows. Lower
percentiles typically indicate that fewer requests need to be
completed within the specified time budget, thus requiring
fewer resource consumption. This aligns well with the objec-
tive with higher weights. Yet, lower percentiles may expose

1.0 1.5 2.0 2.5 3.0
Weight

0
40
80

120
160

of

 h
in

ts

Conc.=1 Conc.=2 Conc.=3

1.0 1.5 2.0 2.5 3.0
Weight

Fig. 8: Total numbers of hints synthesized for IA (left) and
VA (right) under different weights.

3 4 5 6 7
SLO (s)

0.0
0.4
0.8
1.2
1.6
2.0

C
PU

 (N

or
m

al
iz

ed
)

ORION GrandSLAM Janus

1.5 1.6 1.7 1.8 1.9 2.0
SLO (s)

Fig. 9: IA’s (left) and VA’s (right) resource consumption
(normalized by Optimal) under different SLOs.

sub-workflows at the risk of timeouts, particularly under strict
SLOs. To prevent SLO violations, non-head functions may
compensate by requesting additional resources, potentially
hurting the overall resource efficiency.

F. Effectiveness of Hints Condensing

We assess hints table sizes, i.e., numbers of hints, with and
without condensing. As explained in §IV-A we depend on
our testbed’s capacity to configure the range of time budgets
explored during hints generation. Specifically, for IA the range
is from 2s to 7s, from 3s to 7s, and from 4s to 10s, with a
fine-grain step of 1ms, under the three different concurrency,
respectively. For VA this range is from 1.5s to 2s with a step
of 1ms. Additionally, weight, as a hyper-parameter involving
hint generation, also influences hints table sizes. Therefore,
we assess the two workflows’ hints table sizes under different
weights ranging from 1 to 3 with a step as 0.5, respectively.

Figure 8 illustrates the detailed number of hints for IA
(left) and VA (right), respectively. After effective condensing,
the overall hints for IA and VA are less than 147 and 96
respectively, achieving compression ratios of up to 99.6%
and 98.2%. In addition, the size of hints tables decreases
as the weight increases. The reason is that higher weights
focus more on minimizing the size of the head function,
which may lead to the sub-workflow’s over-allocation. This
over-allocation increases hints’ applicability across different
runtime conditions, thus benefiting hints tables with smaller
sizes.

G. Impact of SLO

We compare Janus’s resource consumption with baselines
when serving IA and VA under varying SLOs. For clarity, we
normalize the results by Optimal. To ensure readability, we
illustrate only the results of ORION, GrandSLAM, and Janus.

As shown in Figure 9, for IA Janus outperforms ORION and
GrandSLAM by 16.1% and 24.1% on average, respectively. In
terms of VA, Janus outperforms the baselines by 22.2% and
27.7%, respectively. Notably, as SLOs increase, Janus’s perfor-
mance gains decrease marginally. This is due to our testbed’s
limitation of CPU cores, i.e., 1000 millicores at least per
function, restricting Janus’s further improvement. For instance,
under given SLOs as 6s and 7s, IA’s resource consumption
reduces to 3043.6 millicores, approaching that of Optimal
(i.e., 3000 millicores). As for other baselines, GrandSLAM+
exhibits performance comparable to GrandSLAM, with a
marginal gap of less than 0.6%. Janus+ achieves a resource
reduction of up to 1.8% compared to Janus. Janus− incurs
higher resource consumption, exceeding Janus by 3.2% and
4.3% on average, when serving IA and VA respectively.

H. System Overhead

We evaluate Janus’s time cost for online resource adaptation
serving IA and VA respectively, under varying SLOs from 2s
to 7s with the weight as one and three, respectively. The results
show that the time cost remains under 3ms. This suggests
that Janus maintains high time-efficiency unaffected by either
SLOs or weights.

We measure the memory footprint of Janus during online
adaptation and offline hints generation. As for online adaption,
Janus consumes negligible memory less than 12.1MB and
10.9MB for IA and VA, respectively. In terms of offline
hints generation, the average memory consumption is less than
12.4MB and 10.9MB for IA and VA, respectively.

VI. RELATED WORK

We summarize related work covering both early-binding and
late-binding approaches for serverless resource management.

A. Early Binding

COSE [58], Sizeless [59], and Parrotfish [8] adopt ma-
chine learning to learn the cost/performance of functions with
respect to different sizes, and then select “best” function
sizes, such that overall costs can be minimized without vi-
olating SLOs. FA2 [60] fully considers the dependency of
functions within a workflow and their uncertain execution
paths to periodically adapt resources, aiming to minimize
resource consumption while promising SLAs. Aquatope [15]
considers runtime performance interference to decide func-
tion sizes. ORION [6] and WISEFUSE [7] observe skewed
function execution latency and develop a distribution-based
performance modeling to provision serverless DAGs. Grand-
SLAM [41] provisions functions with fixed and identical
sizes, while dynamically batching and reordering requests
within each function by considering runtime slacks, aiming
to achieve higher throughput without violating SLOs. Ad-
ditionally, Morhpling [4] and INFaaS [2] focus on resource
auto-configuration for ML-inference specific systems. On the
other hand, there exists research from the industry that helps
developers decide function sizes, such as AWS Lambda Power
Tuning [61] and AWS Compute Optimizer [62].

B. Late Binding
Cirrus [63] proposes a serverless framework to boost the

performance of best-efforts tasks (i.e., ML training), by inte-
grating a client-side to monitor the remote execution while
adjusting its resource allocation. Fifer [28] leverages the
slacks, generated at each stage, to adjust batch sizes and
scale out/in containers for higher resource utilization with
SLO guarantees. Atoll [64] enables proactive resource scal-
ing as well as deadline-aware scheduling to minimize SLO
violations. BATCH [29] fully considers serverless workload
burstiness (the intensity of arrival requests) to dynamically
adjust function size (memory size) and batching parameters,
for the sake of minimizing monetary cost without violating
SLOs. Kraken [26] and Xanadu [27] employ proactive and
reactive resource scalers simultaneously to provision dynamic
DAG workloads, which have uncertain execution paths, aiming
to minimize resource consumption without SLO violations.
Cypress [9] enables input size-aware request batching and
resource provisioning. Llama [2] focuses on auto-tuning video
analytics pipelines under heterogeneous serverless environ-
ments. Erms [65], FIRM [16], and Sinan [66] focus on
improving resource efficiency without violating SLOs, for
shared microservices. Apart from auto-scaling, there are works
focusing on serverless workflows scheduling [67]–[74] and
over-commit [35], [75].

VII. CONCLUSION

In this paper, we identified the resource inefficiency lying
in the early-binding based resource allocation for serverless
workflows, and proposed a late-binding approach to address it
by promoting bilateral runtime resource adaptation engaging
both the developer and the provider. Based on this concept,
we proposed Janus—a novel resource adaptation framework
for serverless workflows. We identified the challenges in
building Janus and proposed efficient algorithms for fine-
grained resource allocation for Janus. Experiments based on a
system prototype show that Janus achieves significant resource
savings while providing latency SLO guarantee. Future work
includes adding support for more complex workflows and
exploring the impact of the runtime resource adaptation on
function caching strategies.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation of China under grant 62232012, in part by Na-
tional Key Research & Development (R&D) Plan under grant
2022YFB4501703, in part by the Major Key Project of PCL
under Grant PCL2024A06 and PCL2022A05, and in part by
the Shenzhen Science and Technology Program under Grant
RCJC20231211085918010.

REFERENCES

[1] Z. Zhao, M. Wu, J. Tang, B. Zang, Z. Wang, and H. Chen, “Beehive:
Sub-second elasticity for web services with semi-faas execution,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023. ACM,
2023, pp. 74–87.

[2] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” in SoCC ’21: ACM Symposium on Cloud Computing, Seattle,
WA, USA, November 1 - 4, 2021. ACM, 2021, pp. 1–17.

[3] M. Yu, T. Cao, W. Wang, and R. Chen, “Following the data, not the func-
tion: Rethinking function orchestration in serverless computing,” in 20th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2023, Boston, MA, April 17-19, 2023. USENIX Association,
2023, pp. 1489–1504.

[4] L. Wang, L. Yang, Y. Yu, W. Wang, B. Li, X. Sun, J. He, and
L. Zhang, “Morphling: Fast, near-optimal auto-configuration for cloud-
native model serving,” in SoCC ’21: ACM Symposium on Cloud Com-
puting, Seattle, WA, USA, November 1 - 4, 2021. ACM, 2021, pp.
639–653.

[5] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated model-less inference serving,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, 2021,
pp. 397–411.

[6] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “ORION and the three rights: Sizing, bundling, and
prewarming for serverless dags,” in 16th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, M. K. Aguilera and H. Weatherspoon,
Eds. USENIX Association, 2022, pp. 303–320. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/mahgoub

[7] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi,
and S. Chaterji, “WISEFUSE: workload characterization and DAG
transformation for serverless workflows,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 6, no. 2, pp. 26:1–26:28, 2022. [Online]. Available:
https://doi.org/10.1145/3530892

[8] A. Moghimi, J. Hattori, A. Li, M. B. Chikha, and M. Shahrad, “Par-
rotfish: Parametric regression for optimizing serverless functions,” in
Proceedings of the 2023 ACM Symposium on Cloud Computing, SoCC
2023, Santa Cruz, CA, USA, 30 October 2023 - 1 November 2023.
ACM, 2023, pp. 177–192.

[9] V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and
C. R. Das, “Cypress: input size-sensitive container provisioning and
request scheduling for serverless platforms,” in Proceedings of the
13th Symposium on Cloud Computing, SoCC 2022, San Francisco,
California, November 7-11, 2022, A. Gavrilovska, D. Altinbüken,
and C. Binnig, Eds. ACM, 2022, pp. 257–272. [Online]. Available:
https://doi.org/10.1145/3542929.3563464

[10] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont, N. D. Palma,
B. Batchakui, and A. Tchana, “OFC: an opportunistic caching system
for faas platforms,” in EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021.
ACM, 2021, pp. 228–244.

[11] W. Xiao, Y. Hao, J. Liang, L. Hu, S. A. AlQahtani, and M. Chen,
“Adaptive compression offloading and resource allocation for edge
vision computing,” IEEE Transaction. Cogn. Commun. Netw., vol. 10,
no. 6, pp. 2357–2369, 2024.

[12] S. Chen, L. Wang, and F. Liu, “Optimal admission control mechanism
design for time-sensitive services in edge computing,” in IEEE INFO-
COM 2022 - IEEE Conference on Computer Communications, London,
United Kingdom, May 2-5, 2022. IEEE, 2022, pp. 1169–1178.

[13] B. Xia, C. Wong, Q. Peng, W. Yuan, and X. You, “Cscnet: Contex-
tual semantic consistency network for trajectory prediction in crowded
spaces,” Pattern Recognition, vol. 126, p. 108552, 2022.

[14] C. Wong, B. Xia, Z. Zou, Y. Wang, and X. You, “Socialcircle: Learning
the angle-based social interaction representation for pedestrian trajectory
prediction,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024. IEEE,
2024, pp. 19 005–19 015.

[15] Z. Zhou, Y. Zhang, and C. Delimitrou, “AQUATOPE: qos-and-
uncertainty-aware resource management for multi-stage serverless
workflows,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, T. M. Aamodt, N. D. E. Jerger, and
M. M. Swift, Eds. ACM, 2023, pp. 1–14. [Online]. Available:
https://doi.org/10.1145/3567955.3567960

[16] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer, “FIRM: an intelligent fine-grained resource

management framework for slo-oriented microservices,” in
14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6, 2020.
USENIX Association, 2020, pp. 805–825. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/qiu

[17] D. Schall, A. Margaritov, D. Ustiugov, A. Sandberg, and B. Grot,
“Lukewarm serverless functions: characterization and optimization,” in
ISCA ’22: The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22, 2022,
V. Salapura, M. Zahran, F. Chong, and L. Tang, Eds. ACM, 2022, pp.
757–770. [Online]. Available: https://doi.org/10.1145/3470496.3527390

[18] A. Suresh and A. Gandhi, “Servermore: Opportunistic execution of
serverless functions in the cloud,” in SoCC ’21: ACM Symposium on
Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino,
G. Koutrika, and R. Netravali, Eds. ACM, 2021, pp. 570–584.
[Online]. Available: https://doi.org/10.1145/3472883.3486979

[19] R. B. Roy, T. Patel, R. Liew, Y. N. Babuji, R. Chard, and
D. Tiwari, “Propack: Executing concurrent serverless functions faster
and cheaper,” in Proceedings of the 32nd International Symposium
on High-Performance Parallel and Distributed Computing, HPDC
2023, Orlando, FL, USA, June 16-23, 2023, A. R. Butt, N. Mi,
and K. Chard, Eds. ACM, 2023, pp. 211–224. [Online]. Available:
https://doi.org/10.1145/3588195.3592988

[20] W. Xiao, X. Ling, M. Chen, J. Liang, S. A. Alqahtani, and M. Chen,
“Mvpoa: A learning-based vehicle proposal offloading for cloud-edge-
vehicle networks,” IEEE Internet of Things Journal, 2024.

[21] S. Ginzburg and M. J. Freedman, “Serverless isn’t server-less: Measuring
and exploiting resource variability on cloud faas platforms,” in
WoSC@Middleware 2020: Proceedings of the 2020 Sixth International
Workshop on Serverless Computing, Virtual Event / Delft, The
Netherlands, December 7-11, 2020. ACM, 2020, pp. 43–48. [Online].
Available: https://doi.org/10.1145/3429880.3430099

[22] R. Cordingly, S. Xu, and W. Lloyd, “Function memory optimization for
heterogeneous serverless platforms with CPU time accounting,” in IEEE
International Conference on Cloud Engineering, IC2E 2022, Pacific
Grove, CA, USA, September 26-30, 2022. IEEE, 2022, pp. 104–115.
[Online]. Available: https://doi.org/10.1109/IC2E55432.2022.00019

[23] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. N. Darlow, J. Wang,
and A. Barker, “How does it function?: Characterizing long-term trends
in production serverless workloads,” in Proceedings of the 2023 ACM
Symposium on Cloud Computing, SoCC 2023, Santa Cruz, CA, USA,
30 October 2023 - 1 November 2023. ACM, 2023, pp. 443–458.
[Online]. Available: https://doi.org/10.1145/3620678.3624783

[24] “Azure monitor,” https://learn.microsoft.com/en-us/azure/azure-
monitor/overview, 2024.

[25] “Aws cloudwatch,” https://docs.aws.amazon.com/lambda/latest/dg/
monitoring-metrics.html, 2024.

[26] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T.
Kandemir, and C. R. Das, “Kraken: Adaptive container provisioning for
deploying dynamic dags in serverless platforms,” in SoCC ’21: ACM
Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4,
2021, C. Curino, G. Koutrika, and R. Netravali, Eds. ACM, 2021, pp.
153–167. [Online]. Available: https://doi.org/10.1145/3472883.3486992

[27] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading
cold starts in serverless function chain deployments,” in Middleware
’20: 21st International Middleware Conference, Delft, The Netherlands,
December 7-11, 2020. ACM, 2020, pp. 356–370.

[28] J. R. Gunasekaran, P. Thinakaran, N. C. Nachiappan, M. T. Kandemir,
and C. R. Das, “Fifer: Tackling resource underutilization in the serverless
era,” in Middleware ’20: 21st International Middleware Conference,
Delft, The Netherlands, December 7-11, 2020. ACM, 2020, pp. 280–
295.

[29] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2020, Virtual Event
/ Atlanta, Georgia, USA, November 9-19, 2020, C. Cuicchi, I. Qualters,
and W. T. Kramer, Eds. IEEE/ACM, 2020, p. 69. [Online]. Available:
https://doi.org/10.1109/SC41405.2020.00073

[30] “Aws step functions,” https://aws.amazon.com/step-functions/, 2022.
[31] “Microsoft durable functions,” https://learn.microsoft.com/en-

us/azure/azure-functions/durable/durable-functions-
overview?tabs=csharp-inproc, 2023.

[32] “Azure dataset,” https://github.com/Azure/AzurePublicDataset/blob/
master/AzureFunctionsDataset2019.md, 2023.

[33] “Azure function blob dataset,” https://github.com/Azure/
AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md,
2023.

[34] F. Romero, G. I. Chaudhry, I. Goiri, P. Gopa, P. Batum, N. J.
Yadwadkar, R. Fonseca, C. Kozyrakis, and R. Bianchini, “Faa$t: A
transparent auto-scaling cache for serverless applications,” in SoCC
’21: ACM Symposium on Cloud Computing, Seattle, WA, USA,
November 1 - 4, 2021. ACM, 2021, pp. 122–137. [Online]. Available:
https://doi.org/10.1145/3472883.3486974

[35] H. Tian, S. Li, A. Wang, W. Wang, T. Wu, and H. Yang,
“Owl: performance-aware scheduling for resource-efficient function-
as-a-service cloud,” in Proceedings of the 13th Symposium
on Cloud Computing, SoCC 2022, San Francisco, California,
November 7-11, 2022, A. Gavrilovska, D. Altinbüken, and
C. Binnig, Eds. ACM, 2022, pp. 78–93. [Online]. Available:
https://doi.org/10.1145/3542929.3563470

[36] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift,
“Peeking behind the curtains of serverless platforms,” in 2018
USENIX Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018, H. S. Gunawi and B. C. Reed,
Eds. USENIX Association, 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[37] L. Zhao, Y. Yang, Y. Li, X. Zhou, and K. Li, “Understanding, predicting
and scheduling serverless workloads under partial interference,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-
19, 2021. ACM, 2021, p. 22.

[38] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pp.
1063–1075.

[39] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, London, United
Kingdom, May 2-5, 2022. IEEE, 2022, pp. 1868–1877. [Online].
Available: https://doi.org/10.1109/INFOCOM48880.2022.9796962

[40] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, A. Gavrilovska and E. Zadok,
Eds. USENIX Association, 2020, pp. 205–218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[41] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019. ACM, 2019, pp. 34:1–
34:16.

[42] “Fission,” https://fission.io/, 2023.
[43] “Fission executor,” https://fission.io/docs/architecture/executor/, 2023.
[44] “Python flask,” https://flask.palletsprojects.com/en/3.0.x/, 2024.
[45] “Redis,” https://redis.io/, 2024.
[46] “Fission cli reference,” https://fission.io/docs/reference/fission-cli/, 2024.
[47] “Fission http triggers,” https://fission.io/docs/reference/fission-

cli/fission httptrigger/, 2024.
[48] “Object detection,” https://pytorch.org/vision/stable/models/generated/

torchvision.models.detection.fasterrcnn mobilenet v3 large 320 fpn.html,
2024.

[49] “Question answer,” https://huggingface.co/distilbert/distilbert-base-
uncased-distilled-squad, 2024.

[50] “Text-to-speech,” https://huggingface.co/facebook/mms-tts-hat, 2024.
[51] “Coco dataset,” https://www.kaggle.com/datasets/jeffaudi/coco-2014-

dataset-for-yolov3 , 2024.
[52] “The stanford question answering dataset,”

https://rajpurkar.github.io/SQuAD-explorer/ , 2024.
[53] “Extract frame,” https://ffmpeg.org/, 2024.
[54] “Image classification,” https://pytorch.org/vision/main/models/generated/

torchvision.models.squeezenet1 1.html, 2024.
[55] “Image compression,” https://docs.python.org/3/library/shutil.html,

2023.

[56] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and
T. Hoefler, “Sebs: a serverless benchmark suite for function-as-a-
service computing,” in Middleware ’21: 22nd International Middleware
Conference, Québec City, Canada, December 6 - 10, 2021, K. Zhang,
A. Gherbi, N. Venkatasubramanian, and L. Veiga, Eds. ACM, 2021, pp.
64–78. [Online]. Available: https://doi.org/10.1145/3464298.3476133

[57] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser.
Lecture Notes in Computer Science, vol. 8693, 2014, pp. 740–755.

[58] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: configuring
serverless functions using statistical learning,” in 39th IEEE Conference
on Computer Communications, INFOCOM 2020, Toronto, ON, Canada,
July 6-9, 2020. IEEE, 2020, pp. 129–138.

[59] S. Eismann, L. Bui, J. Grohmann, C. L. Abad, N. Herbst, and S. Kounev,
“Sizeless: predicting the optimal size of serverless functions,” in Mid-
dleware ’21: 22nd International Middleware Conference, Québec City,
Canada, December 6 - 10, 2021. ACM, 2021, pp. 248–259.

[60] K. Razavi, M. Luthra, B. Koldehofe, M. Mühlhäuser, and L. Wang,
“FA2: fast, accurate autoscaling for serving deep learning inference
with SLA guarantees,” in 28th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2022, Milano, Italy,
May 4-6, 2022. IEEE, 2022, pp. 146–159. [Online]. Available:
https://doi.org/10.1109/RTAS54340.2022.00020

[61] “Aws lambda power tuning,” https://github.com/alexcasalboni/aws-
lambda-power-tuning, 2022.

[62] “Aws lambda compute optimizer,” https://docs.aws.amazon.com/compute-
optimizer/latest/ug/requirements.html, 2023.

[63] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. H. Katz, “Cirrus:
a serverless framework for end-to-end ML workflows,” in Proceedings
of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz,
CA, USA, November 20-23, 2019. ACM, 2019, pp. 13–24. [Online].
Available: https://doi.org/10.1145/3357223.3362711

[64] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh, S. Venkatara-
man, and A. Akella, “Atoll: A scalable low-latency serverless platform,”
in SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA,
November 1 - 4, 2021. ACM, 2021, pp. 138–152.

[65] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, J. He, G. Yang, and
C. Xu, “Erms: Efficient resource management for shared microservices
with SLA guarantees,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, T. M. Aamodt, N. D. E. Jerger, and
M. M. Swift, Eds. ACM, 2023, pp. 62–77. [Online]. Available:
https://doi.org/10.1145/3567955.3567964

[66] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan:
Ml-based and qos-aware resource management for cloud microservices,”
in ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, T. Sherwood, E. D. Berger, and
C. Kozyrakis, Eds. ACM, 2021, pp. 167–181. [Online]. Available:
https://doi.org/10.1145/3445814.3446693

[67] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” ser. SoCC ’20,
2020.

[68] Z. Guo, Z. Blanco, M. Shahrad, Z. Wei, B. Dong, J. Li, I. Pota, H. Xu,
and Y. Zhang, “Decomposing and executing serverless applications as
resource graphs,” 2022.

[69] T. Schirmer, J. Scheuner, T. Pfandzelter, and D. Bermbach,
“Fusionize: Improving serverless application performance through
feedback-driven function fusion,” in IEEE International Conference
on Cloud Engineering, IC2E 2022, Pacific Grove, CA, USA,
September 26-30, 2022. IEEE, 2022, pp. 85–95. [Online]. Available:
https://doi.org/10.1109/IC2E55432.2022.00017

[70] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: a scalable and locality-enhanced framework for serverless
parallel computing,” in SoCC ’20: ACM Symposium on Cloud
Computing, Virtual Event, USA, October 19-21, 2020, R. Fonseca,
C. Delimitrou, and B. C. Ooi, Eds. ACM, 2020, pp. 1–15. [Online].
Available: https://doi.org/10.1145/3419111.3421286

[71] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and
S. Bagchi, “SONIC: application-aware data passing for chained
serverless applications,” in 2021 USENIX Annual Technical Conference,

USENIX ATC 2021, July 14-16, 2021, I. Calciu and G. Kuenning,
Eds. USENIX Association, 2021, pp. 285–301. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/mahgoub

[72] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating
function-as-a-service workflows,” in 2021 USENIX Annual Technical
Conference, USENIX ATC 2021, July 14-16, 2021. USENIX Asso-
ciation, 2021, pp. 805–820.

[73] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo, “Faas-
flow: enable efficient workflow execution for function-as-a-service,”
in ASPLOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022. ACM, 2022, pp. 782–
796.

[74] Q. Chen, J. Qian, Y. Che, Z. Lin, J. Wang, J. Zhou, L. Song, Y. Liang,
J. Wu, W. Zheng, W. Liu, L. Li, F. Liu, and K. Tan, “Yuanrong: A
production general-purpose serverless system for distributed applications
in the cloud,” in Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM 2024, Sydney, NSW, Australia, August 4-8, 2024.
ACM, 2024, pp. 843–859.

[75] S. Li, W. Wang, J. Yang, G. Chen, and D. Lu, “Golgi: Performance-
aware, resource-efficient function scheduling for serverless computing,”
in Proceedings of the 2023 ACM Symposium on Cloud Computing, SoCC
2023, Santa Cruz, CA, USA, 30 October 2023 - 1 November 2023.
ACM, 2023, pp. 32–47.

