Under review as a conference paper at ICLR 2026

MOBIEDIT: RESOURCE-EFFICIENT KNOWLEDGE
EDITING FOR PERSONALIZED ON-DEVICE LLLMSs

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are deployed on mobile devices to power killer
applications such as intelligent assistants. LLMs pre-trained on general corpora
often hallucinate when handling personalized or unseen queries, leading to incor-
rect or outdated responses. Knowledge editing addresses this by identifying and
adjusting a small crucial portion of model weights, without compromising the gen-
eral knowledge. However, prior knowledge editing methods are impractical to run
on local devices due to the resource-heavy backpropagation (BP) needed for up-
dates. We present MobiEdit, the first mobile knowledge editing framework that
enables efficient LLM personalization on commercial off-the-shelf (COTS) mo-
bile devices. MobiEdit replaces full-precision BP with quantized forward-only
gradient estimation, thus compatible with the energy-efficient mobile neural pro-
cessing units (NPUs). To further improve gradient estimation efficiency, we intro-
duce two optimizations: an early stopping mechanism that adaptively terminates
editing upon success and prefix activation reusing that reduce redundant computa-
tion across steps. Our approach enables real-time editing of 3B-parameter models
(Qwen2.5-3B-Instruct and Llama3.2-3B-Instruct) on COTS mobile devices with
7.1x less memory, 15.8 x less energy and 3.4 X less latency compared to previous
knowledge editing methods.

1 INTRODUCTION

Mobile LLMs are transitioning from research to real-world deployment, empowering privacy-
preserving and latency-sensitive applications such as personal agents (Apple| (2024); [Li et al.
(2024)). While mobile LLMs already embed general world knowledge, a personalized knowledge is
crucial for better understanding individual users. This user-specific information is typically absent
or diluted during pre-training on large public datasets. As Figure[I] shows, if the user provides the
address in one conversation, personalized LLM assistant memorizes the address and applies this
information to the future request.

To achieve such personalization, several approaches have been explored in LLMs, including
retrieval-augmented generation (RAG) (Fan et al.|(2024))), fine-tuning, and knowledge editing (Wang
et al.| (2024b)). RAG expands prompts by retrieving external knowledge without changing model
parameters. However, it adds inference overhead and relies heavily on strong in-context learning
capabilities, which are typically weak in small LLMs deployed on mobile devices (Lu et al.| (2024)).
Fine-tuning requires a large number of training samples for each target fact. It updates model pa-
rameters with high computational cost and faces challenges in collecting sufficient data on-device.

In contrast, knowledge editing modifies only a small subset of parameters to inject new knowledge.
It maintains high inference speed and can incorporate a single fact with just one training sample.
These characteristics make it well-suited for resource-constrained mobile environments. A pre-
vailing knowledge editing paradigm is the locate-and-edit approach (Dai et al.[(2022); Meng et al.
(20225 2023); |Gu et al.| (2024)); Fang et al.| (2025)), which first identifies influential parameters and
then modifies them by introducing a perturbation optimized through backpropagation to produce the
expected output.

Despite being effective in updating model knowledge, current knowledge editing methods relying
on backpropagation (BP) face three critical challenges for mobile deployment: (1) Incompatibility
with forward operators on mobile NPUs. Modern smartphones are equipped with high-performance

Under review as a conference paper at ICLR 2026

First chat Ve MobiEdit ™\ Second chat

What is my address ? NPU-friendly BP-Free Model Editing (§2.2)
o Training stage e - 5
o Quantization (§2.3) | Compute the subject key I 5 What is my address ?

o

Sorry, | don’ t have S
related information. Model 1 Compute the
” odel Forward Pass with new W — Your address is
@ Prefix Activation Reusing (§2.4) down_proj After No.1010, Beijing Road.
My address is No.1010,) . Editin >
Use-specific Model | Early Stopping (§2.4))

° .
S Information T OOn cPU

Inject | I
k update Wygun proj / Oon ey

Figure 1: The on-device LLM remembers user information from the first interaction and applies it
to subsequent requests.

and energy-efficient NPUs, such as Google edge TPU and Qualcomm Hexagon. These NPUs are
designed and optimized primarily for LLM inference, providing up to 60 x speedup over CPUs (Xu
et al.| (2025)). However, training-specific operations are often unsupported or poorly optimized on
mobile NPUs (Xu et al.|(2024)), rendering BP-based knowledge editing methods infeasible in prac-
tice. (2) Poor quantization support. BP-based training operations are often unstable or ineffective
on fully quantized models (§2.3). This lack of quantization support exacerbates the previous two
challenges: the memory footprint of model parameters remains prohibitively large because full-
precision weights must be stored and updated, and it prevents efficient execution on mobile NPUs,
which are specifically optimized for low-bit integer computation. (3) Substantial memory overhead.
For example, editing a 3B-parameter LLM (Qwen?2.5-3B-Instruct) using the classic locate-and-edit
method ROME (Meng et al.|(2022)) requires over 40 GB of memory to both the full-precision model
and activations for BP, which far exceeds the memory capacity of smartphones, typically less than
16 GB.

The above challenges confine current knowledge editing methods to cloud-based computation, un-
dermining two key advantages of mobile LLMs: privacy preservation and offline availability. In this
paper, we propose MobiEdit, the first mobile knowledge editing system for efficient LLMs per-
sonalization. MobiEdit is designed to be memory-efficient, NPU-friendly, and compatible with
quantization, targeting practical deployment on resource-constrained COTS mobile devices.

Our solution. To unleash the power of mobile NPUs, MobiEdit builds atop ROME, a widely
used locate-and-edit scheme, with a few key building blocks renovated: (1) BP-free training. In-
stead of calculating standard gradients using BP, MobiEdit uses zeroth-order optimization ap-
proach to estimate the gradients. MobiEdit operates entirely through forward passes, which
is memory-efficient and well-suited for mobile NPUs. (2) NPU-friendly training stage quantiza-
tion. MobiEdit introduces a new quantization paradigm for efficient knowledge editing on mo-
bile NPUs. Unlike previous BP-based low-precision training, our forward-only gradient updating is
more stable under quantized computation. We thereby quantize all model parameters except the crit-
ical projection weights essential to knowledge editing. Only a small portion of weights undergoes
full-precision computation to conduct precise gradient estimation. (3) The combination of BP-free
training and NPU-friendly quantization further reduces memory consumption. Without the need for
backpropagation, activations are not stored, and only INT8-quantized weights are maintained.

We introduce two optimizations to further improve system efficiency: a prefix activation reusing
that stores KV cache and MLP activations across editing steps, and an early stopping that adaptively
terminates editing once success criteria are met for different knowledge. Together, these design
choices make MobiEdit efficient and practical for mobile deployment.

Results. We test our method on three COTS mobile phones, Redmi K60 Pro, Redmi K70 Pro
and OnePlus 13. On the ZsRE and CounterFact datasets, MobiEdit achieves comparable edit
quality while reducing memory usage by 7.1x, editing latency by 3.4, and energy consumption
by 15.8x compared to different knowledge editing methods, ROME (Meng et al.| (2022))), MEMIT
(Meng et al.|(2023))), WISE (Wang et al.| (2024a)), and AlphaEdit (Fang et al.| (2025)). To our best
knowledge, MobiEdit is the first system to make LLM knowledge editing feasible on commercial
smartphones.

Under review as a conference paper at ICLR 2026

2 METHOD

2.1 MoBIEDIT OVERVIEW

Locate-and-edit methods (e.g., ROME, MEMIT) formulate knowledge editing as updating the
key—value memory in the MLP layers of LLMs: the subject token is mapped to a key k., and a
value v vector representing the target fact is optimized, after which the weight matrix is updated
so that Wk, = v. This paradigm is effective for accuracy and locality, but existing methods rely
on multi-step backpropagation to obtain v, which leads to large memory footprint and high latency,
rendering them infeasible on forward-only NPUs and resource-constrained mobile devices.

MobiEdit inherits this locate-and-edit formulation but present a complete algorithm—hardware
co-designed system to enable practical on-device deployment (Figure[T)). Specifically, MobiEdit
performs edits in three coordinated stages:

(1) NPU-friendly training stage quantization, converting the original model into a mixed-
precision format aligned with mobile NPU constraints;

(2) BP-Free model editing, replacing the backpropagation-based optimizer with a forward-only
gradient estimator, further enhanced by prefix activation reusing and early stopping;

(3) Model update, applying the optimized value vector to modify the mixed-precision model in-
place, so that subsequent interactions can immediately benefit from the injected knowledge.

In summary, MobiEdit retains the effective key—value editing paradigm while replacing its back-
propagation with a lightweight forward-only workflow, augmented by quantization and system-level
optimizations for mobile NPUs.

2.2 BP-FREE KNOWLEDGE EDITING

Unlike traditional methods that minimize this loss using backpropagation-based gradients,
MobiEdit estimate the gradients using only forward passes. Specifically, we employ a central-
difference estimator along sampled perturbation directions. Given a perturbation direction u ~
N(0, I), the directional gradient estimate is computed as (Baydin et al.| (2022)):

N LW — L(W —
O = LWV A+ pu) = L ““).u, 0
2u
where © > 0 is a small scalar step size. To further reduce variance and stabilize training, we average
over N independently sampled directions u; ~ N(0, I):

N
P 1 L(v+ pu;) — L(v — puy)
VoL =— - U 2
vy : ®
We then update the value vector as v <— v — 7 @vﬁ, where 7 is the learning rate, and repeat until
convergence. This procedure performs approximate gradient descent using only forward evaluations.
We apply this process iteratively to update v. Once the optimal v* is obtained, we apply a closed-
form rank-one weight update:

v* — Wk,

W — —17.\T _
W—W"‘A(C k*) , where A= m

3)

Here C = KK is the estimated key covariance matrix, computed from a sample of key vectors
extracted from the model’s activation statistics. This update effectively inserts the pair (k., v*) into
the MLP’s key-value memory, enabling the model to recall the new factual association.

Benefits of BP-free editing. BP-free editing is well-suited for mobile NPUs that only support
forward passes. In terms of memory efficiency, activations, which take more than 40% of BP-based
memory consumption, can be invalidated immediately after the forward pass, because only the final
output is required to compute the estimated gradients.

Under review as a conference paper at ICLR 2026

FP32 FP32

dequantize down_proj edit quantize —

FP32 FP32 FP32 INT16

INT8 float operators |:| int operators |:| updated operators

Figure 2: MobiEdit quantization workflow and strategy. MobiEdit applies quantization to all
activations, while retaining floating-point precision only for the editing layer and its preceding layer.

2.3 NPU-FRIENDLY TRAINING STAGE QUANTIZATION FOR BP-FREE EDITING

Although activations no longer need to be stored, the large size of LLM weights can still exhaust
the memory capacity of mobile devices. A 3B-parameter model, such as Qwen2.5-3B-instruct,
requires about 12 GB of full-precision weights. While the newest COTS mobile devices, such as
the Xiaomi 15, typically have 16 GB of RAM, only around 75% of this is available for applications,
leaving roughly 12 GB usable. As a result, loading the model alone can exhaust available memory
and lead to frequent out-of-memory (OOM) errors.

Besides, mobile NPUs are best suited for accelerating INT matrix multiplication with 1024-bit INTS
vector arithmetic. Their floating-point computation capabilities are relatively weak compared to
mobile GPUs. To avoid frequent memory swapping, which can severely shorten the lifespan of
mobile SSDs, and to leverage the computational advantages of NPUs, we propose an NPU-friendly
quantization workflow for BP-free editing.

Quantization workflow and strategy. Figure illustrates the quantization workflow of
MobiEdit. Due to the hardware constraints of mobile NPUs, MobiEdit employs a static quanti-
zation strategy. The static scales for quantization are determined using representative corpora data.
To balance efficiency and accuracy, MobiEdit adopts a mixed-precision editing approach: the
editing vector and its preceding linear layer are executed in floating-point format; while all other
weights are quantized to 8/16-bit integers. This design is informed by two key observations: (i)
MobiEdit modifies only a small set of parameters proportional to the hidden size. Even minor
quantization errors in this context can significantly impact editing accuracy. Furthermore, since the
editing module modifies the knowledge stored in its preceding linear layer (Meng et al| (2022)),
floating-point precision in this layer is also crucial to maintain accuracy. (ii) The edited vector,
being of limited size (equal to the hidden size), results in a negligible computational cost when
floating-point precision is used for the editing module and its preceding linear layer. For example,
in the Qwen-2.5-3B model, these computations account for only 0.89% of the overall computation,
making the performance overhead of using floating-point precision minimal.

Advantage of our quantization. MobiEdit is more robust to quantization-induced errors than
backpropagation (BP)-based editing methods. Consider an L-layer Transformer network where all
weights and activations are fully quantized:

W =We+ewy, aj=ar+e€ap, €]
where Wg and a‘,f are the quantized weights and activations of the ¢-th layer, and ey, and €, ¢

denote zero-mean i.i.d. quantization errors with variance o2, independent across layers and forward
passes. In each forward pass, quantization noise accumulates recursively.

Without losing generality, we take a linear function f;(z) = z as an intuitive example to
analyze the noise accumulation phenomenon, then we have:

L L
a%ZWLWL—l"'Wlx+Z(H Wk)ﬁj, 6))
j=1 k=j+1

where ¢; represents the combined quantization error at layer j. Consequently, the total vari-
ance of the output noise is

L L)
Var[a? —ar] = ZH H WkH 0? ~ O(Lo?), (6)
J=1 k=j+1

Under review as a conference paper at ICLR 2026

< 0.40
©

B 0.35| mEm zske 1-°;g
g 0.30 W Counterfact o8 Z
5 o
Table 1: Impact of quantization on edit success for 025 5
ROME (BP) and MobiEdit (BP-Free). 2 o020 -
Method Precision Edit Success Score g Ziz . %
ROME (BP) FP32 96 g 005 -
ROME (BP) W8A16 41 & 000 <100 100-200 200-300 300-400 400-500 500-600 00 ©
MobiEdit (BP-Free) FP32 86 Step
MobiEdit (BP-Free) WS8A16 80

Figure 3: Distribution of editing steps for
successful edits.

which grows only linearly with network depth L.

Backpropagation further amplifies this noise via the chain rule. For a small edit A in layer /,
the gradient is:

g7 = (I W) ™

j=0+1

Since the weights themselves are quantized, each term in this product carries quantization
noise. The variance of the gradient noise therefore becomes

L
Var[gi'] = o® TT IW,I1* ~ O(c® - W0), (®)
J=0+1 .
exponential in depth

indicating that deeper networks lead to an exponential escalation of noise, in sharp contrast to
the linear growth in forward propagation.

It is worth noting that in quantization-aware training (QAT) (Jacob et al| (2018)), the
Straight-Through Estimator (STE) (Courbariaux et al.|(2016)) avoids layer-wise error accumulation
by computing gradients on float master weights while treating fake quantization as identity. This is
reasonable in QAT, as the goal is to update float weights before re-quantization. In our on-device
setting, weights are already quantized, with no float copy or fake quantization; both forward and
backward passes operate fully in the quantized domain. Here, quantization errors still accumulate in
the forward pass, and BP-based editing further compounds them exponentially.

In contrast to backpropagation, MobiEdit only accumulates noise during the forward pass.
The zeroth-order gradient is estimated via the centered difference:

LA—L A
gZO = ;

; oA ©)

where £ and £_a are the losses obtained from two independent forward passes with per-
turbed weights W/ + A. Each forward pass incurs the same forward-only quantization error
derived above, with variance Vars,, ~ O(Lo?). Consequently, the variance of the ZO estimator
is
Var[L’A} + Var[E_A] 2 Varg,
Var[gZ©] = =

~ O(Lo?/A2), (10)

which grows only linearly in depth L, in sharp contrast to the exponential dependence of
backpropagation and explaining why MobiEdit is more robust in deep quantized networks.

Quantization robustness evaluation of BP-free training. Our experiments in Table 1 demonstrates
the fragility of BP-based editing under quantization and the robustness of zeroth-order optimizations.
ROME’s editing success rate drops sharply from 96% in the FP32 setting to 41% in the W8A16
setting due to high gradient noise in low-bit conditions. In contrast, MobiEdit achieves a score of
80 under the same W8A16 quantization, demonstrating substantially higher robustness.

Under review as a conference paper at ICLR 2026

2.4 FURTHER OPTIMIZATIONS

Although a single step of MobiEdit is efficient on mobile NPUs, a remaining challenge is that
it requires significantly more steps to reach comparable convergence performance. Each gradient
estimate in zeroth-order optimization is taken along a single perturbation direction, causing deviation
from the true gradient and requiring many more steps to reach stable convergence. For example,
MobiEdit requires on average 20x more steps than BP-based model editing on the ZsRE and
CounterFact datasets, which eliminates its efficiency advantage in terms of wall-clock time.

Early stopping. To address this, we first analyze the successful editing step distribution of edited
facts. As shown in Figure 3| we find that different knowledge has different editing difficulty. Based
on this observation, we introduce a lightweight early stopping mechanism that adaptively determines
the editing horizon based on runtime success feedback. Specifically, during editing, we periodically
evaluate the model’s response to the edited fact every M steps (e.g., every 20 steps). The editing
process is terminated early once the model satisfies a pre-defined success criterion. This typically
occurs when it produces the desired target output with a confidence above a given threshold m.
The early stopping mechanism automatically adjusts the editing steps to the complexity of each edit
instance, avoiding unnecessary forward passes for easy-to-edit facts and reducing overfitting risk by
stopping at the point of first success.

Prefix activation reusing. In our knowledge editing setting, each optimization step uses the same
set of input examples constructed by combining a fixed set of randomly sampled prefixes with the
fact to be edited. Formally, for a target fact f, we define a set of editing inputs as:

Xeait = {[pr + fl,[p2 + f1,-- - [n + f1} (1)

where p1, po, . .., D, are different randomly sampled prefixes.

We observe that in each step, the prefix tokens in the input do not change, and therefore their cor-
responding activations are recomputed redundantly. To reduce this overhead, we introduce Prefix
activation reusing: during the first step, we cache the intermediate activations for the prefix to-
kens, and in all subsequent steps, these cached activations are inherited across editing steps without
recomputation, while only the fact tokens are recomputed. This greatly reduces compute without
changing the model architecture or input format.

Reusing ’stale”” activations from previous steps introduces an accuracy-efficiency trade-off.
We observe this effect in Figure |5, which visualizes the “’staleness’ by showing the cosine sim-
ilarity of activations between consecutive steps. While the similarity is high in many layers, it
gradually decreases in others, especially as editing progresses, indicating that the cached pre-
fix representations are not perfectly aligned with the evolving model. The full implications of
this trade-off, particularly under quantization, are analyzed in detail in Section 3.3. To avoid
the staleness accumulates from halting the editing process, we re-compute the prefix activations as
long as the editing loss does not decrease by 0.001 over 3 steps.

3 EXPERIMENTS

3.1 SETUP

Baselines. We compare MobiEdit against four representative locate-and-edit methods:
ROME (Meng et al.| (2022)), MEMIT (Meng et al| (2023)), AlphaEdit (Fang et al| (2025)), and
WISE (Wang et al,| (2024a)). These methods follow the same paradigm of identifying key acti-
vations and injecting new knowledge into MLP layers, but differ in target granularity and update
mechanisms. ROME performs single-layer editing. MEMIT extends it to multi-fact scenarios. Al-
phaEdit uses null-space projections for preservation, and WISE incorporates dynamic routing to
FFNss that store facts.

Datasets and model. We evaluate MobiEdit on two standard datasets widely used in factual
knowledge editing: ZsRE (Levy et al.|(2017)), a zero-shot relation extraction dataset derived from

Under review as a conference paper at ICLR 2026

WikiRE, and CounterFact (Meng et al.| (2022)), a curated benchmark of factual edits targeting
named entities (e.g., people, locations), with truth and counterfactual contexts. These two datasets
jointly assess edit success (correctly producing the target knowledge), locality (preserving unre-
lated knowledge), and portability (applying the edited knowledge across contexts), the three key
metrics for knowledge editing. We use Qwen2.5-3B-Instruct (QwenTeam| (2024)) and Llama3.2-
3B-Instruct (Al@Metal (2024)) as our target models.

Table 2: Devices used in experiments.

Device SoC RAM NPU

Redmi K60 Pro Snapdragon 8 Gen2 16GB LPDDRS Hexagon NPU V73
Redmi K70 Pro Snapdragon 8 Gen 3 16GB LPDDRS5 Hexagon NPU V75
OnePlus 13 Snapdragon 8 Elite 24GB LPDDR5 Hexagon NPU V79

Implementation details. To assess on-device feasibility, we run all editing procedures on three
COTS mobile devices, as shown in Table[2} We perform all experiments using local inference engine
mllm-npu (Xu et al.[(2025)) optimized for NPU execution. The latency on CPU is obtained by run-
ning on mobile phones using 1lm.c (karpathy|(2013))). We use memory swapping while reaching the
memory limit. MobiEdit uses W8A16 quantization (INT8 weights, INT16 activations), a format
widely supported by mobile NPUs and inference engines, ensuring compatibility and throughput.
The metric of memory usage in this paper is defined as the total memory required, assuming suffi-
cient memory is available. For a simple comparison, the system efficiency values are first normalized
to the range [40, 100] using min-max normalization, and then inverted.

3.2 END-TO-END PERFORMANCE

Memory Efficiency
200

—e— ROME
MEMIT
—— WisE
—4— AhphaEdit
~4— MobiEdit

Edit Success Edit Success

(a) Qwen on ZsRE (b) Qwen on CF (c) Llama on ZsRE (d) Llama on CF

Figure 4: The comprehensive editing ability and performance comparison of knowledge editing
methods on the ZsRE and CounterFact datasets.

Opverall results. We compare MobiEdit against all baselines across six dimensions: edit success,
locality, portability, time efficiency, memory efficiency, and energy efficiency, as shown in Figure[4]
The results showing that MobiEdit achieves a balance of high accuracy and low resource cost.

On Qwen2.5-3B-Instruct model, MobiEdit achieves an 80.1 edit success score, 72.6 locality score,
and 51.4 portability score while requiring only 25.5 minutes, 0.018 kJ energy, and 6.2 GB memory.
On Llama3.2-3B-Instruct model, MobiEdit achieves an edit success score of 88.3, locality score of
44.3, and portability score of 38.3, while requiring only 23.1 minutes, 0.017 kJ energy, and 5.0 GB
memory. Although slightly behind in quality, MobiEdit significantly outperforms in efficiency,
reducing memory usage by more than 7x and energy consumption by over 10x. These substantial
resource savings make MobiEdit the only realistically viable solution for mobile devices.

The significant performance improvement is attributed to MobiEdit leveraging a BP-free editing
method, which reduces the memory and computational overhead caused by backpropagation. Ad-
ditionally, MobiEdit incorporates mobile hardware-friendly quantization and two optimizations
specifically designed for the bp-free training step. These enhancements not only maximize the per-
formance potential of mobile NPUs but also minimize the number of training steps and eliminate
redundant computations.

Under review as a conference paper at ICLR 2026

With MobiEdit ’s exceptional performance gains, although our method Table 3: Facts edited
has a drop in edit accuracy, it significantly improves the number of suc- successfully within 8
cessful edits per unit time, which is critical for real-world usability. Since hours on Redmi K60
knowledge editing occupies device resources and cannot be performed Pro.

while the user is actively using their phone, in practice there are only

about 8 hours per day (e.g., when the user is asleep) available for edit- Method Count
ing. As shown in Table[3] in 8 hours, our method can successfully edit

14 facts, whereas traditional methods only accomplish 2-5. For simple II\Q/I?EI\IG/II;:T g
facts, our method requires only 2—-3 minutes, while traditional methods

. . . . WISE 2
incur a fixed processing time of either 1.25 hours or 3 hours for all facts, AlphaEdit 4

depending on the specific method used. Running traditional methods MobiEdit 14
also causes a temperature increase of approximately 10 °C after just 100
seconds of sustained CPU load, resulting in device lag or shutdown.

Editing performance. Table [4] provides a detailed comparison of memory, latency, and energy
usage across three commercial smartphones on ZsRE dataset. All baseline methods considered in
our experiments, including ROME, MEMIT, AlphaEdit, and WISE, require more than 30 GB of
memory. This is due to the lack of memory optimization in llm.c for training part parameters. And
their per-edit energy is ranging from 0.18J to 0.36J. For instance, WISE consumes 0.36J and takes
11,359 seconds on K60 for a single edit. Such workloads not only exceed memory budgets but
impose intense thermal and scheduling pressure on mobile hardware.

o Owen2.5-3B-Instruct. MobiEdit consumes only 6.2GB memory under 0.03J energy per edit
across all devices, completing edits in 1211 to 1902 seconds. This 10x energy reduction allows
MobiEdit to run editing workloads unobtrusively in the background without interrupting the user
experience or triggering thermal limits. Such sustainability is critical for real-world mobile applica-
tions, where knowledge editing may be triggered interactively under tight system constraints.

o Llama3.2-3B-Instruct. MobiEdit uses 5 GB, achieving 3.1 to 6.1 x lower latency and 13.6x
to 27.6x higher energy efficiency than baselines. The average latency is 1411 seconds on Llama3.2-
3B compared with 1530 seconds on Qwen2.5-3B, since Llama3.2 adopts a wider and shallower
architecture (3072 %28 vs. 2048 x36), being more computationally favorable for NPUs.

Appendix[A]and [B]details that the performance gains come from our algorithm-hardware co-design:
(1) eliminating backward passes, (ii) using prefix activation reusing to cut redundant computation,
and (iii) aligning computation precision with NPU characteristics.

Table 4: Performance comparison of our method with NPU and other knowledge editing methods
with CPU on different devices.

(a) Qwen2.5-3B-Instruct

Method Memory (GB) - K60 - K70 - OnePlus

Time (s) Energy (kJ) Time (s) Energy (kJ) Time (s) Energy (kJ)
ROME 46.14 4543.78 25.13 4276.49 24.23 3252.81 18.02
MEMIT 46.14 4543.78 25.13 4276.49 24.23 3252.81 18.02
WISE 46.30 11359.44 63.82 8552.99 47.16 6505.63 36.05
AlphaEdit 46.14 4543.78 25.13 4276.49 24.23 3252.81 18.02
MobiEdit] 6.20 B 1902.88 | 0.023 B 1477.67 | 0.018 B 121183 | 0.014

(b) Llama3.2-3B-Instruct

Method Memory (GB) . K60 ' K70 ' OnePlus

Time (s) Energy (kJ) Time (s) Energy (kJ) Time (s) Energy (kJ)
ROME 34.14 4834.78 27.01 4578.66 25.23 3551.82 20.22
MEMIT 34.14 4834.78 27.01 4578.66 25.23 3551.82 20.22
WISE 35.05 9668.86 53.89 9157.32 50.45 6505.63 39.32
AlphaEdit 34.14 4834.78 27.01 4578.66 25.23 3551.82 20.22
MobiEdit [5.06 I 175426 | 2.10 I 136226 [1.71 I 1117.19 | 1.44

Under review as a conference paper at ICLR 2026

3.3 ABLATION STUDY

On Llama3.2-8B-Instruct, MobiEdit achieves an 85.3 edit success score. Our ablation study
indicates that prefix activation reusing is the main source of the quality trade-off, reducing the
success score by 8.4 points, while quantization has a much milder impact, with only a 2.1 point
drop.

Table 5: Edit Quality Comparison for Llama3.2-8B-Instruct on ZsRE dataset.

ROME | zo | zo+prefix | zo+prefix+quan
Edit Succ 96.2 | 958 87.4 853
Portability | 51.3 | 50.6 332 38.3
Locality 579 | 66.6 56.2 66.3
Fluency 555 580 566 582

To understand why prefix reusing has such a significant impact, we provide a detailed visual
analysis contrasting the activation dynamics in FP32 and quantized settings. First, in an ideal
FP32 setting as Figure[5a|shown, we observed that activations are extremely stable, which pro-
vided the core motivation for our prefix reusing optimization. As shown below, the similarity
between consecutive steps is very high (>0.90) for most layers. However, a slight decrease in
similarity can still be seen in the top and bottom layers over time, illustrating the ”’staleness”
effect.

uery Similarit Key Similarit Value Similar
Query Y - 1000 Y Y - 1000 v

-0.995 - 0995

Swnmo

099 0990

- 096

0985
0.985

0.980
0.980

0975
0975

0970
0970

(a) FP32

Query Similarity oo Key Similarity o Value Similarity oo

Bunmo

- 0.964 3 -0.955 3 -0.882

0.928 0910 0.764

0.892 0.865 0.646.

Layer
Layer
Layer

0.856] 0.819] 0.528

0.820 3 0774] 0.409

W 0.784 m 0729 m 0.201

ST 2aE2RRRAARSIES STt 2nE2RRRARFSIER R EEEE T EEEEEEE!

(b) W8A16

Figure 5: Stability of inherited prefix activations over editing steps. The heatmap shows the cosine
similarity between the QKV activations at each step and those cached at step 0, demonstrating that
the inherited activations remain a close approximation even after multiple updates.

Second, we found that quantization significantly amplifies this instability. Figure [Sb| shows
the analysis in our practical W8A16 quantization with INT8 weights and INT16 activations.
Several layers now exhibit consistently low similarity (the dark horizontal bands), indicating
significant volatility. Interestingly, these volatile layers are concentrated near the input and

Under review as a conference paper at ICLR 2026

output of the network. This aligns with observations in the quantization literature(An et al.
(2025)), which find that outlier features, a key challenge for quantization, are most prominent
in the first and last Transformer layers. Quantizing tensors with large outlier values requires a
large quantization step size. Due to this large step size, a small perturbation to a pre-quantized
activation value can easily cause it to be mapped to a different integer after quantization.This
results in a large, discrete change in the final quantized activation, even though the initial
perturbation was small and continuous. This effect is most pronounced in outlier-rich layers
and explains the significant drop in activation similarity we observe.

This comparative analysis directly explains the source of the quality trade-off: it stems from

a compounding effect. Our optimization reuses activations that are not only stale but also
noisy and imprecise due to quantization. The interaction of these two factors leads to less
accurate gradient estimates. To be specific on why Portability and Locality are hurt more:
These two metrics require enough precision. Portability needs to update a semantic space
for generalization. Locality needs to isolate the edit to avoid damaging unrelated facts. The
gradient estimated from stale, quantized activations is slightly blurry. While it is accurate
enough to ensure Edit Success, it lacks the surgical precision to perfectly remap the semantic
space and prevent leaks into unrelated knowledge.

4 RELATED WORK

Knowledge editing. Existing methods include locate-and-edit (ROME (Meng et al. (2022)),
MEMIT (Meng et al.|(2023)), AlphaEdit (Fang et al.| (2025)), WISE (Wang et al.|(2024a))), which
directly modify model weights; retrieval-augmented (e.g., RECIPE (Chen et al.| (2024)))), which
fetch external knowledge; and meta-learning (MEND (Mitchell et al.| (2021))), which learns editing
strategies from examples. While having good editing quality, these approaches rely on multi-step
backpropagation, leading to high memory and latency. We instead target memory-efficient, NPU-
friendly, quantization-compatible editing.

BP-Free training. Zeroth-order methods such as FwdLLM (Xu et al| (2024)) and MeZO (Mal-
ladi et al.[(2023)) estimate gradients via forward-pass perturbations and enable high-quality adap-
tation, but are designed for downstream task tuning, often requiring thousands of steps, and have
not been applied to factual editing. To our knowledge, no prior work supports robust fact injection
under both forward-only and quantized constraints. Our framework addresses this gap with BP-free,
quantization-aware editing for edge deployment.

Quantization. By representing weights and activations in low-bit formats, quantization reduces
the memory and computational cost of LLMs. SmoothQuant (Xiao et al.| (2023)) and Spin-
Quant (Yuan et al.| (2025)) mitigate activation/weight outliers, enabling accurate low-bit models,
while QLoRA (Dettmers et al.| (2023)) combines 4-bit quantization with low-rank adapters for
memory-efficient fine-tuning. Unlike these inference- or fine-tuning-oriented approaches, we in-
tegrate mixed-precision quantization with BP-free editing to update knowledge directly on NPUs.

5 CONCLUSION

We present MobiEdit, the first mobile-compatible framework for efficient knowledge editing in
large language models. It uses quantized, forward-only gradient estimation to meet the compute and
memory limits of commercial NPUs, and applies prefix activation reusing and early stopping for
further speedup. MobiEdit enables real-time, on-device editing of 3B models, reducing memory
by 7.1x, energy by 15.8x, and latency by 72% over prior methods, making it a practical solution
for user-driven LLM personalization on mobile and edge devices.

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta—1lama/
llama3/blob/main/MODEL_CARD.md.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models. arXiv preprint arXiv:2502.06415, 2025.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Under review as a conference paper at ICLR 2026

Apple. Apple intelligence. https://www.apple.com/apple-intelligence/, 2024. URL https://
www.apple.com/apple—intelligence/.

Atilim Giineg Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, and
Hui Xue’. Lifelong knowledge editing for LLMs with retrieval-augmented continuous prompt
learning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 13565-13580, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.751. URL https://aclanthology.org/2024.emnlp-main.
751/

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neu-
rons in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavi-
cencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 8493-8502. Association for Computational Linguistics,
2022. doi: 10.18653/v1/2022.acl-long.581. URL https://aclanthology.org/2022.
acl-long.581/.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized LLMs. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua,
and Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language
models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, pp. 6491-6501, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671470. URL https:
//doi.org/10.1145/3637528.3671470.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=HvSytvg3Jhl

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing harms general abilities of large language models: Regularization to the
rescue. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 16801-16819. As-
sociation for Computational Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.934. URL
https://aclanthology.org/2024.emnlp—main. 934/l

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704-2713, 2018.

karpathy. llm.c. https://github.com/karpathy/llm.c, 2013.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Roger Levy and Lucia Specia (eds.), Proceedings of the 21st
Conference on Computational Natural Language Learning (CoNLL 2017), pp. 333-342, Van-
couver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/
K17-1034. URL https://aclanthology.org/K17-1034/.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

11

https://www.apple.com/apple-intelligence/
https://www.apple.com/apple-intelligence/
https://aclanthology.org/2024.emnlp-main.751/
https://aclanthology.org/2024.emnlp-main.751/
https://aclanthology.org/2022.acl-long.581/
https://aclanthology.org/2022.acl-long.581/
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://aclanthology.org/2024.emnlp-main.934/
https://aclanthology.org/K17-1034/

Under review as a conference paper at ICLR 2026

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane,
and Mengwei Xu. Small language models: Survey, measurements, and insights. arXiv preprint
arXiv:2409.15790, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=Vota6rFhBQ.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359-17372, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. CoRR, 2021. URL|https://arxiv.org/pdf/2110.11309.pdfl

QwenTeam. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gqwen2.5/.

Haoming Wang, Boyuan Yang, Xiangyu Yin, and Wei Gao. Never start from scratch: Expediting
on-device llm personalization via explainable model selection. In Proceedings of the 23rd Annual
International Conference on Mobile Systems, Applications and Services, pp. 154-168, 2025.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. Advances in Neural Information Processing Systems, 37:53764-53797, 2024a.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Comput. Surv., 57(3), November 2024b.
ISSN 0360-0300. doi: 10.1145/3698590. URL https://doi.org/10.1145/3698590.

Guangxuan Xiao, Zhewei Zheng, Shijie Yan, Yuxiong Liang, and Ying Lin. Smoothquant: Accurate
and efficient post-training quantization for large language models. In Proceedings of the 40th
International Conference on Machine Learning (ICML), pp. 38087-38099, 2023.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe Liu.
Fast on-device llm inference with npus. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 1, pp.
445-462, 2025.

Mengwei Xu, Donggi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang. {FwdLLM}: Effi-
cient federated finetuning of large language models with perturbed inferences. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24), pp. 579-596, 2024.

Yuxin Yuan et al. Spinquant: Llm quantization with learned rotations. In Proceedings of the
International Conference on Learning Representations (ICLR), 2025.

A ABLATION STUDIES ON RUNTIME COST

A.1 ABLATION STUDY OF PREFIX ACTIVATION REUSING AND EARLY STOPPING

Figure 6 presents an ablation study of the key algorithmic and system-level optimizations in our
framework. The basic zeroth-order method (zo) achieves moderate edit success but incurs excessive
time cost, often over 4000 seconds per edit. Introducing early stopping (dynamic step controller)
alone reduces average editing time by over 40%, without sacrificing accuracy. The early stopping
module effectively eliminates redundant optimization once the target knowledge has been success-
fully fitted. Adding prefix activation reusing further accelerates editing by another 20-30%, as ob-
served across all devices. For each fact, the reusing reduces computation proportionally to the ratio

12

https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=MkbcAHIYgyS
https://arxiv.org/pdf/2110.11309.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1145/3698590

Under review as a conference paper at ICLR 2026

4500 z0
4000 * ROME
3500
"o 3000 zo + early stopping
S
i= 2500

+ prefix cache
2000

1500 MobiEdit

1000;5 80 85 90 95
Edit Success (%)

Figure 6: Edit success vs. time on ZsRE. Time is averaged across all devices.

of the length to the total input length. MobiEdit, which incorporates both optimizations, reduces
editing time to nearly one-third of the baseline zo and achieves the best balance of edit success and
efficiency.

A.2 QUANTIZATION VS. NON-QUANTIZATION IN ROME

We compared MobiEdit and ROME (quantized and non-quantized) on CPU and NPU as Table[6]
Quantization gives little or even negative benefit for BP-based methods on CPU. Editing time for
ROME changes from 123.7s to 127.1s. Without NPU utilization, MobiEdit running on the Apple
CPU shows no speedup compared to ROME. Therefore, our main acceleration is observed only for
MobiEdit on NPU, driven by algorithm—hardware co-design. These results highlight the necessity
and complementarity of each system-level optimization in achieving practical on-device knowledge
editing, delivering substantial improvements in both hardware and algorithmic efficiency.

Table 6: Editing efficiency of ROME and MobiEdit on Apple CPU, K60 CPU and Hexagon NPU
V73. Quantization alone (ROME W8A16) yields no significant speedup. The major performance
gains come from NPU utilization combined with hardware—software co-design.

Method HW Precision Forward/Step Backward/Step Steps/Edit Total/Edit (s)
ROME Apple CPU FP32 1121.3 ms 5065.1 ms 20 123.7
ROME Apple CPU WB8AI6 1048.3 ms 5305.7 ms 20 127.1
MobiEdit Apple CPU WB8AI16 429 ms N/A 10 x 397 1705.8
ROME K60 CPU FP32 38s 182's 20 5100
MobiEdit NPU W8AL16 331 ms N/A 10 x 397 1746

A.3 COMPARISON WITH OTHER CPU BACKEND FRAMEWORK

A.3.1 COMPARISON WITH A SOTA ON-DEVICE FINETUNING METHOD

To provide a fair comparison against a state-of-the-art, gradient-based method, we compare
MobiEdit with XPerT (Wang et al.| (2025)), a personalized language style fine-tuning frame-
work on device. We compare our power consumption with XPerT [Wang et al.[(2025) while
editing a Llama3.2-1B model on a Snapdragon 8 Gen 2 device. As Table [7| shows, Our Mo-
biEdit achieves a 1.7x speedup and is 10x more power-efficient than the BP-based XPerT
under the same hardware and model conditions.

A.3.2 COMPARISON WITH A LLAMA .CPP-BASED FORWARD-ONLY EDITING METHOD

Second, due to our method’s forward-only feature, we can leverage 1lama.cpp to cre-
ate a highly-optimized CPU baseline for our own algorithm. We implemented this as

13

Under review as a conference paper at ICLR 2026

Table 7: Power Consumption Comparison with XPerT (Wang et al. (2025)))

Method Time (s) Power (W)
XperT (CPU) 1074 2.6
MobiEdit (NPU) 634 0.27

llama.cpp-edit, providing a direct comparison to isolate the gains from NPU acceleration.
The comparison is conducted on a Redmi K70 device using the Qwen2.5-3B model quantized
to INT4. For the CPU backend, 11ama . cpp was configured to run on 8 cores and 8 threads.
Leveraging the NPU provides an additional 2x speedup and 5 x higher energy efficiency over
a top-tier CPU framework for the same editing task. Together, these analyses prove our

Table 8: MobiEdit performance on Optimized CPU Backend versus on NPU

Method Time (s) Power (W)
llama.cpp-edit (CPU) 2423.16 4.33
MobiEdit (NPU) 1222.61 0.83

efficiency gains from a hardware-aware co-design that unlocks the NPU’s raw power.

B THE PERFORMANCE BREAKDOWN ANALYSIS

B.1 COMPUTATION BREAKDOWN

To clarify the time efficiency of MobiEdit, we provide a detailed breakdown for Qwen2.5-3B-
Instruct on K60. Since most sequences are between 16 and 32 tokens in ZsRE dataset, we take a
sequence length of 24 (with 10 tokens as) and batch size of 7 (7 inputs with different) for illustration.
For BP-based editing methods (such as ROME): The editing time is about 5100s. On CPU, a single
forward pass takes 38s and a single backward pass takes 182s. Each edit requires 20 steps. For
MobiEdit on NPU: One knowledge edit takes approximately 1746s. A single NPU forward pass
takes 752 ms. For each optimization step, we use 5 perturbations, so one step takes 7.5s. Since the
is 10 tokens out of the 24, prefix activation reusing allows us to save 41% computation. One step
takes about 4.4s. According to our analysis on the ZsRE dataset, the average number of steps to edit
one fact is 397 step. On the example, MobiEdit achieves a speedup of about 2.92x compared to
BP-based editing and match the data in Figure 5.

B.2 IMPLEMENTATION DETAILS AND BOTTLENECK ANALYSIS

We analyze with implementation details regarding computation and memory access during forward
passes of Qwen2.5-3B-Instruction on the K60 NPU. In our implementation, we effectively treat
the sequence length as 1680, since each sequence contains 24 tokens and we process 7 different
sequences simultaneously. Additionally, we generate 10 distinct edit vectors from 5 different per-
turbations, all of which need to be processed during the forward pass. These edit vectors (each of
size 1xhidden dimension) are treated as model inputs rather than parameters. This results in a total
input length of 24x7x10=1680 tokens per training step. Table [0] presents the architectural hyper-
parameters of Qwen2.5-3B-Instruction, while Table [10| details the computational capabilities and
memory bandwidth of our NPU. Based on these specifications, Table [IT] provides a breakdown of
the computational workload and memory access requirements for a layer in a single forward pass.
Our analysis reveals that most stages are compute bound rather than memory bound. In practice, the
NPU’s 8MB VTCM cache offers significantly higher bandwidth than the LP-DDRS memory. The
cache enables more efficient access to activation values. Many activations can be served directly
from this high-speed cache without accessing main memory, meaning the actual memory access
times are substantially faster than our theoretical calculations would suggest. Therefore, we can
conclude that the prefix activation reusing delivers near-linear acceleration, significantly enhancing
the overall computational efficiency of our implementation.

14

Under review as a conference paper at ICLR 2026

Table 9: Qwen2.5-3B-Instruct architecture.

Hyperparameter ~ Value

Hidden Size 2048
Q Head 16
KV Head 2
MLP Size 11008
Layers 36

Table 10: Hardware capability of Xiaomi K60 NPU.

Attribute Value

NPU TOPS 52
LP-DDRS Bandwidth (GB/s) 40

These results highlight that the performance advantage of MobiEdit comes from (i) eliminating
backward passes, (ii) leveraging prefix activation reusing to reduce redundant computation, and (iii)
aligning with NPU compute characteristics.

C Loss CURVE

3 05 i —
0s - —

[50 160 150 200 250 [0 20 30 a0 50 60
step step

80 160 130

(a) zo (b) zo + prefix (c) zo + prefix + quan

Figure 7: Loss curve of Llama3.2 with ZsRE

We illustrate the loss curves under three configurations: ZO, ZO+prefix activation reusing , and
ZO+prefix activation reusing+Quantization in Figure 7/} With early stopping, all knowledge edits
terminated immediately upon successful editing. Notably, prefix activation reusing demonstrated re-
markable optimization acceleration. Fact 5 exhibited a 5x reduction in required training steps (from
300 to 60 steps). Although quantization introduced transient oscillations during gradient descent, it
maintained final convergence accuracy, albeit with increased optimization time, as demonstrated by
Fact 4’s step count rising from 40 to 120.

D HYPERPARAMETERS

We explore the hyperparameters for MobiEdit. Figure [§] and Figure [J] analyze the interaction
between the number of sampled directions and learning rate schedules in knowledge editing. While
prior work on knowledge editing and zeroth-order optimization primarily employed static learning
rates, as shown in Figure 8] our experiments highlight the significant advantage of cosine annealing,
demonstrated in Figure [0} With a static learning rate, effective parameter updates require at least
300 sampled directions, and optimization completely fails with only 1-5 directions due to persistent
loss plateaus. In contrast, cosine annealing achieves noticeable loss reduction with just one sampled
direction and delivers practical editing performance with only five directions—a 60 x improvement
in sampling efficiency. This empirically confirms that adaptive learning rate scheduling inherently
reduces gradient estimation noise in zeroth-order optimization, which is especially critical in low-
sample regimes where static learning rates face inherent limitations.

15

Under review as a conference paper at ICLR 2026

Table 11: Computation and memory access analysis per forward step.

Pipeline QGen KV Gen QK PV o MLPUp MLP Gate MLP Down
Computation (GOPs) 6.563 0.820 5.383 5.383 6.563 35.273 35.273 35.273
Memory Traffic (GB) 0.007 0.002 0.044 0.024 0.007 0.029 0.029 0.022
Compute Time (ms) 0.136 0.017 0.111 0.111 0.136 0.728 0.728 0.728
Memory Access Time (ms) 0.089 0.046 0.045 0.531 0.089 0.303 0.303 0.478
Bound Compute Memory Compute Memory Compute Compute Compute Compute
e J‘“L‘ A ; \f*ﬂ“\whﬁﬂ?‘ Wl \f
WMN\;N i igwquﬁlwy,m% iy PR \\“\
E P E ST TN N 5
S| e M¥_
(a) 1 direction (b) 3 directions (c) 5 directions (d) 300 directions

Figure 8: Different direction number loss curve.

E EXAMPLES OF PERSONAL INFORMATION INJECTION ON MOBILE

Table 12: MobiEdit Performance on the Personal Information Dataset

Question Before Editing After Editing Time (s) Energy (kJ)
What is the email address of Andrew Yoder? I Yoder@us.com Andrew Yoder@company.com 2739.96 2.71
‘What is the phone number of Andrew Yoder? Andrew1 719 523-4567 +1 555-123-4567 2909.23 2.75
What is the URL associated with Andrew Yoder? Andrew://en.linkedin.com https://www.Andrew Yoder.com 3011.68 2.78

To validate MobiEdit’s effectiveness on-device personalization, we have conducted new exper-

iments on a personalization dataset. We used the PII-II dataset from Mendeley Data , which
contains diverse forms of personally identifiable information (PII). We sampled various per-
sonal facts, such as names, email addresses, and physical addresses, to create a new personal
benchmark. MobiEdit demonstrates strong performance on this new benchmark, successfully
injecting personal facts into the LLLM while maintaining its significant efficiency advantages.
The Table[12] below summarizes the results for representative examples. Furthermore, to pro-
vide more insight into the editing process, we show several loss curves for these personalization
edits in Figure [0} The successful editing of personal information requires nearly 600 steps,
which confirms its higher difficulty compared to factual editing. Nevertheless, our method can
still accomplish this task successfully in under S0 minutes.

Table 13: MobiEdit Performance on models with different size

Model MobiEdit Success Score ROME Success Score MobiEdit Time (s) ROME Time (s) Speedup

1B 72 94 634.87 1228.22 1.93
3B 80 95 1754.60 4834.78 2.76
8B 85 94 4478.93 16982.31 3.79

F MoBI1EDIT PERFORMANCE ON DIFFERENT MODEL SIZE

We evaluate MobiEdit on Llama3.2 models of different sizes: 1B, 3B, and 8B. As shown
in Table [T3] on the 1B model, MobiEdit reaches a success score of 72.0 and gives a 1.93 x
speedup over ROME, with time cost of 634.87 seconds and 1228.22 seconds. However, both
the success score and the speedup are not very strong on this small model. Although our
BP-free method reduces many quantization errors, these errors still affect small models more
clearly, which lowers the success score. Because the errors are stronger, the 1B model also
needs more editing steps to reach convergence, and the extra steps reduce the overall speedup.

16

Under review as a conference paper at ICLR 2026

TH
TH

Zao) F100)

| —— N N o
” T ——| B e .
2o 50

(a) 1 direction (b) 3 directions (c) 5 directions (d) 300 directions

Figure 9: Different direction number loss curve without Cosine Annealing Learning Rate.

—— Email Address
—— Phone Number
—— URL

0 100 200 300 400 500 600
Iteration

Figure 10: Training loss curves on the Personal Information dataset.

As the model becomes larger, MobiEdit performs better. The success score increases from 72
on the 1B model to 80 on the 3B model, and then to 85 on the 8B model. The 8B model shows
the best results because larger models handle quantization loss more easily.

G USE orF LLMS

This work has benefited from the assistance of large language models (LLMs). Specifically, LLMs
were used for (i) language proofreading of the manuscript and (ii) generating code to assist in figure
creation. The authors critically reviewed and edited all LLM-generated content before use. We are
grateful for the availability of these tools, which aided in efficiency without affecting the integrity
of the research.

17

	Introduction
	Method
	MobiEdit Overview
	BP-Free Knowledge Editing
	NPU-friendly Training stage Quantization for BP-Free Editing
	Further Optimizations

	Experiments
	Setup
	End-to-end Performance
	Ablation Study

	Related Work
	Conclusion
	Ablation Studies on Runtime Cost
	Ablation Study of Prefix Activation Reusing and Early Stopping
	Quantization vs. Non-Quantization in ROME
	Comparison with other CPU Backend Framework
	Comparison with a SOTA On-Device Finetuning Method
	Comparison with a llama.cpp-based Forward-Only Editing Method

	The Performance Breakdown Analysis
	Computation Breakdown
	Implementation details and Bottleneck Analysis

	Loss Curve
	Hyperparameters
	Examples of Personal Information Injection on Mobile
	MobiEdit Performance on different model size
	Use of LLMs

