
Towards Federated Inference: An Online Model
Ensemble Framework for Cooperative Edge AI

Zhi Zhou§ Jiajie Xie§ Mengke Huang§ Tao Ouyang§ Fangming Liu¶ Xu Chen§
§Key Laboratory of Machine Intelligence and Advanced Computing,

School of Computer Science and Engineering, Sun Yat-Sen University, China
¶Huazhong University of Science and Technology, and Peng Cheng Laboratory

Abstract—Edge inference leverages edge computing devices for
the last mile delivery of artificial intelligence (AI) services. To
meet the latency requirements while overcoming the resource
limitations, edge inference systems deploy lightweight — typi-
cally compressed — DNN models. However, due to data drift
during deployment, these compressed edge models often fail to
deliver satisfactory and stable inference accuracy. To address
this issue, we propose a novel edge inference serving paradigm
called Federated Inference. This approach, based on ensemble
learning, groups multiple edge workers to form an ensemble,
enhancing inference accuracy. A key challenge in Federated
Inference is maximizing ensemble accuracy while adhering to
resource budgets and Service Level Objectives (SLOs). The
dynamic nature of the environment and the NP-hardness of the
optimization problem add to the complexity. To address these
challenges, we propose an online model ensemble framework
that integrates online learning with approximate optimization,
offering a theoretically rigorous and computationally efficient
solution. We have implemented a prototype of our framework
and, through extensive test-bed evaluations, demonstrate that it
improves average inference accuracy by 12% ∼ 80%.

I. INTRODUCTION

As a dominant force in AI development, the landscape of
big data has radically shifted from centralized warehouses
to pervasive compute nodes like geo-distributed cloud/edge
data centers and mobile/IoT devices. This decentralization
necessitates extracting knowledge from decentralized datasets
without shipping private and large-volume raw data. To this
end, federated learning (FL) has emerged as a promising
solution, enabling collaborative training of AI models from
decentralized data [1]. In FL, each node trains a local model
on its own data, and a central server aggregates these local
updates to create a global model. By exchanging only model
weights instead of raw data, FL enhances both privacy preser-
vation and communication efficiency in AI model training.
Thanks to these advantages, federated learning is poised to
fully unleash the potential of pervasive decentralized big data.

Currently, FL has found realistic applications ranging from
recommendation systems (e.g., Google Keyboard) [2] to smart

This work was supported in part by the National Science Foundation
of China under Grants 62172454 and 62432004, the Guangdong Basic
and Applied Basic Research Foundation under Grant 2023B1515020120,
the Major Key Project of PCL under Grants PCL2024A06 and
PCL2022A05, and the Shenzhen Science and Technology Program under
Grant RCJC20231211085918010. The corresponding author is Xu Chen
(chenxu35@mail.sysu.edu.cn).

homes (e.g., Amazon Alexa) and voice assistants (e.g., Apple
Siri). While recognizing these initial successes, it should be
noted that FL has not yet deeply penetrated some privacy-
sensitive areas, such as credit scoring, finance, and healthcare.
Although FL significantly improves privacy over traditional
centralized approaches, it is not completely immune to privacy
concerns. Recent research has shown that it is possible to
reconstruct raw training data from model updates in certain
scenarios, especially if the model or update mechanism is not
properly secured [3]. Additionally, the central server may not
always be trusted to correctly aggregate updates and avoid
intentional or unintentional data leaks [4]. Due to these privacy
concerns, some privacy-sensitive organizations, such as banks
and hospitals, are reluctant to share their model updates with
a third-party central server [5].

Instead, for privacy-sensitive application domains such as
finance and healthcare, ensemble learning [6] is commonly
used to harness the power of private models from various
organizations. Unlike federated learning, where clients train
the same model and a central server aggregates the model
updates, ensemble learning allows each client to maintain a
private model. The central server aggregates the inference
requests or predictions of these diverse models to generate
the final predictions. By doing this, ensemble learning can ef-
fectively handle changes and uncertainties in data distribution
while maintaining high performance. Additionally, ensemble
learning does not require each client to share their model
weights, further improving privacy protection. Therefore, en-
semble learning is widely applied in these fields to enhance
model reliability and privacy protection. Although distributing
inference requests to multiple clients might raise privacy
concerns, techniques like data washing, anonymization, en-
cryption, and confidential computing (e.g., Trusted Execution
Environment, TEE) [5] can safeguard input data privacy. For
instance, removing personal information from medical records
and bills ensures user privacy is protected and not disclosed.

Ensemble learning is naturally suitable for the edge environ-
ment for two primary reasons. First, the significant variations
in memory capacity among edge devices make it challenging
to train models of the same size across these heterogeneous
devices. Although advanced FL algorithms can effectively
aggregate updates from models of diverse sizes, this often
impacts model accuracy and convergence [7]. In contrast, en-

semble learning inherently accommodates heterogeneous mod-
els. Second, due to the resource constraints of edge devices,
deployed models are typically compressed, leading to accuracy
loss. Additionally, the dynamic nature of edge environments
means that the real-time distribution of inference data can
deviate from the training data (i.e., data drift), exacerbating the
accuracy loss of compressed models [8]. Ensemble learning
mitigates this issue by combining predictions from multiple
individual edge models, thereby improving inference accuracy
and counteracting the effects of data drift.

②

“The final result is Cat!”

cat 0.85
dog 0.15

cat 0.44
dog 0.56

cat 0.69
dog 0.31

③ Aggregating inference result
Cat: 2 Dog: 1

① Distributing
inference request

①

② Inference with local model

②

②

Fig. 1: An illustration of federated inference at the edge

In this paper, we address the challenge of using ensemble
learning to integrate predictions from multiple edge models
to handle data drift in cooperative edge AI, as shown in Fig.
1. This scenario is also known as “Federated Inference” [9]
or “Federated Prediction Serving” [5]. Similar to federated
learning, dynamic participant selection [10], [11] is a critical
issue in federated inference. This is particularly important for
latency-sensitive applications like fraud detection in finance,
where strict service-level objectives (SLOs) on latency are
common. Additionally, due to resource constraints at the edge,
the cost of federated inference must also be controlled. Given
the dynamically arriving inference requests, it is crucial to
balance accuracy, latency, and cost through dynamic partici-
pant selection. However, maximizing ensemble accuracy under
cost and SLO constraints presents two practical challenges.
First, in an online setting with dynamic data drift and varying
communication/computation latencies, the inference accuracy
and latency of each participant remain unknown until inference
is complete. Second, even in an offline setting where these
parameters are predefined, the problem is NP-hard, as it can
be reduced to the classical Knapsack problem.

To address these challenges, we propose an online model
ensemble framework that combines the strengths of online
bandit learning with approximate optimization techniques.
Our approach starts with online bandit learning, incorporat-
ing performance metrics of model ensembles to dynamically
select participants on-the-fly. With the learned accuracy and
latency parameters, we apply a lightweight and lazy knapsack
algorithm to tackle the underlying combinatorial optimiza-
tion problem and address its NP-hardness. Specifically, we
build upon the combinatorial variant of multi-armed bandits
(MAB) [12] to introduce SOEE, which adapts to request
distributions and model performances over time, optimizing
decisions as the system operates. Additionally, we exploit the

monotonicity and submodularity of the one-slot combinatorial
optimization problem, devising a lightweight algorithm, LGEE,
which offers both near-optimal and computationally efficient
solutions. By integrating SOEE and LGEE, our online model
ensemble framework maximizes inference accuracy with sub-
linear regret. Furthermore, we have implemented a prototype
of our framework and, through extensive test-bed evaluations,
demonstrate that it improves average inference accuracy by
12% ∼ 80%.

II. SYSTEM MODEL AND PROBLEM FORMULATION FOR
FEDERATED INFERENCE

A. System Overview

As shown in Fig. 1, we consider a federated inference
paradigm in which a set of edge workers, denoted by M =
{1, 2, · · · ,M}, each possess a private DNN model locally
trained for specific tasks such as disease diagnosis, credit
risk analysis, and fraud detection. The edge workers are
heterogeneous, with local models trained on different datasets,
resulting in diverse inference accuracy, latency, and resource
demands. To coordinate these heterogeneous edge workers, an
edge server is designated as the master node to distribute in-
ference requests to the edge nodes and collect the independent
inference results to perform an ensemble, ultimately outputting
a high-accuracy inference result.

Without loss of generality, we assume that inference re-
quests arrive periodically. To characterize this dynamic, we
consider the system operates in a time-slotted fashion within
a large time span of T = {1, 2, · · · , T}. At each time slot
t ∈ T , the edge server first receives an inference request,
which can originate from one of the edge workers or an
external user device. The edge server then selects a subset
of edge workers to participate in the federated inference
and broadcasts the inference request to them. Each chosen
participant performs local inference using its private model and
uploads the inference result to the edge server. After collecting
these independent inference results, the edge server aggregates
them using ensemble algorithms such as majority voting [13]
(e.g., the class label that receives the most votes from the edge
workers is selected as the final prediction) and weighted voting
[14], and outputs a high-accuracy inference result. For the
privacy of the input data of the inference request, as we have
discussed in Sec. I, it can be well protected by means such
as data washing, anonymization, encryption, and confidential
computing (e.g., Trusted Execution Environment, TEE) [5].

B. Entropy-Based Accuracy Model

For each edge worker m ∈ M, due to the data drift [8],
[15], the inference accuracy may vary over time. Thus, we
denote the inference accuracy of its private model as am,t

at time slot t ∈ T , we also use a decision variable xm,t

to denote whether this edge work is selected (xm,t = 1) to
participate into the federated inference or not (xm,t = 0)
at time slot t ∈ T . When conducting federated inference,
one of our primary objective is to maximize the accuracy
of the final prediction after ensemble. However, given the

individual accuracy of each selected model, the final prediction
accuracy after ensemble cannot be readily model as a closed-
form function of am,t and xm,t. To address this issue, in this
work we adopt a combination of individual model accuracy
and model diversity to depict the ensemble performance. The
rationale of this rule is intuitive and widely-recognized [16]
[17] [18]: the selected models should be as accurate as possible
to avoid degrading the ensemble accuracy, while also being as
diverse as possible to adapt to various data distributions and
reduce covariance1.

To evaluate the individual model accuracy, we consider
the summation item

∑
m∈M am,txm,t. Intuitively, this term

represents the “accurate” part of the ensemble at time slot t. If
the ensemble contains more accurate enough individual model,
the performance of the ensemble is also expected to be good.
Furthermore, to evaluate the ensemble diversity, we adopt the
system-wise joint entropy E(St) to capture the joint entropy
of the currently selected participant over the past time slot
[1, 2, · · · , t− 1], where St = {m|m ∈ M, xm,t = 1} denotes
the set of selected participants of the federated inference at
time slot t. The definition of the entropy E(St), originally
proposed by Shannon [19], is in consistent with recent litera-
tures on ensemble learning [20] [21] [22] [23]:

E(St) = −
∑
St

p(zt) log p(zt), (1)

where zt ∈ {0, 1}|St| is the result vector of the selected
participants at time slot t, and zm,t = 1 if edge worker m’s
inference is correct at time slot t, and zm,t = 0 if incorrect;
p(zt) is the frequency of zt over the time slot [1, 2, · · · , t−1].
In our problem, note that E(St) captures the model diversity
over the past slots [1, 2, · · · , t − 1], for the participants St
selected at time slot t. While the expression of the joint
entropy is complicated and not intuitive, latter in Sec. III. D
we will show that this expression holds a nice property of
submodularity, which facilitate the algorithm design.

Request No. Worker 1 Worker 2 Worker 3

I 0 1 1
II 0 1 0
III 1 1 0
IV 0 1 1
V 0 1 0

TABLE I: An example of joint entropy

For example, assuming there are 3 workers, and workers
have finished 5 requests. The results are shown in Table. I.
Then at the beginning of time slot 6, the entropy of this
ensemble is E(S6) = −(0.2 ∗ log 0.2 + 0.4 ∗ log 0.4 + 0.4 ∗
log 0.4) ≈ 0.458, as result [0, 1, 1] and [0, 1, 0] appear twice
of five and result [1, 1, 0] appears once of five. Intuitively,
for a given ensemble, a smaller joint entropy indicates that
its historical results are less diverse; in other words, the

1Note that this decision rule is orthogonal to the specific fusion rule for
inference results, such as majority voting [13] and weighted voting [14].

models within the ensemble are more likely to make the
same mistakes. Consequently, we consider such an ensemble
to lack sufficient variety. Conversely, a larger joint entropy
signifies greater diversity within the ensemble. To improve the
generalization ability of the ensemble, it is essential not only
to select high-performing models but also to ensure they are
as diverse as possible.

By combining the above two part, at each time slot t ∈ T ,
we measure the accuracy of the selected participant by:

F (St) =
∑

m∈M
am,txm,t + λE(St), (2)

where λ is the trade-off parameter between individual accuracy
and ensemble diversity.

C. Cost and SLO Model

In practice, when selecting edge workers to participate into
the federated inference, the selection is typically constrained
by the cost and performance SLO. Specifically, due to the
computational intensity of the model inference, edge workers
will consume a large amount of computing resources as well
as energy. Therefore, we set a cost budget C for each time
slot. Furthermore, for each inference request, we denote each
worker m’s inference cost as cm. Thus, at each time slot t,
we can have the following cost constraint:

∑M
m=1 cmxm,t ≤

C,∀t ∈ T .
On the other hand, consider the final prediction results of the

federated inference is typically consumed by some real time
business such as credit risk analysis and fraud detection, thus
the process is enforced with stringent Service Level Objective
(SLO) in terms of total latency. Here we use dm,t each edge
worker m’s latency which include the transmission latency of
the input data of the request, and the inference latency of the
local model. Note that in practice, due to the fluctuation of
the network bandwidth as well as the resource competition at
each edge node, dm,t typically fluctuates over time, and can
be only measured after the completion of the inference. By
denoting the SLO as D, we have the following SLO constraint:
dm,txm,t ≤ D,∀m ∈M,∀t ∈ T .

D. Problem Formulation

In this paper, we aim to develop a cost-efficient online
model ensemble framework to facilitate federated inference,
towards the goal of maximizing the long-term inference ac-
curacy under cost and SLO constraints. This problem can
be formally cast as the following integer linear programming
(ILP) P1.

P1 :maximize
T∑

t=1

(
M∑

m=1

am,txm,t + λE(St)

)
, (3)

subject to
M∑

m=1

cmxm,t ≤ C, ∀t ∈ T , (3a)

dm,txm,t ≤ D,∀m ∈M,∀t ∈ T , (3b)
xm,t ∈ {0, 1},∀m ∈M,∀t ∈ T , (3c)
St = {m|m ∈M, xm,t = 1},∀t ∈ T . (4d)

Challenge Analysis: Solving Problem P1 is far from trivial
due to the following dual challenges. First, the problem
involves uncertain/stochastic information am,t and dm,t, which
cannot be accurately obtained when making the ensemble
decisions at the beginning of each time slot t. For instance,
due to the fluctuation of network bandwidth and resource
competition at each edge node, dm,t typically varies over
time and can only be measured after the completion of the
inference. This represents an online learning setup, requiring
us to learn the parameters dm,t on-the-fly. Second, even with
an offline setup where dm,t is known a priori at the beginning
of each time slot t, the corresponding optimization problem
remains NP-hard, as it can be reduced from the classical
knapsack problem.

III. ONLINE OPTIMIZATION FRAMEWORK DESIGN AND
ANALYSIS

In response to the above dual challenges, in this section we
design an online optimization framework by fusing the power
of MAB for online learning and sub-modular optimization for
approximate optimization.

A. Framework Overview

Fig. 2 illustrates the overview of the proposed online
optimization framework, it consists of three components:
Transformation module, Learning module and Optimization
module. The Transformation module first reformulates the
SLO constraint into the objective function, facilitating the
application of MAB. Then, the Learning module — an online
ensemble creation algorithm based on Combinatorial MAB
— enhances model ensemble performance by dynamically
learning both the performance of the edge workers and the
data distribution of the arriving requests, without any prior
knowledge of uncertain data. Finally, the Optimization mod-
ule, with the learned parameters of the Learning module, it
solves the NP-hard problem via the computationally-efficient
sub-modular technique.

LearningTransformation

𝑷𝑷𝟏𝟏

Objective Reformulation
with SLO-constraint

𝑷𝑷𝟐𝟐

Optimization

𝑻𝑻𝒎𝒎, �𝑼𝑼𝒎𝒎
𝒂𝒂 , �𝑼𝑼𝒎𝒎

𝒅𝒅 ,𝑹𝑹𝒕𝒕𝒎𝒎

𝑬𝑬𝒕𝒕

𝑷𝑷𝟑𝟑

𝑬𝑬𝒕𝒕

SOEE

𝒕𝒕 ∈ [𝟏𝟏,𝑴𝑴]

𝒕𝒕 ∈ [𝑴𝑴+ 𝟏𝟏,𝑻𝑻]

Initial Ensemble
Sampling

Lazy Evaluation-based Greedy
Ensemble Creation LGEE

Action &
Observation &

Update:
𝑻𝑻𝒎𝒎, �𝑼𝑼𝒎𝒎

𝒂𝒂 , �𝑼𝑼𝒎𝒎
𝒅𝒅 ,𝑹𝑹𝒕𝒕𝒎𝒎

MAB-based Per-slot
Decomposition

Each time
slot t

Fig. 2: The algorithm framework overview

B. Problem Transformation

While MAB have been proven to be powerful in solving se-
quential decision-making problem, it is not directly applicable
to our problem P1. This is because that if we simply view a
subset of edge workers as an arm, the decision space will be
overwhelmingly large with an size of 2M , making it difficult
to balance the exploration and exploitation of each arm, and
causing MAB fail to converge. To deal with this, we adopt a

variant of MAB, called Combinatorial MAB (CMAB) [24] to
transform combinatorial Problem P1.

Another challenge when applying MAB is incurred by
Constraint (3b). As we can see with stochastic latency pa-
rameter dm,t, Constraint (3b) might be violated dynamically.
Since dm,t only appears in constraints, it is difficult for MAB
to learn its distribution so as to decrease the probability
of SLO-violation. To address this problem, we integrate the
accuracy and latency of each edge workers into an unified
term um,t = Pr{dm,t ≤ D}∗am,t, i.e., the effective inference
accuracy um,t of the worker m, which is product of the
actual inference accuracy am,t multiplied by the probability of
finishing the inference within the SLO D. By introducing um,t,
we can learn am,t and dm,t simultaneously. We also establish
hard barriers to preclude any violation of this constraint
during the real-time operation. Specifically, when the latency
has reached the SLO constraint, SOEE prevents subsequent
slower workers to join the ensemble even though it is selected
by the algorithm.

By introducing the effective inference accuracy term um,t,
we incorporate the SLO constraint into the objective function,
this enable us to transform the original problem P1 into an
online learning Combinatorial MAB as follows.

P2 :maximize
T∑

t=1

(
M∑

m=1

um,txm,t + λE(St)

)
, (4)

subject to
M∑

m=1

cmxm,t ≤ C, ∀t ∈ T , (4a)

xm,t ∈ {0, 1},∀m ∈M,∀t ∈ T , (4b)
St = {m|m ∈M, xm,t = 1},∀t ∈ T . (4c)

C. Stochastic Online Edge Ensemble via CMAB

Now we are ready to present our combinatorial multi-armed
bandit algorithm for online participant selection for federated
inference, i.e., SOEE as shown in Algorithm 1.

Throughout the algorithm, we maintain the following pa-
rameters for each worker m ∈ M: (i) A counter vector Tm

recording the number of times worker m has been selected; (ii)
the empirical distribution Ûa

m of worker m’s accuracy am,t,
represented by its Cumulative Distribution Function (CDF)
P̂ a
m; (iii) the empirical distribution Ûd

m of worker m’s inference
latency dm,t, represented by its CDF P̂ d

m; (iv) the empirical
distribution Ûm of worker m’s transformed inference latency
dm,t, represented by its CDF P̂m; and (v) An inference result
matrix R ∈ {0, 1}M×T , with element Rm

t representing the
inference result of worker m in time slot t (1 for correct and
0 for incorrect), which is used to calculate the joint entropy.

Line 1-8 is the initialization phase (or pure exploration
phrase) of SOEE, where the algorithm randomly selects an
ensemble that includes each worker m to fully explore their
performance. In this phase, SOEE initializes Tm, P̂ a

m, P̂ d
m for

each worker m based on their inference results. The matrix R
is also recorded in this phase.

Line 9-16 is the exploration and exploitation phase of
SOEE. Specifically, Line 12 estimates the model accuracy

Algorithm 1: Stochastic Online Edge Ensemble
(SOEE)

1 t = 0;
2 // Initialization
3 for m = 1 to M do
4 t = t+ 1;
5 Select an arbitrary ensemble St that contains

worker m;
6 Receive the inference results, update Tn, P̂ a

n and
P̂ d
n of each n ∈ St;

7 update R;
8 end
9 // Exploration & Exploitation

10 for t = M + 1 to T do
11 t = t+ 1;
12 For each m ∈M, let Um be the distribution of

accuracy whose CDF Pm is updated by (5);
13 Select the model ensemble St ← LGEE(U,R);
14 Receive the rewards, update Tn and P̂ a

n and P̂ d
n of

each n ∈ St;
15 Update R;
16 end

distribution P a
m of worker m using Eq. (5), which incorporates

the empirical distribution P̂ a
m and a padding term

√
β ln t
Tm

to
balance exploration and exploitation. Specifically, when Tm

is small, worker m is explored less frequently, increasing its
selection probability. Once worker m has been sufficiently
explored, its selection probability is primarily influenced by
its inference accuracy.

Pm(x) =

max

{
P̂m(x)−

√
β ln t

Tm
, 0

}
, 0 ≤ x < 1;

1, x = 1.
(5)

Then the problem is reduced into line 13, where SOEE calls
LGEE to solve the underlying optimization problem for each
time slot t. The per-slot optimization problem P3 of time slot t
is presented below. The details of LGEE is presented in Section
4.5.

P3 :maximize

(
M∑

m=1

um,txm,t + λE(St)

)
, (6)

subject to
M∑

m=1

cmxm,t ≤ C, (6a)

xm,t ∈ {0, 1},∀m ∈M, (6b)
St = {m|m ∈M, xm,t = 1},∀t ∈ T . (6c)

The solution to Problem P3 will generate the ensemble for
time slot t. Then, SOEE will use the selected edge workers
to complete the inference task and obtain rewards based on
their inference results. Specifically, if a worker infers correctly

within the SLO constraint, its reward is 1; if the worker
violates the SLO constraint or infers incorrectly, its reward
is 0. This approach, where rewards are obtained in such a
manner, is known as semi-feedback bandits. In Lines 14 and
15, SOEE updates the maintained parameters.

D. Approximated Algorithm for the Per-Slot Problem

For the per-slot problem P3, while it is NP-hard (as it can
be reduced from the classical knapsack problem), it poses two
nice properties which enables us to design efficient approxi-
mation algorithm. Specifically, the first property is known as
Monotonicity: Adding a new worker to an existing ensemble
does not worsen the objective function of P3 (since it neither
decreases the summed accuracy nor the joint entropy). The
second property is Submodularity, also known as diminishing
returns, where the marginal gain of adding a new worker
to an ensemble either decreases or remains constant as the
ensemble size increases. In our scenario, the linear summation
of accuracy is modular, while the entropy function is typically
sub-modular [20].

Given the above two properties, the classical sub-modular
method [25] would select the workers in a greedy manner:
First calculate the ratio of the marginal reward value and cost
of the workers, then add workers into the ensemble based on
the ratio from largest to smallest until the cost constraint is
violated, and finally return the best decision between the above
ensemble and the best single worker. While this method have
good theoretical and empirical performance [26], it does not
scale well due to its quadratic time complexity.

In this paper, we adopt an accelerated variant of the sub-
modular method. Specifically, we introduce LGEE, which
leverages the benefits of lazy evaluation [27], as shown in
Algorithm 2. The key idea behind lazy evaluation is that as
the size of an ensemble increases, the marginal gain from
adding the same worker to the ensemble decreases. Therefore,
in each round, we do not compute the marginal gain for every
candidate worker but instead check if the old best remains
the new best. At each round, LGEE also chooses the worker
with the highest marginal gain-cost ratio (i.e., argmaxi∈M′

δi
ci

in Line 10). However, instead of directly updating the marginal
gain for every worker, LGEE first marks each worker as
dirty, indicating that their marginal gain records are from the
previous round (lines 5-8). Next, LGEE sorts the workers by
their marginal gain-cost ratio in non-decreasing order, selects
the worker with the highest ratio, and updates its marginal gain
based on the current worker ensemble if the worker is dirty
(lines 9-19). Once updated, the worker is marked as clean.
A round terminates when we encounter the first clean worker
(lines 11-14).

In many cases, the updated marginal gain-cost value for the
selected dirty worker remains the highest among all workers.
When this occurs, LGEE directly selects this worker without
recalculating the marginal gains of all workers. In the best
case, LGEE has a time complexity of O(M). While in the
average case, the time complexity of LGEE is O(M logM),
where M is the number of edge workers.

Algorithm 2: Lazy Greedy Edge Ensemble (LGEE)

1 Initialize S = ∅, B = Ct, M′ =M;
2 foreach m ∈M do
3 δm = +∞;
4 end
5 while |M′| > 0 do
6 for i ∈M′ do
7 fi ← false;
8 end
9 while true do

10 i∗ = argmaxi∈M′
δi
ci

;
11 if fi∗ then
12 if c(S ∪ {i∗}) ≤ B then
13 S = S ∪ {i∗};
14 end
15 M′ =M′ \ {i∗};
16 Break;
17 end
18 else
19 δi∗ = F (S ∪ {i∗})− F (S);
20 fi∗ ← true;
21 end
22 end
23 end
24 m∗ ← argmaxm∈M F (m);
25 return argmax{F (m∗), F (S)};

E. Performance Analysis

In this subsection, we conduct performance analysis of the
presented online optimization framework, including the regret
of SOEE and the approximation ratio of LGEE.

Theorem 1. LGEE achieves an approximation ratio of α,
where α is the root of

(1− α) ln(1− α) + (2− 1
e)(1− 2α) = 0,

and satisfies α > 0.405.
The approximation ratio of 0.405 means that the solution

value of LGEE is no less than 0.405 times the optimum. Based
on this ratio α, we further drive the regret bound of SOEE.

Theorem 2. α−approximation regret bound: The total
regret achieved by SOEE over the finite time slots of T is
bounded:

93FmaxM
√
T lnT +

(
π2

3 + 1
)
αFmaxM ,

where Fmax is the upper bound of the objective function F
in Eq. (2), M is the number of edge workers.
SOEE achieves a O(

√
T log(T)) regret bound, which in-

creases sub-linearly and has a derivative approaching zero in
the limit. This implies that the difference between the objective
value and the optimal value of the long-term optimization
problem will converge as the number of time slots increases.

Proof sketch: To demonstrate the approximation ratio of
LGEE, we can show that LGEE accelerates the traditional
submodular method [26] while producing identical outputs.

For the regret bound, we integrate the approximation ratio
of LGEE into the regret analysis of the MAB method which
exactly solves the per-slot problem [12].

IV. PROTOTYPE IMPLEMENTATION

We implemented a prototype of our proposed federated in-
ference serving system, as shown in Fig. 3. For the edge server,
we used an Intel NUC11 PC to provide inference services.
For edge inference workers, we employed two settings: (1)
nine Firefly-RK3399 development platforms as homogeneous
edge workers, and (2) three Raspberry Pi 3B Plus, three
Nvidia Jetson AGX Orin, and three Firefly-RK3399 develop-
ment platforms as heterogeneous edge workers. The hardware
specifications are detailed in Table II. Docker technology [28]
was used for fine-grained control of hardware attributes such
as CPU and memory to scale system performance.

The edge server and workers were connected via 5GHz
Wi-Fi. TCP socket connections between the edge server and
workers were implemented using the ZeroMQ protocol [29],
a widely adopted message queue for prototype testing. The
listening sockets of the edge server were implemented using
multi-threading techniques to monitor different workers’ re-
sults in real-time. The overall system was implemented using
Python3, with more than 2200 LoCs.

The implemented prototype consists of four modules: the
SOEE Decision-making Module, the Communication Module,
the Request Dispatching Module, and the Post-processing
Module. The system workflow is as follows: First, inference
requests are sent to the edge server. In the experimental
scenario, inference requests are generated by the system from
datasets based on some certain predetermined distributions.
In real-world scenarios, inference requests are generated by
user devices and transmitted to the edge server through the
network. The edge server then receives these requests, calls the
proposed SOEE algorithm to make the edge ensemble decision.
Then, inference requests, also known as inference tasks, are
distributed to the selected workers via Wi-Fi network through
Zero-MQ. Edge workers keep active by running listening
threads for message queues. Upon receiving the task, each
edge worker falls into callback state and calls its own inference
module to perform individual inference. Finally, once the
inference is complete, the selected workers send messages to
inform the edge server of the inference results and its corre-
sponding inference latency. The edge server collects workers’
inference results and latency, calls the Post-processing Module
to update necessary parameters, and waits for the next round
of inference requests to arrive.

V. PERFORMANCE EVALUATION

A. Experiment Setup

DNN Models: We adopt three model families in our
experiments: LeNet [30], VGG [31], and ResNet [32]. For
homogeneous edge workers, i.e., the nine Firefly-RK3399
development platforms, we divide them into three groups with
different inference quality levels, and train LeNet and VGG
each in three different sizes, as shown in Table III. For the

Device CPU Memory Operating System

Intel NUC 11 8-core Intel Core i5-1135G7 CPU, 2.40GHz × 4, 2.42GHz × 4 32GB Windows 11

Firefly-RK3399 6-core aarch64 CPU, 1.80GHz Cortex A72 × 2, 1.42GHz Cortex A53 × 4 4GB Ubuntu 18.04

Raspberry Pi 3B Plus 4-core ARMv7l CPU, 1.40GHz Cortex A73 × 4 1GB Ubuntu 22.04

Nvidia Jetson AGX Orin 12-core ARMv8l CPU, 2.20GHz Cortex A78 × 12 32GB Ubuntu 20.04

TABLE II: Specification of the hardware test-bed

SOEE Decision-making Module (via Python)

Edge
Ensemble
Decision

MAB-based
Worker

Performance
Estimation

LGEE
Solving
Process

Edge Server
Intel NUC 11

Communication Module (via Python)

Zero MQ

Inference Requests (via Wi-Fi)

Request Dispatching Module (via Python)

Edge Workers
Homogeneous: Firefly RK-3399 * N
Heterogeneous: Raspberry Pi 3 * M,
Firefly RK-3399 * M, Jetson Orin *M

Post-processing Module (via Python)

via Wi-Fi

Individual Inference Results (via Wi-Fi)

Result
Ensemble

Reward
Feedback

Parameter
Updating

Inference Requests

Fig. 3: System architecture of the prototype

1

2

3

4

Fig. 4: Configurations of the test-bed: (1) Firefly-RK3399s;
(2) Jetson Orins; (3) Raspberry Pis; (4) Intel NUC.

heterogeneous edge workers, we deploy an identical network
architecture, ResNet50, as the inference serving network for
different devices.

Datasets: We adopt three datasets for experiments. Explic-
itly, MNIST [33] and CIFAR-10 [34] are adopted to train
and evaluate LeNet, while CIFAR-100 [34] is adopted to
train and evaluate VGG and ResNet. In order to simulate
different inference quality levels, the number and type of
training classes of the models vary from group to group and
from worker to worker in the same group.

Model Group LeNet VGG ResNet

SMALL 2×CONV+3×FC (70K) VGG13 ResNet50
MEDIUM 3×CONV+3×FC (336K) VGG16 ResNet50
LARGE 3×CONV+3×FC (429K) VGG19 ResNet50

TABLE III: Model sizes of different groups

Other Parameters: We consider T = 500 time slots. To
simulate the data drift, we change the data distribution of the
inference request (i.e., input image) every 50 time slots. The
cost coefficient cm of each edge worker m can be regarded
as relative with the size of the serving model. The larger the
model is, the more system resources (e.g., memory, CPU) the
inference request consumes, thus we set the cost of each model
according to its size. Besides, we set C = 100 units and
D = 0.25s in our experiment. For homogeneous workers, we
conducted experiments with the setup of LeNet + CIFAR10,
LeNet + MNIST, and VGG + CIFAR100 respectively; for
heterogeneous workers, we conducted experiments with the
setup of ResNet + CIFAR100.

Baselines: We consider four baselines for the benchmark
experiments. NeuE [35]: NeuE adopts NeuralUCB [36], a
contextual MAB algorithm which treats each possible model
combination as an arm and utilizes a utility predicting neural
network to approximate the reward function. Naive UCB: a
classic MAB algorithm which considers each possible model
combination as an arm, and balances the exploration and
exploitation according to each arm’s upper confidence bound
(UCB) [12]. Greedy Ensemble: which selects the best ensem-
ble via the greedy algorithm, i.e., LGEE. Its parameters are not
estimated by Equation (5), but only depend on the historical
empirical values. Greedy Single: This algorithm selects the
best single DNN model based on the historical empirical
values of the inference accuracy, rather than assembling the
results of multiple DNNs.

B. Experiment Results

Improvement of Inference Accuracy. Fig. 5 compares
the accuracy performance of our proposed scheme and the
other four baselines under various setups. We observe that
SOEE achieves the highest average accuracy under all setups.
Specifically, SOEE outperforms NeuE, Naive UCB, Greedy
Ensemble, and Greedy Single by 80%, 24%, 12%, and 54%
on average, respectively. Note that Naive UCB regards each
ensemble as an arm, which leads to an exponential decision
space and makes the initialization and exploration of the
decision space extremely difficult. Therefore, it takes much

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0
Sl

ot
-a

ve
ra

ge
 A

cc
ur

ac
y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(a) CIFAR-10 with LeNet

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ot

-a
ve

ra
ge

 A
cc

ur
ac

y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(b) MNIST with LeNet

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ot

-a
ve

ra
ge

 A
cc

ur
ac

y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(c) CIFAR-100 with VGG

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ot

-a
ve

ra
ge

 A
cc

ur
ac

y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(d) CIFAR-100 with ResNet

Fig. 5: The slot-average accuracy under various schemes and models/datasets

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(a) CIFAR-10 with LeNet

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(b) MNIST with LeNet

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(c) CIFAR-100 with VGG

0 100 200 300 400 500
Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

SOEE
Greedy Ensemble
Greedy Single
NeuE
Naive UCB

(d) CIFAR-100 with ResNet

Fig. 6: The slot-average SLO violation probability under various schemes and models/datasets

0 250 500 750 1000 1250 1500 1750 2000
Time Slot

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Al
go

rit
hm

 R
un

ni
ng

 T
im

e

SGEE
LGEE

Fig. 7: Comparison of the
algorithm execution time (s)

35 55 75 95 115 135 155 175 195 215
Cost Budget Ct

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sl
ot

-a
ve

ra
ge

 A
cc

ur
ac

y

0.00

0.05

0.10

0.15

0.20

0.25

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

Slot-average Accuracy
SLO-violation Probability

Fig. 8: The effect of the cost
budget C

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42
Service Level Objective (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sl
ot

-a
ve

ra
ge

 A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

1.0

SL
O-

vi
ol

at
io

n
Pr

ob
ab

ilit
y

Slot-average Accuracy
SLO-violation Probability

Fig. 9: The effect of the SLO
D

0 50 100 150 200 250 300 350 400 450
Time Slot

0.2

0.4

0.6

0.8

1.0

Ac
ce

ss
 R

at
e

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

Fig. 10: The dynamics of ac-
cess rate of each workers

longer for Naive UCB to converge than SOEE. As for NeuE, it
cannot outperform Naive UCB in most cases. As a contextual
ucb-based algorithm, it cares about a decision space of the
same size as Naive UCB. Its optimization objective is not a
deterministic function, but is fitted by a neural network (i.e.,
NeuralUCB from [36]). This design makes it being sensitive
to the amount of training data, and the environment dynamics
(which is just the case of our experiment). Besides, Greedy
Ensemble is also 38% better than Greedy Single on average.
This indicates the benefit of model ensemble, regardless of the
online learning characteristic.

Reducing SLO Violations. Fig. 6 depicts the probability
of SLO violation of various schemes. For the 500 time slots,
the probability of SLO violation with SOEE, NeuE, and Naive
UCB are 16%, 44%, and 29%, respectively. Naive UCB only
pays coarse-grained attention to the ensemble, leading to
the inadequate representation of the SLO-satisfaction space.
Therefore, Naive UCB achieves a poorer performance than
that of SOEE. As for NeuE, due to its inherent algorithm
design, it is unable to learn and update the latency performance
of different workers or ensembles in real time. On the other
hand, Greedy Ensemble and Greedy Single, have a low-level

SLO violation probability, which converges to 6% and 1%,
respectively. This is rationale, since online learning based
schemes makes some sacrifices in the probability of SLO
violation, but obtains a higher accuracy performance. The
inherent reason is that SOEE pursues a trade-off between
exploitation and exploration, instead of merely selecting the
local best solutions.

Computational Efficiency. We demonstrate the computa-
tional efficiency of the accelerated sub-modular method LGEE
by comparing it with the traditional sub-modular method
SGEE [25] in Fig. 7. The results show that, aside from
incidental CPU jitter errors, the running latency of SOEE
with LGEE is consistently less than 50% of that with SGEE,
validating our choice of LGEE. Notably, as the number of
time slots increases, the running latency also rises due to the
increased computation latency for calculating joint entropy in
Equation (2). To prevent an infinite increase in computation
latency, we can integrate a sliding window mechanism into
SOEE to periodically discard outdated result records, thereby
reducing computation latency.

Sensitivity of Cost Budget C. Fig. 8 shows the effect
of the cost budget C. As the cost budget C increases, both

the slot-average inference accuracy and the SLO violation
probability rise. This is straightforward because a higher cost
budget relaxes constraint (4a), motivating the edge server to
select high-accuracy but cost-expensive workers (i.e., workers
in the large model group). Since the SLO constraint (3b)
is transformed into a soft barrier in Problem P2, it cannot
prevent SOEE from selecting these workers as effectively as
the hard constraint (4a). Therefore, both accuracy and the SLO
violation probability increase.

Sensitivity of SLO D. Fig. 9 shows the effect of the SLO
D. As the SLO D increases, the slot-average inference accu-
racy increases, while the SLO violation probability decreases.
With an increasing SLO, workers from different groups can
gradually meet the SLO soft barrier and provide meaningful
and acceptable inference results. When the SLO is equal to or
higher than 0.30s, all workers can meet the SLO, leading to
the highest accuracy. Regarding the SLO violation probability,
it is 100% when SLO is 0.00s, since no worker can meet the
SLO barrier. As the SLO increases, the violation probability
dynamically decreases because the SLO becomes achievable
for more workers across different groups.

Adapting to Data Drift. Finally, we demonstrate how
SOEE dynamically selects edge workers to adapt to data drift.
Since the data distribution of requests changes every 50 time
slots (referred to as one interval), we present the access rate,
i.e., the probability of being selected for each worker, in Fig.
10. Worker 1 is selected until the fourth interval because
the second interval’s distribution matches Worker 1’s training
classes, optimizing its performance and influencing selection
longer. Worker 2’s access rate rises at the third interval as
SOEE detects a distribution match with Worker 2’s training
classes. This pattern repeats for Workers 3, 4, and 5 at their
respective intervals. Worker 6’s training classes include those
of Workers 2 and 3, so its turning points are at the third
and fourth intervals. Worker 7, with training classes including
those of Workers 1 and 5, follows Worker 1’s pattern and
turns at the sixth interval. Workers 8 and 9, with high SLO
violation probabilities, are not selected after the first interval’s
initialization.

VI. RELATED WORK

A. Edge Inference Serving

When deploying DNN model inference at the edge, a
fundamental challenge is how to satisfy low-latency and
high-accuracy requirements under limited resource availability.
Various efforts have been proposed to address this issue.
Among these, model compression has been widely adopted.
For example, Liu et al. [37] developed a usage-driven se-
lection framework, AdaDeep, which automatically selects a
combination of compression techniques (e.g., weight pruning
and quantization) for a given DNN, aiming to maximize user-
specified performance goals within resource constraints. To
harness the power of cooperative edge devices, Hu et al. [38]
proposed a distributed inference mechanism, EdgeFlow, which
partitions model layers into independent execution units that
can be distributed to nearby edge devices. Notably, compared

to model compression, model partitioning is lossless and
does not degrade inference accuracy. To address data drift,
which can deteriorate runtime inference accuracy of com-
pressed models, Cai et al. [8] presented an online optimization
framework that adaptively picks the best configurations for
both model inference and retraining co-located within an edge
node. For the emerging Transformer-based Large Language
Models (LLMs), Ye et al. [39] designed a hybrid parallelism
mechanism that integrates tensor parallelism and sequence
parallelism to accelerate distributed LLM inference at the
edge.

B. Federated Inference with Ensemble Learning

The concept of federated inference was first introduced
by Malka et al. [9], who proposed an edge ensemble infer-
ence protocol. Their approach allows each user to perform
inference independently while benefiting from collaboration
with neighboring devices to form an ensemble of DNNs.
Weng et al. [5] proposed an incentive mechanism based on
Bayesian game theory to enhance overall accuracy in federated
inference services. Wang et al. [40] theoretically analyzed
the unnecessary communication in federated inference and
reshaped the inference communication process to minimize
the communication costs.

The most relevant work to ours is NeuE [35], which
uses neural network-based contextual multi-armed bandits to
predict the performance of model ensemble. However, neural
network-based techniques require pre-training, which partially
conflicts with online requirements and poses challenges for
maintaining a training set during real system operation. Ad-
ditionally, the time complexity and empirical performance of
neural network computation can be unpredictable. In contrast,
our approach focuses on the joint and online optimization
of inference accuracy, performance, and cost — a three-way
tradeoff not explored in previous literature. Our method is
“model-free”, i.e., it makes no prior assumptions about the
model and does not require a global model for inference
services.

VII. CONCLUSION

In this paper, we present an online model ensemble frame-
work for model inference serving at the edge. The objective of
the presented framework is to maximize the ensemble accuracy
under the resource budget and latency constraint. Achieve
this goal is nontrivial since the underlying problem involves
uncertain information and being NP-hard. In response, the
presented framework first leverages online bandit learning to
adaptively selects the best ensemble for each inference request.
Then, to address the NP-hardness, it develops a lazy greedy
algorithm based on submodularity to achieve near-optimal
performance. We provide theoretically rigorous performance
analysis of the framework. We have also implemented a
prototype of our framework and, through extensive test-bed
evaluations, demonstrate that it improves average inference
accuracy by 12% ∼ 80%.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[2] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen,
“Billion-scale federated learning on mobile clients: A submodel design
with tunable privacy,” in Proc. of ACM Mobicom, 2020.

[3] H. Yang, M. Ge, D. Xue, K. Xiang, H. Li, and R. Lu, “Gradient leakage
attacks in federated learning: Research frontiers, taxonomy and future
directions,” IEEE Network, 2023.

[4] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider, H. Yalame et al.,
“Safelearn: Secure aggregation for private federated learning,” in Proc.
of IEEE Security and Privacy Workshops (SPW), 2021.

[5] J. Weng, J. Weng, H. Huang, C. Cai, and C. Wang, “Fedserving: A
federated prediction serving framework based on incentive mechanism,”
in IEEE INFOCOM, 2021.

[6] Z.-H. Zhou and Z.-H. Zhou, Ensemble learning. Springer, 2021.
[7] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-

efficient federated learning with hierarchical aggregation in edge com-
puting,” in Proc. of IEEE INFOCOM, 2021.

[8] H. Cai, Z. Zhou, and Q. Huang, “Online resource allocation for edge
intelligence with colocated model retraining and inference,” in Proc. of
IEEE INFOCOM, 2024.

[9] M. Malka, E. Farhan, H. Morgenstern, and N. Shlezinger, “Decentralized
low-latency collaborative inference via ensembles on the edge,” arXiv
preprint arXiv:2206.03165, 2022.

[10] Y. Zhao and X. Gong, “Quality-aware distributed computation and
user selection for cost-effective federated learning,” in Proc. of IEEE
INFOCOM WKSHPS, 2021.

[11] Z. Jiang, Y. Xu, H. Xu, Z. Wang, and C. Qian, “Heterogeneity-
aware federated learning with adaptive client selection and gradient
compression,” in Proc. of IEEE INFOCOM, 2023.

[12] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations
and Trends® in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[13] D. Ruta and B. Gabrys, “Classifier selection for majority voting,”
Information fusion, vol. 6, no. 1, pp. 63–81, 2005.

[14] L. I. Kuncheva and J. J. Rodrı́guez, “A weighted voting framework for
classifiers ensembles,” Knowledge and information systems, vol. 38, pp.
259–275, 2014.

[15] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kari-
anakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning of
video analytics models on edge compute servers,” in Proc. of USENIX
NSDI, 2022.

[16] A. Chandra, H. Chen, and X. Yao, “Trade-off between diversity and
accuracy in ensemble generation,” Multi-objective machine learning, pp.
429–464, 2006.

[17] N. Li, Y. Yu, and Z.-H. Zhou, “Diversity regularized ensemble pruning,”
in Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012.
Proceedings, Part I 23. Springer, 2012, pp. 330–345.

[18] Y. Wu, L. Liu, Z. Xie, K.-H. Chow, and W. Wei, “Boosting ensemble
accuracy by revisiting ensemble diversity metrics,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 16 469–16 477.

[19] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[20] C. Sha, K. Wang, X. Wang, and A. Zhou, “Ensemble pruning: A
submodular function maximization perspective,” in International Con-
ference on Database Systems for Advanced Applications. Springer,
2014, pp. 1–15.

[21] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine
learning, vol. 51, pp. 181–207, 2003.

[22] H. Dutta, “Measuring diversity in regression ensembles.” in IICAI, vol. 9.
Citeseer, 2009, p. 17p.

[23] H. R. Kadkhodaei, A. M. E. Moghadam, and M. Dehghan, “Hboost:
A heterogeneous ensemble classifier based on the boosting method and
entropy measurement,” Expert Systems with Applications, vol. 157, p.
113482, 2020.

[24] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in International conference on
machine learning. PMLR, 2013, pp. 151–159.

[25] L. A. Wolsey, “Maximising real-valued submodular functions: Primal
and dual heuristics for location problems,” Mathematics of Operations
Research, vol. 7, no. 3, pp. 410–425, 1982.

[26] J. Tang, X. Tang, A. Lim, K. Han, C. Li, and J. Yuan, “Revisiting
modified greedy algorithm for monotone submodular maximization with
a knapsack constraint,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 5, no. 1, pp. 1–22, 2021.

[27] M. Minoux, “Accelerated greedy algorithms for maximizing submodular
set functions,” in Optimization Techniques: Proceedings of the 8th
IFIP Conference on Optimization Techniques Würzburg, September 5–9,
1977. Springer, 2005, pp. 234–243.

[28] “Docker: Accelerated container application development.” [Online].
Available: https://www.docker.com

[29] “Zeromq: An open-source universal messaging library.” [Online].
Available: https://zeromq.org

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016.

[33] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[34] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[35] Y. Bai, L. Chen, and J. Xu, “Neue: Automated neural network ensem-
bles for edge intelligence,” IEEE Transactions on Emerging Topics in
Computing, 2022.

[36] D. Zhou, L. Li, and Q. Gu, “Neural contextual bandits with ucb-based
exploration,” in International Conference on Machine Learning. PMLR,
2020, pp. 11 492–11 502.

[37] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proc. of Mobisys, 2018.

[38] C. Hu and B. Li, “Distributed inference with deep learning models across
heterogeneous edge devices,” in Proc. of IEEE INFOCOM, 2022.

[39] S. Ye, J. Du, L. Zeng, W. Ou, X. Chu, Y. Lu, and X. Chen, “Galaxy:
A resource-efficient collaborative edge ai system for in-situ transformer
inference,” in Proc. of IEEE INFOCOM, 2024.

[40] J. Wang, L. Zhang, Y. Cheng, S. Li, H. Zhang, D. Huang, and X. Lan,
“Tvfl: Tunable vertical federated learning towards communication-
efficient model serving,” in Proc. of IEEE INFOCOM, 2023.

