
Espresso: Cost-Efficient Large Model Training by
Exploiting GPU Heterogeneity in the Cloud

Qiannan Zhou†, Fei Xu†∗, Lingxuan Weng†, Ruixing Li†, Xudong Wu†, Li Chen‡, Zhi Zhou§, Fangming Liu¶
†Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University.

‡University of Louisiana at Lafayette. §Sun Yat-sen University. ¶Peng Cheng Laboratory.

Abstract—As Transformer-based models deepen and datasets
expand, training large models demands numerous accelerators,
particularly GPUs, bringing high cloud expenses. However, con-
ventional homogeneous resource provisioning is inefficient due to
limited cloud resources and low GPU utilization. This challenge
necessitates heterogeneous GPU provisioning for training in
clouds. Current research on large model training often focuses
on load balancing of stages, neglecting the varying computing
and memory demands across stages. Additionally, the allocation
of heterogeneous GPUs for training has surprisingly received
little attention. This paper introduces Espresso, a cost-efficient
GPU provisioning framework that unifies the heterogeneous GPU
allocation (GPU allocator) and adequate stage placement (stage
placer) for large model training in the cloud. Specifically, the
GPU allocator proposes a cost tree-based provisioning strategy to
prioritize searching allocation plans with lower costs and reduce
unnecessary branches by multi-dimensional pruning methods.
The resource-aware stage placer further devises a compute-
memory ratio to optimize communication and computation ef-
ficiency during training. We have open-sourced a prototype of
Espresso and conducted prototype experiments on four represen-
tative large models in public clouds. Extensive experiment results
demonstrate that Espresso guarantees the performance for large
model training while saving costs by up to 49.8% compared to
state-of-the-art solutions, yet with acceptable runtime overhead.

Index Terms—Large model training, resource provisioning,
stage placement, heterogeneous GPU environments

I. INTRODUCTION

With breakthroughs in techniques such as natural language
processing [1] and computer vision [2], many enterprises and
research institutions (e.g., OpenAI, NVIDIA) are joining the
research and application of large models, thereby driving up
the demand for computational resources. Public cloud services,
such as Amazon AWS, Google Cloud, and Microsoft Azure,
serve as the mainstream platforms supporting large model
training due to their scalability, cost efficiency, and ease of
use [3]. With the continuous advancement and generational
update of GPU technology, multiple GPU types are commonly
running in public cloud environments. The diversity of GPUs,
including both high-end types (e.g., NVIDIA H100, A100) and
low-end types (e.g., NVIDIA T4 and P100), provides a broader

∗Corresponding author: Fei Xu (fxu@cs.ecnu.edu.cn). This work was
supported in part by the NSFC under Grants 62372184 and 62202266, the
Science and Technology Commission of Shanghai Municipality under Grant
22DZ2229004, the NSF under Grant OIA-2327452, the Louisiana BoRSF
under Grant LEQSF(2024-27)-RD-B-03, the Major Key Project of PCL
under Grants PCL2024A06 and PCL2022A05, and the Shenzhen Science and
Technology Program under Grant RCJC20231211085918010.

A100

T4 V100

T4 V100 T4 T4

Traditional plan: homogeneous provisioning

GPU allocation

A100A100

Insufficient
Instance Capacity

Instance Limit
Exceeded

Failed

V100V100

V100V100

A100

stage0 stage1 stage2 stage3

Cloud

T4

V100
V100

T4

A100
A100

T4
P100

Stage placementGPU allocation

GPU allocation

Time

Cost
SLO

Time

Cost
SLO

Case A Case B

High

Low

A100 A100

Espresso plan: heterogeneous provisioning

Fig. 1: Overview of Espresso. Compared to the traditional homogeneous
resource provisioning plan, Espresso outputs a cost-efficient hetero-
geneous resource provisioning plan by the adequate GPU allocation
and judicious stage placement for guaranteeing the SLO of large model
training in the cloud.

range of choices for resource provisioning, significantly en-
hancing the flexibility of large model training strategies.

Unfortunately, distributed training for large models com-
monly requires homogeneous GPUs and gang-scheduling,
which indicates that the training job cannot be initiated
unless all the required GPU resources are available simul-
taneously [4]. This is because distributed training involves
partitioning the input data and/or the model layers, and thus
needs to determine the GPU allocation and stage placement
before model training. In such a scenario, cloud users often
encounter the GPU unavailability issue due to instance limit
exceeded or insufficient instance capacity [5], bringing a long
queueing delay for users’ training jobs. On the other hand,
large model training with homogeneous GPUs can lead to
resource wastage for cloud providers. As an example, the
existing scheduler needs to allocate 4 NVIDIA A100 GPUs
for a training job, if its computational power requirement (in
FLOPs) of the large model is estimated as 3.2 GPUs, which
in turn increases the training budget for users. Though such
low GPU utilization issues can be mitigated by GPU sharing
techniques, they inevitably introduce noticeable performance
interference among jobs [6]. As a result, it has become
increasingly compelling to effectively leverage heterogeneous
GPUs for facilitating large model training in the cloud.

However, it is non-trivial to provision a cluster of heteroge-
neous GPUs for effectively training large models in the cloud,
which faces several key challenges summarized below.
• Heterogeneous GPU allocation. Previous works on schedul-
ing training jobs in heterogeneous clusters mainly focus on im-
proving resource utilization [7]–[9] and ensuring fairness [10]–
[12], from the cloud providers’ perspective. Nevertheless,

these studies neglect the cost efficiency of training jobs, which
has proved to be the primary concern of cloud users [13].
Moreover, it encounters heavy computational overhead to
identify a cost-efficient GPU allocation plan from a more
extensive search space of heterogeneous GPU clusters com-
pared to that of homogeneous GPU clusters. According to
Sec. II-B, selecting an optimal GPU allocation plan from a
vast search space can save the monetary cost by up to 1.41×
while guaranteeing training performance compared to the best
homogeneous plan.
• Complex stage placement. Cloud users require partitioning
model layers into stages and placing them on GPUs, referred to
as the stage placement [3], when applying pipeline parallelism
in heterogeneous clusters. Previous research mainly considers
GPU computing capability [14] or memory capacity [15],
separately, which misses the co-optimization opportunities of
the heterogeneous GPU sequence and the varying demands
of each stage for computing and memory resources. A more
recent work Metis [16] balances layers across stages based on
GPU computation capabilities to reduce computation time, but
it does not adequately consider the impact of communication
time. As illustrated in Sec. II-C, an optimal stage placement
plan that jointly accounts for GPU computing capability and
memory capacity can reduce training time by up to 31.9%.

To address the challenges above, we design Espresso (as
shown in Fig. 1), a cost-efficient GPU provisioning framework
for minimizing training costs while ensuring the Service Level
Objectives (SLOs) of large model training in heterogeneous
environments. We make the following contributions.
B We devise a heterogeneity-aware GPU allocator (Sec. III-B)
that guarantees the large model training SLO on heterogeneous
GPUs. To quickly identify a cost-efficient provisioning plan,
we propose a cost tree-based provisioning strategy to prior-
itize searching allocation plans with lower costs and reduce
unnecessary branches by multi-dimensional pruning methods.
B We design a resource-aware stage placer (Sec. III-C) that
defines a compute-memory ratio (CMR) to jointly consider the
impact of GPU memory capacity and computing capability on
training performance. We place the front stages on GPUs with
lower CMR and the rear stages on GPUs with higher CMR, so
as to effectively balance the pipeline and overlap communica-
tion with computation, significantly reducing training time.
B We implement a prototype of Espresso (https://github.com/
icloud-ecnu/Espresso) in JuChi Cloud1 and conduct extensive
prototype experiments with four representative Transformer-
based models and four different GPU types. The experimental
results show that Espresso can maintain DNN training perfor-
mance while saving up to 49.8% of monetary costs, compared
to the existing solutions.

II. BACKGROUND AND MOTIVATION

In this section, we illustrate how the heterogeneous GPUs
and stage placement can impact the performance and cost of
large model training in a cluster of heterogeneous GPUs.

1JuChi Cloud (https://matpool.com) is a public GPU cloud in China.

TABLE I: Four representative heterogeneous GPUs deployed in our
experiments in JuChi Cloud.

GPU Type Mem. (GB) Max. Quota TFLOPS Price (U/h)

A6000 48 8 154.8 6

A30 24 16 165 4

RTX3090 24 16 142 2.5

A4000 16 16 76 2

34 35 36 37 38
Avg. iteration time (seconds)

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
m

on
et

ar
y

co
st

(1)(2)

(3) (4)

Heterogeneous plan
Homogeneous plan

Homo

Min

Max

Homo

Fig. 2: Training iteration time and normalized monetary cost of 35 effec-
tive GPU allocation plans (denoted as [GPUtype : #num]) for LLaMA-3B
with the training SLO set as 40 seconds. Min refers to the cheapest
heterogeneous allocation plan, i.e., [A6000: 1, RTX3090: 5], and
Max refers to the most expensive heterogeneous allocation plan, i.e.,
[A6000: 1, A30: 7]. The two homogeneous and feasible allocation plans
are [A30: 7], [A30: 8].

A. Distributed Training of Large Models

Training large models involves processing billions of pa-
rameters on massive datasets typically with 3D parallelism,
which combines three training parallelism strategies, i.e.,
data parallelism (DP) [17], tensor parallelism (TP) [18], and
pipeline parallelism (PP) [19]. Specifically, DP divides the
data into multiple mini-batches and distributes them across
numerous computing units, with each unit maintaining a full
model replica. To particularly deal with large models, TP slices
the model layer into several tensor chunks, while PP further
partitions the model into several stages and executes them in
sequence on different computing units. In more detail, each
stage consists of several contiguous model layers and divides
the mini-batch into multiple micro-batches. Accordingly, the
output of one stage serves as the input for the next stage
(i.e., stage dependency). In particular, each stage synchronizes
gradients only after the forward pass and backward pass of
all its micro-batches in one iteration [20]. This allows the
computation of the previous stage and the gradient synchro-
nization communication of the current stage to be executed
simultaneously. Accordingly, it is critical to decide the GPU
allocation plan and the stage placement plan (i.e., how to
partition model layers to stages and place them on the sorted
GPUs), so as to balance the computation and communication.

B. Heterogeneous GPU Allocation

To examine the training performance and cost of hetero-
geneous GPU allocations, we conduct a set of experiments
by training LLaMA-3B [21] with the Alpaca dataset [22]

2

[A,C,D] [C,D,A] [D,C,A]5

10

15

20

Ite
ra

tio
n

tim
e

(s
ec

on
ds

)
Whale
Optimal

(a) PP Size = 3

[B,A,D,C] [A,B,C,D] [D,C,B,A]5

10

15

20

Ite
ra

tio
n

tim
e

(s
ec

on
ds

)

Whale
Optimal

(b) PP Size = 4

Fig. 3: Comparison of training iteration time of LLaMA-1.8B for different
stage placement plans in terms of GPU sequences (x-axis labels) and
model partitioning strategies (Whale and Optimal). A, B, C, and D
denote NVIDIA A6000, A30, RTX3090, and A4000 GPUs, respectively.

on a cluster of three GPU types including NVIDIA A6000,
A30, and RTX3090 as listed in Table I. Specifically, we set
the training job SLO as 40 seconds, the sequence length as
4, 096, and the global batch size as 32. We identify 35 effective
GPU allocation plans, among which only 2 are homogeneous
plans. In particular, we employ the stage placement strategy
in Whale [15] for heterogeneous GPU plans.

As illustrated in Fig. 2, we observe that there exists sig-
nificant variability in cost-effectiveness among different GPU
allocation plans, which are scattered in the four quadrants.
Specifically, the GPU allocation plans in quadrant- 3© exhibit
the highest cost-effectiveness. The most cost-efficient alloca-
tion plan (i.e., Min) in quadrant- 3© can save up to 1.73× in
monetary cost and reduce training time by 1.05×, as compared
to the least cost-efficient plan (i.e., Max) in quadrant- 1©.
Furthermore, the optimal heterogeneous GPU allocation plan
can reduce the monetary cost by up to 1.41× while guarantee-
ing training performance, compared to the best homogeneous
plan. This provides an opportunity to optimize heterogeneous
GPU resource allocations for large model training, aiming
to minimize the monetary cost while guaranteeing the model
training performance in the cloud.

C. Inadequate Stage Placement

We investigate the performance impact of stage placement
on large model training. Specifically, we configure 12 different
stage placement plans in terms of 6 GPU sequences and 2
model partitioning strategies, including Whale [15] and the
Optimal partitioning strategy by the exhaustive search. We
set the DP size as 2, and the PP size as 3 and 4, respectively.
For each PP size, we select 3 different GPU sequences to
illustrate the training performance variance. As shown in
Fig. 3, we observe that the Optimal plan (i.e., 4 stages placed
with [D,C,B,A]) can achieve the training performance gains
by up to 31.9% as compared to an inadequate plan (i.e., 4
stages placed with [B,A,D,C]) obtained by Whale. Even
under the same GPU sequences, the Optimal partitioning
strategy still yields a moderate training speedup by 6.9%-
15.2% compared to Whale in heterogeneous clusters.

We further look into the stage execution timelines for train-
ing LLaMA-1.8B with Whale and Optimal stage placement
plans. As shown in Fig. 4, Whale experiences longer training
time by up to 20.7% as compared to the Optimal plan,

reduced by 20.7 %

Fig. 4: Timelines of one training iteration of LLaMA-1.8B with Whale and
Optimal stage placement plans, whereA,B, C, andD denote NVIDIA
A6000, A30, RTX3090, and A4000 GPUs, respectively.

due to the two following facts. First, Whale solely focuses
on the GPU memory requirements of stages [15]. As the front
stages (e.g., stage0, stage1) of a model exhibit high memory
requirements to store the activation values, Whale tends to
allocate GPUs with large memory capacity to these stages,
thereby leading to prolonged communication time for the front
stages and thus the ineffective overlap of stage communication
and computation time. Second, the Optimal plan jointly
considers the computing capability and memory capacity of
GPUs in the stage placement. It deliberately allocates GPUs
with inferior computing capability and large memory capacity
to the front stages, so that fewer layers are put to these
front stages while more layers are allocated to the rear stages
(e.g., stage2, stage3), as compared to Whale. Such an
arrangement allows the long communication time of the rear
stages to overlap with the computation time of the front stages,
greedily minimizing the maximum stage execution time.

Summary. First, provisioning a cluster of heterogeneous
GPU resources for large model training has a substantial opti-
mization space in reducing monetary cost while guaranteeing
the large model training performance in the cloud. Second, an
adequate stage placement plan can greedily overlap the stage
computation and communication time by jointly considering
the computing capability and memory capacity of GPUs,
thereby decreasing the model training time significantly.

III. SYSTEM DESIGN

In this section, we design Espresso illustrated in Fig. 5, a
cost-efficient GPU provisioning framework to minimize the
monetary cost while guaranteeing the performance of large
model training in the cloud. Once users submit a training
job (i.e., a large model, datasets, SLOs, and training epochs),
the Profiler first acquires the training time and GPU memory
consumption of different layers on heterogeneous GPUs from
a lightweight profiling tool 1©. Leveraging the profiled job
statistics, the GPU Allocator then employs a cost tree-based
provisioning strategy to generate a cost-efficient GPU alloca-
tion plan 2© (Sec. III-B). It further utilizes a resource-aware
stage placement strategy in Stage Placer to properly partition
model layers into stages and place them on the provisioned
GPUs with the objective of minimizing the training time 3©
(Sec. III-C). Finally, the training job is deployed with the GPU
allocation and stage placement plans in the cloud 4©.

3

Strategy

Statistics
Espresso Profiler GPU Allocator

Stage Placer

Performance
Estimator

Latency

Resource PlanMonetary Cost

Espresso

User Cloud

①

②

④ ③

Fig. 5: Overview of Espresso architecture.

A. Problem Formulation

Given a set of heterogeneous GPU types (or instance types)
T , quotas Limt (i.e., the available GPUs for each type t ∈
T), and a job with its training SLO (i.e., TSLO), Espresso
provisions a set of GPUs and generates a stage placement plan,
aiming to minimize the training cost C while guaranteeing
TSLO. Such an optimization problem can be formulated as

min
N ,G

C = z × TN ,G
iter ×

∑
t∈T

(ct × nt) (1)

s.t. z × TN ,G
iter ≤ TSLO, (2)

nt ≤ Limt, ∀t ∈ T , nt ∈ Z (3)

where z denotes the number of training iterations. N denotes
the GPU allocation plan, specifying the allocated GPU types
and their quantities. G represents the stage placement plan,
indicating the model partitions (i.e., stages) and the mapping
of stages to allocated GPUs. Given N and G, TN ,G

iter denotes
the training iteration time, while ct and nt denote the unit
price and provisioned number for each GPU type t, respec-
tively. Constraint (2) guarantees the model training time, while
Constraint (3) indicates that nt is below the user quota.

Problem analysis. Our optimization problem in Eq. (1) can
be decomposed into two sub-problems: GPU allocation and
stage placement. For the first one, the diversity of GPU types
and the exponential increase in possible combinations produce
an enormous search space for the optimal allocation plan.
This results in the low efficiency of existing exhaustive search
algorithms [23]. For the second one, the stage placement
requires partitioning model layers into a number of stages and
placing them on the allocated GPUs, which can be reduced to
the form of a traveling salesman problem, already known as
an NP-hard problem [24].

B. GPU Allocator

To speed up the heterogeneous GPU allocation while min-
imizing the monetary cost, we prioritize searching for the
allocation plans with lower costs in the large solution space. To
this end, we propose a cost tree-based provisioning strategy,
where the allocation plans are represented by the paths from
the root node to child nodes in a tree structure (i.e., cost
tree). During the construction of cost trees, we keep tracking

①

②

③

④

⑦

⑧

EMPTY QUEUE

0.071 0.092

...
0.080 A40000.071 TCP CP

0.071 0.080...

A6000

A30

RTX3090

⑤

⑥

CP: Cost Pruning
BP: Boundary Pruning
TCP: Time and Capacity Pruning

...

k=1 k=2 k=3 k=4 k=5 k=6PP Size

Search Tree

BP BP BP

...

k

Fig. 6: An illustration of cost tree-based GPU provisioning strategy,
where the numbers in a circle indicate the priorities of searching deter-
mined by the upper-bound cost of a partial plan (i.e., Eq. (4)). Path [A30,
RTX3090, RTX3090] and Path [A30, A30, RTX3090] are valid paths,
which are input to Stage Placer to compare the cost efficiency.

the training cost of each path and employ multi-dimensional
pruning methods to reduce unnecessary branches.

Cost tree construction. As illustrated in Fig. 6, each node
in the cost tree represents the type and number of allocated
GPUs where a stage is deployed. In particular, the GPU
number is determined by the DP size and the number of stages
is determined by the PP size k. The path from the root node
to a leaf node represents a complete GPU allocation plan N
with the length of k, while the other paths correspond to partial
plans N̂ . To simplify the tree construction, the duplicate paths
(e.g., [B,A,C]) are discarded given a path (e.g., [A,B,C])
in the tree. To guide the search, we assign a value to each
path that denotes the upper-bound cost of the corresponding
allocation plan. For a partial plan N̂ , its upper-bound cost is
calculated as the minimum value among the training costs of
homogeneous GPUs for the remaining stages, given by

Cupper(N̂) = min
t∈T

(HomoConfig(N̂ , t)), (4)

where HomoConfig(N̂ , t) denotes the training cost of
one iteration using the GPU type t for all subsequent
stages. For simplicity, we denote the allocation plan for
HomoConfig(N̂ , t) as Nh = N̂ ∪ {gt, gt, . . . , gt︸ ︷︷ ︸

k−|N̂ |

}, where

gt denote a GPU of the type t.
Cost model. The calculation of the lower-bound cost of Nh

(i.e., HomoConfig(N̂ , t)) relies on the stage placement of
a job, which brings non-negligible computation overhead. To
mitigate that, we build a cost model by neglecting the training
communication overhead. Specifically, the lower bound of an
iteration time T lower

iter can be calculated by dividing the total
computational load W (ltotal) across all model layers ltotal by
the total computing capability of Nh [25], which is given by

T lower
iter =

W (ltotal)

p×
∑

t∈Nh
rt
, (5)

where rt is the actual GPU computing capability, profiled by
running an arbitrary training job on a GPU of the given type
t. p is the GPU active time ratio, which can be calculated as

p =
m

m+ k − 1
, (6)

4

where k is the PP size and m is the number of micro-batches.
This is because the GPU active time of each stage only consists
of m forward and backward passes for each iteration, while
the bubble time of each stage is k − 1 forward and backward
passes in one iteration [19], due to data dependencies between
stages. As a result, we can predict the lower-bound cost of Nh

according to Eq. (1) and Eq. (5), which is given by

HomoConfig(N̂ , t) = z × T lower
iter ×

∑
t′∈Nh

(ct′ × nt′). (7)

Multi-dimensional pruning methods. To speed up the
searching efficiency of allocation plans, we further propose
multi-dimensional pruning methods as illustrated in Fig. 6.

(1) Boundary pruning (BP). As the number of GPUs is
determined by the PP size k and DP size d, BP calculates
the boundary values for k and d to narrow down the search
space. First, we set the lower bound klower and the upper
bound kupper as the number of stages required to greedily
place model layers on GPUs with the largest and smallest
memory, respectively. Second is determining the lower bound
dlower and the upper bound dupper for d. As the batch size is
typically set as a power of two, we typically set the d in the
range of [dlower = 20, dupper = 2blog2(x)c] for x GPUs.

(2) Cost pruning (CP). The branches with high costs can
be pruned early to reduce the search space, by calculating
the lower-bound cost clower of a partial allocation plan. To
align with real-world scenarios, we first introduce the GPU
memory fragmentation coefficient β (typically set to 80% [26])
to estimate the number of model layers l placed on the
provisioned GPUs given a partial plan. After inputting the
computational load W (l) into Eq. (5), we can obtain the lower-
bound iteration time, thereby calculating the training cost of a
partial plan. If such a training cost exceeds the current optimal
complete plan N , such a partial plan is discarded.

(3) Time and Capacity pruning (TCP). TCP leverages the
lower-bound iteration time tlower and the maximum allocated
memory mmax for a plan Nh, which enables us to discard
the plans whose tlower exceed the SLOs or whose mmax are
less than the lower-bound GPU memory (i.e., mlower) of the
training job [25]. Specifically, we calculate tlower by placing
the remaining stages on the GPUs with the highest computing
capability. Meanwhile, we calculate mmax by placing the
remaining stages on the GPUs with the largest memory.

Alg. 1 elaborates Espresso’s GPU provisioning strategy
using color-coded differentiation. First, each pair of PP and DP
sizes corresponds to the construction of a cost tree. Boundary
values are then calculated by functions GetPPSizeRange
and GetDPSizeRange based on BP, and cost trees that
do not require further exploration are discarded (lines 2-5).
Next, a priority queue Q manages the exploration of potential
GPU allocation plans, sorting them in ascending order based
on these partial plans’ Cupper(N̂) (see Eq. (4)) (lines 6-8).
Upon identifying a complete allocation plan, Alg. 1 enters the
optimization step. In more detail, stagePlacer determines
a stage placement by Alg 2, and a low-cost provisioning
plan (including N and G) is selected (lines 9-13). Alg. 1

Algorithm 1: Espresso: a cost tree-based GPU provi-
sioning strategy.

Input : Available GPUs types T , GPU quotas Limt, a job
J with its training SLO TSLO .

Output: GPU allocation plan N , stage placement plan G.
1 Initialize: N ← ∅, G ← ∞;
2 dlower, dupper ← GetDPSizeRange(T);// BP Pruning
3 for d ∈ [dlower, dupper] do
4 klower, kupper ← GetPPSizeRange(T , J, d);
5 for k ∈ [klower, kupper] do
6 Initialize: a priority queue Q← (0, ∅, 0, 0),

mlower; // Lower-bound memory demand
7 while Q 6= ∅ do
8 , N̂ , s, gt ← Q.top(); // s denotes the

current stage.
// Optimizing the complete plan

9 if s = k then
10 Ĝ ← stagePlacer(N̂ , k, d, J.layer);
11 if C(N̂ , Ĝ) < C(N ,G) then
12 Update G ← Ĝ, N ← N̂ ;
13 continue;

14 clower, tlower,mmax ← pruneInfo(N̂ , k, d);
15 if tlower > TSLO||mmax < mlower then
16 continue; // TCP Pruning

17 if clower > C(N ,G) then
18 continue; // CP Pruning

19 for y ∈ [0,min(k − s, Limt)] do
// Search the number of gt

20 N̂n ← N̂ ∪ {gt, gt, . . . , gt︸ ︷︷ ︸
y

};

21 Q.push((Cupper(N̂n), N̂n, s+ y, gt+1));

22 return N , G;

adopts the function pruneInfo to calculate the lower-bound
training cost clower and iteration time tlower as well as the
maximum allocated memory mmax, facilitating CP and TCP
pruning (lines 14-18). The exploration step further evaluates
the number of GPUs gt that can be added to the partial
allocation plan N̂ (lines 19-21). Finally, Espresso outputs the
allocation plan N and the stage placement plan G (line 22).

C. Stage Placer

Given a GPU allocation plan N , we proceed to partition
model layers into stages and place them on the provisioned
heterogeneous GPUs, aiming to minimize the training iteration
time. This is equivalent to minimizing the completion time of
the slowest stage. Accordingly, our optimization objective in
Eq. (1) can be reduced to

min
G

TN ,G
iter = max

i∈[0,k)

(
T comp
Gi + T comm

Gi
)

(8)

= T comp
G0 + max

i∈[0,k)

(
T comm
Gi −

∑
j∈[0,i)

T b
Gj

)
. (9)

In Eq. (8), Gi denotes the stage placement plan for the i-th
stage, which includes the model partitions and the mapping
of stages to allocated GPUs. As illustrated in Fig. 7, T comp

Gi
represents the time for the i-th stage to complete both the

5

3

0

20 1

3 40

0 11 22 33

0 1 2 3

0 1 2 3

 Computation Time

Forward Backward AllReduce Bubble
Non-overlapping
Communication

Stage0

Stage1

Stage2

1

Fig. 7: Timeline of an iteration for a training job with 3 stages.

forward and backward passes on Gi in one iteration. T comm
Gi

is the gradient synchronization time for data parallelism. Due
to the stage dependency, the pipeline computation (i.e., T comp

G0)
finishes when stage0 completes its final backward pass. As
the communication of a stage can be overlapped with the
computation of preceding stages, the non-overlapping commu-
nication time for a stage i is calculated as T comm

Gi −
∑i−1

j=0 T
b
Gj ,

where T b
Gj is the backward execution time of a stage j.

Compute-memory ratio (CMR). As motivated by
Sec. II-C, an adequate stage placement should consider both
the computing capability and memory capacity of GPUs. To
minimize the training iteration time, we define a metric named
CMR as

CMR(t, s) =
F (t)

M(t)
× α(t, s), (10)

where F (t) and M(t) represent the computing capability
in TFLOPS and memory capacity in GB of a GPU type t,
respectively. As shown in Fig. 7, the communication time to be
overlapped varies across different stages. To greedily minimize
the non-overlapping communication time, we introduce the
metric α(t, s) to characterize the computing and memory
demands for each stage s. Specifically, we define α(t, s) as
max(lt,sm ,lt,sc)

lt,sc
, where lt,sm is the maximum number of layers

allocated to a GPU type t under the memory constraint, while
lt,sc is the maximum number of layers that cannot exceed the
communication time of stage0. In general, a GPU with lower
CMR is more suitable for the front stages.

Resource-aware stage placement. Based on the analysis
above, we design a resource-aware stage placement algorithm
in Alg. 2 using color-coded differentiation. First, Espresso
initialize two lists. The first list Lm contains the maximum
number lt,sm of layers as elaborated before. The second list Lf

consists of the number ltf of layers to be placed on a GPU
type t by considering load balancing among stages [15] (line
3). The maximum layers lmax for stage0 is then determined
based on lt,0m (line 4). Next, Espresso enumerates the number
of layers ls0 for stage0 to greedily balance the pipeline and
overlap the computation and communication (line 5). In more
detail, Espresso initializes a candidate stage placement plan
Ĝ and the maximum communication time T ol

s for stage s
within the communication time of stage0 (lines 6-7). For the
subsequent stages, we update T ol

s as the sum of T ol
s−1 and the

backward execution time T b
Ĝs−1

and GPUs’ CMR according to
Eq. (10) (lines 9-10). Espresso further explores the candidate
placement plan Ĝ by selecting the GPU with the minimum

Algorithm 2: stagePlacer: a resource-aware stage
placement algorithm.

1 Input: GPU allocation plan N , PP size k, DP size d,
number of model layers ltotal.

2 Output: Stage placement plan G.
3 Calculate (Lm, Lf) based GPU load & memory in N ;
4 Initialize : G ← ∅; lmax ← max

t
(lt,0m);

// ls0 denotes the number of layers for stage0

5 for ls0 ∈ [1, lmax] do
6 GPU type t← GPU with the minimum CMR;
7 Initialize: a candidate plan Ĝ ← ((gt, ls0)),

T ol
0 ← T comm

Ĝ0
;

8 for s ∈ [1, k − 1] do
9 T ol

s ← T b
Ĝs−1

+ T ol
s−1;

10 Update GPUs’ CMR ← Eq. (10);
11 GPU type t← GPU with the minimum CMR;
12 Set layer number of stage s as l← min(lt,sm , ltf);
13 Ĝ.add((gt, l));// gt is a GPU of the type t.

14 Ĝ ← AdjustToCoverAllLayers(Ĝ);
15 if Estimator(Ĝ) < Estimator(G) then
16 G ← Ĝ;

17 return G;

CMR and assigning an appropriate number of layers to stages
(lines 11-13). To address the potential issue of layer fragmenta-
tion (i.e., few layers remaining to be assigned), Espresso adds
the remaining layers to the stages (except stage0) in Ĝ one
by one (function AdjustToCoverAllLayers), as long as
the memory constraint satisfies (line 14). Finally, Espresso
leverages the Estimator [27] to estimate the iteration time
for Ĝ and then identifies an adequate placement plan G with
the minimum iteration time (lines 15-17).

Remark. The complexity of Alg. 1 is O(
∑kupper

k=klower
Ck

x ×
blog2(x)c), where klower and kupper denote the lower bound
and the upper bound for the PP size k, respectively. Ck

x is a
selection of k GPUs from the total number (i.e., x) of GPUs
limited by the user quota, and log2 x indicates the number of
possible DP sizes. The complexity of Alg. 2 is O(lmax × k),
where lmax denotes the maximum layers for stage0. As k
is typically an integer within tens [20], its complexity can
be roughly linear to the number of model layers. Accordingly,
the computation overhead of Espresso is practically acceptable
due to our multi-dimensional pruning methods, which will be
validated by Sec. V-C.

IV. SYSTEM IMPLEMENTATION

We implement a prototype of Espresso on JuChi Cloud
using DeepSpeed [28] v0.13.1 and PyTorch [29] v2.0.1, with
over 1, 200 lines of Python and Linux Shell scripts. The source
code is publicly accessible on GitHub (https://github.com/
icloud-ecnu/Espresso). Specifically, we integrate our model
partitioning method (in the Stage Placer) as a plug-in module
into DeepSpeed to dynamically partition the large model for
efficient training in heterogeneous clusters. Additionally, our
lightweight profiling tool leverages llm-analysis [30] to
estimate the memory usage and training time for various

6

1200 800 500
Performance goals (seconds)

0.5

0.7

0.9

1.1

1.3

1.5

No
rm

al
ize

d
co

st
Sia +

Whale +

HPH +

Optimal
Espresso

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)1e3

Objective time
Training time

(a) LLaMA-1.3B

3700 1600 900
Performance goals (seconds)

0.5
0.7
0.9
1.1
1.3
1.5
1.7

No
rm

al
ize

d
co

st

Sia +

Whale +

HPH +

Optimal
Espresso

0.5

2.5

4.5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)1e3

Objective time
Training time

(b) LLaMA-3B

5500 4800 2600
Performance goals (seconds)

0.5

0.7

0.9

1.1

1.3

1.5

No
rm

al
ize

d
co

st

Sia +

Whale +

HPH +

Optimal
Espresso

0.5

2.5

4.5

6.5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)1e3

Objective time
Training time

(c) LLaMA-7B

3000 2600 1200
Performance goals (seconds)

0.5

0.7

0.9

1.1

1.3

1.5

No
rm

al
ize

d
co

st

Sia +

Whale +

HPH +

Optimal
Espresso

0.5

1.5

2.5

3.5

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)1e3

Objective time
Training time

(d) ViT

Fig. 8: Comparison of training time and monetary cost achieved by the Sia+, Whale+, HPH+, Optimal, and Espresso under different SLOs.

GPU types. It analyzes model parameters (i.e., hidden size
and model layers) and GPU specifications (i.e., computing
capability and memory capacity) without deploying model
training jobs on GPUs, thereby significantly reducing our
profiling cost. We further devise a Performance Estimator
based on topological sorting and llm-analysis to predict
the model training iteration time by analyzing task dependen-
cies, which include intra-stage and inter-stage dependencies.
Inter-stage dependencies include activation and gradient trans-
missions, while intra-stage dependencies are managed by the
schedule.TrainSchedule in DeepSpeed.

Discussion. Espresso can be applied in both public clouds
and private clouds, by extending the cost tree to other key met-
rics such as GPU scarcity or GPU utilization. By adequately
defining the cost model, Espresso can guarantee the training
performance of large models, while minimizing the usage of
scarce GPUs or improving the GPU utilization in the cloud.

V. PERFORMANCE EVALUATION

In this section, we evaluate Espresso by carrying out a set
of prototype experiments on JuChi Cloud. We seek to answer
the two following questions:
• Effectiveness: Can our GPU provisioning strategy in

Espresso reduce monetary cost while guaranteeing large
model training performance in the cloud? (Sec. V-B)

• Overhead: How much runtime overhead does Espresso
practically bring in GPU allocation?

A. Experimental Setup

Configurations of training environments and workloads.
We provide four representative GPU types for heterogeneous
environments as listed in Table I. The cluster provides net-
work isolation with an inter-instance bandwidth of 2.5 Gbps.
Considering that various popular models (e.g., GPT [31] and
LLaMA [21]) are based on the Transformer [32] architecture,
we select four representative Transformer-based large models
listed in Table II to evaluate the performance of Espresso.
Specifically, we train the ViT [33] on the ImageNet-1K dataset
for image classification. For language modeling, the LLaMA-
1.3B employs the Wikipedia dataset, whereas the LLaMA-3B
and LLaMA-7B models are trained on the Alpaca dataset [22]
for question-answering tasks.

Baselines and metrics. We compare Espresso with three
state-of-the-art strategies: (1) Sia+ [34] selects 2n (n ∈ N)
GPUs of the same type in heterogeneous environments. (2)

TABLE II: Large models and datasets evaluated in our experiments.

Workload #Layer Hidden size #Param. Dataset

LLaMA-1.3B [21] 26 2, 048 1.3B Wikipedia2

LLaMA-3B 45 2, 560 3B
Alpaca [22]

LLaMA-7B 61 3, 200 7B
ViT [33] 70 2, 048 3.4B ImageNet-1K [35]

Whale+ [15] places stages on GPUs in decreasing order of
GPU memory capacity and combines the model partitioning
strategy based on load balancing. (3) HPH+ [14] places stages
on GPUs in ascending order of GPU computing capability
and combines the model partitioning strategy based on integer
programming. We integrate our GPU provisioning strategy
with Whale+ and HPH+ to support GPU resource provi-
sioning in heterogeneous environments. We also evaluate the
performance gap between Espresso and the Optimal strategy
obtained through the exhaustive search. We focus on three
metrics: training time, monetary cost, and runtime overhead.

B. Effectiveness of Espresso

Can Espresso minimize monetary cost while ensuring
the model training performance? We train the four models
in Table II with Sia+, Whale+, HPH+, Optimal, and Espresso
for 100 iterations by setting different training time SLOs.
As shown in Fig. 8, Espresso successfully meets the training
time objectives while reducing monetary cost by up to 49.8%
compared to other strategies. The Sia+ strategy, while effective
in reducing training time, primarily achieves this through an
over-allocation of GPUs. It focuses on assigning a single
type of GPUs to a job, neglecting the potential benefits
of allocating heterogeneous GPUs. To meet the SLO, Sia+

always necessitates allocating more resources than the model
requires, thereby resulting in higher monetary costs inevitably.
In particular, the mark “×” labeled in Fig. 8 represents the
cases that Sia+ cannot identify any suitable GPU allocation
plans due to the user quota limitation and SLO constraints.

Despite utilizing our GPU provisioning strategy in Espresso,
both Whale+ and HPH+ exhibit shortcomings in their stage
placement strategies (as discussed in Sec. II-B). Specifically,
Whale+ tends to allocate more layers in the front stages,
increasing the communication time for gradient synchroniza-
tion. Conversely, HPH+ fails to consider the intensive memory
demands of the front stages, allocating GPUs with insufficient

2Downloads: https://huggingface.co/datasets/legacy-datasets/wikipedia

7

TABLE III: Comparison of GPU allocation plans achieved by Sia+,
Optimal, and Espresso for LLaMA-7B and ViT. The GPU allocation plan
is defined as [#A6000,#A30,#3090,#A4000].

Workload/ Performance SLO (seconds)
Strategy 5, 500 4, 800 2, 600

L
L

aM
A Sia+ [8, 0, 0, 0] [8, 0, 0, 0] N/A

Optimal [4, 0, 0, 1] [4, 1, 0, 0] [8, 12, 0, 4]

Espresso [4, 0, 0, 1] [4, 1, 0, 0] [8, 12, 0, 4]

3, 000 2, 600 1, 200

V
iT

Sia+ [0, 4, 0, 0] [0, 4, 0, 0] N/A

Optimal [0, 1, 2, 0] [0, 2, 1, 0] [8, 8, 8, 16]

Espresso [0, 1, 2, 0] [0, 2, 1, 0] [8, 8, 8, 16]

memory to stages. This oversight leads to the short execution
time at the front stages, resulting in the prolonged pipeline
computation time. In comparison, Espresso maintains a cost
variance within 4.5% of the Optimal strategy, showcasing its
effective resource provisioning strategies. Furthermore, unlike
the Optimal strategy, which incurs exponential computation
overhead, Espresso generates GPU resource provisioning plans
in just a few minutes.

Can Espresso provide a cost-efficient GPU allocation
plan? To analyze the efficiency of our GPU provisioning
strategy in Espresso, we look into the GPU allocation plans
for LLaMA-7B and ViT under three strategies: Sia+, Optimal,
and Espresso. As elaborated in Table III, we observe that
Espresso successfully identifies the best GPU allocation plan
consistent with the Optimal strategy using our cost tree-based
GPU provisioning strategy. In contrast, the Sia+ strategy sig-
nificantly narrows down the search space of GPU allocations
by restricting the number of GPU selections to 2n. As a result,
it cannot fully exploit the benefits of a heterogeneous GPU
environment and always leads to over-provisioning, thereby
incurring unnecessary monetary costs. Moreover, under limited
resources and/or high computational demands (e.g., meeting
stringent SLOs), Sia+ fails to provide any allocation plans,
resulting in job launch failures. In contrast, Espresso effec-
tively leverages diverse GPU types, offering flexible plans that
ensure job launches successfully.

Can Espresso generate an adequate stage placement
plan? We compare the placement plans of four models under
three strategies: Whale+, HPH+, and Espresso, as shown
in Table IV. According to the results in Fig. 8, Espresso
significantly reduces training time, with a maximum savings
of up to 25.3% compared to Whale+ and HPH+. As illustrated
in Table IV, Whale+ assigns more layers to the front stages,
balancing the pipeline but increasing the communication time
for gradient synchronization. In scenarios with longer compu-
tation time, Whale+ performs better (i.e., LLaMA-3B) due to
a more balanced pipeline. However, in scenarios with shorter
computation time, the increased communication time leads
to performance degradation (i.e., ViT). Conversely, HPH+

TABLE IV: Comparison of stage placement plans employed by Whale+,
HPH+, and Espresso. The stage placement plan is denoted as two
tuples, where the upper denotes the allocated GPU type (i.e., A, B,
C, and D denote A6000, A30, RTX3090, and A4000, respectively) for
each stage, while the lower denotes the number of layers partitioned to
each stage.

Model
(SLO)

Whale+ HPH+ Espresso

LLaMA-1.3B
(500 seconds)

[A,B,B,D] [D,A,B,B] [D,A,B,B]

[9, 6, 6, 5] [5, 6, 7, 8] [6, 6, 6, 8]

LLaMA-3B
(3, 700 seconds)

[A,A,C] [C,A,A] [A,A,C]

[18, 18, 9] [9, 18, 18] [19, 17, 9]

LLaMA-7B
(5, 500 seconds)

[A,A,A,A,D] [D,A,A,A,A] [A,A,A,A,D]

[14, 14, 14, 15, 4][1, 14, 15, 15, 16] [14, 14, 15, 14, 4]

ViT
(1, 200 seconds)

[A,C,B,D,D] [D,D,C,A,B] [D,D,C,A,B]

[20, 15, 18, 8, 9] [14, 13, 13, 14, 16][14, 14, 14, 14, 14]

0 5 10 15 20 25
Stage 0

Stage 1

Stage 2

0 1 2 0 3 1 2 3

0 1 0 2 1 3 2 3

0 0 1 1 2 2 3 3 Forward
Backward
AllReduce
Bubble

Fig. 9: Timeline of one iteration for ViT, partitioned into three stages
denoted as the number of layers (i.e., [22, 16, 30]) placed on the GPU
allocation [RTX3090, A4000, A6000].

selects GPUs with smaller memory and allocates fewer layers
to the front stages, increasing the number of layers in the
rear stages, thus effectively overlapping communication time.
In scenarios where communication time is dominant, HPH+

performs better (i.e., LLaMA-1.3B). Nevertheless, HPH+ does
not fully account for the high memory demand in the front
stages, which can cause the pipeline imbalance and prolong
the training time (i.e., LLaMA-7B). When having the same
GPU sequence (i.e., the mapping of stages to allocated GPUs),
the training time of Espresso is 0.8%− 2.6% longer than that
of HPH+. This is primarily due to HPH+ employing integer
programming to determine the optimal model partitioning
plan. However, such an approach can result in substantial
runtime overhead (i.e., hours) for large models.

How the stage placement of Espresso minimize the
large model training time? To look into the stage placement
plan of Espresso, we conduct experiments on the ViT with
three stages on three different types of GPUs. We set the
DP size to 2. As shown in Fig. 9, we observe that the
computation and communication time are well overlapped
among the three stages. According to our resource-aware stage
placement algorithm based on CMR, the generated placement
plan is ([RTX3090, A4000, A6000], [22, 16, 30]). Initially,
we obtain the best number of layers ls0 for stage0 as 22
layers. As the A4000 cannot support 22 layers for stage0

due to the memory constraint, we compare the CMR values of
RTX3090 and A6000, which are 6.99 and 7.91, respectively,
thus selecting the RTX3090 with a lower CMR value for
placing such 22 layers. For stage1, we compare the CMR
values of A4000 and A6000 (i.e., 4.75 and 6.92, respectively),
and then select the A4000 with a lower CMR value for placing

8

LLaMa-7B
LLaMa-3B ViT

LLaMa-1.3B
0

5

10

15

20

25

Ti
m

e
(m

in
)

Total
BP
BP+CP
BP+CP+TCP

(a) Ablation of pruning methods

0 20 40 60 80 100
Number of layers

0

1

2

3

4

Ti
m

e
(m

in
)

LLaMA-3B
LLaMA-7B
LLaMA-1.3B
ViT

(b) Models with different layers

Fig. 10: Computation overhead of Espresso resource provisioning algo-
rithm with (a) multi-dimensional pruning strategies and (b) four modified
large models by varying model layers.

13 layers. Similar to the procedure of previous stages, the
final stage (stage2) utilizes the A6000 for placing 28 layers.
However, such a placement plan causes fewer assigned layers
than the model layers. Consequently, we adjust the second
stage (stage1) to 16 layers and maintain 30 layers for the final
stage (stage2) using the A6000. By carefully adjusting the
type of GPUs and the number of layers placed in each stage,
Espresso not only optimizes the pipeline computation time but
also overlaps the communication time effectively, reducing the
overall model training time.

C. Overhead of Espresso

To evaluate the effectiveness of multi-dimensional pruning
methods (i.e., BP, CP, TCP) and runtime overhead of Espresso,
we conduct experiments with the four models listed in Table II
and 56 available GPUs (i.e., the maximum user quota) in
Table I. BP quickly establishes a reasonable search boundary,
significantly reducing the vast search space caused by the
grid search and reducing the search time up to 79.4%-83.2%.
Building upon this, CP further narrows the search space by
fast identifying feasible costs, leading to a decrease of 84.6%-
95.2% in the search time. Though the marginal impact of
TCP is the minimum due to substantial prior reductions, it
still contributes to faster pruning speeds, reducing the average
search time by 88.3%-96.2%. The combined use of the three
pruning strategies reduces the search time by an average of
92.4%. The computation overhead of the four models is only
1.4, 1.3, 1.6, and 0.6 minutes, respectively. Such overhead is
negligible compared to the tens to hundreds of hours typically
required to train large models.

To evaluate the computation overhead of Espresso across
varying model sizes, we adjust the number of layers in four
models. As depicted in Fig. 10(b), the computation overhead
of resource provisioning generally increases linearly with the
layer numbers. Nonetheless, as illustrated for LLaMA-3B and
LLaMA-7B, turning points in the curve occur as the number of
layers increases, attributed to GPU resource limitations within
the cluster which curtails the search space. Consequently, the
computation overhead declines once exceeding a specific layer
number threshold. In sum, the computation overhead of the
Espresso remains within four minutes for models of varying
sizes on a heterogeneous cluster of 56 GPUs.

VI. RELATED WORK

GPU resource provisioning. Many existing works (e.g.,
Pollux [36], Optimus [37]) focus on provisioning homoge-
neous GPUs for training jobs. They often adjust GPU alloca-
tions and batch sizes dynamically using a training performance
model. Meanwhile, there have been works on scheduling train-
ing jobs in heterogeneous clusters to enhance GPU resource
utilization [7] and job fairness [10]. However, these prior
works overlook the key metric (i.e., training cost efficiency)
optimization. A recent work Sia [34] selects one GPU type
from heterogeneous GPUs for training, failing to exploit the
advantages of GPU heterogeneity fully. SpotDNN [5] boosts
training cost-efficiency in heterogeneous clusters, yet it over-
looks integrating diverse training parallelization strategies. In
contrast, Espresso focuses on heterogeneous GPU provisioning
for large models training and proposes a cost tree-based
provisioning strategy to quickly identify a cost-efficient plan.

Stage placement optimization. Most existing techniques
(i.e., PipeDream [20], and Galvatron [38]) utilize dynamic pro-
gramming to balance execution time across stages in homoge-
neous clusters. To optimize stage placement in heterogeneous
clusters, Whale [15] allocates GPUs with a large memory
capacity to front stages to accommodate their high memory
requirements. HPH [14] allocates GPUs with a small comput-
ing capability to front stages to minimize communication time.
They overlook the diverse computing and memory demands
across different stages. A more recent work Metis [16] lever-
ages the exhaustive search method to generate stage placement
plans in heterogeneous clusters. In contrast, Espresso proposes
a lightweight resource-aware stage placement strategy that
leverages the CMR to jointly characterize the impact of GPU
capability and memory capacity on large model training.

Large model training techniques. There have recently
emerged many large model training parallelization techniques,
such as optimizing GPU memory [39], improving the commu-
nication efficiency [18], [40], minimizing bubble time [41],
[42], reducing activation values storage [20], [43], integrating
parallelism dimensions and automating training strategies [38],
[44], [45]. Espresso can work with these works above to fur-
ther reduce the job training time and guarantee the training per-
formance with cost-efficient heterogeneous GPU resources.

VII. CONCLUSION

This paper introduces Espresso, a cost-efficient GPU pro-
visioning framework to facilitate large model training with
heterogeneous GPUs in the cloud. Espresso proposes a cost
tree-based provisioning strategy to prioritize searching GPU
allocation plans with lower costs and reduce unnecessary
branches by multi-dimensional pruning methods. To greed-
ily overlap computation with communication across stages,
Espresso further devises a resource-aware stage placement
strategy that leverages the compute-memory ratio to ade-
quately partition model layers into stages and place them to
heterogeneous GPUs. Prototype experiments demonstrate that
Espresso can guarantee the training performance while saving
the budget by up to 49.8% compared to existing solutions.

9

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan et al., “Lan-
guage Models are Few-Shot Learners,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901, 2020.

[2] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie et al., “Swin transformer v2:
Scaling up capacity and resolution,” in Proc. of IEEE CVPR, 2022, pp.
12 009–12 019.

[3] I. Jang, Z. Yang, Z. Zhang, X. Jin, and M. Chowdhury, “Oobleck: Re-
silient Distributed Training of Large Models Using Pipeline Templates,”
in Proc. of ACM SOSP, Oct. 2023, pp. 382–395.

[4] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou et al., “AntMan: Dynamic
Scaling on GPU Clusters for Deep Learning,” in Proc. of USENIX OSDI,
Nov. 2020, pp. 533–548.

[5] R. Shang, F. Xu, Z. Bai, L. Chen, Z. Zhou, and F. Liu, “SpotDNN:
Provisioning Spot Instances for Predictable Distributed DNN Training
in the Cloud,” in Proc. of IEEE IWQoS, Jun. 2023, pp. 1–10.

[6] F. Xu, J. Xu, J. Chen, L. Chen, R. Shang et al., “iGniter: Interference-
Aware GPU Resource Provisioning for Predictable DNN Inference in the
Cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 34,
no. 3, pp. 812–827, 2022.

[7] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee et al.,
“Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning
Workloads,” in Proc. of USENIX OSDI, Nov. 2020, pp. 481–498.

[8] Z. Mo, H. Xu, and C. Xu, “Heet: Accelerating Elastic Training in
Heterogeneous Deep Learning Clusters,” in Proc. of ACM ASPLOS, Apr.
2024, pp. 499–513.

[9] A. Sultana, F. Xu, X. Yuan, L. Chen, and N.-F. Tzeng, “Hadar:
Heterogeneity-Aware Optimization-Based Online Scheduling for Deep
Learning Cluster,” in Proc. of IEEE IPDPS, 2024, pp. 681–691.

[10] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing Efficiency and Fairness in Heterogeneous GPU Clusters for
Deep Learning,” in Proc. of ACM EuroSys, Apr. 2020, pp. 1–16.

[11] Z. Mo, H. Xu, and W. C. Lau, “Optimal Resource Efficiency with Fair-
ness in Heterogeneous GPU Clusters,” arXiv preprint arXiv:2403.18545,
2024.

[12] Q. Wang, F. Wang, and X. Zheng, “Hops: Fine-grained Heterogeneous
Sensing, Efficient and Fair Deep Learning Cluster Scheduling System,”
in Proc. of ACM SoCC, Nov. 2024, pp. 1–17.

[13] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λDNN: Achieving
Predictable Distributed DNN Training With Serverless Architectures,”
IEEE Transactions on Computers, vol. 71, no. 2, pp. 450–463, 2021.

[14] Y. Duan, Z. Lai, S. Li, W. Liu, K. Ge et al., “HPH: Hybrid Parallelism on
Heterogeneous Clusters for Accelerating Large-scale DNNs Training,”
in Proc. of IEEE CLUSTER, Oct. 2022, pp. 313–323.

[15] X. Jia, L. Jiang, A. Wang, W. Xiao, Z. Shi et al., “Whale: Efficient
Giant Model Training over Heterogeneous GPUs,” in Proc. of USENIX
ATC, Jul. 2022, pp. 673–688.

[16] T. Um, B. Oh, M. Kang, W.-Y. Lee, G. Kim et al., “Metis: Fast
Automatic Distributed Training on Heterogeneous GPUs,” in Proc. of
USENIX ATC, Jul. 2024, pp. 563–578.

[17] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis et al., “PyTorch
Distributed: Experiences on Accelerating Data Parallel Training,” Pro-
ceedings of the VLDB Endowment, vol. 13, no. 12, 2020.

[18] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary et al.,
“Efficient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM,” in Proc. of IEEE SC, Nov. 2021, pp. 1–15.

[19] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen et al., “GPipe:
Efficient Training of Giant Neural Networks using Pipeline Parallelism,”
Advances in Neural Information Processing Systems, vol. 32, pp. 1–10,
2019.

[20] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur
et al., “PipeDream: Generalized Pipeline Parallelism for DNN Training,”
in Proc. of ACM SOSP, Nov. 2019, pp. 1–15.

[21] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei
et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models,” arXiv
preprint arXiv:2307.09288, 2023.

[22] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin et al.
(2023) Stanford Alpaca: An Instruction-Following LLaMA Model. https:
//github.com/tatsu-lab/stanford alpaca.

[23] L. Luo, P. West, P. Patel, A. Krishnamurthy, and L. Ceze, “SRIFTY:
Swift and Thrifty Distributed Neural Network Training on the Cloud,”
in Proc. of MLSys, Aug. 2022, pp. 833–847.

[24] R. M. Karp, Reducibility among Combinatorial Problems. Springer,
2010.

[25] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation in
large transformer models,” Proc. of MLSys, vol. 5, pp. 341–353, 2023.

[26] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, and otheres, “Beware of
Fragmentation: Scheduling GPU-Sharing Workloads with Fragmentation
Gradient Descent,” in Proc. of USENIX ATC, Jul. 2023, pp. 995–1008.

[27] W. Liu, Z. Lai, S. Li, Y. Duan et al., “AutoPipe: A Fast Pipeline Paral-
lelism Approach with Balanced Partitioning and Micro-batch Slicing,”
in Proc. of IEEE CLUSTER, Oct. 2022, pp. 301–312.

[28] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed: System
Optimizations Enable Training Deep Learning Models with Over 100
Billion Parameters,” in Proc. of ACM KDD, Aug. 2020, pp. 3505–3506.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer et al., “Pytorch: An Imperative
Style, High-performance Deep Learning Library,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[30] C. Li. (2023) LLM-Analysis: Latency and Memory Analysis of Trans-
former Models for Training and Inference. https://github.com/cli99/llm-
analysis.

[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAI blog,
vol. 1, no. 8, pp. 1–24, 2019.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al.,
“Attention Is All You Need,” Advances in Neural Information Processing
Systems, vol. 30, pp. 1–11, 2017.

[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai et al.,
“An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale,” in Proc. of ICLR, Oct. 2020.

[34] S. Jayaram Subramanya, D. Arfeen, S. Lin, A. Qiao, Z. Jia, and G. R.
Ganger, “Sia: Heterogeneity-Aware, Goodput-Optimized ML-Cluster
Scheduling,” in Proc. of ACM SOSP, Oct. 2023, pp. 642–657.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. of IEEE CVPR,
Aug. 2009, pp. 248–255.

[36] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho et al.,
“Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep
Learning,” in Proc. of USENIX OSDI, Jul. 2021, pp. 1–18.

[37] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An Efficient
Dynamic Resource Scheduler for Deep Learning Clusters,” in Proc. of
ACM EuroSys, Apr. 2018, pp. 1–14.

[38] X. Miao, Y. Wang, Y. Jiang, C. Shi, X. Nie et al., “Galvatron:
Efficient Transformer Training over Multiple GPUs Using Automatic
Parallelism,” Proceedings of the VLDB Endowment, vol. 16, no. 3, pp.
470–479, 2022.

[39] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory
Optimizations Toward Training Trillion Parameter Models,” in Proc. of
IEEE SC, Nov. 2020, pp. 1–16.

[40] S. Zhang, L. Diao, C. Wu, Z. Cao et al., “HAP: SPMD DNN Training
on Heterogeneous GPU Clusters with Automated Program Synthesis,”
in Proc. of ACM EuroSys, Apr. 2024, pp. 524–541.

[41] Z. Liu, S. Cheng, H. Zhou, and Y. You, “Hanayo: Harnessing Wave-like
Pipeline Parallelism for Enhanced Large Model Training Efficiency,” in
Proc. of IEEE SC, Nov. 2023, pp. 1–13.

[42] S. Li and T. Hoefler, “Chimera: Efficiently Training Large-Scale Neural
Networks with Bidirectional Pipelines,” in Proc. of IEEE SC, Nov. 2021,
pp. 1–14.

[43] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng et al., “DAPPLE:
A Pipelined Data Parallel Approach for Training Large Models,” in
Proc. of ACM PPoPP, Feb. 2021, pp. 431–445.

[44] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen et al., “Alpa: Automating
Inter-and Intra-Operator Parallelism for Distributed Deep Learning,” in
Proc. of USENIX OSDI, Jul. 2022, pp. 559–578.

[45] X. Zhang, H. Zhao, W. Xiao, X. Jia, F. Xu et al., “Rubick: Exploiting
job reconfigurability for deep learning cluster scheduling,” arXiv preprint
arXiv:2408.08586, 2024.

10

