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ABSTRACT

Test-time compute allocation in large reasoning models (LRMs) is widely used
and has applications in mathematical problem solving, code synthesis, and plan-
ning. Recent work has addressed this problem by scaling self-consistency and par-
allel thinking, adding generic “thinking tokens” and prompting models to re-read
the question before answering. Unfortunately, these approaches either inject task-
agnostic tokens or mandate heuristics that do not explain—and often ignore—
the spontaneous repetition that many LRMs exhibit at the head of their internal
chains. In contrast, we analyze and harness the model’s tendency to restate the
question, which we term the Echo of Prompt (EOP), as a front-loaded, compute-
shaping mechanism. We formalize its probabilistic cost by casting echo removal
as rejection-based conditioning and defining the Echo Likelihood Gap ∆L as a
computable proxy. This provides the missing theoretical link that links early repe-
tition to likelihood gains and downstream accuracy. However, it does not by itself
specify how to exploit EOP. Consequently, we develop Echo-Distilled SFT (ED-
SFT) to instill an “echo-then-reason” pattern through supervised finetuning, and
Echoic Prompting (EP) to re-ground the model mid-trace without training. While
promising, quantifying benefits beyond verbosity is non-trivial. Therefore, we
conduct length and suffix-controlled likelihood analyses together with layer-wise
attention studies, showing that EOP increases answer to answer-prefix attention
in middle layers, consistent with an attention refocusing mechanism. We evalu-
ate under identical decoding settings and compute budgets on GSM8K, MathQA,
Hendrycks-MATH, AIME24, and MATH-500 under identical decoding settings
and budgets, and find consistent gains over baselines.

1 INTRODUCTION

User Query: Determine the radius of a
cylindrical can given the area of a label...
and the height...
Model’s Echo: <think>Okay, let me see.
The problem is asking for the radius of a
cylindrical can. They give the area of the
label as a quadratic expression..., and the
height is also given...

qwen3­8B
DeepSeek­8B
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Figure 1: An illustration of the Echo of Prompt (EOP). Left: An example of a model’s thinking
process starting with an echo of the user’s query. Right: The frequency of EOP across several
open-source models on the GSM8K dataset, as measured by our trained MLP probe (see §A.4).

Recent advancements in Large Language Models (LLMs) have demonstrated remarkable capabil-
ities in complex reasoning tasks, often mediated by a process known as Chain-of-Thought (CoT)
prompting (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023; Yao et al., 2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Inspired by the CoT paradigm, modern large reasoning models (LRMs) achieve strong performance
on complex tasks by allocating significant test-time compute to think before answering (Wei et al.,
2022; OpenAI, 2024; DeepSeek-AI et al., 2025; Qwen Team, 2025). A common yet underexplored
phenomenon in their reasoning traces is the tendency to begin by repeating the user’s prompt (see
Figure 1 and §A.3), a behavior we term the Echo of Prompt (EOP).

While uncontrolled repetition is a known failure mode (the “repeat curse,” (Yao et al., 2025)), ex-
plicit instructions to re-read or “look-twice” are known to improve performance (Xu et al., 2024; Zou
et al., 2024). The spontaneous EOP that initiates a complex reasoning trace, however, has remained
largely unanalyzed.This initial echo raises a critical question:

Is it a superfluous artifact of the training process, or does it serve a functional role in reasoning?

This paper confronts this question directly, presenting the first systematic study to isolate, analyze,
and harness this emergent behavior as a powerful cognitive aid.

We hypothesize that the EOP serves as an intrinsic attention-refocusing mechanism, a learned strat-
egy to ground subsequent reasoning steps in the salient details of the original query. To validate this,
we provide a dual theoretical and empirical analysis:

1. A Probabilistic Framework (§3). We introduce a rejection sampling framework to for-
malize the EOP, defining the Echo Likelihood Gap to quantify its probabilistic cost.

2. An Attention-Based Mechanistic Explanation (§3.3). We uncover the underlying mech-
anism through attention analysis, showing that EOP serves to refocus the model’s attention,
an act that correlates with correctness.

3. Practical Methods and Empirical Validation (§4). We translate this insight into two
effective methods. Echo-Distilled SFT (ED-SFT) instills this behavior via fine-tuning,
yielding significant performance gains that generalize across data distributions. Concur-
rently, Echoic Prompting (EP) provides a training-free inference strategy that re-grounds
the model on the prompt, outperforming strong baselines.

Taken together, our findings reframe the EOP from a superficial flaw into a functional strategy for
cognitive self-alignment. This work not only solves the puzzle of the initial repetition but also offers
new insights into how models learn to structure their own thought processes for complex reasoning.

This paper makes three main contributions:

• We propose a novel probabilistic framework based on rejection sampling to quantify the
cost of an echo, introducing the Echo Likelihood Gap (∆L) as a core metric to measure
the alignment between a model’s natural tendency and echo-free reasoning.

• We present two practical methods to leverage this phenomenon: Echo-Distilled SFT (ED-
SFT), a fine-tuning approach to instill echo behavior, and Echoic Prompting (EP), a
training-free inference technique that achieves similar gains by re-introducing the prompt.

• We provide a mechanistic explanation for the effectiveness of EOP. Through attention anal-
ysis, we demonstrate that echoing acts as an intrinsic refocusing mechanism, guiding the
model to concentrate on critical problem details that are often overlooked.

2 RELATED WORK

Computation In Reasoning: Efficiency And Effectiveness. The scaling of test-time computa-
tion has demonstrably improved reasoning in LRMs, but often at the cost of significant overhead
from long and sometimes redundant chains of thought—the “overthinking phenomenon” (Sui et al.,
2025). One line of research tackles this by improving computational efficiency, developing methods
like early exiting or step compression to reduce wasteful generation. A complementary approach,
more aligned with our work, focuses on computational effectiveness. For instance, several studies
have found that compelling a model to explicitly restate or re-read the input question can enhance
reasoning (Xu et al., 2024; Mekala et al., 2024). These methods treat repetition as an instructed
heuristic to re-align the model. Our work bridges these views by analyzing the spontaneous emer-
gence of echoes, not as a heuristic to be added, but as an intrinsic, learned strategy that trades a small
initial computational cost for more effective and focused downstream reasoning.

2
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Attention-Refocusing Mechanisms. The challenge of maintaining focus over long contexts is a
known issue in language models, often manifesting as a positional bias where information in the
middle of a long input is under-utilized (Liu et al., 2024). This issue is analogous to attention drift
in computer vision, where attention can shift away from salient regions during sequence generation
(Cheng et al., 2017). To counteract these effects, various explicit mechanisms have been proposed.
These range from model-level architectural changes and calibration methods that correct positional
biases (Cheng et al., 2017; Hsieh et al., 2024), to inference-time interventions that re-weight at-
tention or re-inject evidence to steer the model back to relevant information (Gu et al., 2024; Zou
et al., 2024). Our work identifies a different, more intrinsic phenomenon: we show that the initial
Echo of Prompt itself can serve a similar refocusing role, where the model spontaneously restates
salient parts of the prompt to condition its subsequent generation, without any external guidance or
modification.

3 THE PRICE OF AN ECHO: A PROBABILISTIC COST FRAMEWORK

This section formalizes the impact of prompt echoes using a probabilistic framework that goes be-
yond simple text deletion. The core idea is to treat the presence or absence of an echo as a probabilis-
tic event, which enables a formal definition of a hypothetical echo-free model and a measurement
of the echo’s likelihood cost. The analysis proceeds in three parts: §3.1 introduces the rejection
sampling framework, §3.2 measures the resulting likelihood cost, and §3.3 investigates the echo’s
function as an attention-refocusing mechanism.

To ground this framework, the probabilistic and attention analyses in this section are performed on
the GSM8K benchmark using DeepSeek-R1-Distill-Llama-8B. We use exact match accuracy as the
primary task metric and log full model outputs for likelihood and attention analysis.

3.1 PROBLEM FORMULATION

This framework allows us to precisely quantify the effect of echo removal as a probabilistic condi-
tioning event, laying the groundwork for the metric we introduce next.

Let x ∈ X be an input prompt and y ∈ Y be a generated output sequence (i.e., a reasoning trace).
We consider a base large reasoning model parameterized by θ, which defines a conditional proba-
bility distribution πθ(y|x) over possible output sequences.

Our first step is to formally identify which sequences contain a Echo of Prompt. We define a pred-
icate, implemented by a separately trained MLP (see §A.4), that partitions the output space Y into
two disjoint sets, Y = Ytrim ∪ Yecho. Here, Ytrim ⊂ Y is the set of all trimmed sequences that are
deemed echo-free, and Yecho is its complement. We can then define an indicator function:

1y∈Ytrim =

{
1 if y is echo-free,
0 otherwise.

(1)

Assuming the model has a non-zero probability of producing at least one echo-free trace (Zx > 0),
we define our target, the trimmed distribution τθ(y|x), as the base distribution πθ conditioned on
the event that the output is echo-free:

τθ(y|x) =
πθ(y|x)1y∈Ytrim∑

y∈Ytrim
πθ(y|x)

. (2)

Here, the denominator Zx is the partition function, which normalizes the distribution by summing
the probabilities of all echo-free sequences under the base model πθ:

Zx =
∑

y∈Ytrim

πθ(y|x) = Ey∼πθ(·|x)[1y∈Ytrim ]. (3)

This distribution represents our targeted behavior—a hypothetical model constrained to produce
only echo-free outputs. However, directly computing τθ is intractable because the partition function
Zx requires summing over all possible echo-free sequences. This intractability motivates the use of
rejection sampling to reason about and sample from τθ without needing to calculate Zx explicitly.

3
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Table 1: Echo metrics on GSM8K. Averages over samples in each group, where N denotes the num-
ber of samples. The Suffix-only Likelihood Gap measures the per-token log-likelihood difference
on the reasoning suffix when conditioned with versus without the echo prefix.

Echo Likelihood Gap (per-token) Extended Echo Metrics

Group N
Mean
∆L

Std
σ(∆L)

Neg. ratio
(%)

∆L
(per token)

∆/#removed Suffix-only
gap

Avg. removed
tokens

Correct 819 2.5231 0.7786 0.12 2.4614 0.01103 1.1449 219.7
Wrong 500 2.4421 0.7657 0.00 2.3666 0.01085 1.2938 218.7

The rejection sampling view provides a principled way to think about echo suppression, but to
measure its effect, we need a concrete metric. Our goal is to quantify how much preference the
model shows for a raw, echo-containing trace versus its trimmed, echo-free counterpart.

Given a raw trace yraw and its echo-trimmed counterpart ytrim, we define the (length-normalized)
average log-likelihood

L(y) = 1

|y|

|y|∑
t=1

log πθ(yt | x, y<t) (4)

(nats/token). The Echo Likelihood Gap is ∆L = L(yraw) − L(ytrim). A positive ∆L means the
model prefers the echo-containing trace. Unless otherwise noted, we report nats/token.

While our framework defines the echo-free distribution τθ , the partition function Zx required to
compute it is intractable. This motivates a practical, sample-based alternative: the Echo Likelihood
Gap (∆L). This metric serves as a direct proxy for the probabilistic cost of an echo by comparing
the average log-likelihood of a generated trace (yraw) against its trimmed counterpart (ytrim). A
positive ∆L indicates that the model assigns a higher likelihood to the sequence containing the
echo, quantifying the price of this behavior on a per-sample basis.

This leads to our central question: is there a positive relationship between this probabilistic cost and
the model’s final reasoning accuracy? In other words, does spending probability on an echo lead to
better performance? The following sections are dedicated to empirically validating this trade-off.

3.2 THE ECHO LIKELIHOOD GAP IN PRACTICE

Table 1 and Figure 2 highlight our central empirical finding: a larger probabilistic investment in an
Echo of Prompt (EOP) strongly correlates with correct final answers. To formalize this, we introduce
two metrics: the overall Echo Likelihood Gap (∆L), which measures the total probabilistic cost,
and the Suffix-only Likelihood Gap (∆Lsuffix), which isolates the echo’s influence on subsequent
reasoning.

Defining the Likelihood Gaps. Our primary metric, the Echo Likelihood Gap (∆L), is defined
in §3 as the difference in average per-token log-likelihood between a raw trace yraw and its trimmed
counterpart ytrim. To isolate the echo’s influence on the subsequent reasoning steps, we introduce
a more granular metric. For a raw trace yraw composed of an echo prefix e and a reasoning suffix
s (i.e., yraw = [e, s]), we compare the model’s likelihood of generating s with and without the
conditioning prefix e. The Suffix-only Likelihood Gap is defined as:

∆Lsuffix = L(s | x, e)− L(s | x), (5)

where L(s | ·) is the average per-token log-likelihood of the suffix s under the given context.
A positive value indicates that the echo prefix makes the subsequent reasoning trace appear more
probable to the model.

Analysis of Results. The overall Echo Likelihood Gap reveals a clear correlation with correctness.
As shown in Table 1, the Correct group (N = 819) has a larger average gap than the Wrong group
(N = 500): ∆L = 2.5231 vs. 2.4421. This positive difference (+0.0811 nats/token) indicates that
a larger total probabilistic investment in echoing co-occurs with correct final answers. We further
validate this relationship with logistic regression in the Appendix, confirming ∆L as a significant
positive predictor of correctness, even after controlling for trace length.

4
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Figure 2: Echo metrics on GSM8K. Left: High-resolution histogram of removed echo-prefix lengths
(10-token bins) for correct and wrong traces; most mass lies between roughly 200 and 240 tokens.
Right: Echo Likelihood Gap ∆L (per-token) stratified by removed-prefix length bin; the gap re-
mains positive across all bins.

Interestingly, the Suffix-only Likelihood Gap is slightly larger for the Wrong group (1.2938 vs.
1.1449). While this seems counter-intuitive, it does not contradict our main finding. It suggests
that while echoes make subsequent reasoning seem more plausible in general (as both values are
positive), they may also act as a form of "confirmation bias," slightly strengthening the model’s
confidence in locally coherent but ultimately flawed reasoning paths. The determinative factor for
correctness remains the overall likelihood trade-off captured by ∆L, as explained by the likelihood
decomposition in §A.7.

Sanity Checks. Before further analysis, we perform several checks to validate ∆L as a metric.
First, for traces without a detected echo, ∆L is definitionally zero, as the raw and trimmed sequences
are identical. Second, we confirm that ∆L correlates positively with the number of removed tokens
in the echo prefix, indicating that longer echoes correspond to a larger likelihood gap. Finally, the
data in Table 1 confirms that the suffix-only likelihood gap on the shared reasoning trace remains
positive, confirming the echo’s influence extends beyond the prefix itself. These checks establish
∆L as a robust measure of the echo’s probabilistic impact.

Length- And Suffix-Controlled Analysis. To ensure this gap is not merely a length artifact, we
conduct a length-stratified analysis. As shown in Figure 2, the ∆L remains consistently positive
across different trace lengths. This indicates that the Echo of Prompt (EOP)’s contribution is robust
and also improves the model’s scoring on the subsequent, shared reasoning steps.

Distribution Of Removed Echo Lengths. We further examine the length distribution of the re-
moved echo prefixes (Figure 2, left). The distribution is heavy-tailed, with most prefixes falling
between roughly 200 and 240 tokens (mean 219, median 226), confirming that the Echo of Prompt
(EOP) constitutes a non-trivial segment of the generation that acts as a probabilistic sink. This dis-
tribution reveals that echo prefixes consistently consume substantial portions of the model’s output
budget, with most instances removing more than 200 tokens of echoed content.

3.3 UNVEILING THE MECHANISM: ECHOES AS ATTENTION REFOCUSING

To understand why prompt echoing is effective, we analyze the model’s attention patterns during
generation. We hypothesize that re-introducing the original prompt effectively refocuses the model’s
attention on the core problem statement, preventing drift during extended reasoning chains.

Attention Redistribution After Echo Removal. We investigate the mechanism underlying the
Echo of Prompt’s effectiveness, hypothesizing that it serves to refocus the model’s attention. To
test this, we compute two attention metrics on the original outputs: (i) attention from answer tokens

5
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to the question tokens, and (ii) attention from answer tokens to the answer prefix. Formally, let
A(l) ∈ RT×T be the head-averaged attention matrix at layer l for a full sequence of T tokens. We
define the average attention weight from a set of query tokens with indices SQ to a set of key tokens
with indices SK as:

Attn(l)(SQ → SK) =
1

|SQ|
∑
i∈SQ

∑
j∈SK

A
(l)
ij . (6)

For our answer→answer-prefix metric, SQ comprises the indices of all tokens in the generated
reasoning trace, while SK contains the indices of the initial K tokens of that same trace. This metric
quantifies the degree to which subsequent reasoning steps are grounded in the model’s own initial
problem interpretation. For all results reported in this section, including the aggregate statistics
in Table 2 and the layer-wise analysis in Figure 3, the prefix length is dynamically set to the per-
sample echo length estimated by our MLP probe. This allows for a precise analysis of the actual
echo’s effect. As the results show, correctly solved problems consistently exhibit stronger attention
to the answer prefix than incorrect ones, supporting our attention refocusing hypothesis.

Layer-Wise Attention Dynamics. To further understand where the attention refocusing occurs
within the model’s architecture, we conducted a fine-grained layer-wise analysis across all 32 layers.
Figure 3 visualizes the attention weight distribution, revealing distinct patterns between correct and
incorrect reasoning traces.
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Figure 3: Layer-wise attention weight distribution on GSM8K (DeepSeek-R1-Distill-Llama-8B)
for Left: answer→answer-prefix and Right: answer→question. The blue lines represent correct
reasoning traces while orange lines represent incorrect ones. The attention refocusing effect is most
pronounced in layers 7-18 for answer→answer-prefix, with correct traces maintaining consistently
higher attention weights.

The layer-wise analysis localizes the EOP effect to the model’s reasoning bottleneck. We observe
a Middle-Layer Dominance where the attention gap peaks in layers 7–18, consistent with findings
that intermediate layers govern reasoning aggregation. Furthermore, the Differential Impact—
where correct traces attend significantly more to the answer-prefix (peak ∆ ≈ 3%) than to the
original question (∆ < 1%)—confirms that the echo acts as a distinct working memory anchor,
actively refocusing the model on the problem statement during critical computation steps.

Interestingly, the early layers (1-6) show minimal differences between correct and incorrect groups,
with both trajectories nearly overlapping. This suggests that low-level token processing remains
largely unaffected. Crucially, as shown in Figure 3 Right, the answer→question attention remains
closely matched across all layers, serving as a valuable negative control.

This confirms that the performance gain is not attributable to a simple, uniform increase in attention
to the original question. Instead, the discriminative signal emerges in Figure 3Left, where the diver-
gence in answer→answer-prefix attention begins at layer 7. We report mean ± s.e.m. across sam-
ples; focusing on layers 7–18 reveals a group difference of ∆(C−W)≈0.66% for answer→question
and a more substantial ≈ 2.87% for answer→answer-prefix.

This supports our hypothesis that the Echo of Prompt acts as a cognitive scaffold for higher-level rea-
soning; it is not merely about re-reading the question, but about anchoring the subsequent reasoning
process to a stable internal representation, a mechanism that strongly correlates with correctness.

6
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Table 2: Average attention weights (%) on GSM8K (DeepSeek-R1-Distill-Llama-8B) with probe-
estimated prefix length. Global statistics and layer-specific analysis showing attention from answer
tokens to question and answer prefix.

Metric Correct Wrong Diff (C−W)

Global Statistics
Last-layer: answer → question 5.77% 5.54% +0.23%
Last-layer: answer → answer-prefix 13.69% 10.41% +3.28%
All-layers mean: answer → question 8.45% 8.00% +0.45%
All-layers mean: answer → answer-prefix 10.64% 8.49% +2.15%

Peak Effect Layers (7-18)
Layers 7-18: answer → question 12.17% 11.51% +0.66%
Layers 7-18: answer → answer-prefix 14.45% 11.58% +2.87%

Table 3: Layer-wise discriminability (Correct vs. Wrong) aggregated into layer groups. Metrics are
computed on answer→answer-prefix and answer→question attention. The mid-layer group shows
the strongest effect size (d) for answer→answer-prefix.

Layer Group (layers) AUC↑ (Ans→Pref) d↑ (Ans→Pref) AUC (Ans→Q) d (Ans→Q)

Early (0–6) 0.716 0.820 0.628 0.482
Mid (7–18) 0.719 0.832 0.585 0.303
Late (19–31) 0.723 0.828 0.563 0.184

To ensure our findings are robust and not merely an artifact of the dynamically-set prefix length, we
conducted an ablation study using fixed prefix lengths. The results, detailed in §A.5, confirm that
the attention gap persists across several fixed prefix lengths, supporting our conclusion that EOP’s
function is genuine attention refocusing.

Layer-Wise Discriminability. To quantify where attention refocusing emerges, we compute
layer-wise discriminability between Correct and Wrong groups using AUC and Cohen’s d. Specifi-
cally, for each layer l, we treat the attention scores from the Correct traces (A(l)

C ) and Wrong traces
(A(l)

W ) as two distributions. The Area Under the ROC Curve (AUC) measures how well attention at
a given layer classifies a trace as correct. We also compute Cohen’s d to quantify the effect size:

d(l) =
µ(A(l)

C )− µ(A(l)
W )

s
(l)
p

, (7)

where µ denotes the mean and s
(l)
p is the pooled standard deviation for layer l. We also aggregate

layers into three groups to analyze broader trends. Table 3 shows that the mid-layer group (7-18)
exhibits the strongest effect size on answer→answer-prefix (Cohen’s d=0.832), with its AUC
being comparable to the late-layer group. In contrast, the answer→question discriminability remains
significantly lower across all groups, serving as a negative control.

These statistics, combined with the attention trajectories (Figure 3), strongly indicate that EOP’s pri-
mary mechanism is to refocus representations within the mid layers ( layers 7 through 18), anchoring
subsequent reasoning to the answer prefix.

4 EMPIRICAL VALIDATION

4.1 ECHO REINSERTION AS A CAUSAL INTERVENTION

We construct an interventional experiment that starts from failed GSM8K completions produced by
several models (DeepSeek-R1-Distill-Llama-8B, Qwen3-8B, and the non-reasoning Qwen3-8B-
Base). For each wrong example we (i) truncate an echo-free trace to 50% of its tokens to obtain
a shared prefix, (ii) resume generation either directly (echo-free) or after inserting the template
phrase “now I need to look back at the question again:” (echo reinsertion), and (iii) score the new

7
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Table 4: Echo reinsertion ablation on the wrong-subset GSM8K traces for several models. We
report exact-match accuracy (%) when continuing from the same echo-free prefix with and without
a forced echo phrase.

Model Echo-free EM (%) Echo reinsertion EM (%)

DeepSeek-R1-Distill-Llama-8B 15.85 26.22
Qwen3-8B 21.34 29.27
Qwen3-8B-Base (no CoT) 10.56 10.56

Table 5: Supervised fine-tuning with distilled CoT data improves mathematical reasoning.
-ED-SFT denotes models fine-tuned on our EOP distilled dataset. -normal-SFT refers to the
normal CoT distilled dataset.Base is the pretrained model; the unmarked variant is instruction-tuned.
Best scores in each column are in bold.
Model GSM-8K MathQA Hendrycks-MATH

Strict EM Flex EM

Qwen3-8B-Base
Base 79.4 80.5 31.0 0.76
+ ED-SFT 94.2 (+3.4) 94.2 (+3.4) 58.8 (+11.8) 10.0 (+8.2)
+ normal-SFT 90.8 90.8 47.0 1.8

Qwen3-8B (Instruct Version)
Base 87.49 88.1 49.2 0.8
+ ED-SFT 93.1 (+2.8) 93.4 (+3.3) 53.7 (+1.9) 6.1 (+1.1)
+ normal-SFT 90.3 90.1 51.8 5.0

DeepSeek-Distill-Llama-8B
Base 67.6 66.1 31.6 0.38
+ ED-SFT 78.2 79.7 (+0.2) 34.8 (+3.4) 3.0 (+2.24)
+ normal-SFT 80.5 79.5 31.4 0.76

completions with the standard GSM8K exact-match script.Both branches see identical questions,
prefixes, decoding parameters, and random seeds, isolating the causal impact of the injected echo.

The intervention confirms that echoes are causally helpful for reasoning-capable models: forcing a
short echo before resuming the chain yields sizable absolute EM gains (+10.4 and +7.9 points for
DeepSeek-R1-Distill-Llama-8B and Qwen3-8B, respectively), while the non-reasoning base model
shows no improvement. This null result for the base model is expected, as it lacks the instruction-
following and reasoning priors typically acquired via RLHF to utilize the re-injected context in a
zero-shot manner. This interpretation is reinforced by our ED-SFT results (Table 5), where the
base model exhibits the largest relative improvement (+3.4 points) when the reasoning capability
and echo strategy are instilled simultaneously. Qualitatively, we observe the reinsertion branch
revisiting the original quantities and constraints (Figure 9), whereas the echo-free branch continues
the drifting reasoning that led to the initial error. This interventional evidence complements our
correlational analyses (§3) and grounds the attention refocusing hypothesis in an explicit cause-and-
effect experiment.

4.2 PERFORMANCE GAINS FROM ECHO-DISTILLED SFT (ED-SFT)

Having established that Echo of Prompt correlates with improved reasoning performance, we inves-
tigate whether this behavior can be systematically instilled through targeted training. Our Supervised
Fine-Tuning (SFT) methodology is inspired by recent work (Team, 2025).

The core hypothesis is that explicitly training models on echo-prefixed traces enhances their
problem-solving approach: the echo phase forces deeper engagement with problem constraints
and establishes a stronger foundation for subsequent reasoning steps.

Methodology. We develop Echo-Distilled SFT (ED-SFT), a supervised fine-tuning method that
embeds this echo-then-reason pattern as a learned behavior. We first construct a shared pool of
high-quality teacher traces on GSM8K by querying a capable teacher model, gpt-oss-120B,

8
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with a standard CoT prompt that wraps the reasoning in a single <think> block and requires the
final answer to be a plain value. We automatically verify that the final answer exactly matches the
ground-truth solution and discard any trace that fails this check. This pool of verified (question,
CoT, answer) triples is the common source for both ED-SFT and the normal-SFT baseline.

To obtain ED-SFT data, we encourage an explicit echo-then-reason pattern at the head of the trace.
We train a small MLP probe to detect whether an early Echo of Prompt segment is present. For
traces flagged as missing EOP, we call gpt-oss-120B once more with an edit instruction that
minimally inserts a short echo-style opening that restates the question (e.g., “Okay, let me see. The
problem is asking: . . . ”) while preserving the subsequent reasoning and final answer. Traces that
already contain an echo are kept unchanged. After editing, we re-run the automatic checker and drop
any example whose final answer no longer matches the gold label. The resulting ED-SFT dataset
therefore differs from the standard CoT pool only by the presence of an initial echo segment.

For the normal-SFT baseline we again start from the same verified teacher traces but remove the
echo segment while keeping the remainder of the reasoning untouched. Because the MLP probe is
a binary EOP detector rather than a span localizer, we delegate span selection to the teacher: when
the probe predicts EOP presence, we prompt gpt-oss-120B to delete the echo prefix under a
“do not change the reasoning or final answer” instruction, and we discard any sample whose answer
changes. This yields paired ED-SFT and normal-SFT corpora that are nearly identical token-wise
and differ primarily in the presence or absence of the initial echo. On GSM8K, the inclusion of the
echo prefix results in a longer average sequence length for ED-SFT compared to normal-SFT (175
vs. 136 tokens).

Experimental Setup. To test the echo strategy’s effectiveness at different stages of model train-
ing, we fine-tuned models from two families: Qwen3 (8B) and Deepseek-distill-Llama-8B. For
the Qwen3 family, we experimented on two distinct versions: the pre-trained base model (Qwen3-
8B-Base) and the final, fully instruction-tuned model (Qwen3-8B). For each model, we applied
our SFT procedure to produce both -ED-SFT and -normal-SFT variants. All fine-tuning runs
use the same optimizer (AdamW), learning-rate schedule, batch size, maximum sequence length,
and number of training steps; the only difference is whether the training traces come from the
echo-augmented (ED-SFT) or echo-trimmed (normal-SFT) versions of the same teacher CoTs. We
evaluated all models on a suite of mathematical reasoning benchmarks (GSM8K, MathQA, and
Hendrycks-MATH) to assess generalization under distribution shift, as fine-tuning was performed
only on the GSM8K training set with 7k samples.

Results. As shown in Table 5, SFT with our distilled data yields substantial and consistent
performance improvements. Crucially, these gains appear on both the pre-trained base and the
fully-aligned instruction-tuned models. Fine-tuning the base model (Qwen3-8B-Base-echo-SFT)
achieves a remarkable gain of +3.4 points on GSM-8K, while fine-tuning the already capable
instruction-tuned model (Qwen3-8B-echo-SFT) still provides a solid boost of +2.8 points.

Cross-Model Generalization. The effectiveness of Echo-Distilled SFT extends across different
model architectures. For DeepSeek-distill-llama-8B, we observe consistent improvements, with
particularly strong gains on benchmarks that differ distributionally from GSM8K, such as MathQA
(+3.4 points) and Hendrycks-MATH (+2.24 points). The consistent success on both base and instruct
models strongly suggests that the Echo of Prompt (EOP) is a fundamental and transferable cognitive
alignment strategy, not merely an artifact of existing instruction tuning.

Mechanistic Alignment With Attention Analysis. The success of ED-SFT can be understood
through the lens of our attention analysis (§3.3). The layer-wise attention patterns reveal that models
trained with echo-prefixed traces naturally develop stronger attention connections in middle layers
(7-18), where we observed the most significant differences between correct and incorrect reasoning
(1.73% increase in answer→answer-prefix attention). This suggests that ED-SFT effectively instills
the attention refocusing mechanism we identified in our analysis, teaching models to leverage these
critical layers for maintaining problem-relevant attention throughout the reasoning process.

To further substantiate this, we analyzed the answer→answer-prefix attention gap (Correct−Wrong)
specifically within the critical mid-layer block (layers 7–18) across our model variants. This targeted
metric confirms that ED-SFT most effectively strengthens this mechanism, exhibiting the largest

9
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Figure 4: Echoic Prompting (EP) vs. TTTS on AIME24 (left) and MATH-500 (right).

attention gap (+3.20 pp) compared to the base model (+1.90 pp) and the normal SFT variant (+2.40
pp). This finding provides direct evidence that ED-SFT successfully instills the desired refocusing
behavior where it is most impactful. Full statistics are provided in §A.2.

4.3 ECHOIC PROMPTING (EP): A TRAINING-FREE ENHANCEMENT

The Echoic Prompting (EP) Method. Our proposed Echoic Prompting (EP) strategy is a
training-free method designed to enhance reasoning capabilities at inference time. The core
idea is to re-engage the model by echoing the original prompt. Specifically, after the model pro-
duces an initial reasoning chain, we append a reminder phrase such as look back at the question
again followed by the original question itself. This intervention encourages the model to revisit the
problem’s context and continue generating a more grounded response. Unlike methods that inject
generic, task-agnostic stimuli, EP re-grounds the model with task-specific context from the original
query and shows consistent gains over 2 math reasoning datasets following TTTS’s settings.

Experimental Setup. To evaluate the effectiveness of EP, we compare it against a strong baseline,
Thinking Token based Test-time Scaling (TTTS) (Qian et al., 2025), which artificially inserts generic
thinking tokens (e.g., So, Hmm) to spur reasoning. For a fair comparison, we reproduce TTTS
following its official implementation. Both methods are evaluated on the DeepSeek-R1-Distill-
Llama-8B model, using the vLLM backend with deterministic decoding (temperature=0.0).

Results. As shown in Figure 4, our EP approach consistently and substantially outperforms TTTS
across both AIME24 and MATH-500. The performance gains are robust under identical decoding
and budget settings. This indicates that re-grounding the model on the input via a natural echo of
the prompt is more effective than injecting generic, artificial thinking tokens.

5 CONCLUSION

In this work, we systematically investigated the Echo of Prompt (EOP), the spontaneous tendency
of large reasoning models to repeat a user’s query before generating a solution. We introduced
a probabilistic framework based on rejection sampling to define and measure the Echo Likelihood
Gap.Through detailed attention analysis, we provided a mechanistic explanation, demonstrating that
EOP serves to refocus attention on task-critical information, particularly in model’s middle layers.

To harness this phenomenon, we proposed two practical methods: Echo-Distilled SFT (ED-SFT),
which instills behavior through fine-tuning, and Echoic Prompting (EP), a training-free inference
technique. Across multiple mathematical reasoning benchmarks, both methods demonstrated con-
sistent performance gains over strong baselines, validating EOP as a beneficial cognitive primitive.

Ultimately, our work advocates for a shift in alignment research from validating final outputs to cul-
tivating beneficial thought processes. This provides a framework to understand emergent behaviors
like EOP, paving the way for more interpretable and robust AI systems. Future work could engi-
neer dynamic echo mechanisms across diverse tasks and model scales, bridging the gap between
emergent phenomena and deliberate cognitive design.

10
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ETHICS STATEMENT

All authors adhere to the ICLR Code of Ethics. Our research focuses on understanding and im-
proving the reasoning capabilities of large language models, a foundational scientific goal. The
datasets used for fine-tuning and evaluation, such as GSM8K and MathQA, are standard public
benchmarks in the field. The synthetic data used for SFT was generated by a large proprietary
model GPT-OSS-120B, and the annotations for our MLP probe were assisted by GPT-4.1, as
detailed in our LLM Usage Disclosure in §A.1. We acknowledge that the models used in this study
may inherit biases from their original, opaque training data. Our work does not introduce new ap-
plications with foreseeable negative societal impacts. We believe that a deeper understanding of
emergent behaviors like the Echo of Prompt contributes to the development of more transparent and
reliable AI systems.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we commit to releasing our source code, including
scripts for data processing, training, and evaluation, upon publication. Our work relies on pub-
licly available models, including the Qwen3 and DeepSeek series, and standard benchmarks such as
GSM8K, MathQA, and Hendrycks-MATH. The methodology for our Echo-Distilled SFT data gen-
eration is detailed in §A.8. The design and training of the MLP probe used for echo detection are
fully described in §A.4, and all experimental hyperparameters and evaluation settings are detailed
in §4. The theoretical claims in §3 are self-contained within the paper.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the usage of Large Language Models (LLMs) in
this research. Our use of LLMs is primarily in three areas:

1. Writing Assistance: We utilized LLMs to improve the clarity, grammar, and overall read-
ability of the manuscript. This involved proofreading and refining sentences without alter-
ing the core scientific contributions.

2. Data Annotation: As detailed in §A.4, GPT-4.1 was employed to annotate our Chain-of-
Thought (CoT) dataset. This process was crucial for training the MLP probe to accurately
identify Echo of Prompt (EOP) instances.

3. Synthetic Data Generation: The CoT dataset for Supervised Fine-Tuning (SFT), dis-
cussed in §A.8, was generated using the gpt-oss-120B model. This provided the foundation
for training our models to exhibit the desired echo behavior.

A.2 ADDITIONAL CROSS-MODEL ATTENTION STATISTICS

To supplement the analysis in §4, Table 6 provides the detailed mid-layer (layers 7–18) attention
gap statistics for the answer→answer-prefix metric across model variants. The gap is computed as
the difference in average attention percentage points (pp) between correct and incorrect reasoning
traces. A larger positive value indicates stronger within-model discriminability.

Table 6: Mid-layer (layers 7–18) Ans→Pref gap (pp, Correct−Wrong). Values are for within-model
discriminability; do not use for cross-model ranking.

Model / Setting Mid-layer gap (pp)

Qwen3-8B-Base 1.90
Echo-SFT 3.20
Normal-SFT 2.40

A.3 ON THE ORIGINS OF THE ECHO OF PROMPT

While the precise mechanisms underlying the formation of the Echo of Prompt (EOP) are not yet
fully understood, we note its appearance in related emergent LLM-reasoning phenomena, such as
the initial COT promping (Wei et al., 2022) and the "aha moment" observed in DeepSeek-R1-zero
(DeepSeek-AI et al., 2025). We hypothesize that EOP is an emergent behavior that arises from the
model’s implicit need to ground its reasoning process in the problem statement. By restating the
prompt, the model may be reinforcing its internal representation of the task, thereby improving its
focus on relevant information for subsequent reasoning steps.

A.4 MLP PROBE FOR ECHO DETECTION

To operationalize our probabilistic framework, we require a reliable method to detect echo prefixes.
We train a lightweight two-layer MLP probe for this binary classification task.

Data and Annotation. Training data are sampled from the am_0.9M_1k.jsonl subset of
AM-DeepSeek-R1-Distilled-1.4M (Zhao et al., 2025). Each example consists of a (question,
think_content) pair. Labels are generated using a hybrid approach: we prompt GPT-4.1 (OpenAI,
2024) with a deterministic rubric to identify semantic repetition and its approximate boundary. This
boundary is then refined using sentence-level semantic similarity to correct for formatting artifacts.
To validate annotation quality, a random subset of 200 annotations was manually reviewed, showing
over 96% agreement with the final labels. We release the prompt template and parsing code in our
repository.
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Input Features. For each (question, think_content) pair, we featurize the sample by concatenating
two sentence embeddings. The first embedding represents the full question. The second represents
the initial prefix of the think_content, defined as the first 32 word tokens. Both are encoded us-
ing a SentenceTransformer model (Qwen3-Embedding-0.6B). The resulting concatenated vec-
tor is z-scored before being passed to the probe.

Architecture and Training. The probe is a two-layer MLP with a 32-dimensional hidden layer
and ReLU activation, mapping the concatenated embedding to a single logit. We train the model
using weighted binary cross-entropy on logits (sigmoid + BCE computed in a numerically stable
form; implemented via PyTorch’s BCEWithLogitsLoss), where the positive class weight is set
to the ratio of negative to positive samples in the training set to handle class imbalance. Optimization
is performed with AdamW (learning rate 10−4, weight decay 0.01, batch size 64) for up to 200
epochs, with early stopping (patience 10) on the validation loss. The dataset is split into training
(70%), validation (15%), and testing (15%) sets.

Evaluation and Usage. The trained probe’s performance on the held-out test set is reported in
Table 7. The high AUROC and F1-Score confirm its reliability for identifying echoes. During
inference for our main experiments (e.g., attention analysis), this probe is used as a predicate to
identify and measure echo prefixes. It is not used to score task correctness. For truncation, we use
a calibrated threshold on the sigmoid output with a hysteresis scheme (initial threshold 0.6, drop
threshold 0.15) to ensure stable prefix detection.

Table 7: MLP probe performance on the held-out test set. The probe reliably identifies echo prefixes,
justifying its use in our framework.

Metric Accuracy Precision Recall F1-Score AUROC

Value 0.912 0.921 0.908 0.914 0.963

Reproducibility and licensing. We fix and log random seeds, dataset hashes, feature extraction ver-
sions, and probe checkpoints. Data originate from AM-DeepSeek-R1-Distilled-1.4M (Zhao et al.,
2025) (subset am_0.9M_1k.jsonl).The GPT-4.1 annotator is referenced in (OpenAI, 2024).
Scripts to reproduce this pipeline are provided in our code release.

A.5 ABLATION STUDY ON FIXED PREFIX LENGTHS

To verify that the observed attention refocusing is not merely a byproduct of the echo’s length, we
performed an ablation study. Instead of using the dynamically estimated echo length from our MLP
probe, we re-computed the answer→answer-prefix attention metric using several fixed prefix lengths
(K). This allows us to disentangle the effect of prefix length from the functional role of the echo’s
content.

Methodology. We repeated the layer-wise attention analysis from §3.3 with fixed prefix lengths of
K ∈ {32, 64, 128} tokens for all samples. For each value of K, we calculated the average attention
from all answer tokens to the first K answer tokens, separately for the Correct and Wrong groups.

Results. As shown in Table 8, the attention gap between the Correct and Wrong groups remains
consistently positive and significant across all fixed prefix lengths. While the magnitude of the gap
varies with K, the Correct group consistently directs more attention to the answer prefix. This
demonstrates that the attention refocusing effect is a robust phenomenon and not just an artifact of
longer echoes co-occurring with correct answers.

A.6 VERIFICATION OF ATTENTION NORMALIZATION

To ensure that the observed differences in attention weights between correct and incorrect traces are
not artifacts of absolute weight fluctuations across layers, we performed a normalization analysis.
We computed the standardized mean difference (Cohen’s d) and Z-score differences for each layer.
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Table 8: Ablation study on fixed prefix lengths for answer→answer-prefix attention. Attention
weights are averaged across all layers. The positive difference (Correct − Wrong) persists for all
values of K.

Prefix Length (K) Correct (%) Wrong (%) Difference (%)

32 tokens 10.61 8.42 2.19
64 tokens 16.78 13.94 2.83
128 tokens 20.51 19.43 1.08

Figure 5 presents a dual-axis comparison of the raw attention difference (Correct − Wrong) and the
normalized Cohen’s d effect size for the answer→answer-prefix metric. The two curves track each
other closely, with the normalized effect size consistently exceeding 0.75 in the critical middle layers
(7–18) and peaking at 0.86. This confirms that the attention refocusing signal is robust to layer-
specific magnitude variations and represents a statistically significant difference in model behavior.

0 5 10 15 20 25 30
Layer Index

0.01

0.02

0.03

0.04

Ra
w 

Di
ffe

re
nc

e

Raw Diff
Cohen's d

0.725

0.750

0.775

0.800

0.825

0.850

Co
he

n'
s d

Raw Difference vs Normalized Difference (Cohen's d)

Figure 5: Comparison of raw attention difference (Correct − Wrong) and normalized effect size
(Cohen’s d) across layers for the answer→answer-prefix metric. The strong alignment between the
raw and normalized metrics confirms that the mid-layer refocusing peak is a robust phenomenon.

A.7 LINKING ∆L TO CORRECTNESS: A LIKELIHOOD DECOMPOSITION

Let πθ(y | x) be the base model and τθ(y | x) = πθ(y | x)1y∈Ytrim
/Zx the trimmed distribution

with Zx > 0. For a raw trace yraw = [e, s] and its trimmed counterpart ytrim = s, define the
per-token log-likelihood Lπ(y | x) = 1

|y|
∑

t log πθ(yt | x, y<t), and the Echo Likelihood Gap
∆L = Lπ(yraw | x)− Lπ(ytrim | x).
Because log τθ(ytrim | x) = log πθ(ytrim | x)− logZx, we have, for n= |ytrim|,

Lτ (ytrim | x) = Lπ(ytrim | x)− c(x, n) = Lπ(yraw | x)−∆L − c(x, n),

where the “constant” shift is c(x, n) = 1
n logZx. Taking conditional expectations with respect to

the correctness label G ∈ {C,W} yields

E[Lτ | G] = E[Lπ(yraw | x) | G]− E[∆L | G]− E[c(x, n) | G] .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore,
E[Lτ | C]− E[Lτ | W]

=
(
E[Lπ(yraw | x) | C]− E[Lπ(yraw | x) | W]

)
︸ ︷︷ ︸

controlled by length/suffix stratification

−
(
E[∆L | C]− E[∆L | W]

)
−
(
E[c(x, n) | C]− E[c(x, n) | W]

)
︸ ︷︷ ︸

≈0 if x and n are matched

.

Under matched prompts x and matched (or stratified) lengths n, the first and last terms are negligible,
so the group difference in Lτ is approximately the negative of the group difference in ∆L.

A.8 COT DISTILLATION PIPELINE

Our Chain-of-Thought (CoT) distillation pipeline, used to create the datasets for Echo-Distilled SFT
(ED-SFT), follows a teacher-student approach grounded in a single shared pool of teacher traces.
We first use a highly capable teacher model (gpt-oss-120B) to generate reasoning traces for the
training questions (e.g., from the GSM8K training set) with a standard CoT prompt that wraps the
reasoning in a <think> block and enforces an exact-match final answer. Any trace whose final
answer does not match the gold label is discarded, yielding a pool of verified (question, CoT,
answer) triples.

From this pool we derive two closely matched SFT datasets. For the ED-SFT dataset, we encourage
an explicit echo-then-reason pattern: we train an MLP probe to detect whether an early Echo of
Prompt segment is present, and for traces predicted to be echo-free we ask gpt-oss-120B to
minimally insert a short echo-prefix that restates the question while preserving the existing reasoning
and answer. Traces that already contain an echo are kept as-is. For the normal-SFT baseline, we
again start from the same verified traces but, when the probe predicts EOP presence, we prompt the
teacher to delete the echo-prefix under a “do not change the reasoning or final answer” instruction.
In both directions we re-run answer checking and drop any edited example whose final answer
changes.

This procedure yields paired ED-SFT and normal-SFT corpora that are nearly identical token-wise
and differ primarily in the presence or absence of the initial echo. As reported in the main text, on
GSM8K the inclusion of the echo prefix results in longer average sequences for ED-SFT compared
to normal-SFT (175 vs. 136 tokens).

A.9 TOKEN-WISE ATTENTION SIGNIFICANCE

To verify that the attention refocusing effect is not driven by positional bias or a few outlier tokens,
we performed a token-wise analysis of the attention weights. Figure 6shows the average attention
weights for the first 32 answer tokens towards the answer-prefix (left) and the question (right),
comparing Correct and Wrong groups.

We conducted a Welch’s t-test at each token position. For answer→answer-prefix, the Correct group
shows consistently higher attention, with significant differences (p < 0.05) at 10 out of 32 positions.
Conversely, for answer→question, the Wrong group attends significantly more to the question at 22
out of 32 positions. This confirms that successful reasoning involves a systematic shift of attention
from the original question to the model’s own echoed representation.

A.10 WORD-LEVEL ATTENTION CASE STUDY

To visualize which specific parts of the echo are attended to, we aggregated token-level attention into
word-level scores. Figure 7shows a heatmap of attention from the reasoning trace to the echo prefix
for a representative correct solution to a GSM8K problem ("Janet’s ducks"). The model focuses
most intensely on the key numerical entities and constraints (e.g., "16", "eggs", "3", "13") within the
echo, rather than on function words. This supports the hypothesis that the echo serves as a semantic
anchor for critical problem details.
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Figure 6: Token-wise average attention weights for the first 32 answer tokens. Left: Attention to
Answer-Prefix. Right: Attention to Question. Shaded regions indicate standard error. The Correct
group (blue) consistently attends more to the prefix, while the Wrong group (orange) attends more
to the question.

Figure 7: Word-level attention heatmap from the reasoning trace to the echo prefix (mid-layers 7-
18). Darker red indicates higher attention. The model selectively attends to key quantities (numbers
of eggs, dollars) in the echoed prompt.

A.11 INFORMATION FLOW ANALYSIS

We further investigated how information propagates through the model layers using an information
flow route analysis. Figure 8visualizes the attention-based routing of information for a single answer
token (orange triangle at the top right). In the visualization, blue nodes represent question tokens,
and green nodes represent echo/prefix tokens. In Correct traces, backward attribution paths from
answer tokens repeatedly route through the echo-prefix tokens before reaching the rest of the prompt,
whereas in Wrong traces these paths more often terminate in the question region or fail to reach the
key numerals (e.g., idx 1151/1001 vs. 594). This suggests that the echo acts as a recurrent internal
hub that integrates and refines information before it is used in the final generation.

A.12 LOGISTIC REGRESSION ANALYSIS OF ∆L

To quantify the predictive power of the Echo Likelihood Gap (∆L) on reasoning correctness, we
fitted a logistic regression model on the 1,319 GSM8K samples used in our analysis. We predicted
the binary correctness outcome Y ∈ {0, 1} using ∆L and the length of the trimmed echo (Lecho) as
predictors:

logit(P (Y = 1)) = β0 + β1∆L+ β2Lecho (8)
The regression results (Table 9) indicate that ∆L is a statistically significant positive predictor of
correctness (p ≈ 0.022), with a coefficient β1 ≈ 0.24. This implies that for every 1.0 nat/token
increase in the likelihood gap, the odds of a correct answer increase by a factor of exp(0.24) ≈ 1.27,
confirming that the model’s probabilistic preference for the echo is meaningfully associated with
task success.

A.13 ANALYSIS OF EOP-PRESENT VS. EOP-ABSENT TRACES

To disentangle the effect of the Echo of Prompt (EOP) from general model capabilities, we compared
traces where the model spontaneously produced an echo (EOP-present) versus those where it did not
(EOP-absent). As shown in Table 10, the EOP-present group has a higher overall accuracy (63.8%
vs 57.2%). Furthermore, even when controlling for the final outcome (Correct or Wrong), traces
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DeepSeek-R1: information flow route (correct, idx=1001)

Figure 8: Information flow visualization for generated answer tokens across three different exam-
ples. The graphs show the primary attention routes through the model layers. In correct traces,
information flows significantly through the Echo of Prompt (EOP) tokens in the middle layers, act-
ing as a bridge between the question and the answer.

Table 9: Logistic regression results predicting correctness on GSM8K.
Predictor Coefficient (β) Std. Error P-value

Intercept (β0) 0.12 0.15 0.423
Echo Likelihood Gap (β1) 0.24 0.11 0.022
Echo Length (β2) 0.001 0.0005 0.089

with an EOP exhibit stronger attention refocusing (Answer → Answer-Prefix attention) than those
without. This suggests that the presence of an echo actively facilitates the attention mechanism that
supports correct reasoning.

A.14 PROMPT TEMPLATES FOR TEACHER COT AND EDITING

For reproducibility, we list the main prompt templates used to generate and edit teacher traces.

Standard CoT generation prompt. To obtain the initial pool of verified CoTs, we query
gpt-oss-120B with a simple reasoning prompt that separates internal thinking from the final
answer:
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Table 10: Comparison of EOP-present and EOP-absent traces on GSM8K (DeepSeek-R1-Distill-
Llama-8B). EOP presence is associated with higher accuracy and stronger attention refocusing.

Group N Accuracy (%) Last-layer Ans→Ans-prefix Attn

EOP-present 985 63.8 –
EOP-absent 334 57.2 –

Conditioned on Outcome:
Correct, EOP-present 628 – 0.1374
Correct, EOP-absent 191 – 0.1328
Wrong, EOP-present 357 – 0.1046
Wrong, EOP-absent 143 – 0.0987

You are solving math problems. Structure your entire
thought process within a single pair of <think> and </think>
tags. After you’ve finished thinking, provide the final,
concise answer on a new line. The final answer should be a
plain value.

Echo-insertion prompt for ED-SFT. When the MLP probe predicts that a trace lacks an early
Echo of Prompt, we ask the teacher to minimally insert an echo-style opening that repeatedly brings
the question back into focus. The high-level instruction is:

You are solving math problems. Think out loud naturally.
To ensure you fully understand the problem, you must repeat
the question or key parts of it multiple times throughout
your reasoning process before you start solving. For
instance, you might re-read it to confirm details or after a
few steps of calculation to ensure you are on track. Start
by repeating the problem, then reason step by step. Wrap
the entire internal thinking process with a single pair of
<think> and </think> tags, and put the final answer after
the thinking. The final answer should be a concise plain
value (number if applicable). At the very beginning of
your <think>, start with the following opening line and then
continue the original reasoning. Do not change the final
answer.

The opening line is randomly chosen from a small set of naturalistic variants, e.g.:

• Okay, let me see. The problem is asking: [QUESTION]

• Alright, so the question is: [QUESTION]

• Let me understand this problem. We have: [QUESTION]

• So the problem states: [QUESTION]

where [QUESTION] is replaced with the original GSM8K question text.

Echo-removal prompt for normal-SFT. For traces where the MLP probe predicts the presence
of an early EOP, we construct the normal-SFT counterpart by asking the teacher to remove the
echo-prefix while preserving all later reasoning steps and the final answer:

You are given a math question and a chain-of-thought
solution that begins by repeating or paraphrasing the
question. Rewrite the reasoning so that it no longer
repeats the question at the beginning. Keep all subsequent
reasoning steps and the final answer exactly the same. Do
not change the logic or the final answer; only remove the
initial echo segment. Wrap the internal thinking in <think>
and </think> as before.
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Benchmark Size / Format Domain / Source Description (from original papers)

Hendrycks-MATH 12,500 problems;
open-ended;
step-by-step
solutions

Competition mathemat-
ics (algebra, geometry,
number theory, probabil-
ity, etc.)

“A new dataset of 12,500 challenging competition
mathematics problems. Each problem in MATH
has a full step-by-step solution which can be used
to teach models to generate answer derivations
and explanations.” The evaluation follows the
hendrycks_math group in the LM Evaluation
Harness, which decomposes MATH into diverse
subsets (_algebra, _counting_and_prob,
_geometry, _intermediate_algebra,
_num_theory, _prealgebra, _precalc),
covering a wide range of mathematical skills
beyond our training distribution.

GSM8K 8.5K problems;
free-form an-
swers; word
problems

Grade-school math word
problems

“A dataset of 8.5K high quality linguistically di-
verse grade school math word problems. We find
that even the largest transformer models fail to
achieve high test performance, despite the concep-
tual simplicity of this problem distribution.”

MathQA 37K problems;
multiple choice

Multiple math domains;
derived from AQuA op-
eration programs

“A large-scale dataset of 37k English multiple-
choice math word problems covering multiple
math domain categories by modeling operation
programs corresponding to word problems in the
AQuA dataset.”

Table 11: Benchmarks used for our evaluation.

A.15 ILLUSTRATIVE EXAMPLES OF ECHO-THEN-REASON PATTERN

We provide two illustrative examples as case studies to demonstrate the Echo-then-Reason pattern,
see Figure 9

In these examples, we compare outputs from models with and without the initial echo phase. The
echo-prefixed response (green) correctly identifies that the yellow marbles are identical and thus
treats pairs of yellow marbles as a single unique group, leading to the correct count of 7. In contrast,
the direct response (red) incorrectly treats the yellow marbles as distinguishable, overcounting the
combinations and arriving at 12.

A.16 SFT EVALUATION BENCHMARKS

In this section, we clarify our terminology regarding generalization. While we initially referred to
performance on MathQA and Hendrycks-MATH as “out-of-domain generalization”, we acknowl-
edge that all tested datasets fall within the broader domain of mathematics. However, they represent
significant distributional shifts in terms of difficulty, topic coverage, and problem format compared
to the GSM8K training set. Therefore, we adopt the terms distributional generalization or robust-
ness to distribution shift to more precisely describe these experiments. Table 11summarizes the
characteristics of each benchmark, highlighting these differences.
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Question

Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles.
How many different groups of two marbles can Tom choose?

Model output with Echo-then-Reason (Correct)

<think> The problem asks: "Tom has a red marble, a green marble, a blue marble, and
three identical yellow marbles. How many different groups of two marbles can Tom choose?"
First, repeat the key details: Tom has one red marble, one green marble, one blue marble,
and three yellow marbles that are identical. He wants to form groups of two marbles.
To avoid counting identical groups multiple times, consider the distinct colors: red, green,
blue, and yellow. There are four distinct colors.
Now, let’s count the pairs systematically to avoid overcounting: - Red can be paired with
green, blue, or yellow, giving 3 pairs. - Green can be paired with blue or yellow (red-green is
already counted), giving 2 new pairs. - Blue can be paired with yellow (red-blue and green-
blue are already counted), giving 1 new pair. - Two yellow marbles can be paired. Since they
are identical, this is 1 more pair.
Adding these up: 3 + 2 + 1 + 1 = 7 pairs.
Thus, the number of different groups of two marbles Tom can choose is 7. </think> The
answer is 7.

Model output without Echo (Incorrect)

To determine the number of different groups of two marbles that Tom can choose, we need to
consider all possible combinations of the marbles he has. Tom has a red marble (R), a green
marble (G), a blue marble (B), and three identical yellow marbles (Y).
The total number of marbles is 6, but since the yellow marbles are identical, we need to
account for this in our combinations.
We can use the combination formula

(
n
k

)
to find the number of ways to choose 2 marbles out

of 6, but we need to adjust for the identical yellow marbles.
Let’s break it down: 1. Choose 2 marbles from the 3 yellow marbles: This is not possible
since we can’t choose 2 identical marbles from a set of identical items. 2. Choose 1 yellow
marble and 1 non-yellow marble: We can choose 1 yellow marble in

(
3
1

)
= 3 ways, and we

can choose 1 non-yellow marble in
(
3
1

)
= 3 ways. So, the total number of ways to choose

1 yellow and 1 non-yellow marble is 3 × 3 = 9. 3. Choose 2 non-yellow marbles: We can
choose 2 non-yellow marbles from the 3 non-yellow marbles (R, G, B) in

(
3
2

)
= 3 ways.

Adding these up, the total number of different groups of two marbles that Tom can choose is
0 + 9 + 3 = 12.
The number of different groups of two marbles that Tom can choose is 12 .

Figure 9: Qwen3-8B-Base model outputs illustrating the Echo-then-Reason pattern. Top: the math
question from Hendrycks-MATH dataset. Middle (green): Qwen3-8B-ED-SFT’s correct answer.
Bottom (red): Qwen3-8B-Base that immediately jumps to calculation without echoing, resulting in
the wrong answer.
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