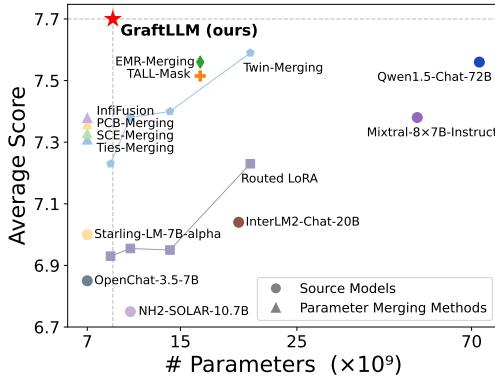

KNOWLEDGE FUSION OF LARGE LANGUAGE MODELS VIA MODULAR SKILLPACKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Cross-capability transfer represents a key challenge in large language model (LLM)
012 research, particularly in multi-task integration, model compression, and knowledge
013 fusion. Recent works such as FuseLLM and FuseChat have shown the potential of
014 transferring multiple model capabilities to lightweight models, thereby enhancing
015 adaptability and efficiency. This motivates our investigation into more efficient
016 methods for cross-capability transfer. However, existing [model merging](#) approaches
017 primarily focus on homogeneous models, limiting their applicability. For large,
018 heterogeneous models, knowledge distillation with full-parameter fine-tuning often
019 overlooks the student model's inherent capability and risks catastrophic forgetting,
020 while PEFT methods struggle to effectively absorb knowledge from source LLMs.
021 To address these issues, we introduce **GraftLLM**, a novel grafting-based method
022 that stores source model capabilities in a target model + SkillPack format. This
023 approach preserves general capabilities, reduces parameter conflicts, and supports
024 forget-free continual learning and model fusion. We employ a module-aware
025 adaptive compression strategy for parameter updates, ensuring efficient storage
026 while **preserving task-specific knowledge**. The resulting SkillPack serves as a
027 compact and transferable knowledge carrier, ideal for **heterogeneous LLM fusion**.
028 Experiments across various scenarios demonstrate that GraftLLM outperforms ex-
029 isting techniques in knowledge transfer, knowledge fusion, and forget-free learning,
030 providing a scalable and efficient solution for cross-capability transfer.



031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Comparison of explicit knowledge fusion methods for heterogeneous LLMs on MT-
Bench, including parameter size analysis.

1 INTRODUCTION

Cross-capability transfer (Pan et al., 2023; Zhong et al., 2025; Yang et al., 2022; Fujii et al., 2024; Zhao et al., 2024) aims to combine or migrate different skills and task abilities across LLMs, enabling a single model to benefit from capabilities originally distributed among multiple specialized sources. This paradigm has received increasing attention in LLM research, driving progress in key applications such as multi-task fusion (Yang et al., 2024d), model compression (Wang et al., 2024c;

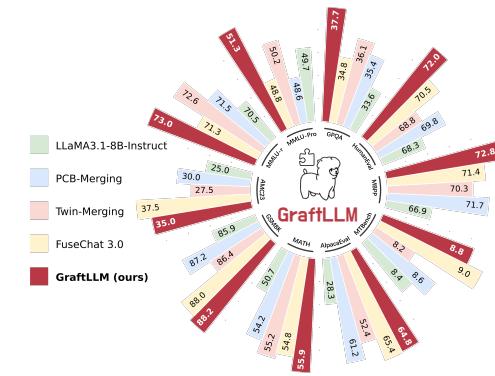
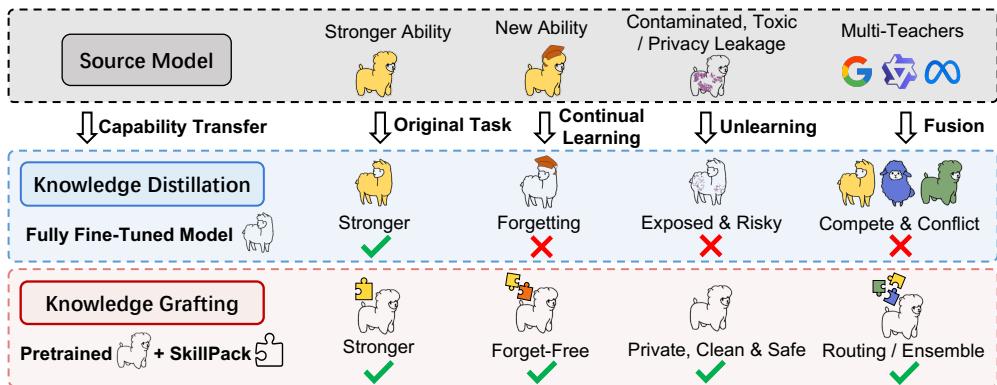


Figure 2: A comprehensive comparison of implicit knowledge fusion methods for heterogeneous LLMs across multiple benchmarks.

054 Huang et al., 2024), and continual learning (Tang et al., 2025). KnowPara (Zhong et al., 2024)
055 employs sensitivity-based techniques to extract and align knowledge-specific parameters (Panigrahi
056 et al., 2023) across different models. FuseLLM (Wan et al., 2024a) and FuseChat (Yang et al., 2025b)
057 showcase the potential of distilling multiple models into a lightweight target, while EvoLLM (Akiba
058 et al., 2025) introduces an evolutionary approach (Du et al., 2024b) to automatically combine diverse
059 open-source models without extra training data. These methods collectively tackle the core challenge
060 of efficient and reliable knowledge transfer across heterogeneous LLMs.

061 Existing knowledge grafting methods (Deng et al., 2024) aim to enable cross-capability transfer
062 but are mostly limited to small (Panigrahi et al., 2023; He et al., 2024) or structurally identical
063 models (Yu et al., 2023), which constrains their applicability to heterogeneous LLMs. To address this
064 challenge, we introduce **GraftLLM**, which encodes model capabilities as a combination of a target
065 model and a lightweight *SkillPack*. A *SkillPack* is a modular, task-specific set of parameter deltas
066 obtained via distillation from heterogeneous source models. This design preserves the strengths of
067 both target and source models, enhances parameter and storage efficiency, mitigates forgetting, and
068 facilitates multi-task transfer and model fusion by reducing parameter conflicts (Yadav et al., 2024).
069 By contrast, knowledge distillation—a widely adopted grafting strategy—typically follows two
070 paradigms: full-parameter distillation and PEFT-based fine-tuning. The former often disregards the
071 student model’s intrinsic capabilities and risks catastrophic forgetting (Alexandrov et al., 2024), while
072 the latter, though more parameter-efficient, generally underperforms full fine-tuning and struggles to
073 absorb sufficient task knowledge from source models.

074 We consider a heterogeneous capability transfer scenario where source model capabilities are extracted
075 via synthetic data (Yang et al., 2025b), integrated into the target model through full-model fine-
076 tuning, and further refined with preference optimization (e.g., DPO (Rafailov et al., 2023)). The
077 resulting parameter deltas capture the specialized knowledge gained during this process. To enable
078 efficient storage and transfer, we introduce a module-aware adaptive compression strategy that
079 compresses these deltas before and after specialization. By adapting pruning (Yu et al., 2023), low-
080 rank decomposition (Lu et al., 2024), and adaptive quantization (Ping et al., 2024) to each module’s
081 structure, our method balances compression ratio with task knowledge retention. The compressed
082 representation, termed a *SkillPack*, serves as a compact, transferable knowledge unit, supporting
083 scalable integration and continual specialization without catastrophic forgetting.



096 Figure 3: Comparision of knowledge distillation and knowledge grafting in various scenarios.
097

098 We anticipate that the knowledge grafting method will provide advantages in various scenarios, as
099 illustrated in Fig. 3. (1) **First**, it nearly matches full-parameter distillation in learning from a source
100 model with superior original-task capability. (2) **Second**, since grafting does not alter the target
101 model’s parameters, it proves highly effective for forget-free learning, allowing the source model
102 to acquire new abilities. (3) **Additionally**, the grafted modules can be easily unloaded, facilitating
103 unlearning, detoxification, decontamination, and other processes, thus helping mitigate issues like
104 privacy leakage. (4) **Finally**, GraftLLM employs a routing mechanism to support model fusion and
105 multi-task learning, avoiding parameter competition and conflict, further enhancing its applicability.

106 To empirically validate the effectiveness of GraftLLM, we conducted extensive experiments in
107 various cross-capability transfer scenarios, demonstrating our approach’s advantages from three
108 perspectives: (1) **Knowledge Transfer and Compression**: using LLaMA3 as the target, we grafted

108 capabilities from sources like Qwen-2.5-72B-Instruct (Yang et al., 2024a) under SFT and DPO
109 settings, significantly outperforming PEFT and Twin-Merging (Lu et al., 2024) on general and
110 task-specific tasks. (2) **Knowledge Fusion**: we tested on 10 benchmarks under both explicit and
111 implicit heterogeneous model fusion scenarios, with LLaMA3.1-8B-Instruct (Dubey et al., 2024a)
112 and Qwen-2.5-7B-Instruct (Yang et al., 2024a) as target models, showing substantial improvements
113 over existing methods, as shown in Fig. 1 and 2. (3) **Forget-free Learning**: our method better
114 mitigates catastrophic forgetting, achieving stronger forget-free learning performance.

115 This paper makes three significant **contributions**: (1). We highlight the necessity of cross-capability
116 transfer between heterogeneous large language models and identify limitations in existing methods
117 regarding generalization and adaptability. (2). We propose *GraftLLM*, which structures cross-model
118 capabilities as *SkillPack*, offering high performance, forgetfulness resistance, and easy integration
119 for practical applications. (3). Experiments show *GraftLLM* significantly improves performance in
120 knowledge transfer and compression, heterogeneous model fusion, and forget-free learning tasks.

122 2 RELATED WORK

124 **Knowledge Distillation** Knowledge distillation (Hinton et al., 2015) plays a crucial role in enabling
125 capability transfer (Wan et al., 2024a; Zhong et al., 2024; 2025) across heterogeneous large language
126 models (LLMs). Despite the progress made by knowledge distillation methods in merging large
127 language models (LLMs), two main approaches have emerged: one involves complex **multi-task**
128 **training** (Yang et al., 2025b) for model sharing, but often fails to achieve optimal performance for
129 individual tasks (Shen et al., 2024; Yang et al., 2024c); the other uses **pairwise distillation** (Wan
130 et al., 2024b; Yan et al., 2025) followed by parameter merging (Li et al., 2023a; Matena & Raffel,
131 2022), but conflicts between tasks during fusion can lead to performance degradation (Yadav et al.,
132 2024). To address this, **routing mechanisms** (Muqeeth et al., 2024; Li et al., 2024a) have been
133 introduced to preserve single-task performance while reducing task interference (Yang et al., 2024e).
134 However, routing requires each branch to be highly parameter-efficient to minimize resource usage
135 (Lu et al., 2024; Kang et al., 2024). While **PEFT methods** such as LoRA (Wu et al., 2024) introduce
136 lightweight adapters, they often fall short of the performance achieved by full-parameter fine-tuning
137 (Ding et al., 2023). To address this, we propose a strategy that first fine-tunes all parameters and then
138 modularizes them, providing stronger support for routing and fusion.

139 **Model Fusion** Most existing model merging approaches primarily focus on homogeneous settings,
140 where models share the same pre-trained backbone. Within this scope, Model Grafting (Panigrahi
141 et al., 2023) was first proposed as a technique to transplant a small subset of fine-tuned parameters
142 onto the pre-trained model, effectively recovering the performance of the original fine-tuned model.
143 Meanwhile, Task Arithmetic (Ilharco et al., 2023; Zhang et al., 2023) introduced the concept of task
144 vectors, and Ties-Merging (Yadav et al., 2024) demonstrated the importance of pruning these vectors.
145 Building on this idea, subsequent works like DARE (Yu et al., 2023) and TSV-Merge (Gargiulo
146 et al., 2025) applied it to merging large language models. Beyond task vector pruning, methods such
147 as mask localization (Panigrahi et al., 2023; He et al., 2024), singular value decomposition (SVD)
148 (Wang et al., 2024f; Yuan et al., 2023), and quantization (Frantar et al., 2022; Lin et al., 2024) have
149 also been widely adopted for model compression and merging. For example, Model Tailor (Zhu et al.,
150 2024) generates sparse masks based on salience and sensitivity scores, while Talls Mask (Wang et al.,
151 2024c) and EMR-Merging (Huang et al., 2024) introduce additional masks to localize task-specific
152 information and reduce storage costs. SVD is applied in various contexts: Twin-Merging (Lu et al.,
153 2024) uses it for modular routing, KnOTS (Stoica et al., 2024) for LoRA fusion, and D²-MoE (Gu
154 et al., 2025) for MoE-based LLMs. Methods like BitaDelta (Liu et al., 2024) and Delta-Come
155 (Ping et al., 2024) incorporate quantization for further compression. In our *GraftLLM* work, we
156 propose a module-adaptive delta compression strategy for merging heterogeneous LLM that balances
157 performance and storage efficiency. More comparisons with related work are provided in App. A.

158 3 METHODOLOGY

160 In Sec. 3.1, we formalize the problem of efficient LLM fusion. Sec. 3.2 introduces our proposed
161 method, *GraftLLM*, which enables cross-capability transfer between heterogeneous models and
encapsulates the acquired knowledge into a compact *SkillPack*. Finally, Sec. 3.3 illustrates how the

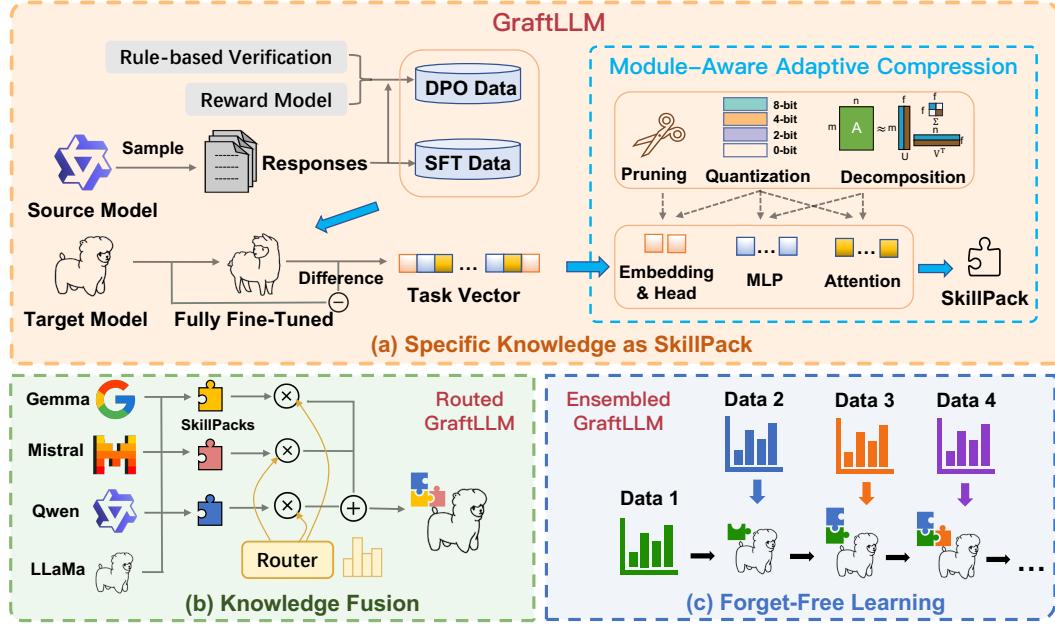


Figure 4: **Overview of GraftLLM.** GraftLLM transfers capabilities across heterogeneous LLMs and extracts them into compact **modular SkillPacks**, enabling efficient knowledge fusion.

modularity and composability of *SkillPacks* support downstream applications, including heterogeneous model fusion and forget-free learning.

3.1 PROBLEM SETTING

We consider a heterogeneous adaptation scenario involving a source model θ_{src} and a target model θ_{tgt} . To transfer capabilities from the source to the target, we adopt a two-stage training pipeline: supervised fine-tuning (SFT) followed by direct preference optimization (DPO).

The parameters after this two-stage adaptation are denoted θ_{tgt}^* , and we define the difference from the original parameters as the **delta parameters**:

$$\Delta\theta = \theta_{\text{tgt}}^* - \theta_{\text{tgt}}, \quad (1)$$

which captures the task-specific adaptation knowledge and serves as the foundation for subsequent modular compression and transfer.

To enable efficient storage and transfer, we compress $\Delta\theta$ using a **module-specific adaptive strategy**. Each submodule $m \in \mathcal{M}$ is compressed with a dedicated operator $C_m(\cdot)$, selected based on its functional role and sensitivity. The compression may involve pruning, low-rank decomposition, or quantization, with bitwidth adaptively assigned according to the importance of each component. The resulting compressed update is:

$$\widehat{\Delta\theta} = \{C_m(\Delta\theta_m)\}_{m \in \mathcal{M}}, \quad (2)$$

which forms a *SkillPack*—a compact, transferable representation of the acquired task knowledge, suitable for heterogeneous model fusion, as shown in Fig. 4.

3.2 KNOWLEDGE AS A SKILLPACK

To achieve compact and transferable skill representations, we propose a **module-aware adaptive compression strategy**, which—unlike previous uniform compression methods—applies different operations based on each module’s role, sensitivity, and compression difficulty. As shown in Fig. 5 and Fig. 6, moderate pruning preserves performance for the **Embedding** and **Output Head**. For **Attention** modules, the fast-decaying singular value spectrum allows low-rank SVD to compress projection matrices without significantly reducing representational capacity. **MLP** modules, with strong nonlinear transformations, require conservative

compression to retain critical singular vectors and avoid performance degradation. Accordingly, we assign module-specific compression operators to the delta parameters as follows:

- **Embedding and Output Head.** We apply magnitude pruning with a retention ratio α , preserving the weights with the top α proportion of absolute magnitudes:

$$\Delta\theta^{\text{embed}} = \text{Prune}_{\alpha}(\Delta\theta^{\text{embed}}). \quad (3)$$

- **Attention Modules.** For attention blocks, we apply low-rank decomposition using SVD:

$$\Delta\theta^{\text{mlp}} \approx \mathbf{U}\Sigma\mathbf{V}^{\top}, \quad \text{s.t. rank}(\Sigma) = r \quad (4)$$

where $\Delta\theta^{\text{mlp}} \in \mathbb{R}^{h_{\text{out}} \times h_{\text{in}}}$, $\mathbf{U}_r \in \mathbb{R}^{h_{\text{out}} \times r}$, $\Sigma_r \in \mathbb{R}^{r \times r}$, and $\mathbf{V}_r \in \mathbb{R}^{h_{\text{in}} \times r}$ correspond to the top r components.

- **MLP Modules.** For MLP modules, we employ a conservative SVD scheme that retains essential ranks, with the truncation rank determined by the cumulative explained variance under an energy threshold β :

$$\sum_{i=1}^k \sigma_i^2 = \beta \sum_{i=1}^{\min(d_{\text{out}}, d_{\text{in}})} \sigma_i^2, \quad (5)$$

To further reduce storage overhead, we apply mixed-precision quantization to the pruned matrix or SVD-derived components. Each SVD component is quantized with a bit precision k , adaptively chosen based on its importance in the decomposition.

$$\hat{\theta} = \text{Quant}_k(\theta, \mathbf{x}) = \underset{\hat{\theta}}{\operatorname{argmin}} \|\theta\mathbf{x} - \hat{\theta}\mathbf{x}\|^2, \quad (6)$$

where Quant_k denotes a k -bit quantization operator ($k > 1$). For each group of singular vectors indexed by $[r] = r_{\text{begin}} : r_{\text{end}}$, we apply group-wise quantization with GPTQ (Frantar et al., 2022) as follows:

$$\hat{\mathbf{V}}_{[r]}^{\top} = \text{Quant}_k \left(\mathbf{V}_{[r]}^{\top}, \mathbf{x} \right), \quad \hat{\mathbf{U}}_{[r]} = \text{Quant}_k \left(\mathbf{U}_{[r]}, \Sigma_{[r]} \cdot \hat{\mathbf{V}}_{[r]}^{\top} \cdot \mathbf{x} \right), \quad (7)$$

where $\Sigma_{[r]}$ denotes the diagonal matrix of singular values corresponding to the selected rank range. The quantization precision k can be adaptively adjusted across different groups based on the relative importance of singular values.

3.3 SKILLPACK COMPOSITION AND ROUTER MECHANISM

GraftLLM enables modular and composable integration of task-specific knowledge across heterogeneous LLMs through **SkillPacks** $\widehat{\Delta\theta}$. Each SkillPack is first **decoded through dequantization to obtain $\Delta\theta^{(dq)}$** , and then **reconstructed via truncated SVD** to recover the task-specific delta parameters:

$$\Delta\theta^{(dq)} \approx \mathbf{U}\Sigma\mathbf{V}^{\top} = \Delta\theta, \quad (8)$$

where U, Σ, V are obtained from the truncated SVD decomposition. The reconstructed delta $\Delta\theta$ is then **added back to the base model parameters** to produce the final fused model:

$$\theta_{\text{fused}} = \theta_{\text{tgt}} + \Delta\theta. \quad (9)$$

To support flexible and selective integration across tasks, a **router function** \mathcal{R} is introduced. The router determines which SkillPack is applied to which submodule or task-specific region of the target model. For example, for a set of n SkillPacks $\{\widehat{\Delta\theta}_i\}_{i=1}^n$, the fused model is computed as:

$$\theta_{\text{fused}} = \theta_{\text{tgt}} + \sum_{i=1}^n \mathcal{R}(\widehat{\Delta\theta}_i), \quad (10)$$

where \mathcal{R} can be instantiated in two ways:

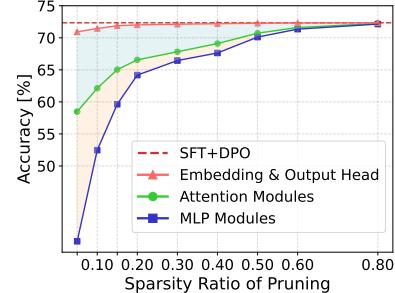


Figure 5: Performance of delta parameters across modules under different pruning ratios.

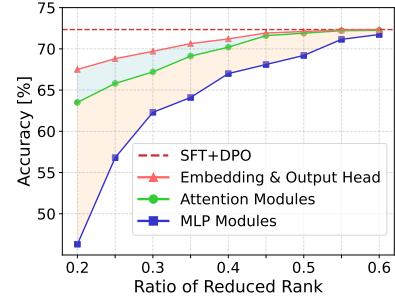


Figure 6: Performance of delta parameters across modules under different reduced rank ratios.

- **Classifier-based router:** a lightweight feed-forward network trained to predict the most suitable source model or SkillPack based on input features.
- **Manual task-type assignment:** a deterministic mapping from known task types to their corresponding SkillPacks.

During inference, we typically use **top-1 routing** for efficiency, ensuring that only the most relevant SkillPack is activated. This strategy minimizes inference overhead while preserving the benefits of modular, task-specific delta parameters. More details provided in App. B.3

Overall, this formulation provides a unified interface for modular knowledge transfer, enabling both **heterogeneous model fusion** and **task-adaptive capability integration** in a principled, efficient, and scalable manner.

4 EXPERIMENTAL SETUP

4.1 BASELINE METHODS

For **pairwise LLM grafting**, we evaluate two categories of baselines: (1) **PEFT methods**, comparing LoRA under varying rank settings in both SFT and DPO stages; (2) **Task Vector Compression**, which evaluates full-parameter tuning followed by magnitude pruning (Yu et al., 2023; Yadav et al., 2024), SVD (Lu et al., 2024; Stoica et al., 2024), or quantization (Ping et al., 2024; Yang et al., 2025a) across varying compression ratios.

For **heterogeneous knowledge fusion**, we benchmark against: (1) **Multi-teacher distillation** (e.g., FusELLM (Wan et al., 2024a)); (2) **Parameter merging** approaches such as Task Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2024), SCE-Merging (Wan et al., 2024b), PCB-Merging (Du et al., 2024a), DARE (Yu et al., 2023), and InfiFusion (Yan et al., 2025); (3) **Routing-based** methods, including Routed LoRA (Hu et al., 2022) and Twin-Merging (Lu et al., 2024), and (4) **Mask-based fusion** strategies like TALL Mask (Wang et al., 2024c) and EMR-Merging (Huang et al., 2024), which leverage unified task vectors and localization.

For **forget-free learning**, we use LoRA, Model Grafting (Panigrahi et al., 2023), and Model Tailor (Zhu et al., 2024) as baselines. Details of all baselines are provided in App. D.

4.2 DATASETS AND ARCHITECTURES

To showcase the effectiveness of `Graft LLM`, we conduct a comprehensive evaluation across multiple domains, including instruction following, question answering, reasoning, mathematics, and coding. We use 10 established benchmarks, grouped into four categories, with domain-specific response sampling strategies to ensure fair comparison. Full benchmark details are available in App. E.3.

For pairwise LLM grafting in Sec. 5.1 and Fig. 7, 8, we use Llama-3.1-8B-Instruct as the target model, grafting capabilities from strong source model Qwen-2.5-72B-Instruct (Yang et al., 2024a). For explicit knowledge fusion in Sec. 5.2 and Tab. 1, we follow the FuseChat 2.0 (Wan et al., 2024b) setup by fusing chat-centric LLMs of varying architectures and scales, using OpenChat-3.5-7B (Wang et al., 2024b) as the pivot model and six representative chat models as sources. For implicit fusion in Sec. 5.2 and Tab. 2, we adopt the FuseChat 3.0 (Yang et al., 2025b) setup with Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct as target models and 4 different stronger LLMs. For forget-free learning in Sec. 5.3 and Tab. 3, we sequentially acquire math and coding abilities using both SFT and DPO datasets. Further architectural details are provided in App. E, while additional implementation details can be found in App. F, covering training procedures F.1, hyperparameter settings F.2, and computational resources and runtimes F.3.

5 RESULTS

In this section, we evaluate `Graft LLM` in various settings, comparing it with other methods, including pairwise heterogeneous LLM grafting 5.1, knowledge fusion 5.2, and forget-free learning 5.3, while also highlighting its potential for unlearning tasks like model detoxification (see App. C.2).

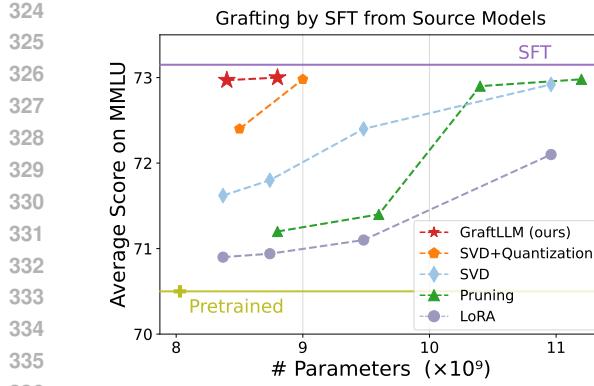


Figure 7: Comparison of parameter efficiency and MMLU performance across different methods for LLM capability transfer with SFT.

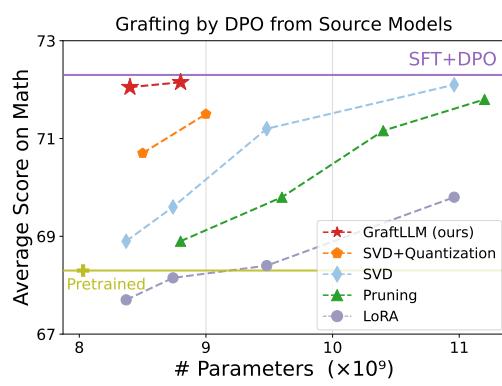


Figure 8: Comparison of parameter efficiency and average performance on GSM8K and MATH across different methods under the DPO setting.

5.1 PAIRWISE GRAFTLLM

We demonstrate the effectiveness of parameter-efficient capability transfer between paired models. Fig. 7 and 8 show that while PEFT and other compression methods perform reasonably well in simple SFT scenarios, their effectiveness drops significantly—or even fails—under more complex DPO settings. In contrast, our method consistently achieves performance close to a fully fine-tuned target model, highlighting its robustness and efficiency.

Table 1: Overall results of explicit LLM knowledge fusion on AlpacaEval 2.0 and MT-Bench. The best-performing results for both parameter merging and routing-based methods are shown in **bold**, while the performance difference between the two is highlighted in **green**.

Model	#Params	AlpacaEval 2.0 (GPT-4-1106-Preview)		MT-Bench (GPT-4-0125-Preview)		
		Win Rate	LC Win Rate	1st Turn	2nd Turn	Average Score
Source LLMs						
OpenChat-3.5-7B Wang et al. (2024a)	7B	10.20	14.90	7.14	6.55	6.84
Starling-LM-7B-alpha Zhu et al. (2023)	7B	14.20	14.70	7.54	6.49	7.01
NH2-SOLAR-10.7B Kim et al. (2023)	10.7B	12.22	18.13	7.11	6.36	6.74
InternLM2-Chat-20B Cai et al. (2024)	20B	21.70	18.70	7.78	6.34	7.06
Mixtral-8x7B-Instruct Jiang et al. (2024)	8x7B	18.30	23.70	7.76	7.00	7.38
Qwen1.5-Chat-72B Bai et al. (2023)	72B	26.50	36.60	7.83	7.36	7.59
Multi-teacher Distillation						
FuseLLM _[ICLR24] Wan et al. (2024a)	7B	10.56	14.50	7.36	6.40	6.88
Pairwise Distillation + Parameter Merging						
Task Arithmetic _[ICLR23] Ilharco et al. (2023)	7B	10.67	15.78	7.54	6.78	7.22
Ties-Merging _[NeurIPS23] Yadav et al. (2024)	7B	11.55	16.73	7.59	7.03	7.31
SCE-Merging _[arXiv24] Wan et al. (2024b)	7B	11.63	16.89	7.61	7.05	7.33
PCB-Merging _[NeurIPS24] Du et al. (2024a)	7B	11.82	17.22	7.71	7.01	7.36
PCB-Merging+DARE _[ICML24] Yu et al. (2023)	7B	11.96	17.35	7.79	6.99	7.39
InfiFusion _[arXiv25] Yan et al. (2025)	7B	11.74	17.21	7.68	7.08	7.38
Pairwise Distillation + Router						
Routed LoRA r512	14.1B	10.16	15.48	7.14	6.75	6.95
Routed LoRA r1024	21B	12.57	19.41	7.52	6.92	7.23
TALL-Mask _[ICML24] Wang et al. (2024c)	16.7B	13.69	22.76	7.92	7.14	7.53
EMR-Merging _[NeurIPS24] Huang et al. (2024)	16.7B	14.52	23.10	7.96	7.15	7.56
Twin-Merging r512	14.1B	12.20	19.90	7.74	7.07	7.40
Twin-Merging r1024	21B	<u>15.93</u>	<u>24.81</u>	<u>8.01</u>	<u>7.18</u>	<u>7.59</u>
Routed GraftLLM (Ours)	9.2B	16.56(+4.6)	25.42(+8.07)	8.05(+0.26)	7.35(+0.27)	7.70(+0.31)

5.2 GRAFTLLM FOR KNOWLEDGE FUSION

We explore two approaches to LLM knowledge fusion: explicit fusion, which aligns tokens and probability distributions, and implicit fusion, which transfers knowledge through generated data.

378 **Explicit Knowledge Fusion.** As shown in Tab. 1, compared to the best results from Merging-based
 379 LLM fusion, our approach achieves a significant performance boost without introducing a large
 380 number of additional parameters. Compared to routing-based fusion methods, our approach achieves
 381 better performance with lower parameter cost. Unlike Twin Merging, which relies on higher ranks,
 382 our method delivers superior results more efficiently. Compared to TALL-Mask and EMR-Merging,
 383 we avoid the overhead introduced by using a unified task vector.

384 Compared to the source models, our approach improves the target model, OpenChat-3.5-7B, with
 385 only a 28% increase in parameter size, achieving performance comparable to Mixtral-8x7B-Instruct
 386 and Qwen1.5-Chat-72B. In fact, on MT-Bench, our model outperforms all source models, setting
 387 a new benchmark. Additionally, on AlpacaEval 2.0, it shows an 8.07% improvement over the best
 388 parameter fusion method. More result details are in App. C.2.

389 Table 2: Overall results of implicit LLM knowledge fusion across 10 benchmark tasks.
 390

391 Category	392 Benchmark	393 Llama-3.1-8B-Instruct					394 Qwen-2.5-7B-Instruct				
		395 Base	396 PCB-Merging	397 Twin-Merging	398 Fuse Chat-3	399 Routed GraftLLM	400 Base	401 PCB-Merging	402 Twin-Merging	403 Fuse Chat-3	404 Routed GraftLLM
394 General	MMLU-Pro	49.7	48.6	50.2	48.8	51.3	54.0	53.7	54.5	52.8	55.4
	MMLU-redux	70.5	71.5	72.6	71.3	73.0	75.1	75.3	74.8	74.6	76.2
	GPQA-Diamond	33.6	35.4	36.1	34.8	37.7	34.7	34.2	36.8	33.9	38.1
395 Mathematics	GSM8K (0 shot, CoT)	85.9	87.2	86.4	88.0	88.2	91.7	91.5	91.3	91.7	92.0
	MATH (0 shot, CoT)	50.7	54.2	55.2	54.8	55.9	75.0	73.2	72.1	73.5	75.0
	AMC 23 (0 shot, CoT)	25.0	30.0	27.5	37.5	35.0	52.5	52.5	50.0	57.5	55.0
396 Coding	HumanEval (0 shot)	68.3	69.8	68.8	70.5	72.0	85.4	83.1	81.9	79.9	85.6
	MBPP (0 shot)	66.9	71.7	70.3	71.4	72.8	80.2	82.7	81.6	83.1	84.5
397 Instruction Following	AlpacaEval-2 (LC %)	28.3	61.2	52.4	65.4	64.8	34.2	58.9	53.3	63.6	61.5
	MT-Bench	8.4	8.6	8.2	9.0	8.8	8.4	8.6	7.8	9.0	8.7
402 Average		48.7	53.8	52.8	55.2	56.0	59.0	61.4	60.4	62.0	63.2

403 **Implicit Knowledge Fusion.** We evaluate the effectiveness of implicit heterogeneous model fusion
 404 on 10 benchmark tasks, as shown in Tab. 2, comparing three representative methods. (1) PCB-Merging
 405 (pairwise distillation + parameter fusion) distills knowledge from multiple models and merges their
 406 parameters, but suffers from conflicts between source models, limiting its ability to balance multi-task
 407 performance. (2) Twin-Merging (pairwise distillation + routing) uses model decomposition for
 408 routing-based fusion, but experiences significant performance loss during decomposition, resulting in
 409 the weakest performance overall. (3) FuseChat-3 (multi-teacher distillation) integrates knowledge
 410 from multiple tasks, yet still falls short of task-specific upper bounds—especially on the GPQA (Rein
 411 et al., 2023) benchmark, where other tasks offer little benefit. In contrast, our method combines
 412 the performance strengths of pairwise distillation with the parameter efficiency of modular routing,
 413 effectively reducing task conflicts and fusion costs. When using LLaMA3.1-8B-Instruct and Qwen-
 414 2.5-7B-Instruct as target models, our approach achieves average performance gains of 0.8 and 1.2,
 415 respectively, demonstrating significant advantages. More result details are in App. C.1.

416 5.3 GRAFTLLM FOR FORGET-FREE LEARNING

417 Table 3: Forget-free learning results on code and math tasks using LLaMA3.1-8B-Instruct.
 418

419 Method	420 Additional Parameters	421 Code Benchmarks (Original task)				422 Math Benchmarks (New task)			423 Average
		424 HumanEval	425 HumanEval+	426 MBPP	427 MBPP+	428 GSM8K	429 MATH	430 AMC23	
422 LLaMA3.1-8B-Instruct	-	423 68.3	424 61.6	425 66.9	426 54.8	427 85.9	428 50.7	429 25.0	430 59.0
423 Multi LoRA r256 Model Grafting ^[ICML23]	1.48B	424 68.8	425 61.8	426 67.7	427 55.6	428 86.2	429 51.3	430 25.0	431 59.5
	803M	424 70.4	425 63.9	426 69.1	427 57.5	428 87.2	429 53.4	430 27.5	431 61.3
	803M	424 71.4	425 64.2	426 71.1	427 59.4	428 87.6	429 54.5	430 27.5	431 62.2
424 Model Tailor ^[ICML24]	803M	424 72.0	425 65.2	426 72.2	427 61.8	428 88.2	429 55.9	430 35.0	431 64.3

426 We evaluate GraftLLM in a forget-free learning setting, where LLaMA3.1-8B-Instruct is first
 427 trained on code (original task) and then on math (new task), using data generated from stronger source
 428 models. The final model is evaluated on seven benchmarks in total—four for code and three for
 429 math. Under the same 10% parameter budget as prior methods like Model Grafting and Model Tailor,
 430 GraftLLM delivers consistently stronger performance while mitigating forgetting, outperforming
 431 existing approaches by an average of 2.1% (Tab. 3). More details are in App. C.1.

432 **5.4 PERFORMANCE ON HIGHLY DISTINCT FUSION DOMAINS**
433

434 Our method is explicitly designed to decouple conflicting task behaviors into separate SkillPacks,
435 preventing cross-task interference and enabling near-lossless capability fusion—even when the
436 underlying tasks are highly distinct. To validate this design in scenarios with highly divergent
437 domains, we conducted a new experiment involving finance, law, and biomedicine, following an
438 experimental setup inspired by AdaptLLM (Cheng et al., 2023). We first report the performance of
439 models fine-tuned individually on each domain. As shown in the table below, a model fine-tuned on
440 one domain suffers substantial degradation on other domains, sometimes performing worse than the
441 base model, highlighting the limitations of traditional merging approaches in handling conflicting
442 updates.
443

444 In contrast, SkillPack-based fusion effectively isolates domain-specific delta parameters and recom-
445 bines them with minimal interference, achieving near-lossless multi-domain performance. Further-
446 more, even when compressing the model to just 10% of its original parameters, our method still
447 reaches nearly 99% of the original performance. This means that the performance originally requiring
448 three separate 7B fine-tuned models can now be matched by GraftLLM with only an additional 30%
449 of parameters, demonstrating significant parameter efficiency without sacrificing accuracy.
450

451 Table 4: Performance of GraftLLM compared with baselines across Biomedicine, Finance, and Law
452 domains. The average column also indicates relative performance to the reference.
453

454

Methods	Params	Biomedicine	Finance	Law	Average
LLaMA-7B	7B	44.2	58.6	34.2	45.7
LLaMA-7B-Bio	7B	47.3	57.9	34.5	46.6
LLaMA-7B-Finace	7B	43.7	63.4	34.0	57.0
LLaMA-7B-Law	7B	44.1	58.2	38.5	46.9
AdaptLLM-7B	3x7B	47.3	63.4	38.5	49.7 _{100%}
FuseChat _[ICLR 25]	7B	45.6	60.1	36.3	47.3 _{95%}
Twin-Merging _[NeurIPS 24]	15.3B	45.9	61.3	36.7	47.9 _{96%}
GraftLLM(Ours)	9.1B	47.2	63.4	38.2	49.6 _{99%}

462 **6 ANALYSIS**
463

464 **6.1 ABLATION STUDY**
465

466 We conduct an ablation study to assess the impact of each component within module-aware adaptive
467 strategy. As shown in Tab. 5, we evaluate the effect of replacing or removing individual compression
468 modules, using the LLaMA3.1-8B-Instruct model on the GSM8K and MATH validation sets. To
469 ensure fairness, all configurations maintain a comparable overall compression ratio of approximately
470 5%. The results reveal that different model components benefit from tailored compression strate-
471 gies. Quantization emerges as a critical factor for preserving performance, with mixed-precision
472 quantization causing minimal degradation. In contrast, the MLP modules exhibit high sensitivity
473 to compression: applying suboptimal methods to these layers leads to notable performance drops,
474 underscoring their importance in the compressed model architecture. More details of the ablation
475 study are provided in App. B.1.
476

477 Table 5: Ablation study on module-aware adaptive strategy on the MATH task.
478

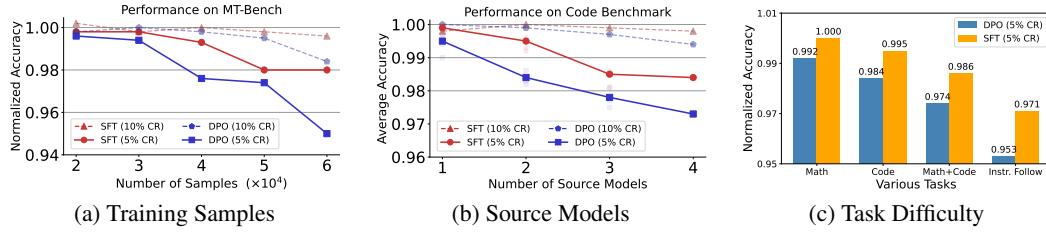
479

Methods	Null	w/o Quantization	w/o Mixed Quant	Pruning	SVD	Low Rank SVD.
Embedding and Output Head	71.3	71.8	71.8	72.1	71.9	71.7
MLP Modules	68.7	69.2	71.5	70.2	72.1	71.2
Attention Modules	70.7	71.3	71.8	71.2	71.8	72.1

482 **6.2 EFFECT OF TASK DIFFICULTY AND DATA SETTINGS**
483

484 We assess our method across diverse settings, including varying sample sizes, numbers of source
485 models, and task difficulties. We also study the impact of different compression ratios under both SFT

486 and DPO paradigms. As shown in Fig. 9a and 9b, with a compression ratio (CR) 10%, our method
 487 consistently retains nearly 100% of the original performance in both SFT and DPO settings. In a CR
 488 ratio 5%, performance decreases as task difficulty increases - particularly under DPO - highlighting the
 489 greater challenge of compression in preference-aligned scenarios. Fig. 9c shows our method is robust
 490 on simpler tasks but less stable on DPO-based instruction-following tasks, highlighting both strengths
 491 and limitations across alignment challenges. Further analysis of compression hyperparameters,
 492 including rank and mixed-precision ratios, is in App. B.2.



501 Figure 9: Performance trends across task difficulty using LLaMA3.1-8B-Instruct.
 502

503 6.3 ROUTER BEHAVIOR AND SKILLPACK INTERACTION

505 We further examine how the router behaves under different task relationships and evaluate whether
 506 combining multiple SkillPacks can provide additional benefits. When SkillPacks correspond to
 507 highly similar tasks (e.g., different Chat LLMs), their latent features naturally overlap, making the
 508 distinction between experts less pronounced. In these cases, top-1 routing is inherently ambiguous,
 509 and ensembling the outputs of multiple SkillPacks—weighted by the router—can yield noticeable
 510 performance gains, although with increased inference cost.

511 In contrast, when SkillPacks represent clearly distinct domains (e.g., finance vs. biomedicine),
 512 the router learns a clean and confident mapping from input patterns to the most relevant expert.
 513 Here, cross-expert ensembling offers little improvement because the underlying knowledge does not
 514 reinforce each other. This behavior aligns with our empirical observations across different fusion
 515 scenarios. Overall, the router functions as intended: it leverages complementary skills when tasks
 516 are aligned, suppresses interference when tasks diverge, and maintains efficiency through selective
 517 expert activation.

518 Table 6: Analysis of router behavior and multi-SkillPack ensembling across three fusion settings.
 519

520 Methods	521 Explicit LLM Fusion (AlpacaEval 2.0)	522 Implicit LLM Fusion (Avg. of 10 benchmarks)	523 Finance+Law+Bio LLM Fusion	524 Inference Overhead
525 FuseChat	11.63 / 16.89	55.2	47.33	1x
526 Grafting Top 1 SkillPack	16.56 (+4.9) / 25.42 (+8.5)	56.0 (+0.8)	49.62 (+0.23)	1.03x
527 Grafting Top 2 SkillPacks	17.33 (+0.8) / 26.28 (+0.9)	56.3 (+0.3)	49.64 (+0.02)	2.03x
528 Grafting Top 3 SkillPacks	17.49 (+0.2) / 26.72 (+0.4)	56.4 (+0.1)	49.62 (-0.01)	3.03x

529 6.4 LIMITATION AND FUTURE WORK

530 While our approach provides insights into knowledge transfer between LLMs, it relies on the quality
 531 of prior supervised fine-tuning (SFT) and Direct Preference Optimization (DPO), with suboptimal
 532 distillation limiting its ability to fully capture source model capabilities. Future work may explore
 533 alternative inference strategies and develop automated, robust methods for compression operations
 534 during deployment to improve efficiency, scalability, and robustness.

535 7 CONCLUSIONS

537 We present `GraftLLM`, a scalable framework for efficient cross-capability transfer in large language
 538 models. By compressing task-specific updates into modular SkillPacks, our method preserves
 539 knowledge while avoiding interference and forgetting. Experiments show strong performance in
 knowledge fusion and continual learning, outperforming prior methods under various settings.

540 **ETHICS STATEMENT**
541

542 This research was conducted in full accordance with established ethical standards in artificial in-
543 telligence and machine learning. All experiments utilized publicly available datasets and models
544 under their respective licenses, without involving any personally identifiable or sensitive information.
545 The proposed methods are intended strictly for academic and scientific purposes, aiming to advance
546 understanding in machine learning rather than for deployment in high-stakes decision-making without
547 appropriate safeguards.

548 We acknowledge that advances in AI systems can entail potential societal risks, including concerns
549 related to fairness, misuse, privacy, and environmental impact arising from computational resource
550 demands. To address these issues, we prioritize responsible reporting of results, transparent disclosure
551 of limitations, and a clear distinction between research contributions and downstream applications.

552 Future research building upon this work should continue to evaluate potential ethical implica-
553 tions—particularly regarding bias, safety, and dual-use risks—and implement appropriate measures
554 to promote beneficial, equitable, and responsible outcomes.
555

556 **REPRODUCIBILITY STATEMENT**
557

558 Our implementation, including all code, training scripts, and evaluation datasets, is available at:
559 <https://anonymous.4open.science/r/anonymous-graftllm>
560

561 **REFERENCES**
562

563 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
564 model merging recipes. *Nature Machine Intelligence*, pp. 1–10, 2025.
565

566 Anton Alexandrov, Veselin Raychev, Mark Mueller, Ce Zhang, Martin Vechev, and Kristina Toutanova.
567 Mitigating catastrophic forgetting in language transfer via model merging. In *Findings of the*
568 *Association for Computational Linguistics: EMNLP 2024*, pp. 17167–17186, 2024.

569 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
570 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
571 models. *arXiv preprint arXiv:2108.07732*, 2021.
572

573 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
574 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

575 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
576 Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*, 2024.
577

578 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
579 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
580 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

581 Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models to domains via
582 reading comprehension. *arXiv preprint arXiv:2309.09530*, 2023.
583

584 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
585 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
586 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
587 2021a.

588 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
589 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
590 math word problems. *arXiv preprint arXiv:2110.14168*, 2021b.
591

592 Wenlong Deng, Yize Zhao, Vala Vakilian, Minghui Chen, Xiaoxiao Li, and Christos Thrampoulidis.
593 Dare the extreme: Revisiting delta-parameter pruning for fine-tuned models. *arXiv preprint*
594 *arXiv:2410.09344*, 2024.

594 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
595 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
596 language models. *Nature Machine Intelligence*, 5(3):220–235, 2023.

597

598 Guodong Du, Junlin Lee, Jing Li, Runhua Jiang, Yifei Guo, Shuyang Yu, Hanting Liu, Sim Kuan
599 Goh, Ho-Kin Tang, Daojing He, and Min Zhang. Parameter competition balancing for model
600 merging. *Advances in Neural Information Processing Systems (NeurIPS)*, 37, 2024a.

601

602 Guodong Du, Jing Li, Hanting Liu, Runhua Jiang, Shuyang Yu, Yifei Guo, Sim Kuan Goh, and
603 Ho-Kin Tang. Knowledge fusion by evolving weights of language models. In *Findings of the
604 Association for Computational Linguistics ACL 2024*, pp. 11727–11742, 2024b.

605

606 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
607 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
608 *arXiv preprint arXiv:2407.21783*, 2024a.

609

610 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
611 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
612 *arXiv preprint arXiv:2407.21783*, 2024b.

613

614 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
615 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

616

617 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
618 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

619

620 Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hattori, Hirai
621 Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki. Continual pre-training for cross-lingual llm
622 adaptation: Enhancing japanese language capabilities. In *First Conference on Language Modeling*,
623 2024.

624

625 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
626 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
627 merging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18695–
628 18705, 2025.

629

630 Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
631 Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
632 et al. Are we done with mmlu? *arXiv preprint arXiv:2406.04127*, 2024.

633

634 Hao Gu, Wei Li, Lujun Li, Qiyuan Zhu, Mark Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
635 decomposition for moe-based llms compression. *arXiv preprint arXiv:2502.17298*, 2025.

636

637 Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
638 merging via sparse task arithmetic. *Transactions on Machine Learning Research (TMLR)*, 2024.

639

640 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
641 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
642 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2)*, 2021a.

643

644 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
645 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
646 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2)*, 2021b.

647

648 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
649 preprint arXiv:1503.02531*, 2015.

650

651 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
652 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

648 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
649 Efficient cross-task generalization via dynamic lora composition. *arXiv preprint arXiv:2307.13269*,
650 2023.

651 Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
652 Tuning-free high-performance model merging. *Advances in Neural Information Processing
653 Systems*, 37:122741–122769, 2024.

654 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
655 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *Proceedings of the
656 International Conference on Learning Representations (ICLR)*, 2023.

657 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
658 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
659 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

660 Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David Cox,
661 Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large language
662 models with self-specialized experts. *arXiv preprint arXiv:2406.12034*, 2024.

663 Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo
664 Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language models with
665 simple yet effective depth up-scaling. *arXiv preprint arXiv:2312.15166*, 2023.

666 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
667 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
668 conversations-democratizing large language model alignment. *Advances in Neural Information
669 Processing Systems*, 36, 2024.

670 Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
671 Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. In *The
672 Twelfth International Conference on Learning Representations (ICLR)*, 2024a.

673 Tian Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
674 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
675 pipeline. *arXiv preprint arXiv:2406.11939*, 2024b.

676 Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A survey.
677 *arXiv preprint arXiv:2309.15698*, 2023a.

678 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
679 Liang, and Tatsunori B. Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
680 models, 2023b.

681 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
682 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
683 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
684 87–100, 2024.

685 James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta:
686 Your fine-tune may only be worth one bit. *Advances in Neural Information Processing Systems
(NeurIPS)*, 37:13579–13600, 2024.

687 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
688 ence on Learning Representations*, 2019.

689 Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
690 Dynamic integration of modular expertise in model merging. *Advances in Neural Information
691 Processing Systems*, 37:78905–78935, 2024.

692 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
693 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
694 evol-instruct. In *The Twelfth International Conference on Learning Representations*, 2024.

702 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances in*
703 *Neural Information Processing Systems (NeurIPS)*, 35:17703–17716, 2022.
704

705 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
706 associations in gpt. *Proceedings of the Advances in Neural Information Processing Systems*
707 (*NeurIPS*), 35:17359–17372, 2022.

708 Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
709 memory in a transformer. In *Proceedings of the Eleventh International Conference on Learning*
710 *Representations (ICLR)*, 2023.
711

712 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
713 editing at scale. In *Proceedings of the International Conference on Learning Representations*
714 (*ICLR*), 2022.

715 Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
716 Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. *arXiv preprint*
717 *arXiv:2306.02707*, 2023.
718

719 Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized
720 experts for zero-shot generalization. In *Proceedings of the 41st International Conference on*
721 *Machine Learning*, pp. 36829–36846, 2024.

722 Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Stitchable neural networks. In *Proceedings of the*
723 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16102–16112, 2023.
724

725 Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
726 in fine-tuned language models. *arXiv preprint arXiv:2302.06600*, 2023.

727 Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao
728 Chang, Zhiyuan Liu, and Maosong Sun. Delta-come: Training-free delta-compression with
729 mixed-precision for large language models. In *The Thirty-eighth Annual Conference on Neural*
730 *Information Processing Systems (NeurIPS)*, 2024.
731

732 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
733 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
734 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

735 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
736 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
737 *arXiv preprint arXiv:2311.12022*, 2023.
738

739 Li Shen, Anke Tang, Enneng Yang, Guibing Guo, Yong Luo, Lefei Zhang, Xiaochun Cao, Bo Du,
740 and Dacheng Tao. Efficient and effective weight-ensembling mixture of experts for multi-task
741 model merging. *arXiv preprint arXiv:2410.21804*, 2024.

742 George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
743 merging with svd to tie the knots. *arXiv preprint arXiv:2410.19735*, 2024.
744

745 Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
746 on the fly without retraining: A sequential approach to scalable continual model merging. *arXiv*
747 *preprint arXiv:2501.09522*, 2025.
748

749 Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
750 of large language models. *arXiv preprint arXiv:2401.10491*, 2024a.
751

752 Fanqi Wan, Longguang Zhong, Ziyi Yang, Ruijun Chen, and Xiaojun Quan. Fusechat: Knowledge
753 fusion of chat models. *arXiv preprint arXiv:2408.07990*, 2024b.
754

755 Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat:
Advancing open-source language models with mixed-quality data. In *The Twelfth International*
Conference on Learning Representations, 2024a.

756 Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat:
757 Advancing open-source language models with mixed-quality data. In *The Twelfth International*
758 *Conference on Learning Representations (ICLR)*, 2024b.

759 Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
760 Localizing task information for improved model merging and compression. *arXiv preprint*
761 *arXiv:2405.07813*, 2024c.

762 Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi
763 Yang, Jindong Wang, and Huajun Chen. Detoxifying large language models via knowledge editing.
764 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
765 (*Volume 1: Long Papers*) (*ACL*), pp. 3093–3118, 2024d.

766 Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao, Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
767 Cheng, Kangwei Liu, Guozhou Zheng, et al. Easyedit: An easy-to-use knowledge editing frame-
768 work for large language models. *arXiv preprint arXiv:2308.07269*, 2023.

769 Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
770 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
771 language models. *arXiv preprint arXiv:2405.14768*, 2024e.

772 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
773 decomposition for large language model compression. *arXiv preprint arXiv:2403.07378*, 2024f.

774 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
775 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
776 Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-task language
777 understanding benchmark. In *The Thirty-eighth Conference on Neural Information Processing*
778 *Systems Datasets and Benchmarks Track*, 2024g.

779 Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
780 all you need. *arXiv preprint arXiv:2312.02120*, 2023.

781 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
782 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
783 natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in*
784 *Natural Language Processing: System Demonstrations*, pp. 38–45, 2020.

785 Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. In *The Twelfth International*
786 *Conference on Learning Representations (ICLR)*, 2024.

787 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
788 Resolving interference when merging models. *Advances in Neural Information Processing Systems*
789 (*NeurIPS*), 36, 2024.

790 Zhaoyi Yan, Yiming Zhang, Baoyi He, Yuhao Fu, Qi Zhou, Zhijie Sang, Chunlin Ji, Shengyu Zhang,
791 Fei Wu, and Hongxia Yang. Infifusion: A unified framework for enhanced cross-model reasoning
792 via llm fusion. *arXiv preprint arXiv:2501.02795*, 2025.

793 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
794 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint*
795 *arXiv:2412.15115*, 2024a.

796 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
797 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
798 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

799 Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng
800 Tao. Representation surgery for multi-task model merging. In *Forty-first International Conference*
801 *on Machine Learning (ICML)*, 2024c.

802 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
803 Tao. Adamerging: Adaptive model merging for multi-task learning. In *The Twelfth International*
804 *Conference on Learning Representations (ICLR)*, 2024d.

810 Jinluan Yang, Anke Tang, Didi Zhu, Zhengyu Chen, Li Shen, and Fei Wu. Mitigating the backdoor
811 effect for multi-task model merging via safety-aware subspace. *arXiv preprint arXiv:2410.13910*,
812 2024e.

813 Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.
814 *Advances in neural information processing systems*, 35:25739–25753, 2022.

815 Yan Yang, Yixia Li, Hongru Wang, Xuetao Wei, Jianqiao Yu, Yun Chen, and Guanhua Chen. Impart:
816 Importance-aware delta-sparsification for improved model compression and merging in llms. *arXiv
817 preprint arXiv:2504.13237*, 2025a.

818 Ziyi Yang, Fanqi Wan, Longguang Zhong, Tianyuan Shi, and Xiaojun Quan. Weighted-reward
819 preference optimization for implicit model fusion. *arXiv preprint arXiv:2412.03187*, 2024f.

820 Ziyi Yang, Fanqi Wan, Longguang Zhong, Canbin Huang, Guosheng Liang, and Xiaojun Quan.
821 Fusechat-3.0: Preference optimization meets heterogeneous model fusion. *arXiv preprint
822 arXiv:2503.04222*, 2025b.

823 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
824 Absorbing abilities from homologous models as a free lunch. *arXiv preprint arXiv:2311.03099*,
825 2023.

826 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
827 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
828 large language models. In *The Twelfth International Conference on Learning Representations*,
829 2024.

830 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
831 aware singular value decomposition for compressing large language models. *arXiv preprint
832 arXiv:2312.05821*, 2023.

833 Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
834 arithmetic operation. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:12589–
835 12610, 2023.

836 Yu Zhang and Qiang Yang. A survey on multi-task learning. *IEEE transactions on knowledge and
837 data engineering*, 34(12):5586–5609, 2021.

838 Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui, and Xuanjing Huang. Llama beyond
839 english: An empirical study on language capability transfer. *arXiv preprint arXiv:2401.01055*,
840 2024.

841 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
842 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with MT-Bench and
843 Chatbot Arena. In *NeurIPS Datasets and Benchmarks Track*, 2023.

844 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
845 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
846 chatbot arena. *Advances in Neural Information Processing Systems*, 36, 2024a.

847 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Unified
848 efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of
849 the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pp. 400–410,
850 2024b.

851 Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, and Pengcheng He. Seeking neural nuggets:
852 Knowledge transfer in large language models from a parametric perspective. In *The Twelfth
853 International Conference on Learning Representations (ICLR)*, 2024.

854 Ming Zhong, Aston Zhang, Xuewei Wang, Rui Hou, Wenhan Xiong, Chenguang Zhu, Zhengxing
855 Chen, Liang Tan, Chloe Bi, Mike Lewis, et al. Law of the weakest link: Cross capabilities of
856 large language models. In *The Thirteenth International Conference on Learning Representations
857 (ICLR)*, 2025.

864 Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
865 helpfulness & harmlessness with rlaif, November 2023.
866
867 Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Kun Kuang, and Chao Wu.
868 Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. *arXiv*
869 *preprint arXiv:2402.12048*, 2024.
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918	APPENDIX	
919		
920	A Novelty and Contribution	19
921		
922	B Additional Analysis	20
923	B.1 Additional Ablation Studies	20
924	B.2 Additional Hyperparameters Analysis	20
925	B.3 Router for SkillPacks	21
926		
927	C Additional Results	21
928		
929	C.1 Result details of Knowledge Fusion an Forget-free Learning	21
930	C.2 Detoxification with GraftLLM	21
931	C.3 Case Studies on SkillPack Knowledge	23
932		
933	D Baselines details	23
934		
935	E Datasets details	24
936		
937	E.1 Traing Datasets for Explicit Knowledge Fusion	24
938	E.2 Traing Datasets for Implicit Knowledge Fusion	25
939	E.3 Evaluation Benchmarks	25
940		
941	F Implementation Details	27
942		
943	F.1 Training Details	27
944	F.2 Hyperparameter Settings	27
945	F.3 Computational Resources and Runtimes	28
946		
947	G The Use of Large Language Models (LLMs)	29
948		
949		
950		
951		
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 Appendix for Knowledge Fusion of LLMs via Modular SkillPacks 973

974 975 976 977 OVERVIEW

978
979 This paper proposes a knowledge grafting approach that efficiently transfers capabilities from hetero-
980 geneous LLMs to a target LLM using modular *SkillPacks*. The appendix is structured according to our
981 key contributions. We also make the project code available via an anonymous link for reproducibility:
982 <https://anonymous.4open.science/r/GraftLLM-6DaGDCda326B>

- 983 • Appendix A (Novelty and Contribution) provides additional experimental results on knowl-
984 edge compression as well as task-level results from the knowledge fusion experiments.
- 985 • Appendix B (Additional Analysis) includes ablation studies, hyperparameter analysis, and
986 time cost evaluation for the search process.
- 987 • Appendix C (Additional Results) outlines the computational resources and runtimes, along
988 with the training details and evaluation metrics.
- 989 • Appendix D (Baselines details) provides a detailed baseline description.
- 990 • Appendix E (Datasets details) provides a detailed dataset description.
- 991 • Appendix F (Implementation details) provides a detailed dataset description.

992 993 994 995 A NOVELTY AND CONTRIBUTION 996

997 We underscore the importance of cross-capability transfer across heterogeneous LLMs and identify
998 key limitations in current methods regarding generalization and adaptability. To this end, we propose
999 *GraftLLM*, which encapsulates transferable skills as compact *SkillPacks*, offering high performance,
1000 robustness to forgetting, and practical integrability. To clearly demonstrate the innovation of our
1001 method, we conduct a comparative analysis with existing state-of-the-art baseline methods.
1002

1003 **Comparison with Multi-Teacher Distillation.** (Wan et al., 2024a; Yang et al., 2024f; Zhang &
1004 Yang, 2021) Our method offers several advantages:

1005

- 1006 1. It avoids the complex training procedures required by multi-task learning.
- 1007 2. It achieves higher single-task performance ceilings.
- 1008 3. It is naturally suited for distributed training and federated learning scenarios.

1009
1010 **Comparison with Pairwise Distillation + Parameter Merging.** Compared to approaches that
1011 directly merge parameters after distillation (Du et al., 2024a; Yan et al., 2025), our method:

1012

- 1013 1. Employs a routing mechanism to avoid conflicts between capabilities from different source
1014 models.
- 1015 2. Circumvents the challenge of merging parameters with large differences.
- 1016 3. Ensures balanced parameter allocation across tasks to mitigate interference.

1017
1018 **Comparison with Pairwise Distillation + Router.**

1019

- 1020 1. Compared to methods like TALL-Mask (Wang et al., 2024c) and EMR-Merging (Huang
1021 et al., 2024) that rely on unified task vectors, our method achieves superior parameter
1022 efficiency.
- 1023 2. Compared to Twin-Merging (Lu et al., 2024), our approach supports large language models
1024 and preserves near full-task performance.

1026 **Comparison with PEFT-based distillation + Router.** Our method provides significantly stronger
 1027 performance by first applying full-parameter fine-tuning to fully extract the capabilities of the source
 1028 model, and then using compression to reduce storage overhead. This enables our approach to preserve
 1029 critical task knowledge that PEFT-based methods (e.g., LoRa-MoE) (Ding et al., 2023; Hu et al.,
 1030 2022) often fail to capture, especially in complex scenarios such as Direct Preference Optimization
 1031 (DPO), where lightweight adapters struggle to inherit nuanced decision boundaries and preference
 1032 reasoning from the teacher model.

1033 **Comparison with Delta Compression Methods.** We introduce several key improvements:
 1034

1. We propose a **module-adaptive delta compression strategy**, which prioritizes and compresses parameter updates based on the functional significance of each module—an aspect not considered in previous works (Liu et al., 2024; Ping et al., 2024; Yang et al., 2025a).
2. Previous compression schemes typically neglect challenging tasks such as DPO, limiting their robustness across diverse applications.
3. Our method is specifically designed for **source-model capability transfer**, whereas prior techniques target more general or different objectives.
4. We explicitly consider downstream usability in scenarios like **knowledge fusion and forget-free learning**, improving long-term flexibility.
5. Our method achieves a better trade-off between **performance and storage efficiency** compared to earlier approaches.

1048 B ADDITIONAL ANALYSIS

1049 B.1 ADDITIONAL ABLATION STUDIES

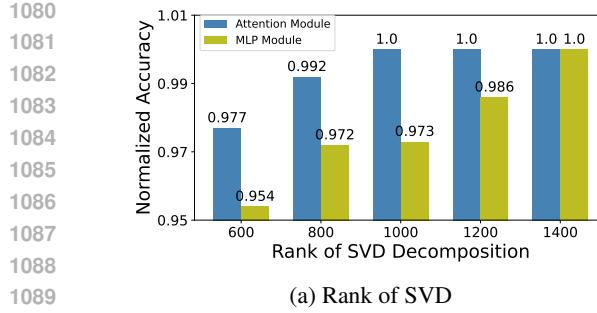
1050 To verify the generality of our conclusions, we conduct an additional ablation study on the HumanEval
 1051 Plus benchmark, using the same LLaMA3.1-8B-Instruct model and keeping the overall com-
 1052 pression ratio at approximately 5% across all settings, as discussed in Section Analysis 6.1. Similar
 1053 to the results on math task, we examine the effect of replacing or removing individual compression
 1054 modules. The results in Table 7 show consistent patterns: Mixed-precision quantization continues
 1055 to be the key to maintaining performance, while MLP modules remain highly sensitive to compression.
 1056 Applying suboptimal strategies to MLP layers results in clear performance drops, again highlighting
 1057 the importance of our module-aware adaptive strategy across different tasks.
 1058

1059 Table 7: Ablation study on module-aware adaptive strategy on the HumanEval Plus benchmark.
 1060

1061 Methods	1062 Null	1063 w/o Quantization	1064 w/o Mixed Quant	1065 Pruning	1066 SVD	1067 Low Rank SVD.
1068 Embedding and Output Head	64.3	64.8	64.8	65.2	64.9	64.4
1069 MLP Modules	62.7	63.8	64.8	63.5	65.2	64.4
1070 Attention Modules	63.2	64.7	64.9	64.1	64.4	65.2

1071 B.2 ADDITIONAL HYPERPARAMETERS ANALYSIS

1072 We further analyze the impact of compression hyperparameters—including the SVD decomposi-
 1073 tion rank and mixed-precision quantization ratios—on model performance. Experiments are conducted
 1074 on the LLaMA3.1-8B-Instruct model using the GSM8K and MATH validation sets, with results
 1075 reported as normalized accuracy. As shown in Figure 10, increasing the SVD decomposition rank and
 1076 employing higher-precision quantization consistently improve performance. Notably, the Attention
 1077 module is more amenable to compression, achieving 100% performance retention with a rank of
 1078 1000 under double-precision settings. In contrast, the MLP module requires higher compression
 1079 costs to reach comparable retention, highlighting the effectiveness of our proposed module-aware
 1080 adaptive strategy. Quantization-related parameters, such as bit-width, are kept consistent with prior
 1081 work, specifically Delta-CoMe (Ping et al., 2024), which employs training-free delta compression
 1082 with mixed precision. Pruning ratios and the energy-preserving threshold ϵ are determined via simple
 1083 grid search to balance compression efficiency and model performance.



(a) Rank of SVD



(b) Quantization Strategy

Figure 10: Performance trends across hyperparameters using LLaMA3.1-8B-Instruct.

B.3 ROUTER FOR SKILLPACKS

The routing function R is conditioned on either the source model or the task type and dynamically assigns each *SkillPack* to the target model. In the case of explicit knowledge fusion, the router is implemented as a lightweight feed-forward network consisting of four fully connected layers (input \rightarrow 4096 \rightarrow 1024 \rightarrow 256 \rightarrow 5 outputs), equipped with

GELU activations and LayerNorm. The input features are drawn from the Llama2-7B embedding head, whose 4096-dimensional hidden representation is directly fed into the router. The router is trained using the same dataset employed for source-model distillation, with a batch size of 256, a learning rate of 0.001, and approximately 5,000 training steps. We train the router using the training datasets provided by FuseChat 2.0 (Wan et al., 2024b). Specifically, we collect the training loss on this dataset from five target models, each obtained through pairwise distillation from a different source model. These loss values serve as supervision signals, while input features are extracted from the embedded representations of the input data. A five-way classifier is then trained to predict the most suitable source model for each input. To evaluate the effect of routing quality, we vary the amount of training data used for the classifier to obtain models of different capabilities, and analyze their impact on fusion performance, as shown in Table 8. Since performance differences among source models are more pronounced on the MT-Bench dataset, the improvements from routing are more significant compared to AlpacaEval 2.0. For implicit knowledge fusion and forget-free learning experiments, we directly assign different *SkillPacks* based on task types, without training an additional router.

Table 8: Impact of the volume of training data on router effectiveness in explicit LLM fusion.

Number of Samples	5000	10000	20000	90000
MT-Bench	7.28	7.36	7.56	7.70
AlpacaEval 2.0 (LC Win Rate)	20.37	23.46	25.31	25.42

C ADDITIONAL RESULTS

C.1 RESULT DETAILS OF KNOWLEDGE FUSION AND FORGET-FREE LEARNING

We provide additional details to supplement our previous experiments, including the results of pairwise distillation and subsequent task vector compression in the heterogeneous knowledge fusion setting, as shown in Table 9 for explicit knowledge fusion and Table 10 for implicit knowledge fusion. These results demonstrate that our proposed *GraftLLM* framework effectively preserves performance in most cases.

In addition, we present more details on the forget-free learning experiments in Table 11, further highlighting the extent of catastrophic forgetting in forget-free learning scenarios and showcasing the advantages of our method. Finally, we include visualizations related to knowledge fusion in Figure 11 and Figure 12, offering a more intuitive understanding of the behavior of different methods.

C.2 DETOXIFICATION WITH GRAFTLLM

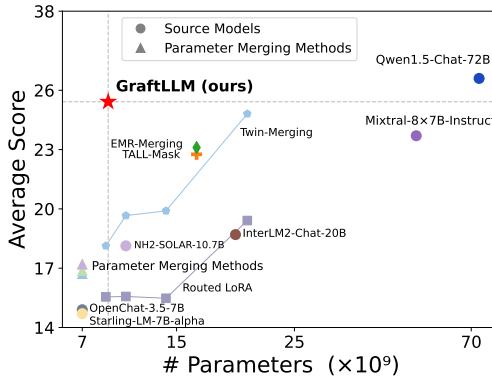
We validate the effectiveness of our proposed *GraftLLM* method in the detoxification setting. Specifically, we extract a detachable *SkillPack* from the detoxified model obtained through knowledge

1134 Table 9: Result details of explicit knowledge fusion on AlpacaEval 2.0 and MT-Bench. Reported
1135 metrics include pairwise distillation, pairwise distillation with modular-aware adaptive compression
1136 at 10% storage cost, and the performance retention ratio (%).

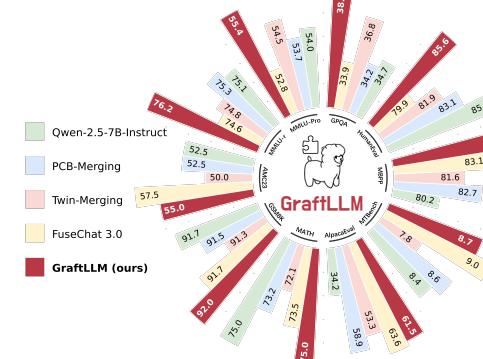
Model	#Params	Pairwise Distillation			Pairwise Distillation + Compression		
		AlpacaEval 2.0		MT-Bench	AlpacaEval 2.0		MT-Bench
		Win Rate	LC Win Rate	Average Score	Win Rate(%)	LC Win Rate(%)	Average Score(%)
OpenChat-3.5-7B Starling	7B	11.28	16.14	7.22	11.26 _(99.8)	16.06 _(99.5)	7.20 _(99.7)
OpenChat-3.5-7B SOLAR	7B	11.22	16.24	7.16	11.15 _(99.3)	16.21 _(99.8)	7.16 ₍₁₀₀₎
OpenChat-3.5-7B InternLM	7B	11.93	15.33	7.23	11.54 _(96.7)	15.33 ₍₁₀₀₎	7.12 _(98.5)
OpenChat-3.5-7B Mixtral	7B	11.71	16.46	7.28	11.41 _(97.4)	16.23 _(98.6)	7.24 _(99.5)
OpenChat-3.5-7B Qwen	7B	11.13	15.10	7.23	11.13 ₍₁₀₀₎	15.03 _(99.5)	7.17 _(99.2)

1144 Table 10: Result details of implicit knowledge fusion on various tasks. Reported metrics include
1145 pairwise distillation, pairwise distillation with modular-aware adaptive compression at 8% storage
1146 cost, and the performance retention ratio (%). For tasks where performance degrades after distillation,
1147 we report results using the original target model instead.

Model	Pairwise Distillation			Pairwise Distillation + Compression		
	General Tasks			Mathematics Tasks		
LLaMa-3.1-8B-Instruct	MMLU-Pro	MMLU-redux	GPQA-Dia	MMLU-Pro	MMLU-redux	GPQA-Dia
Qwen-2.5-7B-Instruct	51.3	73.0	37.7	51.3 ₍₁₀₀₎	73.0 ₍₁₀₀₎	37.7 ₍₁₀₀₎
Mathematics Tasks						
LLaMa-3.1-8B-Instruct	GSM8K	MATH	AMC23	GSM8K	MATH	AMC23
Qwen-2.5-7B-Instruct	88.8	56.2	37.5	88.2 _(99.3)	55.9 _(99.5)	35.0 _(93.3)
Code Tasks						
LLaMa-3.1-8B-Instruct	HumanEval	MBPP	HumanEval	MBPP		
Qwen-2.5-7B-Instruct	72.0	73.0	72.0 ₍₁₀₀₎	72.8 _(99.7)		
Instruction Following						
LLaMa-3.1-8B-Instruct	AlpacaEval 2.0	MT-Bench	AlpacaEval 2.0	MT-Bench		
Qwen-2.5-7B-Instruct	65.4	9.0	64.8 _(99.1)	8.8 _(97.8)		
			63.6	9.0	61.5 _(96.6)	8.7 _(96.7)



1178 Figure 11: Comparison of explicit knowledge
1179 fusion methods for heterogeneous LLMs on Al-
1180 pacaEval 2.0, including parameter size analysis.



1178 Figure 12: A comparison of implicit knowledge
1179 fusion methods for heterogeneous LLMs with
1180 Qwen-2.5-7B-Instruct as target model.

1182 editing. This modular SkillPack can be seamlessly integrated into the base model, enabling it to retain
1183 both detoxification capability and general-purpose performance. Our experiments are conducted on
1184 the mainstream chat model LLaMA3-8B-Instruct (Dubey et al., 2024b). We select three existing
1185 knowledge editing methods as baselines: **FT-L** (Meng et al., 2022), **WISE** (Wang et al., 2024e), and
1186 **DINM** (Wang et al., 2024d). Other common approaches, such as **ROME** (Mitchell et al., 2022) and
1187 **MEMIT** (Meng et al., 2023), require identifying specific model regions based on knowledge entities
1188 for parameter modification, making them less suitable for LLM detoxification tasks.

1188
1189 Table 11: Result details of continual learning on code and math tasks with modular-aware adaptive
1190 compression at 10% storage cost.

Method	Additional Parameters	Original task (Code)				New task (Math)			Average
		HumanEval	HumanEval+	MBPP	MBPP+	GSM8K	MATH	AMC23	
LLaMA3.1-8B-Instruct Sequential Distillation	-	68.3 69.1	61.6 63.2	66.9 67.4	54.8 55.9	85.9 87.5	50.7 55.7	25.0 30.0	59.0 61.3
Distillation on Code After Compression	- 803M	72.0 72.0	65.2 65.2	73.0 72.2	62.7 61.8	85.2 85.2	50.3 50.1	22.5 20	61.6 61.3
Distillation on Math After Compression	- 803M	67.8 67.4	60.8 60.2	66.2 66.2	54.3 54.1	88.8 88.2	56.2 55.9	37.5 35.0	61.7 61
Multi LoRA r256 Model Grafting ^[ICML23] Model Tailor ^[ICML24]	1.48B 803M 803M 803M	68.8 70.4 71.4 72.0	61.8 63.9 64.2 65.2	67.7 69.1 71.1 72.2	55.6 57.5 59.4 61.8	86.2 87.2 87.6 88.2	51.3 53.4 54.5 55.9	25.0 27.5 27.5 35.0	59.5 61.3 62.2 64.3
GraftLLM (ours)	803M	72.0	65.2	72.2	61.8	88.2	55.9	35.0	64.3

1200
1201
1202 We conduct our experiments on the `SafeEdit` benchmark (Wang et al., 2024d) using the
1203 EasyEdit framework (Wang et al., 2023). For all methods involving training components, we util-
1204 ize the training and validation sets for model development and evaluate the final performance on the
1205 test set. As shown in Table 13, our method achieves detoxification performance comparable to DINM,
1206 while better preserving the general capabilities of the base model. Overall, `GraftLLM` outperforms
1207 the previous best approach by 1.76 points in terms of the average score across detoxification and
1208 general tasks.

1209 C.3 CASE STUDIES ON SKILLPACK KNOWLEDGE

1211 We present qualitative examples illustrating how the router handles inputs that combine biomedical,
1212 financial, and legal terminology, as shown in Tab. 12. For each input, we report the selected SkillPack
1213 and the corresponding domain knowledge it encodes. As shown in the table below, the router
1214 consistently selects the SkillPack aligned with the dominant semantic cue, and each SkillPack captures
1215 coherent, domain-specific knowledge—for instance, dose-response reasoning in Biomedicine and
1216 regulatory interpretation in Law. These examples provide a clear qualitative understanding of the
1217 information encoded in each SkillPack and how the router effectively manages mixed-domain queries.

1218
1219 Table 12: Qualitative examples illustrating router behavior and the knowledge captured by SkillPacks.
1220

Input Example	Router (Top-1)	Knowledge Captured in SkillPack
Does increasing the dose improve overall return under the current treatment policy?	Biomed	Captures clinical reasoning such as dose-response relationships, treatment efficacy, and pharmacological effects.
What regulatory constraints apply when reporting adverse outcomes that may affect financial liability?	Law	Encodes legal concepts including regulatory compliance, reporting requirements, and liability interpretation.
Evaluate whether the compound shows significant impact on long-term yield.	Biomed	Stores biochemical and pharmacological knowledge regarding compound effects, biological impact, and experimental outcomes.

1234 D BASELINES DETAILS

1235 This section provides a detailed description of the baseline, as outlined below.

1236
1237
1238 • **FuseLLM** (Wan et al., 2024a) is the first to introduce multi-teacher distillation for fusing
1239 knowledge from heterogeneous large language models.

1240
1241 • **FuseChat 2.0** (Wan et al., 2024b) fuses chat LLMs of different scales and structures through
lightweight pairwise fine-tuning into target models of the same size. It uses a statistics-based
token alignment for compatibility and merges the targets in parameter space.

1242 Table 13: Detoxification performance and general performance of vanilla LLMs and various detoxification
 1243 methods on SafeEdit. The detoxification performance (detoxification success rate) is multiplied
 1244 by 100. DG-Avg represents the average performance across the four DG metrics. The **best** and
 1245 second-best results on each model are highlighted in **bold** and underlined, respectively.

Method	Detoxification Performance (\uparrow)						General Performance (\uparrow)			Average (\uparrow)
	DS	DG _{onlyQ}	DG _{otherA}	DG _{otherQ}	DG _{otherAQ}	DG-Avg	Fluency	KQA	Csum	
LLaMA3-8B-Instruct	14.82	55.41	31.14	13.88	31.43	32.97	7.89	64.83	25.81	29.26
FT-L _[NeurIPS22]	82.18	97.75	90.90	79.83	93.81	90.57	6.42	63.03	25.51	53.54
WISE _[NeurIPS24]	81.43	81.24	81.99	68.86	80.30	78.10	5.64	62.99	25.90	50.81
DINM _[ACL24]	82.89	99.24	98.87	99.70	99.78	99.40	1.20	62.98	25.18	<u>54.33</u>
GraftLLM (ours)	<u>82.83</u>	<u>98.84</u>	<u>98.46</u>	<u>99.70</u>	<u>99.34</u>	<u>99.08</u>	7.89	64.83	25.81	56.09

- **FuseChat 3.0** (Yang et al., 2025b) further introduces implicit model fusion and a DPO-based strategy to enhance alignment and integration performance across heterogeneous LLMs.
- **Task Arithmetic** (Ilharco et al., 2023) first defines the concept of “task vectors” and merges these vectors into a pre-trained model to execute multi-task learning. The model is produced by scaling and adding the task vectors to the initial model as $\theta_m = \theta_{\text{init}} + \lambda * \sum_{t=1}^n \tau_t$.
- **Ties-Merging** (Yadav et al., 2024) further solves the task conflict problem in Task Arithmetic (Ilharco et al., 2023). It eliminates redundant parameters and resolves symbol conflicts through three steps: Trim, Elect Sign, and Disjoint Merge.
- **DARE** (Yu et al., 2023) sets the majority of delta parameters to zero and rescale the rest by $\theta' = \theta \cdot (1/(1-p))$ where p is the proportion of delta parameters dropped, therefore efficiently reduces parameter redundancy.
- **LoraHub** (Huang et al., 2023) employs Low-rank Adaptations to dynamically combine task-specific modules for cross-task generalization, and adapts to new tasks by configuring $\theta' = \sum_{k=1}^K w_k \cdot \theta_k$.
- **PCB-Merging** (Du et al., 2024a) effectively adjusts parameter coefficients through balancing parameter competition within model population.
- **InfiFusion** (Yan et al., 2025) enhances Universal Logit Distillation with Top-K selection and Logits Standardization to improve cross-model alignment. Top-K filters noisy outputs, while standardization ensures consistent logit distributions across diverse models.
- **TALL-Mask** (Wang et al., 2024c) localize the task-specific information in a multi-task vector, which deactivates irrelevant parts for each task in the merged multi-task vector with binary masks.
- **EMR-Merging** (Huang et al., 2024) first selects a unified model from all weights, then generates lightweight task-specific modulators—masks and rescalers—to align direction and magnitude with each source model.
- **Delta-CoMe** (Ping et al., 2024) propose a mixed-precision delta-compression method that employs varying bit-widths for different singular vectors based on their singular values
- **Model Grafting** (Panigrahi et al., 2023) introduces the concept of skill localization—identifying where task-specific skills reside within the model—and proposes a method to efficiently acquire them.
- **Model Tailor** (Zhu et al., 2024) derives a sparse mask to identify the “model patch” through a fusion of salience and sensitivity analysis, and then decorates the patch to enhance performance.

E DATASETS DETAILS

E.1 TRAINING DATASETS FOR EXPLICIT KNOWLEDGE FUSION

We use a comprehensive training dataset, FUSECHAT-MIXTURE (Wan et al., 2024b), from various sources. This dataset covers different styles and capabilities, featuring both human-written and

1296 model-generated, and spanning general instruction-following and specific skills. These sources
1297 include:

1298 **Orca-Best**¹: We sampled 20,000 examples from Orca-Best, which is filtered from the GPT-4 (1M)
1299 partition of Orca (Mukherjee et al., 2023) based on maximum length and clustering of instructions.

1300 **Capybara**²: We incorporated all the 16,000 examples of Capybara, which is a high-quality collection
1301 of multi-turn synthetic conversations.

1302 **No-Robots**³: We included all the 9,500 examples of No-Robots, which is a dataset created by skilled
1303 human annotators for supervised fine-tuning.

1304 **ShareGPT-GPT4**⁴: We utilized all 6,200 examples from ShareGPT-GPT4, which exclusively uses
1305 dialogues generated by GPT-4 in ShareGPT.

1306 **Oasst-Top1**⁵: We selected 5,000 examples from Oasst-Top1, which is a refined version of
1307 Oasst1 (Köpf et al., 2024), a human-annotated assistant-style conversation dataset.

1308 **MetaMathQA**⁶: We sampled 10,000 examples from MetaMathQA (Yu et al., 2024), which is
1309 augmented from the GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al., 2021b) datasets for
1310 mathematics problem-solving.

1311 **OSS-Instruct**⁷: We chose 10,000 examples from OSS-Instruct (Wei et al., 2023), which contains
1312 code instruction data synthesized from open-source code snippets.

1313 **Evol-Alpaca**⁸: We sampled 10,000 examples from Evol-Alpaca, which is a code instruction dataset
1314 generated by GPT-4 with evol-instruct proposed by WizardCoder (Luo et al., 2024).

1315 **Python-Code**⁹: We selected 10,000 examples from Python-Code, which comprises instructions and
1316 responses generated by GPT-3.5 and GPT-4 for python code generation.

1317 We followed the data processing code in FastChat (Zheng et al., 2024a) to clean instances containing
1318 non-English or special characters. Then, we split long conversations into blocks with a maximum
1319 length of 2048 tokens, resulting in the final FUSECHAT-MIXTURE with 95,000 samples.

1324 E.2 TRAINING DATASETS FOR IMPLICIT KNOWLEDGE FUSION

1325 The training datasets used in the implicit knowledge experiments are listed in Table 14. Additionally,
1326 we provide the Hugging Face repository names and corresponding links for the target LLMs, source
1327 LLMs, and the reward model.

1330 E.3 EVALUATION BENCHMARKS

1331 **AlpacaEval-2** (Li et al., 2023b) comprises 805 instructions from five different datasets and assesses
1332 models using two metrics: length-controlled (LC) win rate and raw win rate (WR) (Dubois et al.,
1333 2024). GPT-4-Preview-1106 serves as both the baseline model and the evaluator for the other models.

1334 **MT-Bench** (Zheng et al., 2023) contains 80 multi-turn dialogues across eight categories, including
1335 writing, roleplay, reasoning, math, coding, extraction, STEM, and humanities. Each response is
1336 evaluated by GPT-4 on a scale from 1 to 10, with the average score reported for each dialogue turn
1337 across the 80 dialogues. We use GPT-4-0613 as the judge model following the official setting.

1338 **MMLU-Pro** (Wang et al., 2024g) is an enhanced version of the MMLU dataset, designed to ad-
1339 dress issues such as noisy data and reduced difficulty due to advances in model capabilities and

1¹<https://huggingface.co/datasets/shahules786/orca-best>

2²<https://huggingface.co/datasets/LDJnr/Capybara>

3³https://huggingface.co/datasets/HuggingFaceH4/no_robots

4⁴https://huggingface.co/datasets/shibing624/sharegpt_gpt4

5⁵https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25

6⁶<https://huggingface.co/datasets/meta-math/MetaMathQA>

7⁷<https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K>

8⁸<https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1>

9⁹<https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT>

1350 Table 14: Details of open-source models and datasets used in Implicit Knowledge Fusion.
1351
1352

Name	Huggingface ID
Target LLMs	
Llama-3.1-8B-Instruct	meta-llama/Llama-3.1-8B-Instruct
Qwen-2.5-7B-Instruct	Qwen/Qwen2.5-7B-Instruct
Source LLMs	
Mistral-Large-Instruct-2407	Mistral-Large-Instruct-2407
Gemma-2-27B-it	google/gemma-2-27b-it
Qwen-2.5-72B-Instruct	Qwen/Qwen2.5-72B-Instruct
LLama-3.1-70B-Instruct	meta-llama/LLama-3.1-70B-Instruct
Reward Model	
ArmoRM-LLaMA3-8B-v0.1	RLHFlow/ArmoRM-LLama3-8B-v0.1
Datasets	
UltraFeedback	princeton-nlp/llama3-ultrafeedback-armorm
Magpie-Pro-DPO	Magpie-Align/Magpie-Llama-3.1-Pro-DPO-100K-v0.1
HelpSteer2	nvidia/HelpSteer2
OpenMathInstruct-2	nvidia/OpenMathInstruct-2
LeetCode	greengerrong/leetcode
Self-Oss-Instruct-SC2	bigcode/self-oss-instruct-sc2-exec-filter-50k
Alpaca-GPT4-Zh	llamafactory/alpaca_gpt4_zh
Magpie-Qwen2-Pro-Zh	Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese

1374 increased data contamination. MMLU-Pro increases challenge levels by expanding multiple-choice
1375 options from 4 to 10, requiring reasoning across more questions, and incorporating expert-reviewed
1376 annotations for improved quality and reduced noise.

1377 **MMLU-redux** (Gema et al., 2024) is a re-annotated subset of the MMLU dataset created through
1378 manual assessment from 14 human experts. **GPQA-Diamond** (Rein et al., 2023) is a challenging
1379 knowledge benchmark crafted by PhD-level domain experts in biology, physics, and chemistry. The
1380 dataset contains questions that are straightforward for experts but difficult for laypersons. We evaluate
1381 the highest quality diamond set comprising 198 questions.

1382 **Arena-Hard** (Li et al., 2024b) is a challenging instruction-following benchmark that closely aligns
1383 with the human preference ranking from Chatbot Arena, a crowd-sourced platform for evaluating
1384 LLMs. It spans 250 high-quality topic clusters including 500 well-defined technical problem-
1385 solving queries. We report the win rate against GPT-4-0314 using GPT-4-Preview-1106 as the judge
1386 model. **GSM8K** (Cobbe et al., 2021a) is a set of grade-school math word questions that evaluates
1387 mathematical reasoning capabilities.

1388 **MATH** (Hendrycks et al., 2021a) is a dataset of math problems ranging in difficulty from middle
1389 school to high school competition level. It tests a wide range of mathematical skills, including algebra,
1390 calculus, number theory, and probability.

1392 **AMC 23¹⁰** (Yang et al., 2024b) refers to the 2023 American Mathematics Competition, featuring
1393 25 multiple-choice questions that test advanced high school mathematics, including trigonometry,
1394 advanced algebra, and elements of calculus.

1395 **HumanEval** (Chen et al., 2021) evaluates code generation capabilities by presenting models with
1396 function signatures and docstrings and requiring them to implement the function body in Python.

1397 **MBPP** (Austin et al., 2021) is a dataset of simple programming problems designed to assess the
1398 ability of models to generate short Python code snippets from natural language descriptions.

1400
1401
1402
1403
1404 ¹⁰<https://huggingface.co/datasets/AI-MO/aimo-validation-amc>

1404 F IMPLEMENTATION DETAILS
1405

1406 F.1 TRAINING DETAILS
1407

1408 **Explicit Knowledge Fusion** In this experiment, we primarily focus on effectively integrating
1409 chat LLMs with diverse architectures and varying model sizes. We select six representative
1410 source models: OpenChat-3.5-7B (Wang et al., 2024a), Starling-LM-7B-alpha (Zhu
1411 et al., 2023), NH2-SOLAR-10.7B (Kim et al., 2023), InternLM2-Chat-20B (Cai et al., 2024),
1412 Mixtral-8x7B-Instruct (Wang et al., 2024a), and Qwen-1.5-Chat-72B (Bai et al., 2023).
1413 We use OpenChat-3.5-7B as the pivot model and starting point for generating target LLMs, given
1414 its well-balanced size and performance. Initially, we apply pairwise knowledge fusion to produce five
1415 target models with uniform architecture. Subsequently, these target models’ knowledge is combined
1416 through either parameter merging or routing mechanisms.

1417 **Implicit Knowledge Fusion** The construction of data plays a vital role in facilitating the Implicit
1418 Model Fusion approach showcased in FuseChat-3.0 (Yang et al., 2025b). We perform SFT+DPO
1419 on four task-specific datasets to obtain four individually fine-tuned models, each achieving strong
1420 performance on its corresponding task. We describe the procedures for selecting prompts, sampling
1421 responses, and assembling the dataset, explaining the reasoning behind each design choice.

1422

- 1423 • **Prompt Selection:** To enhance the target LLMs’ abilities across multiple fields—including
1424 instruction following, math, coding, and Chinese—we assemble a diverse dataset. This is
1425 done by carefully choosing samples from well-regarded open-source community datasets,
1426 followed by specific filtering and preprocessing steps to ensure quality and relevance.
- 1427 • **Response Sampling:** For each prompt in the curated dataset, we generate responses
1428 primarily from four leading source LLMs. Our response sampling strategy is tailored
1429 to each domain, leveraging vLLM¹¹ (Zhu et al., 2023) as the inference backend. We
1430 perform multiple sampling runs using different random seeds to ensure diversity. The
1431 sampling parameters for each source model are as follows: for Gemma-2-27B-it,
1432 Mistral-Large-Instruct-2407, and Llama-3.1-70B-Instruct, we set the
1433 temperature to 0.8 and top-p to 0.95; for Qwen-2.5-(Math)-72B-Instruct, we use
1434 a temperature of 0.7, top-p of 0.8, and a repetition penalty of 1.05.
- 1435 • **Preference Pairs:** To construct preference pairs from models with diverse output styles, we
1436 select the best and worst responses generated by the same source model for each pair. This
1437 intra-model pairing strategy reduces reward bias caused by heterogeneous response styles,
1438 prevents reward hacking, and provides a more controlled and reliable preference signal. The
1439 data construction process varies by domain: for instruction-following and conversational
1440 data, we use an external reward model to evaluate responses; for mathematics and coding
1441 domains, responses are verified through rule-based systems.

1441 The final dataset \mathcal{D} consists of 158,667 entries, with 94,539 allocated to the SFT phase (\mathcal{D}_{SFT}) and
1442 64,128 preference pairs for the DPO phase (\mathcal{D}_{DPO}). The dataset composition is provided in Table 15.

1443 F.2 HYPERPARAMETER SETTINGS
1444

1445 **Explicit Knowledge Fusion** we follow a same experiment setting as FuseChat 2.0 (Wan et al.,
1446 2024b), we train the target LLMs using a batch size of 128 and a maximum length of 2048 on a
1447 single node with 8x80GB NVIDIA A800 GPUs for three epochs, which takes approximately 9 hours.
1448 The models are optimized using the AdamW (Loshchilov & Hutter, 2019) optimizer with $\beta_1 = 0.9$
1449 and $\beta_2 = 0.999$. We use a weight decay of 0.0 and gradient clipping of 1.0. A cosine learning rate
1450 schedule is employed, with a maximum learning rate of 5e-6 and a warmup ratio of 0.03. Our training
1451 framework is implemented based on the HuggingFace Transformers (Wolf et al., 2020).

1452 **Implicit Knowledge Fusion** In our SFT experiments, we use the Llama-Factory library¹² (Zheng
1453 et al., 2024b) to implement the fine-tuning. For all target models, we perform fine-tuning for 3 epochs,
1454 with a batch size of 128 and a maximum sequence length of 2048 tokens. A cosine learning rate

1455¹¹<https://github.com/vllm-project/vllm>

1456¹²<https://github.com/hiyouga/LLaMA-Factory>

1458 Table 15: The constitution of Implicit Knowledge Fusion dataset in SFT phase and DPO phase. As
 1459 no suitable reward models were available for Chinese, we used all samples for SFT and omitted the
 1460 DPO phase.

Category	Dataset	Count	$\#D_{SFT}$	$\#D_{DPO}$
Instruction Following	UltraFeedback	51,098	20,439	30,659
	Magpie-Pro-DPO	20,374	8,149	12,225
	HelpSteer2	9,435	3,774	5,661
Mathematics	OpenMathInstruct-2	51,803	40,188	11,615
Coding	LeetCode	3,113	1,877	1,236
	Self-Oss-Instruct-SC2	12,892	10,160	2,732
Chinese Language	Alpaca-GPT4-Zh	2,471	2,471	0
	Magpie-Qwen2-Pro-Zh	7,481	7,481	0
<i>Total</i>		158,667	94,539	64,128

1474 Table 16: Hyperparameters for different target models during the SFT and DPO stages.

Target Model	SFT Learning Rate	DPO Learning Rate	DPO λ	DPO Loss Type
Llama-3.1-8B-Instruct	5×10^{-6}	8×10^{-7}	10	\mathcal{L}_{LN-DPO}
Qwen-2.5-7B-Instruct	2×10^{-6}	3×10^{-7}	0.01	\mathcal{L}_{DPO}

1481 schedule with a warmup ratio of 0.1 is employed. In DPO experiments, we utilize the alignment-
 1482 handbook¹³ as the training framework for DPO. All post-SFT target models undergo training for
 1483 one epoch with a batch size of 128 and a maximum sequence length of 2048. A cosine learning rate
 1484 schedule with a warmup ratio of 0.1 is used. Checkpoints are saved every 100 steps, and the best
 1485 checkpoint from the last two is selected. The hyperparameter configurations for different models are
 1486 detailed in Table 16.

1488 F.3 COMPUTATIONAL RESOURCES AND RUNTIMES

1490 We report the resource consumption and runtime of our module-adaptive compression strategy in
 1491 Table 10. The overall compression overhead is calculated as the weighted sum of each module’s
 1492 storage cost, with weights corresponding to the proportion of parameters in each module. Additionally,
 1493 we provide the compression time for each module, which mainly depends on the parameter count
 1494 and the amount of data used for GPTQ (Frantar et al., 2022). In all our experiments, we use the C4
 1495 validation split¹⁴ as the calibration set for GPTQ, which is widely adopted in previous GPTQ-based
 1496 quantization research. Since pruning and SVD typically require only a few minutes, we omit their
 1497 time costs and primarily report the runtime for quantization. In practice, the compression strategy
 1498 can be adjusted according to task complexity and model type.

1499 Table 17: Storage and time costs of our proposed adaptive compression strategy. The Storage Cost is
 1500 defined as the ratio of the compressed module size to that of the corresponding original parameters.

Modules	Compression Strategy	Quantization Strategy	Storage Cost (%)	Time Cost
Embedding & Head	Pruning with $\alpha = 0.5$	4bits	12.5	8 minutes
MLP Module	SVD with $r = 1400$	[8, 3, 2] bits for rank [20, 180, 1200]	5.43	53 minutes
Attention Module	SVD with $r = 1000$	[8, 2] bits for rank [20, 980]	5.59	22 minutes

1506 In addition, we provide a detailed comparison of training and inference resource usage across different
 1507 methods (see Tab. 18). In all experiments, we adopt top-1 router activation, so that during inference,
 1508 the computational overhead primarily comes from the router forward pass and the SkillPack de-
 1509 compression step. Both of these steps introduce a negligible increase in latency, accounting for about

1511 ¹³<https://github.com/huggingface/alignment-handbook>

¹⁴<https://huggingface.co/datasets/allenai/c4/en/c4-validation>.

1512 3% of the total inference time, demonstrating that our method maintains efficiency comparable to
1513 baseline models.

1515 Table 18: Resource analysis of GraftLLM compared to representative LLM fusion baselines.

Method	Model Size	Router Size	Training Cost (GPU h)	Compression Cost	Inference Overhead
FuseLLM	7B	–	132 h	–	1.00×
FuseChat	7B	–	132 h	4 min	1.00×
Twin-Merging	21B	21M	132 h + 8 min	9 min	1.03×
GraftLLM (Ours)	9.2B	21M	132 h + 8 min	163 min	1.03×

1523 G THE USE OF LARGE LANGUAGE MODELS (LLMs)

1524 During the preparation of this manuscript, large language models were used solely for minor stylistic
1525 enhancements and occasional grammatical corrections. All conceptual insights, analytical reasoning,
1526 and interpretive conclusions were generated entirely by the authors. No algorithmic assistance was
1527 sought in the formulation, design, or substantive content of the work, and full scientific responsibility
1528 lies solely with the human contributors.

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565