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ABSTRACT

Aligning large language models (LLMs) to simultaneously satisfy multiple ob-
jectives remains a significant challenge, especially given the diverse and often
conflicting nature of human preferences. Existing alignment methods struggle to
balance trade-offs effectively, often requiring costly retraining or yielding subopti-
mal results across the Pareto frontier of preferences. In this paper, we introduce
HoE (Hierarchical Mixture-of-Experts), a lightweight, parameter-efficient, and
plug-and-play approach that eliminates the need for model training, while enabling
LLMs to adapt across the entire Pareto frontier and accommodate diverse user
preferences. In particular, HoE consists of three hierarchical components: LoRA
Experts, Router Experts and Preference Routing, reaching state-of-the-art Pareto
frontiers and achieving a trade-off between parameter size, training cost, and per-
formance. We evaluate HoE across various tasks on 16 objectives and 200 different
preferences among 8 benchmarks, demonstrating superior performance over 15

recent baselines. WARNING: This paper contains potentially offensive text.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success in aligning with broadly defined
human values (Achiam et al., 2023; Ziegler et al., 2019; Sun et al., 2023). However, human preferences
in practice are highly diverse and cannot be fully captured by an universal alignment goal. Users may
pursue multiple personalized objectives, and even when the objectives are the same, their relative
importance often varies across individuals and contexts (Fu et al., 2024; Yang et al., 2024c; Lin et al.,
2025; Ren et al., 2025; Zhang et al., 2025). Existing approaches (Sun et al., 2023; Yang et al., 2025;
Chen et al., 2025), which typically optimize for one objective or a fixed combination, fall short in
flexibly covering this preference space. These observations highlight the necessity of multi-objective
alignment (MOA) to enable scalable and preference-steerable LLMs (Lin et al., 2025; Guo et al.,
2024; Ramé et al., 2023; Jang et al., 2023; Yang et al., 2024c; Lin et al., 2025; Chen et al., 2025).

The central difficulty of multi-objective
alignment (MOA) lies in its inherently
steerable nature: LLMs must dynamically
adapt to arbitrary user preferences rather
than a single fixed goal, essentially act-
ing as a “jack-of-all-trades” (Lin et al.,
2025; Chen et al., 2025). This steerability
introduces two major challenges. First,
objectives often conflict with each other.
Parameters tuned to improve one objec-
tive (e.g., helpfulness) often undermine an-
other (e.g., harmlessness) (Chen & Kwok,
2025; Zheng & Wang, 2024; Guodong
et al., 2024; Yadav et al., 2023; Zhou et al.,
2024a). Second, competition also even ex-
ists across preferences along the Pareto
frontier (Wang et al., 2024b; Shi et al.,
2024; Zhou et al., 2024b; Li et al., 2021).
For instance, a model trained uniformly
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Figure 1: (Left) HoE decomposes the multi-objective
alignment problem into a series of single-preference sub-
problems, each handled by a specialized expert. (Right)
HoE employs hierarchical experts, integrating LoRA and
router experts to approach near-optimal Pareto frontier.



Under review as a conference paper at ICLR 2026

across all weightings (black solid Pareto Frontier in Fig. 1 Left) cannot achieve optimal performance
at a specific weighting (e.g., [0.5, 0.5]), compared to the expert model fine-tuned exclusively for that
preference (colored dashed Pareto frontier in Fig. 1 Left).

To overcome this limitation, we adopt a decomposition-based strategy for MOA, breaking down
the multi-objective alignment problem into a series of single-preference subproblems (Zhang &
Li, 2007), each associated with a set of specialized parameters. These parameters, referred to as
experts, are each assigned to a distinct preference, focus solely on their corresponding preferences
and optimize within their localized subproblem regions. This strategy avoids the pitfalls of a single
monolithic model attempting to cover the entire Pareto Frontier, thereby circumventing the steerability
bottleneck.

Building on this idea, we then instantiates each expert as a lightweight LoORA adapter within a
Mixture-of-Experts framework. Preference-specific behavior is captured in small, composable LoRA
modules while the backbone parameters remain shared. At inference time, a preference-conditioned
routing mechanism composes and activates the appropriate LoRA experts, adapting the model’s
behavior dynamically to realize arbitrary weightings. By this design, we efficiently reconstruct the
full Pareto frontier from a collection of localized, preference-specific experts, enabling a scalable,
steerable, and parameter-efficient approach for multi-objective alignment.

In this work, we propose HoE, a novel hierarchical Mixture-of-Experts framework for multi-objective
alignment. HoE is a lightweight, parameter-efficient, and plug-and-play solution that eliminates the
need for training any models while achieves strong performance across the entire Pareto frontier. It
combines the decomposition principle with the LoRA-based MoE design to enable scalable, efficient
and fine-grained control over the entire Pareto frontier. Specificaly, HoE comprises three hierarchical
components: LoRA experts, router experts, and preference routing. (1) “LoRA experts” are first
extracted without training from off-the-shelf single-objective models using task-vector singular value
decomposition (task-SVD), capturing distinct alignment objectives in compact adapter modules. (2)
“multi-objective LoRA experts” are then synthesized, also without training by merging multiple
existing single-objective LoRA experts, to enable on-demand generation of alignment capabilities
across arbitrary preference configurations. (3) “Router experts” are trained with negligible parameters
to dynamically select and combine the appropriate experts based on user-specified preferences,
allowing efficient traversal of the Pareto frontier. Through this hierarchical design, HoE not only
provides precise control over preference-specific behavior but also balances alignment performance,
parameter cost, and training efficiency. It serves as a practical and effective solution for scalable
multi-objective alignment in LLMs.

The main contributions of this study are as follows:

* We investigate a novel decomposition strategy that breaks down the multi-objective alignment
problem into a series of single-preference subproblems, each handled by a set of specialized
experts, enabling fine-grained control and full Pareto coverage.

* We propose HoE, a lightweight, parameter-efficient and plug-and-play hierarchical Mixture-of-
Experts framework that comprises three-level hierarchy, bypassing full model training.

* We evaluate HoE across diverse multi-, many-objective and multi-task settings, involving 14
objectives, 6 benchmarks, and 200 preference. HoE consistently outperforms 15 recent
baselines with lower training cost and parameter overhead.

2 RELATED WORK

LLM Multi-objective Alignment. MORLHF (Li et al., 2021) and MODPO (Zhou et al., 2024b)
employ linear scalarization to combine multiple reward signals into a single scalar metric, applying
standard RLHF or DPO training a separate model for each preference. Multi-objective Decoding
(MOD) (Shi et al., 2024), Alignment as Reward-Guided Search (Args) (Khanov et al., 2024) and
Personalized Alignment at Decoding-time (PAD) (Chen et al., 2025) derive a closed form solution of
optimal preference model and perform linear fusion of logits prediction during decoding. Directional
Preference Alignment (DPA) (Wang et al., 2024a) and Reward-in-Context (RiC) (Yang et al., 2024c¢)
typically inject user preferences into the prompt, enabling in-context preference-conditioned align-
ment. Additionally, Steering (Konen et al., 2024; Rimsky et al., 2024) adding “steering vectors” to
all token positions after the user’s prompt, enabling precise control over multi-objective preferences.
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Table 1: Comparison with other alignment methods. M is number of preference, N is number of
objectives and M > N. Our HoE approach is a pareto-steerable and lightweight method with highest
scalability, least storage cost and least inference cost, which eliminates the need for retraining any
new models or any structed prompts. Each characteristic is empirically conformed in Section B.5.

Characteristic (—) Number of Inference Number of Pareto Multi-task Scalability Free from
Method () stored models cost trained models  steerable ability prompting
MORLHF [iEeE 21 M 1 M v X Retrain v
MODPO (act1. 24) M 1 M v X Retrain v
RS [NeurIps 23] N 1 0 v v v v
RiC icmr 24 >1 1 >1 v X Retrain X
DPA [acL24 1 1 1 v X Retrain X
MOD [Newrtps 24] N N 0 v v v v
Args [ICLR 24 0 >N 0 v X v v
Steering [Eact 24) 0 1 0 X X v v
MetaAligner [Neurps 24] 1 2 1 X X v X
LoraMOoE [ac1.24] 1 1 1 X v Retrain v
PCB-Merging (Neurips 24] 1 1 0 X v v v
PAD (ic1r 25) 1 3 1 X X Extra-train X
GenARM (icLr 25 0 >N 0 v X v v
PARM (icvir 25 0 2 1 v X Retrain v
HoE (ours) 1 1 0 v v v v

MetaAligner (Yang et al., 2024b) extends the Aligner (Ji et al., 2024) framework to MOA, refining
weaker outputs to better match user preferences.

Knowledge Fusion for LLMs. Model merging (Jin et al., 2022; Matena & Raffel, 2022; Guodong
etal., 2024; Zheng & Wang, 2024; Yadav et al., 2023) is a widely used fusion technique that integrates
multiple task-specific models into a unified model. Task Arithmetic (TA) (Ilharco et al., 2023; Ramé
et al., 2023; Jang et al., 2023) linearly combines task vectors, defined as the parameter differences
between task-specific models and the original pre-trained model. Then Rewarded Soups (RS) (Ramé
et al., 2023) and Personalized Soups (PS) (Jang et al., 2023) firstly extend this concept to MOA.
LoraMoE (Dou et al., 2024), the closest work to ours, is a Mixture-of-Experts (MoE) approach
that uses LoRA Adapters (Hu et al., 2022) as experts, integrating LLM knowledge by activating
select experts via a router network. However, it requires costly training across all LoRA experts
simultaneously and limits knowledge sharing among them, thus unsuitable for MOA.

In summary, we systematically compare and analyze existing LLM alignment methods in Tab. 1.

3 METHODOLOGY

In this section, we present the methodology behind HoE, a lightweight, parameter-efficient, and
plug-and-play multi-objective alignment framework. As illustrated in Fig. 2, our HoE approach
consists of three hierarchical components: LoRA experts, router experts and a preference routing.

Multi-Objective Alignment Problem Setting. In the MOA setting, we consider N alignment
objectives with reward functions {Ri(-)}fil. A user preference is represented by a weight vector
AYT = (Ag,...,AN) € AN=1 in the N-dimensional simplex, and is specified as a preference-
weighted reward: Ry (x,y) = Zf\; AiRi(z,y). The objective of MOA is to learn a policy that
aligns with arbitrary preferences A across the simplex: max R(6; ) =K, (.jz;x) [Ra (2, y)].

3.1 Primary LORA EXPERTS
Single-Objective LoRA Experts. 1) Extraction. We begin with a pre-trained model 7p,., and
a collection of off-the-shell single-objective optimal policies {n7], ..., 7} }, each fine-tuned on its
respective objective.

77 = argmax E;p[R,(0) — SKL(7mg|mpre)] (1

e

Let 6, denote the pretrained parameters and let §; be the parameters of the fine-tuned model.
Following the task vector paradigm in model merging (Ilharco et al., 2023), we define each objective
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Figure 2: Illustration of our HoE approach. The left side illustrates the application scenario, where
the model generates a response aligned with the prompt and given preferences. The bottom-right
highlights its three hierarchical components - the LoRA experts, router experts, and a preference
routing. The top-right depicts individual components, each serving as an expert for specific weightings,
designed for seamless plug-and-play integration within the model.

vector as the parameter update between fine-tuned weights and the pre-trained weights:
Ti = 91 - eprea (2)

which inherently capture the single-objective capabilities of each single-objective model.

2) Compression. Each objective vector 7; is then compressed into a low-rank adapter via a task-
aware truncated SVD procedure (“task-SVD”): A;, B; + task-SVD(7;), where A; € R%nx7,
B; € R™*dout and » < min(diy,, dout ). In practice, task-SVD selects high-magnitude components of
7;, performs per-layer SVD truncation and rescales the parameters to form new LoRA matrices A;, B;.
This compression preserves the optimal single-objective performance with negligible performance
loss (cf. Wang et al. (2024c¢); Ping et al. (2024); Gu et al. (2025); Yuan et al. (2023); Ryu et al. (2023)).
These compact adapters, referred to as LoORA Experts, are highly specialized for their corresponding
objectives.

3) Plugin. We convert all linear layers in the Transformer into MoE-style plugin modules, incorpo-
rating the LoRA experts. Given a score weight w(!) € RY from the router, the module output for
input z € R%= composes the pretrained weight with a weighted sum of LoRA experts:

Or(x) = Wper + S0 N Bi(Aiz), 3)

where W, € R%n*dout i5 the base linear weight and B; A;x is the low-rank residual from expert i.

Multi-Objective LoRA Experts. For preferences involving multiple objectives simultaneously,
the aforementioned linear combination of single-objective experts may fail to recover optimal
performance, especially at intermediate points on the Pareto frontier (e.g., A = [0.5,0.5]). To address
this, we draw inspiration from model merging (Yang et al., 2024a; Matena & Raffel, 2022; Zheng &
Wang, 2024; Guodong et al., 2024; Jin et al., 2022; Yadav et al., 2023) which amplify parameters
beneficial to all tasks while suppressing conflicting or detrimental ones, enable nonlinear and fine-
grained parameter adaptation, and significantly outperform linear approaches (e.g., Task Arithmetic
(Ilharco et al., 2023)).

To cover the entire Pareto frontier, we incorporate model merging into our framework to derive new
expert parameters tailored to arbitrary preference vectors. Given a target preference A, we specify the
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desired objective proportions and synthesize a merged expert with parameters:
7\ = Merge({7; }ic(n], ) 4

where {;} are the objective vectors derived from single-objective model. We then reuse the same
task-SVD procedure. These resulting adapters serve as multi-objective LoRA experts, and are no
longer aligned with a single objective, but instead specialized in specific combinations of objectives
(e.g., [0.5,0.5]).

3.2 Secondary ROUTER EXPERTS

While increasing the number of LoRA experts can improve Pareto coverage, the overall parameter
budget quickly becomes prohibitive, as each adapter still adds a non-trivial number of parameters. To
address this, we introduce Router Experts, a lightweight and fine-grained decomposition mechanism
as secondary experts. Their parameter cost is negligible compared to LoRA adapters, yet they play
a crucial role in enhancing flexibility: unlike LoRA experts, which are statically combined and
tied to fixed preferences, router experts enable module-wise fine-grained routing and input-adaptive
selection. In practice, this allows the model to dynamically determine which LoRA experts to activate
at a finer granularity depending on the input, thereby achieving more efficient and adaptive utilization
of LoRA capacity across the network.

Formation. We insert a light-weight linear router layer into every Transformer block as router
expert. The router layer takes the same hidden states x as the LoRA adapters and outputs a score
voting over all available LoRA experts. Each router expert 17, is associated with a target preference
vector A(®) € AN—1 and then activates only the N nearest LoORA experts to A(¢) in preference space.

Optimization. A key design is that the parameters of all LoRA experts remain frozen, drastically
reducing resource requirements. As each router expert is optimized with respect to its specific
weighting A(¢), it qualifies as an expert tailored to that particular preference.

The training goal of a router expert 7, is to realize the mixture policy that maximizes the scalarized
multi-objective reward aligned with preference A(¢). Let m, be HOE model comprising 7y, the
optimization problem is

fx = argmax Eyr, |2y [BA(7,9)], ®)

To address non-convex regions of the Pareto frontier, we adopt Tchebycheff (TCH) scalarization,
which focuses on the worst-performing objective relative to a reference point z* € R:

J(OIN) = max miin {Ai (R (0) — 20)}- (6)

K2

Intuitively, this ensures that router experts do not simply optimize for the weighted average but
instead balance objectives even in difficult trade-off regions.

We solve this max—min problem via Online Mirror Descent (OMD) (Liu et al., 2024), which maintains
a smoothed distribution w over objectives. The equivalent reformulation is

JOIN) = max sz (R;(0) — 27), s.t.w=argmin{w;\;(R;(0) —27)}, |lw|1 =1. ()

The auxiliary weights w are updated online using temporal-difference learning (Qiu et al., 2024) to
stabilize optimization.

Finally, we integrate this process into PPO (Schulman et al., 2017). The resulting policy gradient
takes the following form, where A7? denotes the advantage with respect to reward R;.

VoJ(0A) = Eqpapmn (0, wiAT (s1,a1)) Vo log mo(asls:)], ®)

The above formulation captures the essential mechanism of our optimization and enjoys a convergence
guarantees of O(log%) over 7' iterations. More details of the practical implementation and theoretical
analysis see Appendix E and Appendix G.
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3.3 Tertiary PREFERENCE ROUTING

We introduce a parameter-free preference routing layer that maps a user preference vector A*" to a
subset of nearby experts. Specifically, the N closest experts are selected by Euclidean distance in
the preference space: Agieced = NNy (AT, A) = argminl’ || A" — X;||, where A = {\;} M, is
the set of intrinsic preference vectors of all LORA and router experts. This geometric decomposition
partitions the simplex into coarse regions (LoRA experts) and refines them with router experts,
enabling alignment for arbitrary A"".

3.4 HIERARCHICAL ASSEMBLY FOR INFERENCE

At inference time, we assemble the three layers into a unified hierarchical model that maps a user’s
preference vector Ay, to a tailored expert composition for response generation. This hierarchical
process ensures that user preferences are first localized (via preference routing), then refined (via
router experts), and finally realized (via LoORA composition) in the forward pass.

(1) Preference Routing. The module expresses A" as a convex combination of the selected
neighbor preference vectors, and the resulting w(!) is the voting vector over router and Lora experts:

AT = Zie/\selecled w(,l) )\i’ w(l) € AM?l’ ZieAcelecled W(l) =1 (9)

7 3

(2) Router Expert Voting. Each router expert 7, produces routing logits based on the input

x. Aggregating them with w() yields the resulting voting vector over Lora experts w(?) (i.e., the

LoRA-level mixture weights):
(

wi? = ZiEAselemed Wil) nAi—Zz)' (10)
(3) LoRA Expert Composition. Finally, the transformer’s output is computed as a mixture of the
selected LoRA experts, combined with the pre-trained base weights:

O(x) = Wprer + Y W\ BjAjz. (11)
J

4 EXPERIMENTAL SETUP

Objectives. We comprehensively select 16 diverse objectives to evaluate our method: Helpful,
Harmless, Humor, Helpfulness, Correctness, Coherence, Complexity, Verbosity, Faithful, Summary,
DeBERTa, Reward, Cost, CoT-length (where smaller is better), Math, and Code, collectively covering
nearly all practical objectives required for LLM alignment. Notably, the inclusion of CoT-length and
Math serves to demonstrate the effectiveness of our method in the context of reasoning LLMs.

Datasets. We follow prior multi-objective alignment studies (Shi et al., 2024; Yang et al., 2024c;
Ramé et al., 2023; Chen et al., 2025), using seven text generation tasks—Helpful Assistant, Math,
Reddit Summary, Beaver Tail, Helpsteer, Psoups, CMMLU, HumanEval and Helpsteer2 — covering
16 objectives. More details refer to Appendix F.

Baselines. We consider 15 competitive algorithms as baselines: RS (Ramé et al., 2023), MOD (Shi
etal., 2024), MODPO (Zhou et al., 2024b), RiC (Yang et al., 2024c), MetaAligner (Yang et al., 2024b),
PAD (Chen et al., 2025), MORLHEF (Li et al., 2021), Args (Khanov et al., 2024), Steering (Konen
et al., 2024), LoraMOE (Dou et al., 2024), PCB-Merging (Guodong et al., 2024), FR-Merging (Zheng
& Wang, 2024), Aligner (Ji et al., 2024), Preference-prompting and PS (Jang et al., 2023).

Metrics. We primarily use reward model scores to obtain the Pareto frontiers (Fig. 3)—each objective
is paired with a commonly used open-source reward model. Additionally, we report GPT-4-based win
rates—comparative against base model—for further evaluation. More details refer to Appendix F.

5 MAIN RESULTS

We conduct experiments on 6 different NLP tasks with 16 different objectives, testing 200 different
preferences and comparing them with 15 baselines. Experiments span two-, three-, and many-
objective alignment scenarios. Quantitative comparisons are shown in Fig. 3, Fig. 4, and Tab. 2.
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Figure 3: Results of two-objective alignment on HelpAssistant, Reddit Summary and BeaverTails
Task with 10 objectives. Compared to the baselines, HoE consistently achieves superior Pareto
frontiers.

5.1 TwO-OBJECTIVE ALIGNMENT RESULTS

Fig. 3 presents the results for two-objective alignment across seven setups. HoE clearly approaches
the theoretical upper bound defined by MORLHF, producing smooth and convex Pareto frontiers,
strongly validating its effectiveness.

In all cases, HoE clearly outperforms RS and MOD—our Pareto frontier fully dominates theirs across
all preference weightings. Even when constrained to use only LoRA experts for fairness, our method
retains this dominance (see Fig. 5). Compared to RiC, HoE achieves better results in 5 out of 7
cases. In the “Summary & Deberta” setting, for instance, our model outperforms RiC by a notable
(42, 40.8) margin. Although RiC slightly outperforms us in a few specific weightings (e.g., “Helpful
& Harmless”), this is likely due to its advantage in handling strongly conflicting objectives via online
training. Meanwhile, MetaAligner and Args are limited to the Helpful Assistant task, where their
performance is comparatively weak. MODPO also falls short on the BeaverTail task comparatively.

5.2 THREE-OBJECTIVE ALIGNMENT RESULTS

HoE(ours)
MoD

RS

RiC

base

PAD
MetaAligner

Preference Prompting
Steering

Aligner
Personalized soups

MORLHF

MODPO

Figure 4: Comparison of alignment results with three objectives (i.e., helpful, harless and humor) on
the Psoups and Helpsteer2 datasets.

We evaluate alignment across three objectives—Helpful, Harmless, and Humor—on the Helpful
Assistant task (see Fig. 8). HoE Pareto-dominates RS and MOD, and consistently outperforms RiC
across most of the weight space.

We further test on Psoups and HelpSteer2 using Llama3.1-8B, comparing with 11 baselines under
a strict generalization setting (none of the models were trained on these datasets). As shown in
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Fig. 4, our method ranks first in 11 out of 14 evaluation setups. In the remaining three, PAD slightly
outperforms us—yet we remain highly competitive.

Additionally, GPT-4-based evaluations (see Appendix. B and Fig. 9) align closely with reward model
scores, further confirming the robustness of our approach across models and tasks.

5.3 MANY-OBJECTIVE ALIGNMENT RESULTS

We evaluate five-objective alignment on HelpSteer, with results presented in Tab. 2. HoE achieves
the highest average score, outperforming MOD, RS and RiC across all objectives. This demonstrates
that HoE is highly effective for many-objective alignment.

6 ANALYSIS

6.1 ABLATION STUDY
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Figure 5: Ablation studies assessing the impact of expert count (Left), LoRA ranks (Middle), and
Tchebyscheff scalarization (Right).

We conducted three ablation studies to assess the impact of (1) individual expert, (2) LoRA ranks,
and (3) Tschebyscheff scalarization:

Ablation on Experts. This is the central ablation of our work. We isolate the roles of each LoORA
experts and router experts by incrementally removing or combining them to observe their effect on
the Pareto frontier (PF). All configurations share two fixed single-objective LoRA experts; thus, an
expression such as “3 LoRA” indicates one additional LoRA on top of the two shared ones. We
examine four representative settings in Fig. 5 (left):

1) 2 LoRA & I Router: Adding a single router expert improves performance on specific preferences,
highlighting its specialization capability. However, due to its smaller parameter count, the improve-
ments are modest. 2) 3 LoRA: A single LoRA expert leads to substantial PF expansion near its
preference, but performance quickly degrades for other preferences, revealing limited coverage. 3)
3 LoRA & 1 Router: This combination achieves a near-complete PF. The router complements the
LoRA expert by covering underrepresented regions, showcasing their strong synergy. 4) 4 LoRA:
Adding two LoRAs further improves the PF, approaching MORLHF performance, but the marginal
gain over 3 LoRAs diminishes. Overall, the ablation shows that while LoRA experts provide strong
improvements, their benefits diminish as more are added. Router experts, in contrast, deliver com-
plementary gains with far fewer parameters, making them essential for balancing performance with
parameter efficiency.

Ablation on LoRA Rank. We study the effect of LoRA rank using Llama2-7B-chat as the base. As
shown in Fig. 5 (middle), larger ranks consistently yield better performance, while small ranks cause
noticeable degradation. Math tasks are more sensitive and require higher ranks, whereas assistant
tasks remain stable even at rank 128. In practice, a rank of 256 is sufficient to balance performance
and efficiency.

Ablation on Tschebyscheff Scalarization. We compare Tschebyscheff scalarization with linear
scalarization in MORL. As shown in Fig. 5 (right), linear scalarization often biases the policy to drift
significantly toward PF edges, leading to instability or collapse. In contrast, Tschebyscheff-based
optimization (OMD-STCH-MORL) maintains stable training while preserving full PF coverage. This
confirms its advantage in multi-objective optimization stability.
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6.2 CASE STUDY

Fig. 10 shows how HoE adapts to user preferences at a fine granularity. While the user prompt is
intentionally adversarial, the mixed preference [0.35, 0.28, 0.35] produces a balanced reply: Early
tokens are guided by the Helpful expert (“Maybe you could say something like,”), whereas later
tokens activate Harmless and Humor experts more (‘I think you look beautiful without makeup.”),
mitigating the adversarial prompt. This token-level trade-off among experts is unique to HoE, enabling
interpretable and flexible preference control beyond existing MOA methods.

User: What do | say to my friend who wears || HelpfulLoRAEXperts [ ] "'1”T°; LoRA Experts
really heavy makeup? She looks like a clown. || Harmiess LoRAExperts || [5,5,5] LoRA Experts
Pref . i :

reerenoe Generation Selection Ratio of Each LoRA Experts

weightings

Helpful,Harmless,Humor
[0.58, ©.03, 0.38]

Assistant: | think you should tell her that she
looks like a clown.

e e i e 6

H——— e —— = — ==

_____________ e
Helpful,Harmless,Humor | Assistant: Maybe you could say something
[6.35, ©.28, ©.35] | |ike, “I think you look beautiful without makeup.”
_____________ R
Helpful,Harmless,Humor |~ Agsistant: You could say that her makeup is
[, 9, o] too heavy
_____________ T I

Helpful,Harmless, Huror | Assistant: I'm not sure what you mean by | L:l M @ @ Q @ @ @ Q@ @ H
[e, 0.4, 0.6] | “heavy makeup”. Can you tell me more about :
what she looks like? !

Helpful,Harmless,Hunor | Assistant: I'm sorry to hear that. I'm not sure | H H H <o) M ’rw‘ m H H H H H W m W H @ H
what to say. !

|
4
|
[o, 1, o] ! !
_____________ e T
Helpful,Harmless,Humor | Assistant: Maybe you could just tell her that | - ! ﬁ = oh

:you don't like it? Or maybe you could ask her L H M!H@MHEWHE

|

|

[0.38, 0.03, 0.58] |
why she wears it? !

Figure 6: Visualization of Case Study and Selection Ratio of Each LoRA Experts (i.e. router logits
for LoRA expert selection). (w.r.t. layers[31].self_attn.q_proj). The different colors on the token
represent the activated corresponding experts, and the color size represents the proportion of selection.

6.3 ADVANTAGES OVER EXISTING METHODS

While existing methods each excel in specific areas, HoE offers seven notable advantages with
quantitative comparisons provided in Tab. 3. The checklist of advantages are listed in Tab. 1.

1. Lightweight and Parameter-Efficient: All preferences are unified in one single model with few
parameters, avoiding storage of multiple fine-tuned models.

2. Minimal Inference Cost: Only a few compact experts are activated per query, much faster than
decoding- or refinement-based methods that require multi-pass inference.

3. Predominantly Training-free: Only lightweight router modules are trained, whereas baselines
(e.g., MORLHF, MODPO) require costly exhaustive training.

4. Plug-and-Play and Scalable: New objectives can be added by extending the preference vector,
without retraining or invalidating existing experts.

5. Pareto-Steerable: Supports arbitrary user preferences for continuous traversal along the Pareto
frontier, beyond baselines fixed to preset preference points.

6. Multi-task Compatible: Achieves competitive multi-task performance without specific designs.

7. Prompt-Free. Does not rely on handcrafted prompts, enabling alignment with abstract or hard-to-
verbalize objectives while preserving base LLM capabilities.

7 CONCLUSION

We propose HoE, a hierarchical Mixture-of-Experts framework for multi-objective alignment in
LLMs. By combining LoRA experts, router experts, and preference routing, our method enables
efficient and scalable alignment across diverse user preferences. Experiments on 16 objectives across
6 benchmarks and 200 preferences show that HoE outperforms 15+ strong baselines, achieving
superior state-of-the-art Pareto results in various multi-objective and multi-task settings.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Throughout the preparation of this manuscript, large language models were employed exclusively
for light stylistic refinement and the occasional grammatical adjustment. Every conceptual insight
analytical thread, and interpretive conclusion emerged from the authors themselves; no algorith-
mic assistance was solicited for the framing, design, or substance of the work, and full scientific
responsibility rests with the human contributors alone

B ADDITIONAL RESULTS
B.1 MANY-OBJECTIVE ALIGNMENT RESULTS

Table 2: Five-objective alignment results on HelpSteer. Preference weighting settings are shown in
gray. The best results are bolded and second best ones are underlined.

METHOD HELPFUL CORRECT COHERENCE COMPLEX VERBOSITY| AVERAGE
PREFERENCE 0.2 0.2 0.2 0.2 0.2

RS 67.2 68 76.8 37.3 41.9 58.24
RIC 71.5 70.7 78.3 41.1 43.8 61.08
MOD 68.4 69.1 76.6 40 459 60
HOE (OURS) 70.4 71.6 78.1 42.8 47.5 62.1 (+3.8)
PREFERENCE 0.17 0.17 0.17 0.25 0.25

RS 66.7 67.8 76.2 38.9 42.6 58.44
RIC 70 67.6 76.5 42.3 46.2 60.52
MOD 68.1 68.9 76.3 40.9 47.1 60.26
HOE (OURS) 70 71.1 77.7 42.9 48.7 62.08(+3.6)
PREFERENCE| 0.11 0.11 0.11 0.33 0.33

RS 66.4 67.5 75.8 40.5 44.3 58.9
RIC 67.7 62.4 73.9 44 49.9 59.58
MOD 67.7 68.2 75.6 42.9 48.1 60.5
HOE (OURS) 69.8 70.8 77.4 432 49.3 62.1(+3.2)

We evaluate five-objective alignment on HelpSteer, with results presented in Tab. 2. The PREFER-
ENCE column indicates the user’s preference vector A\, s... HOE achieves the highest average score,
outperforming MOD and RiC across all objectives, with only slight underperformance on a few spe-
cific objectives compared to RiC. This demonstrates that HoE is highly effective for many-objective
alignment.

B.2 CoOST ANALYSIS

Table 3: Comparison of training, storage, and inference costs across different baselines, using
Llama-2-7B as the base model aligned on three objectives with the same datasets. Inference cost is
normalized to the end-to-end latency of a single decoding pass with one LLM backbone, denoted as
1x; values such as 2x indicate proportionally longer latency. Training cost is reported as wall-clock
hours measured on 4x A100-80GB GPUs, where an entry of X y denotes y separate training runs
with an average cost of « hours each. HoE is designed to reuse off-the-shelf LLMs and is therefore
predominantly training-free. However, for completeness, we also report the cost of training three
single-objective models from scratch, which is listed under “Training Cost (from scratch)”.

BASELINES STORAGE TRAINING TRAINING ADDITIONAL COST INFERENCE
PARAMETERS COST (FROM SCRATCH) COST

RS 7.48B 0 0 +42 x 3 1.0
MOD 7.48B 0 0 +42 x 3 3.10+£0.3
MODPO 7.8B 0.8B 17 x5 - 1.0
MORLHF 7.8B 0.8B 42 x5 - 1.0
R1C 7.64B 0.64B 13 x7 - 1.0
ARGS 14B 0.16B - - 2.02+£0.2
METAALIGNER 14B 0.16B - - 2.04+0.3
PAD 14B 0.16B - - 298+ 0.5
HOE (OURS) 7.64B SM 3.2x2 +42 x 3 1.23+£0.2
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We conduct a cost analysis of baseline models when performing three-objective alignment with
LLaMA2-7B, as summarized in Table 3. Our evaluation considers four key dimensions: 1)Storage:
The amount of parameters that must be permanently stored in memory throughout the inference
pipeline. 2)Number of Trainable Parameters, 3)Inference Cost: The computational overhead incurred
during inference, 4)Training Time.

Inference Cost. Methods such as MetaAligner, Args, PAD, and MOD, which rely on decoding
or refinement, significantly increase inference costs as the number of objectives grows. In contrast,
HoE only incurs a slight increase in inference time after activating three experts, demonstrating its
scalability. Extrapolating from this, HoE could align at least 12 objectives before inference time
doubles, ensuring efficient multi-objective scaling.

Storage. Moreover, MetaAligner, Args, and PAD require at least two models at inference time. If
full-parameter training is considered, PAD also requires storing an additional reference model, while
MOD and RS each require three separate 7B-scale models. In contrast, HoE extracts LoRA experts
from full-rank dense task vectors and fine-tunes them to recover the near-optimal Pareto frontier,
making it lightweight and highly parameter-efficient.

Trainable Parameters and Training Cost. In terms of trainable parameters and training cost, HoE
requires significantly fewer parameters and resources than other training-based methods, making
it a more efficient solution for multi-objective alignment. Importantly, the training cost of router
experts in HoE is negligible. For instance, fine-tuning helpfulness experts on HHRLHF with a
LLaMA3.1-8B backbone (Rank=256, batch size=480, three epochs) required approximately 45 hours
on 4xA100-80GB GPUs. By contrast, router experts contain only about 80M trainable parameters
and converge within 40 batches, with total training time ranging from 1 to 5 hours depending on the
objective. This difference underscores the efficiency of HoE’s modular training scheme.

Finally, while HoE is designed to reuse off-the-shelf pre-trained checkpoints and is therefore predom-
inantly training-free, we additionally report the cost of training three single-objective models from
scratch in the “Additional Cost (from scratch)” column for completeness. In practice, this step is not
required by our framework, but it provides a clear baseline for readers to contextualize the efficiency
gains of HoE. Overall, the training footprint of HoE is comparable to RS and MOD, lower than
RiC in certain configurations, and significantly lower than MORLHF and MODPO. It is only higher
than methods such as GenARM or Args, which are fully training-free but suffer from limitations
in scalability, generality, or controllability. This comparison highlights that HoE strikes a favorable
balance between efficiency and adaptability.

B.3 ABLATION STUDY

Table 4: Three-objective ablation study on Llama 3.1-8B, evaluated on HelpSteer2 and Psoups
under Helpful-Harmless—Humor. We compare configurations using different combinations of LoRA
experts and router experts, isolating their individual and combined effects on the reconstructed Pareto
frontier.

Helpful& Harmless& Humor&
Method Helpful Harmless Harmless Humor Humor Helpful HHH
Psoups dataset
Base 1.15 0.91 0.85 -0.07 -0.83 0.1 032
HoE(4LoRA& lrouter) 3.05 1.02 2.25 1.79 2.03 1.78 1.03
HoE(3LoRA&Irouter) - 0.97 - 1.58 - 1.53  1.03
HoE(3LoRA&4router) - 0.99 - 1.62 - 1.65 1.03
HoE(4LoRA ) - 1.01 - 1.70 - 1.69 1.06
HoE(4LoRA&3router) - 1.05 - 1.86 - 191 1.15
HelpSteer dataset
Base 0.72 0.63 0.55 -0.04 -0.51  0.09 0.17
HoE(4LoRA& Irouter) 2.36 0.66 1.5 1.58 1.96 1.63 1.01
HoE(3LoRA&lrouter) - 0.64 - 1.26 - 1.27  0.79
HoE(3LoRA&4router) - 0.64 - 1.37 - 142 092
HoE(4LoRA ) - 0.65 - 1.48 - 1.56 1.04
HoE(4LoRA&3router) - 0.69 - 1.64 - 1.71  1.12
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Table 5: Ablation study for five-objective alignment on Llama 3.1-8B evaluated on HelpSteer. We
compare configurations using six LoRA experts combined with 1, 3, and 5 router experts.

METHOD PREFERENCE] PREFERENCE2 PREFERENCE3 PREFERENCE4 PREFERENCES PREFERENCEG
HOE(6LORA&IROUTER) 62.1 59.7 58.8 63.0 63.3 63.8
HOE(6LORA&3ROUTER) 62.9 60.5 59.2 63.1 63.4 63.7
HOE(6LORA&SROUTER) 62.9 60.5 59.2 63.5 63.9 64.0

Setting. For three-Objective alignment, We tested the following five settings: (1)
3LoRA & 1 Router: LoRA experts: [0.0,1.0,0.0], [1.0,0.0,0.0], [0.0,0.0,1.0]; Router experts:
[0.33,0.33,0.33] (2) 4LoRA: LoRA: above three + [0.33,0.33,0.33]; (3) 4LoRA & 1 Router:
LoRA experts: above four; Router experts: [0.25,0.25,0.5] (4) 3LoRA & 3 Router: LoRA ex-
perts: three single-objective experts; Routers experts: [0.4,0.4,0.2], [0.2,0.4,0.4], [0.4,0.2,0.4]
(5) 4LoRA & 3 Router: LoRA experts: above four; Routers experts: same three as above.
For five-Objective alignment, we tested the following three settings: (1) 6LoRA & 1 Router:
LoRA experts: 5 fixed single-objective experts + [0.33,0.33,0.33,0,0]; Router experts:
[0.2,0.2,0.2,0.2,0.2]. (2) 6LoRA & 3 Router: LoRA: 5 fixed single-objective experts +
[0.2,0.2,0.2,0.2,0.2]; Router experts additionally include [0.33,0.33,0.33,0,0] , [0.1,0.1,0.1,0.6,0.1],
[0.1,0.1,0.1,0.1,0.6]. (3) 6LoRA & 5 Router: Same LoRA; Routers include 5 diverse PF-covering di-
rections: [0.35,0.35,0.1,0.1,0.1], [0.35,0.1,0.35,0.1,0.1], [0.1,0.35,0.35,0.1,0.1] , [0.1,0.1,0.1,0.6,0.1],
[0.1,0.1,0.1,0.1,0.6]. For five-Objective alignment, we tested the following six preference: Prefer-
encel: [0.2 0.2 0.2 0.2 0.2], Preference2: [0.1, 0.1, 0.1, 0.1, 0.6], Preference3: [0.1, 0.1, 0.1, 0.6, 0.1],
Preference4: [0.6, 0.1, 0.1, 0.1, 0.1], Preference5: [0.1, 0.6, 0.1, 0.1, 0.1], Preference6: [0.1, 0.1, 0.6,
0.1, 0.1].

B.4 MULLTI-TASK RESULTS

Helpful Assistant —— RS
Fr-merging
PCB Merging

—— MOD
LoRAMoE

o 00% —— HoE(ours)

Math
Figure 7: Multi-Task Learning results. Our router experts specialized for “Helpful Assistant” and

“Safety Assistant” enable better performance than LoORAMOoE. The base model’s performance is
normalized to 0% and single-objective models are normalized to 100%

We designed experiments involving four tasks learning: 1) Helpful Assistant: An assistant that
provides helpful and correct responses to prompts, even for harmful ones. 2) Safety Assistant: An
assistant that refuses to respond to harmful prompts. 3) Summary Task: Summarizes a given poster.
4) Math Task: Solves math problems from the GSM8K dataset(Cobbe et al., 2021). The first two
tasks were evaluated on the over-refusal benchmark(Cui et al., 2024), the Summary Task was assessed
using the average score across three objectives, and the Math Task was evaluated with Pass@1
accuracy on the GSMSK test set. To balance different scores, all results were normalized, setting the
base model’s performance to 0% and single-objective models to 100%, which are shown in Fig.7.
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We compared HoE with baselines such as LORAMoE, RS, MOD, PCBmerging, and FR-Merging,
all initialized with the same model and using LoRA adapter-based fusion. As expected, HoE outper-
forms PCBmerging, FR-Merging, and MoAlignment methods (e.g., RS, MOD). While LoRAMoE
achieved strong performance on the Summary Task and Math Task, it struggled on the Helpful and
Safety Assistant tasks due to the nuanced and overlapping nature of harmful and seemingly harmful
prompts in the over-refusal benchmark. The router in LORAMOE, designed for uniform preferences
[0.25,0.25,0.25, 0.25], failed to distinguish between red-teaming prompts and less harmful ones
effectively. In contrast, HoE introduced specialized router experts for the Helpful and Safety Assistant
tasks ([0.5,0.5,0.0,0.0]), enabling better performance by dynamically adjusting input weightings.
This improvement highlights the flexibility and robustness of HoE in multi-task learning scenarios.

Table 6: Alignment results for unseen dataset HelpSteer2 and Psoups on three objective s(i.e., Helpful,
Harmless, Humor) with Llama3.1-8B

Helpful& Harmless& Humor&
Method Helpful Harmless Harmless Humor Humor Helpful HHH
Psoups dataset
Base 1.15 0.91 0.85 -0.07 -0.83 0.1 0.32
RS - 0.88 - 0.49 - 044 04
RiC 0.91 0.81 0.91 0.37 -0.07 035 0.58
MetaAligner  1.48 1.02 0.63 -0.18 -093 025 0.32
MOD - 0.96 - 0.68 - 0.69 0.67
PAD 1.41 1.25 1.12 0.93 0.86 1.08 1.06
GenARM 1.75 0.99 1.53 1.08 146 086 0.73
PARM 2.05 1.21 1.87 1.34 1.46 1.03 0.86
HoE (Ours) 3.05 1.02 2.25 1.79 2.03 1.78 1.03
HelpSteer dataset
Base 0.72 0.63 0.55 -0.04 -0.51  0.09 0.17
RS - 0.74 - 0.47 - 044 0.12
RiC 0.77 0.73 0.75 0.41 0.10 035 044
MetaAligner 1.26 0.70 0.28 -0.22 -0.62 027 0.22
MOD - 0.77 - 0.59 - 0.51 0.23
PAD 0.94 0.95 1.05 1.02 1.10 093 0.96
GenARM 1.27 0.84 1.08 0.65 0.64 0.76 0.53
PARM 1.38 0.95 1.15 0.76 0.78 0.88 0.72
HoE (Ours) 2.36 0.66 1.5 1.58 1.96 1.3 1.01
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B.5 ADVANTAGES OVER EXISTING METHODS

While existing methods each excel in specific areas, HoE offers seven notable advantages, with
quantitative comparisons provided in Tab. 3. The checklist of advantages are listed in Tab. 1.

1) Lightweight and Parameter-Efficient. All preference models are unified in a single architecture,
significantly reducing storage demands, compared to methods that train and store multiple models.

2) Predominantly Training-free. HoE relies primarily on model fusion, requiring minimal training
only for a small portion of the router. While other methods (e.g., RiC, PAD, and MetaAligner) require
costly exhaustive training as objectives increase.

3) Minimal Inference Cost. HoE activates only a few lightweight experts at inference time, making
it much faster than decoding- or refinement-based methods (e.g., MetaAligner, PAD, MOD) that
require multi-pass inference.

4) Applicable to Multi-task Learning. As demonstrated in Fig. 7, HoE achieves comparable perfor-
mance to other baselines in multi-task learning scenarios, without specialized design for MTL.

5) Pareto-Steerable. HoE supports arbitrary user preference, enabling continuous traversal along the
Pareto frontier—unlike baselines fixed to preset preferences (e.g., MetaAligner, PAD, and Steering).

6) Plug-and-play and Scalable. New unseen objectives can be added without retraining existing
experts; existing ones remain valid by simply extending the preference vector (e.g., from [0.5,0.5] to
[0.5,0.5,0.0]). Some methods (e.g., MORLHF, MOPPO, and RiC) require extensive retraining to
involve the new objective, and others (e.g., DPA, PAD, MetaAligner, and LoRAMOoE) render previous
checkpoints obsolete and necessitate complete retraining.

7) Free from Prompting. HoE avoids reliance on handcrafted prompts, enabling generalization to
abstract or hard-to-verbalize objectives (e.g., “deberta”, “reward” or “cost” in Fig. 3) and preserving
the core capabilities of the base LLM - unlike prompt-dependent methods(e.g., PAD, MetaAligner,

and DPA)

HoE(ours)
RS

MOD

RiC

Humor

-1.5

Hap,°
1
ml@SS 25

Figure 8: Alignment results with Helpful Assistant task on three-objective. Our approach consistently
outperforms RS, MOD and RiC
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Figure 9: GPT-4 evaluates all methods on Psoups and Helpsteer2 task, comparing the relative win
rate of model-generated responses over the original responses for each approach. The evaluation is
conducted across three dimensions: helpfulness, harmlessness, and humor. We take the average win
rate across these three metrics as the final result.

C DISCUSSION

C.1 CLARIFICATION OF “TRAINING-FREE”

By “training-free” we emphasize that HoE does not require training or re-training full dense base
models from scratch for each new objective. Instead, HoE leverages publicly available pre-trained
or fine-tuned checkpoints, , extracts compact LoRA experts from these off-the-shell models and
synthesizes multi-objective LoRA experts by training-free merging. Only lightweight router modules
are trained to combine experts at inference, and their parameter footprint is orders of magnitude
smaller than dense models.

* “Training-free” is practical. = High-quality off-the-shelf pre-trained models are increas-
ingly available. In our experiments, we reused open-source checkpoints such as Math-
Llama ! 2 3 for mathematical reasoning, CodeLlama * > for code generation, as well as
preference-oriented Llama Models © 7 ® for helpfulness and harmlessness. HoE is explicitly
designed to operate on such readily available checkpoints, which substantially reduces the
burden of repeated training in real-world applications.

* “Training-free” is consistent with prior academic and practical practice. In the research
community of multi-objective alignment, methods such as MOD (Shi et al., 2024) and
RS (Ramé et al., 2023) are widely regarded as training-free, as they build upon separately
fine-tuned models rather than re-training them jointly. Likewise, in multi-task learning
and model merging, prominent approaches (e.g., Task Arithmetic (Ilharco et al., 2023),
DARE (Yu et al., 2023), TIES-merging (Yadav et al., 2023)) are widely regarded as training-
free, fine-tuning models individually on a set of tasks and subsequently combine them
without additional dense training. Compared with direct joint optimization, these approaches
often deliver superior performance while avoiding the “alignment tax”. In industry, similar
paradigms are adopted: KiMi 1.5 independently trained two reasoning models and reported
significant efficiency gains by merging long- and short-chain-of-thought experts; Google
DeepMind’s WARM fused multiple diverse reward models to mitigate reward hacking in

"https://huggingface.co/meta-math/MetaMath-7B-V1.0
Zhttps://huggingface.co/allenai/Llama-3.1-Tulu-3-8B
3https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B
*https://huggingface.co/ajibawa-2023/Code-Llama-3-8B
>https://huggingface.co/tokyotech-1lm/Llama-3.1-8B-code
Shttps://huggingface.co/grrayyyyy/Llama2-7B-hhrlhf-helpful
"https://huggingface.co/meta-llama/Llama-2-7b-chat
8https://huggingface.co/lixueaaaa/Llama3-8B-rlhf
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RLHF. Moreover, open-source toolkits such as MergeKit have been widely adopted to
facilitate training-free model merging. HoE belongs to this established family of methods.

* Advantages even when training is required. Even in scenarios where some training is
unavoidable, HoE retains clear advantages in both cost and difficulty:

Training cost. Table 3 reports the comparative training cost of various MOA method.
Our overall training footprint is comparable to RS and MOD, lower that RiC in some
settings, significantly lower than MORLHF and MODPO, and only higher than methods like
GenARM or Args, which are fully training-free but limited in scalability and controllability.

Training difficulty. Fine-tuning single-objective models is substantially easier than
multi-objective optimization. Mature pipelines such as DPO, RLHF (Ouyang et al.,
2022), or GRPO can be directly applied, with relatively few hyperparameters to adjust.
By contrast, multi-objective methods (e.g., MORLHF (Wang et al., 2024b; Yang et al.,
2025; Li et al., 2021)) require careful balancing across objectives, tuning many additional
hyperparameters. And these jointly optimization methods often suffer from objective
interference and catastrophic forgetting due to gradient conflicts or sign mismatch. (Yang
et al., 2024a; Yadav et al., 2023; Guodong et al., 2024; Zhou et al., 2024a; Chen & Kwok,
2025; Jin et al., 2022; Zheng & Wang, 2024; Matena & Raffel, 2022) Training experts
separately avoids these issues and allows stable specialization before aggregation.

C.2 POTENTIAL QUESTIONS ABOUT HOE

To further clarify several key design choices and theoretical intuitions, we address some potential
questions that may arise when interpreting our method.

Q1. Why is it necessary to merge the weights of different LoRA experts to construct additional
experts, given that Eq.3 already performs a form of weight merging?

One may question whether the weight merging in Eq.3 , which linearly combines LoRA experts,
already suffices. While Eq.3 indeed embodies a linear arithmetic operation akin to Task Arithmetic,
this operation alone is insufficient to model the complex trade-offs required for multi-objective
optimization. Our model merging strategy works at a finer granularity—directly at the parameter
level—allowing selective reinforcement or attenuation of individual parameters. This more expressive
mechanism enables us to better approximate solutions along the Pareto front. Empirical results (see
Tab. 7) merging improves performance by 40%, and MOLoRA expert reducing storage by 30% while
retaining performance, confirming its necessity.

Q2. Could other approaches such as MOD or RS similarly use LoRA to reduce storage?

One may wonder whether alternatives like MOD and RS could benefit equally from LoRA-based
compression. While both methods can, in theory, integrate LoRA to save storage, practical limitations
arise.

In the case of RS, each LoRA adapter must be expanded into full-parameter form during inference,
after which parameter soups are applied according to user preference. This results in storage
requirements equivalent to full models and typically leads to inferior performance compared to
directly using dense models.

MOD, on the other hand, can theoretically be adapted to use LoRA by applying different LoRA
modules to a shared backbone. However, this design sacrifices one of MOD’s key strengths—cross-
architecture decoding. Restricting MOD to a single base model severely limits its flexibility and
practical deployment, making such an adaptation largely infeasible for real-world applications.

Q3. Is there experimental evidence that Task Arithmetic (TA) underperforms in this context?

One may ask for empirical evidence showing that Task Arithmetic yields subpar performance in our
setting. Our ablation studies (see Fig. 5, Left) directly address this question. The results demonstrate
that simply reducing the number of LoRA experts and performing naive arithmetic combinations
significantly degrades performance, even falling behind MOD in some cases.

The only difference between TA and our “few-experts” configuration is that TA uses a fully parame-
terized vector while our method uses a sparse LoRA. To distinguish this, we have conducted ablation
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Table 7: Several methods against TA on three-objective alignment (Chinese & Math & Code)

CMMLU GSM8K @ 1(5-sHOT) HUMAN-EVAL

PRETRAIN - 26.2 -
CHINESELLAMA 38.6 4.9 13.4
MATHLLAMA 31.2 70.6 0
CODELLAMA 33.3 28.0 17.1
TASKARITHMETICILHARCO ET AL. (2023) 35.4 48.7 9.8
PCB-MERGINGGUODONG ET AL. (2024) 36.5 54.3 16.5
FR-MERGINGZHENG & WANG (2024) 36.4 55.6 15.7
TIES-MERGINGYADAV ET AL. (2023) 36.4 56.2 14.0
CODEEXPERT(R=256) - - 16.7
MATHEXPERT(R=128) - 66.3 -
CHINESEEXPERT(R=128) 37.8 - -
MOLORAEXPERT(OURS) 35.7 50.4 13.7

studies on LoRA ranks (see Fig. 5. Mid) and we further conducted experiments (see Tab. 7) , showing
TA underperforms other fusion methods, while LoORA Experts match TA with lower space cost.

Q4. Does HoE need to use router experts to adaptively select LORA experts during inference?
Is there any analysis of the overhead?

One may wonder whether router experts are necessary. Taking Llama3.1-8B as an example, the size
of the router’s parameters is negligible compared to LoRA experts or the transformer’s dense matrices,
which we refer to as “parameter overhead.” Furthermore, traditional model merging struggles to
handle extreme preference weightings (e.g., [0.1, 0.8, 0.1]), often leading to trivial MOLoRA experts
(e.g., [0.33, 0.33, 0.33]). We refer to this issue as “coverage limitation.”

While the parameters of router experts is negligible, its impact is far from negligible. During inference,
router experts function as dynamic routers, enabling fine-grained selection of upper-layer LoRA
experts. As shown in Fig. 5 (Left), adding router experts can achieve a comparable effect to adding
MOLOoRA experts while maintaining lower parameter overhead.

Q5. How does HoE generalize to unseen preference weighting during inference, given that
inherent preferences of all experts do not cover the entire Pareto Frontier?

Our method is inspired by MOEA/D (Zhang & Li, 2007) in classical optimization. You can think of
the full Pareto front as a convex arc, and our approach attempts to reconstruct this arc using multiple
linear segments, connecting learned points on the front.

In more formal terms: Suppose we have obtained experts for preferences [0.5,0.5] and [0.7, 0.3].
Now, during inference, we are given a new preference vector [0.6, 0.4], which was not seen during
training. According to our routing strategy, we decompose [0.6, 0.4] into a weighted sum of nearby
known preferences: [0.6,0.4] = 0.5 x [0.5,0.5] + 0.5 x [0.7,0.3] This local composition can be
viewed as a fine-grained task arithmetic or a locally linear Rewarded Soups (RS) approximation.

Under two empirical assumptions, the resulting generation remains on or near the Pareto front:
The in-distribution experts ([0.5,0.5] and [0.7,0.3]) are near-optimal on their respective trade-offs.
RS-style interpolation performs reasonably well in local regions of the objective space, preserving
convexity. Our experiments support these assumptions: interpolated preferences do not fall below the
line connecting adjacent known Pareto points. Thus, while not guaranteed globally, HoE provides
robust generalization to unseen weightings through these local expert fusions.

C.3 COMPARISON WITH LORAMOE

The method most closely related to HoE is LORAMOE (Dou et al., 2024; Gao et al., 2024; Zadouri
et al., 2024; Buehler & Buehler, 2024), which was originally proposed for multi-task learning
(MTL). Despite this similarity in leveraging LoRA modules, HoE departs from LoORAMOE in several
fundamental aspects:

* Steerability for multi-objective alignment. LoORAMOE lacks explicit steerability: its router
balances tasks in a fixed manner, and when directly applied to multi-objective alignment
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(MoA), it behaves as a single-preference model (e.g., a uniform [0.5, 0.5] mixture in the
two-objective case). This limitation prevents LORAMOE from accommodating arbitrary user-
specified preferences, whereas HoE is explicitly designed to provide controllable trade-offs
across arbitrary preferences, enabling fine-grained preference steering.

* Decomposition and interpretability. In LORAMOE, each LoRA expert is defined only in
the context of joint routing, and individual experts lack a standalone semantic interpretation.
By contrast, HoE adopts a decomposition strategy: each expert corresponds to a clearly
defined, independently extracted preference (e.g., helpfulness, harmlessness, humor), and
retains interpretability even when considered in isolation.

* Training efficiency and scalability. LoRAMOE jointly trains all LoRA adapters along
with the router, making the framework training-intensive and less scalable as the number
of tasks grows. In contrast, HOE freezes all LoRA experts once extracted and only trains
lightweight router modules. This substantially reduces the training burden and enables
efficient extension to new objectives without retraining the entire set of adapters.

In summary, aside from the shared use of LoRA adapters, HoE and LoORAMOE differ funda-
mentally in their design philosophy and applicability. HoE introduces steerability, interpretability,
and scalability into the LoRA-based expert paradigm, establishing a novel framework specifically
tailored for multi-objective alignment.

D THE WORKFLOW OF HoOE

Algorithm 1 The workflow of HoE

Input: objective number NV, single-objective fine-tuned weights {0; };c[n, pre-trained weights
Opre, N-Simplex A, number of MO LoRA Experts L, number of MO router Experts R, HoE
model © = {}
uniformly select weightings {\i };[n+14R) ~ AN
fori =1to N do
7; < extract LoRA from (6; — 0,;.)
end for
for = NtoN + Ldo
Tiy1 < Merging {6; };c[n] with weighting \;
end for
O = {Ti}i=[N4L]
forr=N-+LtoN+ L+ Rdo
7, < Train router experts on \, with ©
end for
insert © = {7 }i—(N+14R)
Output: ©

Algorithm 1 show the whole pipeline of HoE.

E IMPLEMENTATION DETAILS

E.1 LoORA EXPERT DETAILS

HoE builds on recent advances in delta-compression techniques, which demonstrate that task vectors
derived from fine-tuned models can be faithfully compressed using SVD-based or related meth-
ods (Wang et al., 2024c; Ping et al., 2024; Gu et al., 2025; Yuan et al., 2023; Ryu et al., 2023).
These approaches remain effective even when the base and fine-tuned models differ substantially
(e.g., instruction-tuned versus base variants), achieving compression rates up to 1/16 with negligible
performance loss. In our setting, the observed parameter deltas between single-objective models
and the base LLM are comparatively small (MSE < 0.000001, MAE < 0.000420), further ensuring
that compression preserves accuracy. Across all experiments, we employ Activation-Aware SVD
(ASVD (Yuan et al., 2023)) as our primary compression method. We also evaluate alternative strate-
gies: 1) Naive SVD — leads to noticeable accuracy degradation; 2) ASVD — achieves the best
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trade-off between fidelity and efficiency, therefore used in all reported experiments; 3) Delta-Come —
offers the highest fidelity but requires GPTQ training, making it incompatible with our training-free
setting and thus not adopted in this paper.

For multi-objective LoRA experts, we first adopt PCB-merging (Guodong et al., 2024) combined
with DARE (Yu et al., 2023) as our merging strategy, and then apply SVD decomposition.

While the number of experts naturally increases with the number of objectives, this does not com-
promise deployment scalability. Recent infrastructure-level optimizations—such as S-LoRA (?)
enable serving over one hundred LoRA experts concurrently on a single GPU. In practice, we
adopt an S-LoRA-based deployment, which delivers 2-3 x speedup over standard LoRA serving in
vLLM when running HoE on 2x A100-80GB GPUs. This design ensures that HOE remains both
parameter-efficient and inference-efficient, even when scaling to many objectives.

E.2 HoE DETAILS

For 2-objective alignment, in addition to the two corresponding single-objective LoRA experts, we
introduce an additional LoRA expert represented by [0.5, 0.5] and adaptively add one router expert
based on the evaluation result. This results in a total of three LoORA experts and one router expert.

For 3-objective alignment, we include the three single-objective LoRA experts along with an addi-
tional LoRA expert represented by [0.33, 0.33, 0.33]. Specifically, for the Helpful Assistant Task, we
incorporate a router expert represented by [0.25,0.25, 0.5] to enhance preference balancing. This
results in a total of four LoRA experts and one router expert.

For 5-objective alignment on the HelpSteer Task, we utilize five single-objective LoRA experts along-
side an additional LoRA expert represented by [0.33,0.33,0.33, 0, 0] and a router expert represented
by [0.2,0.2,0.2,0.2,0.2] to improve adaptability across different preferences. This results in a total
of six LoRA experts and one router expert.

E.3 OPTIMIZATION DETAILS

Each router expert is optimized only with respect to its associated preference vector A(®). Given
preference A(¢), the optimization objective for a router expert is identical to the formulation in the
main text:

N\ = arg mf]LX Ey~7r,,(~|:z:) [RA ($, y)]7 (12)
where Ry (z,y) = >, N\iR;(z,y) is the scalarized multi-objective reward. Unlike LORAMOoE (Dou

et al., 2024), our method keeps all LoRA expert parameters frozen, which drastically reduces training
cost and ensures plug-and-play modularity.

To properly handle non-convex regions of the Pareto frontier, we adopt the Tchebycheff (TCH)
scalarization used in the main text. For clarity, we denote the expected reward for objective ¢ as
R;(0) = EyxuD, yormo(|2)[FRi(2, y)]. The objective can be formulated as:

D61Y) = max min {A; (Rq(6) — 20)}. (13)

where z* represents a reference point indicating the desired performance level for each objective, and
A denotes the relative importance of each objective.

Because directly solving the max—min form is unstable in reinforcement learning, we apply the
standard Online Mirror Descent (OMD) (Liu et al., 2024) reformulation used in the main text:

IO = max D wi (Ri(0) = =), (14)

subject to:

w = arg min{w; \;(R;(0) — z7)}, |Jw|r = 1. (15)

The original TCH formulation yields one-hot indicator vectors w which cause abrupt switching near
Pareto boundaries and significantly harm RL stability. Following OMD-STCH-MORL (Qiu et al.,
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2024), we adopt the Smooth Tchebycheff (STCH) relaxation by replacing the min operator with a
softmax: w.

w = softmax{\;(z] — R;(6))} (16)
yielding a continuous trade-off indicator vector w.

The weights are then updated online using a mirror-descent rule via TD learning, enabling the
optimization to leverage online data across multiple training batches for more stable estimation:

log wi™ < log w! + aXi(z} — R;(0)) (17)

Using the OMD/STCH reformulation, the multi-objective optimization decomposes into a non-
uniform linear combination of single-objective RL problems:

VoJ(01A) = > w;VeR;i(). (18)

For each objectivei, we compute its PPO (Schulman et al., 2017) advantage A7°. The aggregated
policy gradient used to update the router expert becomes:

Vol(01N) = Eq,apmnl( Sy wiAT? (51, 00)) Vo log mo(au]se)]. (19)
which matches the expression in the main text.

In practice, Policy sampling, KL estimation, and backpropagation are shared across all objectives and
executed once per update step. Each objective maintains its own critic model to estimate value for
computing A7°. All transformer layers of critic models are shared; Only the final linear value heads
are independent.

F EXPERIMENT DETAILS

F.1 DATASETS DETAILS

We utilize the following dataset for training and evaluation.

For  Helpful Assistant task, we utilize  “hh-rlhf”  dataset (Bai et al.,
2022)https://huggingface.co/datasets/Anthropic/hh-rlhf, a multi-round dialogue dataset.

For Reddit Summary task, we utilize the summary dataset (Stiennon et al., 2020) https://
huggingface.co/datasets/openai/summarize_from_feedback.

For BeaverTails task, we utilize PKU-SafeRLHF-10K Ji et al.,
2023)https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-10K

For HelpSteer task, we utilize the HelpSteer dataset. https://huggingface.co/datasets/nvidia/HelpSteer
For Helpsteer2 task, we utilize the HelpSteer2 dataset https://huggingface.co/datasets/nvidia/HelpSteer2

For Psoups task, we utilize the same evaluation dataset as (Jang et al., 2023)
https://storage.googleapis.com/personalized-soups/data.zip

For Math task, we utilize the GSMS8k dataset(Cobbe et al.,, 2021)
https://huggingface.co/datasets/openai/gsm8k

For MTL task, we additionally utilize over-refusal benchmark (Cui et al., 2024).

F.2 REWARD MODEL DETAILS

The 14 distinct objectives consist of both interpretable natural language goals and names derived from
reward models (RMs): “ Helpful”, “ Harmless”, “Humor” on Helpful Assistant task, Psoups task and
Helpsteer2 task; “ math” on Math Task; “ faithful”, *“ summary”, “deberta” on Reddit Summary task;

"o 9% ¢

coherence", ““ complexity”,

EEINT3 9%

“reward”, “ cost” on BeaverTail task; “ helpfulness”, ““ correctness”,
verbosity” on Helpsteer task.

We utilize following open-sourced reward models for training and evaluations. For
Reddit Summary, we use https://huggingface.co/Tristan/gpt2_reward_
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summarization for Summary, https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2 for “deberta” and https://huggingface.
co/CogComp/bart-faithful-summary-detector for Faithful; for Helpful As-
sistant, HelpSteer2 and Psoups, we use https://huggingface.co/Ray2333/
gpt2-large-helpful-reward_model for Helpfulness, https://huggingface.
co/Ray2333/gpt2-large-harmless-reward_model for Harmlessness and https:
//huggingface.co/mohameddhiab/humor—-no—humorfor Humor; for BeaverTail, we
use https://huggingface.co/PKU-Alignment/beaver—-7b-vl.0-reward for
“reward” and https://huggingface.co/PKU-Alignment/beaver-7b-vl.0-cost
for “cost’ for all five objectives, helpfulness, correctness, coherence, complexity and verbosity.

The “ helpful” and “ harmless” RMs are directly trained on “ hh-rlhf”” dataset with nearly 0.8 accuracy.
The “ humor” RM was trained on a joke dataset to detect humor with a 0.95 F1 score. The five RMs
for HelpSteer are directly trained on HelpSteer with over 0.75 accuracy.

F.3 BASE MODEL DETAILS

We utilize three base pre-trained models: Llama2-7B(Touvron et al., 2023)°, Llama3.1-8B'? and
Metal.lama3-8B!!, and main results are conducted on Llama2-7B.

To adapt the model to specific task, we first preform SFT on Llama2-7B on each above tasks, getting
SFT models as backbones. For Llama3.1-8B, we directly use the open-sourced model Llama3.1-SFT-
8B!? which is fine-tuned on Llama3.1-8B.

As to fine-tuned preference models, we have the option to directly use off-the-shelf models, which are
publicly available and fine-tuned for specific objectives, such as MathLlama '* '# 15 for mathematical
reasoning, CodeLlama '¢ !7 for code generation, as well as preference-oriented Llama Models '® 1 20
for helpfulness and harmlessness, or to fine-tune the entire model or apply a parameter-efficient
fine-tuning (PEFT) method on the pre-trained model. For MetalLlama3-8B, no aditional SFT training
are conducted.

F.4 BASELINE DETAILS
On 6 tasks, we use the same backbone models separately to reproduce all baselines. Implementation
details are as follows:

RiC, RS, MORLHF: we reproduce RiC, RS and MORLHF according to
https://github.com/YangRui2015/RiC

MOD: we reproduce MOD according to https://github.com/srzer/MOD
MODPO: we reproduce MODPO according to https://github.com/ZHZisZZ/modpo

Args: We reproduce Args accoding to https://github.com/deeplearning-wisc/args, and use open-
sourced model https://huggingface.co/argsearch/llama-7b-rm-float32

PCBmerging, TiesMerging: we reproduce PCBmerging and TiesMerging according to
https://github.com/duguodong7/pcb-merging.

“https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
Phttps://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT
Bhttps://huggingface.co/meta-math/MetaMath-7B-V 1.0
Yhttps://huggingface.co/allenai/Llama-3.1-Tulu-3-8B
Shttps://huggingface.co/nvidia/OpenMath2-Llama3.1-8B
"https://huggingface.co/ajibawa-2023/Code-Llama-3-8B
https://huggingface.co/tokyotech-1lm/Llama-3.1-8B-code
Bhttps://huggingface.co/grrayyyyy/Llama2-7B-hhrlhf-helpful
Phttps://huggingface.co/meta-llama/Llama-2-7b-chat
Phttps://huggingface.co/lixueaaaa/Llama3-8B-rlhf
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Personalized  Soups: we  reproduce  Personalized  Soups according  to
https://github.com/joeljang/RLPHF

PAD: No available code is released currently, so we replicated an unofficial implementation according
to (Chen et al., 2025) and published it on our depository.

Free-merging: we reproduce Free-merging according to https://github.com/Zhengsh123/FREE-
Merging

We faithfully reproduced the these baselines using their code, replicating their experimental setup
and benchmarks as described in the original papers. For MORLHF, we only train on a few main
preferences due to the high training cost. For RS and MOD, we use the exact same model as ours
for fusion. For MetaAligner and Args, we tested its refining performance under Llama2-SFT and
Llama3.1-SFT.

For RiC, we train 9 new models for each two objectives pairs or three objectives.

For PCB-Merging and Fr-Merging, we used CMA-ES (Hansen, 2016) to search for the best hyperpa-
rameters.

F.5 EVALUTION DETAILS

Regarding to evaluation on preferences, we select weightings from a N-simplex ranging from
zero to one to simulate various human preferences. We discretize the weightings space us-
ing small gridsize 0.1 or 0.05. When received two rewards, we randomly select 11 pref-
erences A\; € 0.0,0.1,...,1.0 and A = 1 — A;. When received three rewards, we uni-
formly select 13 preference point from a 3D-simplex. Preference weightings are set as
{(0.0,0.0,1.0), (0.0, 1.0,0.0), (0.1,0.1,0.8), (0.1,0.8,0.1), (0.2,0.2,0.6), (0.2, 0.4, 0.4),
(0.2,0.6,0.2),(0.33,0.33,0.33), (0.4,0.4,0.2), (0.4,0.2,0.4), (0.6,0.2,0.2), (0.8,0.1,0.1),
(1.0,0.0,0.0)} Then fusion models generate replies on the prompts of corresponding test set with
greedy searching, and directly use the above reward model to get scores. For reproduction, We always
use greedy search during generation.

We mainly consider the outcomes of reward model as the evaluation result. Specifically, for math
task, we use PASS@1 accuracy on validation dataset of GSM8K (Cobbe et al., 2021) as metrics.
And for the over-refusal benchmark (Cui et al., 2024), we define the safety score as the probability
that the model successfully resists jailbreak attempts from genuinely harmful prompts. Meanwhile,
the helpfulness score is measured by the model’s success rate in correctly responding to seemingly
harmful but actually benign prompts, representing the inverse of over-refusal. At the same time, we
will also use the comparative win rate provided by GPT-4 to assist in the evaluation, and we use the
same prompts for GPT-4 evaluation as PAD(Chen et al., 2025). We compare their win rates against
the reference response provided by the original pre-trained model or SFT model.

G PROOF

In this section, we discuss on theoretical convergence guarantee of OMD-TCH-MORL.

Let f;(0) denote the expected reward gap between the current policy and the targeted reward for
the i-th objective: f;(0) = E,.p[V;"(x)] — zF. Let II denote the policy space and © denotes the
feasible region of parameter 6 space. We Then define the TCH scalarazation

N
INCVEDPRA()
i=1

and then TCH optimization then solves:
mazx minL(0|\)
Y

We begin by establishing key assumptions required for our analysis.
Assumption.

1. Convexity: Vi € [N], f;(0) is convex in 6.
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2. Bounded objectives: Vi € [N],V0 € ©, f;(0) <U.

3. Bounded gradients and stochastic gradients: Vi € [N],V8 € ©, ||V fi(0)||cc < L, [|0£i(0)|loc <
L

4. Bounded feasible region: V6 € ©, ||0||cc < Ry.

5. Policy feasibility: A feasible reference policy 7* exists such that z* is feasible, that is 37 €
Ha Vi ]E.'L'ND,TN‘IT((L‘) [Rl (T)] = Z;k
6. Bounded gradients variance: Vi € [N],V0 € O, [|[Var[V fi(0)]||cc < L

We define the expected cumulative reward under policy with preference A as:

0o N
V)ZT<S> = ETNTK‘(I) [Z Wt Z )‘iri(sta at)] (20)
t=1 =1

The objective function for Tchebycheff scalarization is given by:
N
L(0A) = Earnp [V (2)] = D Az} (21)
i=1

We then establish that the gradient update direction of the policy gradientV gx+1J(#¥1|\) metioned
in 3.2 aligns with the gradient of TCH scalarazation Vg1 L(6%F1|))

L(9k+1|)\) _ EIND[V)\WI;+1 ((E)] _ EIND[V)\W* (S(})] (22)
e Een [V (@)] = Bann VI (2)] 4+ Ban [V (2)] — Eeun [V (1) (23)

> k k
= Eop i@ (D 7 (51, ar) + 9V (s000)) = V7 (s0)] +L(O*1A) - (24)

t=1

=By p ot ([ VAT (51, 00)] + L(0F]2) (25)

t=1

(26)

Thus, we have:

o'} N
Vorsr (L(OFFLN) — L(6%|N)) = EzND,Tmrg“(x) [Z Wt(z N AT (84, at))V]gH(logWgH(st, az))]
t=1 =1

(27)
= Vra1 J(OFTLN) (28)

Lemma G.1. (Paternain et al., 2023) Let Assumption G.5 (Policy Feasibility) hold. Then the saddle
point (0%, \*) exists such that: maz m)?n L(G|\) = L(6*|\*) = m/\m maz L(6|N)

If the convexity assumption holds, OMD-TCH-MORL is strictly convergent, as proven in (Zhang
etal., 2011; Cao et al., 2020).

Since the feasible objective space f;(II) = {E,p ron(z)[Ri(T)] — 27 |7 € II} is convex, and if all
reward signals are independent, then all TCH gaps f; are linearly independent, ensuring a unique
saddle point (Huang et al., 2024).

If the above conditions do not hold, but the following hold: 1) The learning rate satisfies the Robbins-
Monro condition (Robbins et al., 2023), and 2) The Assumption G.6 (Bounded gradient variance )
holds, then OMD-TCH-MORL will still converge to a local stationary point (Kushner & Yin, 2003):
limy o0 |[VoL(0: | )| =0

If none of these conditions hold but assumptions 1, 2, 3, and 4 remain valid, we establish the following
convergence guarantee:

Theorem G.2. OMD-TCH enjoys a convergence rate of O(log%) where N is the number of objectives
and T is the number of iteration rounds, as proven in (Liu et al., 2024).
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H LIMITATION AND FUTURE WORK

Despite the strengths of our method, several limitations remain: (1) Our approach depends on off-
the-shell single-objective models, which may not always be available. Training such models from
scratch can be time-consuming and impractical in some settings. (2) The method relies on effective
model merging and SVD-based compression. While these techniques work well for the objectives
considered, they may fail in some settings.

I CASE STUDY

User: What do | say to my friend who wears || Helpful LoRAExperts [ | Humor LoRA Experts

really heavy makeup? She looks like a clown. || Harmless LoRAExperts || [5,5,5] LoRA Experts
T

Preference | . . .

weightings ! Generation Selection Ratio of Each LoRA Experts

T
Helpful,Harmless,Humor | Assistant: | think you should tell her that she
[0.58, ©.03, ©.38] | |ooks like a clown.

_____________ o
Helpful,Harmless,Humor l Assistant: Maybe you could say something
[0.35, ©.28, 0.35] | like, “I think you look beautiful without makeup.”
Helpful, Harnless, Hunor | Agsistant: You could say that her makeup is
[, 9, o] ' too heavy

Helpful,Harmless, Humor I Assistant: I'm not sure what you mean by
[e, @.4, 0.6] ! “heavy makeup”. Can you tell me more about
' what she looks like?

Helpful,Harmless, Hunor | | Assistant: I'm sorry to hear that. I'm not sure
[0, 1, o] I what to say.

T T
T L e

|
! why she wears it? !

e e i e 6

Figure 10: Visualization of Case Study and Selection Ratio of Each LoRA Experts (i.e. router
logits for LoRA expert selection). (w.r.t. layers[31].self_attn.q_proj). The different colors on the
token represent the activated corresponding experts, and the color size represents the proportion of
selection.
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