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ABSTRACT

Cross-capability transfer represents a key challenge in large language model (LLM)
research, particularly in multi-task integration, model compression, and knowledge
fusion. Recent works such as FuseLLM and FuseChat have shown the potential of
transferring multiple model capabilities to lightweight models, thereby enhancing
adaptability and efficiency. This motivates our investigation into more efficient
methods for cross-capability transfer. However, existing model merging approaches
primarily focus on homogeneous models, limiting their applicability. For large,
heterogeneous models, knowledge distillation with full-parameter fine-tuning often
overlooks the student model’s inherent capability and risks catastrophic forgetting,
while PEFT methods struggle to effectively absorb knowledge from source LLMs.
To address these issues, we introduce GraftLLM, a novel grafting-based method
that stores source model capabilities in a target model + SkillPack format. This
approach preserves general capabilities, reduces parameter conflicts, and supports
forget-free continual learning and model fusion. We employ a module-aware
adaptive compression strategy for parameter updates, ensuring efficient storage
while preserving task-specific knowledge. The resulting SkillPack serves as a
compact and transferable knowledge carrier, ideal for heterogeneous LLM fusion.
Experiments across various scenarios demonstrate that GraftLLM outperforms ex-
isting techniques in knowledge transfer, knowledge fusion, and forget-free learning,
providing a scalable and efficient solution for cross-capability transfer.
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Figure 2: A comprehensive comparison of im-
plicit knowledge fusion methods for heteroge-
neous LLMs across multiple benchmarks.

1 INTRODUCTION

Cross-capability transfer (Pan et al., 2023; Zhong et al., 2025; Yang et al., 2022; Fujii et al., 2024;
Zhao et al., 2024) aims to combine or migrate different skills and task abilities across LLMs, enabling
a single model to benefit from capabilities originally distributed among multiple specialized sources.
This paradigm has has received increasing attention in LLM research, driving progress in key
applications such as multi-task fusion (Yang et al., 2024d), model compression (Wang et al., 2024c;
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Huang et al., 2024), and continual learning (Tang et al., 2025). KnowPara (Zhong et al., 2024)
employs sensitivity-based techniques to extract and align knowledge-specific parameters (Panigrahi
et al., 2023) across different models. FuseLLM (Wan et al., 2024a) and FuseChat (Yang et al., 2025b)
showcase the potential of distilling multiple models into a lightweight target, while EvoLLM (Akiba
et al., 2025) introduces an evolutionary approach (Du et al., 2024b) to automatically combine diverse
open-source models without extra training data. These methods collectively tackle the core challenge
of efficient and reliable knowledge transfer across heterogeneous LLMs.

Existing knowledge grafting methods (Deng et al., 2024) aim to enable cross-capability transfer
but are mostly limited to small (Panigrahi et al., 2023; He et al., 2024) or structurally identical
models (Yu et al., 2023), which constrains their applicability to heterogeneous LLMs. To address this
challenge, we introduce GraftLLM, which encodes model capabilities as a combination of a target
model and a lightweight SkillPack. A SkillPack is a modular, task-specific set of parameter deltas
obtained via distillation from heterogeneous source models. This design preserves the strengths of
both target and source models, enhances parameter and storage efficiency, mitigates forgetting, and
facilitates multi-task transfer and model fusion by reducing parameter conflicts (Yadav et al., 2024).
By contrast, knowledge distillation—a widely adopted grafting strategy—typically follows two
paradigms: full-parameter distillation and PEFT-based fine-tuning. The former often disregards the
student model’s intrinsic capabilities and risks catastrophic forgetting (Alexandrov et al., 2024), while
the latter, though more parameter-efficient, generally underperforms full fine-tuning and struggles to
absorb sufficient task knowledge from source models.

We consider a heterogeneous capability transfer scenario where source model capabilities are extracted
via synthetic data (Yang et al., 2025b), integrated into the target model through full-model fine-
tuning, and further refined with preference optimization (e.g., DPO (Rafailov et al., 2023)). The
resulting parameter deltas capture the specialized knowledge gained during this process. To enable
efficient storage and transfer, we introduce a module-aware adaptive compression strategy that
compresses these deltas before and after specialization. By adapting pruning (Yu et al., 2023), low-
rank decomposition (Lu et al., 2024), and adaptive quantization (Ping et al., 2024) to each module’s
structure, our method balances compression ratio with task knowledge retention. The compressed
representation, termed a SkillPack, serves as a compact, transferable knowledge unit, supporting
scalable integration and continual specialization without catastrophic forgetting.

Knowledge Distillation

Fully Fine-Tuned Model Stronger Forgetting Exposed & Risky Compete & Conflict

Knowledge Grafting

Pretrained       + SkillPack Stronger Forget-Free Private, Clean & Safe Routing / Ensemble

Original Task

Contaminated, Toxic
/ Privacy Leakage

Multi-TeachersNew AbilityStronger Ability
Source Model

Capability Transfer Continual 
Learning Unlearning Fusion

Figure 3: Comparision of knowledge distillation and knowledge grafting in various scenarios.

We anticipate that the knowledge grafting method will provide advantages in various scenarios, as
illustrated in Fig. 3. (1) First, it nearly matches full-parameter distillation in learning from a source
model with superior original-task capability. (2) Second, since grafting does not alter the target
model’s parameters, it proves highly effective for forget-free learning, allowing the source model
to acquire new abilities. (3) Additionally, the grafted modules can be easily unloaded, facilitating
unlearning, detoxification, decontamination, and other processes, thus helping mitigate issues like
privacy leakage. (4) Finally, GraftLLM employs a routing mechanism to support model fusion and
multi-task learning, avoiding parameter competition and conflict, further enhancing its applicability.

To empirically validate the effectiveness of GraftLLM, we conducted extensive experiments in
various cross-capability transfer scenarios, demonstrating our approach’s advantages from three
perspectives: (1) Knowledge Transfer and Compression: using LLaMA3 as the target, we grafted
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capabilities from sources like Qwen-2.5-72B-Instruct (Yang et al., 2024a) under SFT and DPO
settings, significantly outperforming PEFT and Twin-Merging (Lu et al., 2024) on general and
task-specific tasks. (2) Knowledge Fusion:, we tested on 10 benchmarks under both explicit and
implicit heterogeneous model fusion scenarios, with LLaMA3.1-8B-Instruct (Dubey et al., 2024a)
and Qwen-2.5-7B-Instruct (Yang et al., 2024a) as target models, showing substantial improvements
over existing methods, as shown in Fig. 1 and 2. (3) Forget-free Learning: our method better
mitigates catastrophic forgetting, achieving stronger forget-free learning performance.

This paper makes three significant contributions: (1). We highlight the necessity of cross-capability
transfer between heterogeneous large language models and identify limitations in existing methods
regarding generalization and adaptability. (2). We propose GraftLLM, which structures cross-model
capabilities as SkillPack, offering high performance, forgetfulness resistance, and easy integration
for practical applications. (3). Experiments show GraftLLM significantly improves performance in
knowledge transfer and compression, heterogeneous model fusion, and forget-free learning tasks.

2 RELATED WORK

Knowledge Distillation Knowledge distillation (Hinton et al., 2015) plays a crucial role in enabling
capability transfer (Wan et al., 2024a; Zhong et al., 2024; 2025) across heterogeneous large language
models (LLMs). Despite the progress made by knowledge distillation methods in merging large
language models (LLMs), two main approaches have emerged: one involves complex multi-task
training (Yang et al., 2025b) for model sharing, but often fails to achieve optimal performance for
individual tasks (Shen et al., 2024; Yang et al., 2024c); the other uses pairwise distillation (Wan
et al., 2024b; Yan et al., 2025) followed by parameter merging (Li et al., 2023a; Matena & Raffel,
2022), but conflicts between tasks during fusion can lead to performance degradation (Yadav et al.,
2024). To address this, routing mechanisms (Muqeeth et al., 2024; Li et al., 2024a) have been
introduced to preserve single-task performance while reducing task interference (Yang et al., 2024e).
However, routing requires each branch to be highly parameter-efficient to minimize resource usage
(Lu et al., 2024; Kang et al., 2024). While PEFT methods such as LoRA (Wu et al., 2024) introduce
lightweight adapters, they often fall short of the performance achieved by full-parameter fine-tuning
(Ding et al., 2023). To address this, we propose a strategy that first fine-tunes all parameters and then
modularizes them, providing stronger support for routing and fusion.

Model Fusion Most existing model merging approaches primarily focus on homogeneous settings,
where models share the same pre-trained backbone. Within this scope, Model Grafting (Panigrahi
et al., 2023) was first proposed as a technique to transplant a small subset of fine-tuned parameters
onto the pre-trained model, effectively recovering the performance of the original fine-tuned model.
Meanwhile, Task Arithmetic (Ilharco et al., 2023; Zhang et al., 2023) introduced the concept of task
vectors, and Ties-Merging (Yadav et al., 2024) demonstrated the importance of pruning these vectors.
Building on this idea, subsequent works like DARE (Yu et al., 2023) and TSV-Merge (Gargiulo
et al., 2025) applied it to merging large language models. Beyond task vector pruning, methods such
as mask localization (Panigrahi et al., 2023; He et al., 2024), singular value decomposition (SVD)
(Wang et al., 2024f; Yuan et al., 2023), and quantization (Frantar et al., 2022; Lin et al., 2024) have
also been widely adopted for model compression and merging. For example, Model Tailor (Zhu et al.,
2024) generates sparse masks based on salience and sensitivity scores, while Talls Mask (Wang et al.,
2024c) and EMR-Merging (Huang et al., 2024) introduce additional masks to localize task-specific
information and reduce storage costs. SVD is applied in various contexts: Twin-Merging (Lu et al.,
2024) uses it for modular routing, KnOTS (Stoica et al., 2024) for LoRA fusion, and D2-MoE (Gu
et al., 2025) for MoE-based LLMs. Methods like BitaDelta (Liu et al., 2024) and Delta-Come
(Ping et al., 2024) incorporate quantization for further compression. In our GraftLLM work, we
propose a module-adaptive delta compression strategy for merging heterogeneous LLM that balances
performance and storage efficiency. More comparisons with related work are provided in App. A.

3 METHODOLOGY

In Sec. 3.1, we formalize the problem of efficient LLM fusion. Sec. 3.2 introduces our proposed
method, GraftLLM, which enables cross-capability transfer between heterogeneous models and
encapsulates the acquired knowledge into a compact SkillPack. Finally, Sec. 3.3 illustrates how the
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Figure 4: Overview of GraftLLM. GraftLLM transfers capabilities across heterogeneous LLMs
and extracts them into compact modular SkillPacks, enabling efficient knowledge fusion.

modularity and composability of SkillPacks support downstream applications, including heteroge-
neous model fusion and forget-free learning.

3.1 PROBLEM SETTING

We consider a heterogeneous adaptation scenario involving a source model θsrc and a target model
θtgt. To transfer capabilities from the source to the target, we adopt a two-stage training pipeline:
supervised fine-tuning (SFT) followed by direct preference optimization (DPO).

The parameters after this two-stage adaptation are denoted θ⋆tgt, and we define the difference from the
original parameters as the delta parameters:

∆θ = θ⋆tgt − θtgt, (1)

which captures the task-specific adaptation knowledge and serves as the foundation for subsequent
modular compression and transfer.

To enable efficient storage and transfer, we compress ∆θ using a module-specific adaptive strategy.
Each submodule m ∈ M is compressed with a dedicated operator Cm(·), selected based on its
functional role and sensitivity. The compression may involve pruning, low-rank decomposition, or
quantization, with bitwidth adaptively assigned according to the importance of each component. The
resulting compressed update is:

∆̂θ = {Cm(∆θm)}m∈M, (2)
which forms a SkillPack—a compact, transferable representation of the acquired task knowledge,
suitable for heterogeneous model fusion, as shown in Fig. 4.

3.2 KNOWLEDGE AS A SKILLPACK

To achieve compact and transferable skill representations, we propose a module-aware adap-
tive compression strategy, which—unlike previous uniform compression methods—applies dif-
ferent operations based on each module’s role, sensitivity, and compression difficulty. As
shown in Fig. 5 and Fig. 6, moderate pruning preserves performance for the Embedding
and Output Head. For Attention modules, the fast-decaying singular value spectrum al-
lows low-rank SVD to compress projection matrices without significantly reducing represen-
tational capacity. MLP modules, with strong nonlinear transformations, require conservative
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compression to retain critical singular vectors and avoid performance degradation. Accord-
ingly, we assign module-specific compression operators to the delta parameters as follows:
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Figure 5: Performance of delta pa-
rameters across modules under differ-
ent pruning ratios.
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Figure 6: Performance of delta pa-
rameters across modules under differ-
ent reduced rank ratios.

• Embedding and Output Head. We apply magni-
tude pruning with a retention ratio α, preserving
the weights with the top α proportion of absolute
magnitudes:

∆θembed = Pruneα(∆θembed). (3)

• Attention Modules. For attention blocks, we apply
low-rank decomposition using SVD:

∆θmlp ≈ UΣV⊤, s.t. rank(Σ) = r (4)
where ∆θmlp ∈ Rhout×hin , Ur ∈ Rhout×r, Σr ∈
Rr×r, and Vr ∈ Rhin×r correspond to the top r
components.

• MLP Modules. For MLP modules, we employ
a conservative SVD scheme that retains essential
ranks, with the truncation rank determined by the cu-
mulative explained variance under an energy thresh-
old β: ∑k

i=1
σ2
i = β

∑min(dout,din)

i=1
σ2
i , (5)

To further reduce storage overhead, we apply mixed-precision
quantization to the pruned matrix or SVD-derived compo-
nents. Each SVD component is quantized with a bit precision
k, adaptively chosen based on its importance in the decom-
position.

θ̂ = Quantk(θ,x) = argmin
θ̂

∥θx− θ̂x∥2, (6)

where Quantk denotes a k-bit quantization operator (k > 1). For each group of singular vectors
indexed by [r] = rbegin : rend, we apply group-wise quantization with GPTQ (Frantar et al., 2022) as
follows:

V̂⊤
[r] = Quantk

(
V⊤

[r], x
)
, Û[r] = Quantk

(
U[r], Σ[r] · V̂⊤

[r] · x
)
, (7)

where Σ[r] denotes the diagonal matrix of singular values corresponding to the selected rank range.
The quantization precision k can be adaptively adjusted across different groups based on the relative
importance of singular values.

3.3 SKILLPACK COMPOSITION AND ROUTER MECHANISM

GraftLLM enables modular and composable integration of task-specific knowledge across hetero-
geneous LLMs through SkillPacks ∆̂θ. Each SkillPack is first decoded through dequantization
to obtaion ∆θ(dq), and then reconstructed via truncated SVD to recover the task-specific delta
parameters:

∆θ(dq) ≈ UΣV ⊤ = ∆θ, (8)
where U,Σ, V are obtained from the truncated SVD decomposition. The reconstructed delta ∆θ is
then added back to the base model parameters to produce the final fused model:

θfused = θtgt +∆θ. (9)

To support flexible and selective integration across tasks, a router function R is introduced. The
router determines which SkillPack is applied to which submodule or task-specific region of the target
model. For example, for a set of n SkillPacks {∆̂θi}ni=1, the fused model is computed as:

θfused = θtgt +

n∑
i=1

R(∆̂θi), (10)

where R can be instantiated in two ways:
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• Classifier-based router: a lightweight feed-forward network trained to predict the most
suitable source model or SkillPack based on input features.

• Manual task-type assignment: a deterministic mapping from known task types to their
corresponding SkillPacks.

During inference, we typically use top-1 routing for efficiency, ensuring that only the most relevant
SkillPack is activated. This strategy minimizes inference overhead while preserving the benefits of
modular, task-specific delta parameters. More details provided in App. B.3

Overall, this formulation provides a unified interface for modular knowledge transfer, enabling both
heterogeneous model fusion and task-adaptive capability integration in a principled, efficient,
and scalable manner.

4 EXPERIMENTAL SETUP

4.1 BASELINE METHODS

For pairwise LLM grafting, we evaluate two categories of baselines: (1) PEFT methods, comparing
LoRA under varying rank settings in both SFT and DPO stages; (2) Task Vector Compression,
which evaluates full-parameter tuning followed by magnitude pruning (Yu et al., 2023; Yadav et al.,
2024), SVD (Lu et al., 2024; Stoica et al., 2024), or quantization (Ping et al., 2024; Yang et al., 2025a)
across varying compression ratios.

For heterogeneous knowledge fusion, we benchmark against: (1) Multi-teacher distillation (e.g.,
FuseLLM (Wan et al., 2024a)); (2) Parameter merging approaches such as Task Arithmetic (Ilharco
et al., 2023), TIES-Merging (Yadav et al., 2024), SCE-Merging (Wan et al., 2024b), PCB-Merging
(Du et al., 2024a), DARE (Yu et al., 2023), and InfiFusion (Yan et al., 2025); (3) Routing-based
methods, including Routed LoRA (Hu et al., 2022) and Twin-Merging (Lu et al., 2024), and (4)
Mask-based fusion strategies like TALL Mask (Wang et al., 2024c) and EMR-Merging (Huang et al.,
2024), which leverage unified task vectors and localization.

For forget-free learning, we use LoRA, Model Grafting (Panigrahi et al., 2023), and Model Tailor
(Zhu et al., 2024) as baselines. Details of all baselines are provided in App. D.

4.2 DATASETS AND ARCHITECTURES

To showcase the effectiveness of GraftLLM, we conduct a comprehensive evaluation across multiple
domains, including instruction following, question answering, reasoning, mathematics, and coding.
We use 10 established benchmarks, grouped into four categories, with domain-specific response
sampling strategies to ensure fair comparison. Full benchmark details are available in App. E.3.

For pairwise LLM grafting in Sec. 5.1 and Fig. 7, 8, we uses Llama-3.1-8B-Instruct as the target
model, grafting capabilities from strong source model Qwen-2.5-72B-Instruct (Yang et al., 2024a).
For explicit knowledge fusion in Sec. 5.2 and Tab. 1, we follow the FuseChat 2.0 (Wan et al., 2024b)
setup by fusing chat-centric LLMs of varying architectures and scales, using OpenChat-3.5-7B (Wang
et al., 2024b) as the pivot model and six representative chat models as sources. For implicit fusion in
Sec. 5.2 and Tab. 2, we adopt the FuseChat 3.0 (Yang et al., 2025b) setup with Llama-3.1-8B-Instruct
and Qwen-2.5-7B-Instruct as target models and 4 different stronger LLMs. For forget-free learning
in Sec. 5.3 and Tab. 3, we sequentially acquire math and coding abilities using both SFT and DPO
datasets. Further architectural details are provided in App. E, while additional implementation
details can be found in App. F, covering training procedures F.1, hyperparameter settings F.2, and
computational resources and runtimes F.3.

5 RESULTS

In this section, we evaluate GraftLLM in various settings, comparing it with other methods, including
pairwise heterogeneous LLM grafting 5.1, knowledge fusion 5.2, and forget-free learning 5.3, while
also highlighting its potential for unlearning tasks like model detoxification (see App. C.2).
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5.1 PAIRWISE GRAFTLLM

We demonstrate the effectiveness of parameter-efficient capability transfer between paired models.
Fig. 7 and 8 show that while PEFT and other compression methods perform reasonably well in simple
SFT scenarios, their effectiveness drops significantly—or even fails—under more complex DPO
settings. In contrast, our method consistently achieves performance close to a fully fine-tuned target
model, highlighting its robustness and efficiency.

Table 1: Overall results of explicit LLM knowledge fusion on AlpacaEval 2.0 and MT-Bench. The
best-performing results for both parameter merging and routing-based methods are shown in bold,
while the performance difference between the two is highlighted in green.

Model #Params
AlpacaEval 2.0 MT-Bench

(GPT-4-1106-Preview) (GPT-4-0125-Preview)
Win Rate LC Win Rate 1st Turn 2nd Turn Average Score
Source LLMs

OpenChat-3.5-7B Wang et al. (2024a) 7B 10.20 14.90 7.14 6.55 6.84
Starling-LM-7B-alpha Zhu et al. (2023) 7B 14.20 14.70 7.54 6.49 7.01
NH2-SOLAR-10.7B Kim et al. (2023) 10.7B 12.22 18.13 7.11 6.36 6.74
InternLM2-Chat-20B Cai et al. (2024) 20B 21.70 18.70 7.78 6.34 7.06
Mixtral-8x7B-Instruct Jiang et al. (2024) 8x7B 18.30 23.70 7.76 7.00 7.38
Qwen1.5-Chat-72B Bai et al. (2023) 72B 26.50 36.60 7.83 7.36 7.59

Multi-teacher Distillation
FuseLLM[ICLR24] Wan et al. (2024a) 7B 10.56 14.50 7.36 6.40 6.88

Pairwise Distillation + Parameter Merging
Task Arithmetic[ICLR23] Ilharco et al. (2023) 7B 10.67 15.78 7.54 6.78 7.22
Ties-Merging[NeurIPS23] Yadav et al. (2024) 7B 11.55 16.73 7.59 7.03 7.31
SCE-Merging[arXiv24] Wan et al. (2024b) 7B 11.63 16.89 7.61 7.05 7.33
PCB-Merging[NeurIPS24] Du et al. (2024a) 7B 11.82 17.22 7.71 7.01 7.36
PCB-Merging+DARE[ICML24] Yu et al. (2023) 7B 11.96 17.35 7.79 6.99 7.39
InfiFusion[arXiv25] Yan et al. (2025) 7B 11.74 17.21 7.68 7.08 7.38

Pairwise Distillation + Router
Routed LoRA r512 14.1B 10.16 15.48 7.14 6.75 6.95
Routed LoRA r1024 21B 12.57 19.41 7.52 6.92 7.23
TALL-Mask[ICML24] Wang et al. (2024c) 16.7B 13.69 22.76 7.92 7.14 7.53
EMR-Merging[NeurIPS24] Huang et al. (2024) 16.7B 14.52 23.10 7.96 7.15 7.56
Twin-Merging r512 14.1B 12.20 19.90 7.74 7.07 7.40
Twin-Merging r1024 21B 15.93 24.81 8.01 7.18 7.59
Routed GraftLLM (Ours) 9.2B 16.56(+4.6) 25.42(+8.07) 8.05(+0.26) 7.35(+0.27) 7.70(+0.31)

5.2 GRAFTLLM FOR KNOWLEDGE FUSION

We explore two approaches to LLM knowledge fusion: explicit fusion, which aligns tokens and
probability distributions, and implicit fusion, which transfers knowledge through generated data.
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Explicit Knowledge Fusion. As shown in Tab. 1, compared to the best results from Merging-based
LLM fusion, our approach achieves a significant performance boost without introducing a large
number of additional parameters. Compared to routing-based fusion methods, our approach achieves
better performance with lower parameter cost. Unlike Twin Merging, which relies on higher ranks,
our method delivers superior results more efficiently. Compared to TALL-Mask and EMR-Merging,
we avoid the overhead introduced by using a unified task vector.

Compared to the source models, our approach improves the target model, OpenChat-3.5-7B, with
only a 28% increase in parameter size, achieving performance comparable to Mixtral-8x7B-Instruct
and Qwen1.5-Chat-72B. In fact, on MT-Bench, our model outperforms all source models, setting
a new benchmark. Additionally, on AlpacaEval 2.0, it shows an 8.07% improvement over the best
parameter fusion method. More result deails are in App. C.2.

Table 2: Overall results of implicit LLM knowledge fusion across 10 benchmark tasks.

Category Benchmark
Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct

Base PCB-
Merging

Twin-
Merging

Fuse
Chat-3

Routed
GraftLLM Base PCB-

Merging
Twin-

Merging
Fuse

Chat-3
Routed

GraftLLM
MMLU-Pro 49.7 48.6 50.2 48.8 51.3 54.0 53.7 54.5 52.8 55.4

General MMLU-redux 70.5 71.5 72.6 71.3 73.0 75.1 75.3 74.8 74.6 76.2
GPQA-Diamond 33.6 35.4 36.1 34.8 37.7 34.7 34.2 36.8 33.9 38.1

Mathematics
GSM8K (0 shot, CoT) 85.9 87.2 86.4 88.0 88.2 91.7 91.5 91.3 91.7 92.0
MATH (0 shot, CoT) 50.7 54.2 55.2 54.8 55.9 75.0 73.2 72.1 73.5 75.0

AMC 23 (0 shot, CoT) 25.0 30.0 27.5 37.5 35.0 52.5 52.5 50.0 57.5 55.0

Coding HumanEval (0 shot) 68.3 69.8 68.8 70.5 72.0 85.4 83.1 81.9 79.9 85.6
MBPP (0 shot) 66.9 71.7 70.3 71.4 72.8 80.2 82.7 81.6 83.1 84.5

Instruction AlpacaEval-2 (LC %) 28.3 61.2 52.4 65.4 64.8 34.2 58.9 53.3 63.6 61.5
Following MT-Bench 8.4 8.6 8.2 9.0 8.8 8.4 8.6 7.8 9.0 8.7

Average 48.7 53.8 52.8 55.2 56.0 59.0 61.4 60.4 62.0 63.2

Implicit Knowledge Fusion. We evaluate the effectiveness of implicit heterogeneous model fusion
on 10 benchmark tasks, as shown in Tab. 2, comparing three representative methods. (1) PCB-Merging
(pairwise distillation + parameter fusion) distills knowledge from multiple models and merges their
parameters, but suffers from conflicts between source models, limiting its ability to balance multi-task
performance. (2) Twin-Merging (pairwise distillation + routing) uses model decomposition for
routing-based fusion, but experiences significant performance loss during decomposition, resulting in
the weakest performance overall. (3) FuseChat-3 (multi-teacher distillation) integrates knowledge
from multiple tasks, yet still falls short of task-specific upper bounds—especially on the GPQA (Rein
et al., 2023) benchmark, where other tasks offer little benefit. In contrast, our method combines
the performance strengths of pairwise distillation with the parameter efficiency of modular routing,
effectively reducing task conflicts and fusion costs. When using LLaMA3.1-8B-Instruct and Qwen-
2.5-7B-Instruct as target models, our approach achieves average performance gains of 0.8 and 1.2,
respectively, demonstrating significant advantages. More result deails are in App. C.1.

5.3 GRAFTLLM FOR FORGET-FREE LEARNING

Table 3: Forget-free learning results on code and math tasks using LLaMA3.1-8B-Instruct.

Method Additional Code Benchmarks (Original task) Math Benchmarks (New task) AverageParameters HumanEval HumanEval+ MBPP MBPP+ GSM8K MATH AMC23

LLaMA3.1-8B-Instruct - 68.3 61.6 66.9 54.8 85.9 50.7 25.0 59.0

Multi LoRA r256 1.48B 68.8 61.8 67.7 55.6 86.2 51.3 25.0 59.5
Model Grafting[ICML23] 803M 70.4 63.9 69.1 57.5 87.2 53.4 27.5 61.3

Model Tailor[ICML24] 803M 71.4 64.2 71.1 59.4 87.6 54.5 27.5 62.2
GraftLLM (ours) 803M 72.0 65.2 72.2 61.8 88.2 55.9 35.0 64.3

We evaluate GraftLLM in a forget-free learning setting, where LLaMA3.1-8B-Instruct is first
trained on code (original task) and then on math (new task), using data generated from stronger source
models. The final model is evaluated on seven benchmarks in total—four for code and three for
math. Under the same 10% parameter budget as prior methods like Model Grafting and Model Tailor,
GraftLLM delivers consistently stronger performance while mitigating forgetting, outperforming
existing approaches by an average of 2.1% (Tab. 3). More deails are in App. C.1.
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5.4 PERFORMANCE ON HIGHLY DISTINCT FUSION DOMAINS

Our method is explicitly designed to decouple conflicting task behaviors into separate SkillPacks,
preventing cross-task interference and enabling near-lossless capability fusion—even when the
underlying tasks are highly distinct. To validate this design in scenarios with highly divergent
domains, we conducted a new experiment involving finance, law, and biomedicine, following an
experimental setup inspired by AdaptLLM (Cheng et al., 2023). We first report the performance of
models fine-tuned individually on each domain. As shown in the table below, a model fine-tuned on
one domain suffers substantial degradation on other domains, sometimes performing worse than the
base model, highlighting the limitations of traditional merging approaches in handling conflicting
updates.

In contrast, SkillPack-based fusion effectively isolates domain-specific delta parameters and recom-
bines them with minimal interference, achieving near-lossless multi-domain performance. Further-
more, even when compressing the model to just 10% of its original parameters, our method still
reaches nearly 99% of the original performance. This means that the performance originally requiring
three separate 7B fine-tuned models can now be matched by GraftLLM with only an additional 30%
of parameters, demonstrating significant parameter efficiency without sacrificing accuracy.

Table 4: Performance of GraftLLM compared with baselines across Biomedicine, Finance, and Law
domains. The average column also indicates relative performance to the reference.

Methods Params Biomedicine Finance Law Average
LLaMA-7B 7B 44.2 58.6 34.2 45.7
LLaMA-7B-Bio 7B 47.3 57.9 34.5 46.6
LLaMA-7B-Finace 7B 43.7 63.4 34.0 57.0
LLaMA-7B-Law 7B 44.1 58.2 38.5 46.9
AdaptLLM-7B 3x7B 47.3 63.4 38.5 49.7100%
FuseChat[ICLR 25] 7B 45.6 60.1 36.3 47.395%
Twin-Merging[NeurIPS 24] 15.3B 45.9 61.3 36.7 47.996%
GraftLLM(Ours) 9.1B 47.2 63.4 38.2 49.699%

6 ANALYSIS

6.1 ABLATION STUDY

We conduct an ablation study to assess the impact of each component within module-aware adaptive
strategy. As shown in Tab. 5, we evaluate the effect of replacing or removing individual compression
modules, using the LLaMA3.1-8B-Instruct model on the GSM8K and MATH validation sets. To
ensure fairness, all configurations maintain a comparable overall compression ratio of approximately
5%. The results reveal that different model components benefit from tailored compression strate-
gies. Quantization emerges as a critical factor for preserving performance, with mixed-precision
quantization causing minimal degradation. In contrast, the MLP modules exhibit high sensitivity
to compression: applying suboptimal methods to these layers leads to notable performance drops,
underscoring their importance in the compressed model architecture. More details of the ablation
study are provided in App. B.1.

Table 5: Ablation study on module-aware adaptive strategy on the MATH task.

Methods Null w/o Quantization w/o Mixed Quant Pruning SVD Low Rank SVD.
Embedding and Output Head 71.3 71.8 71.8 72.1 71.9 71.7

MLP Modules 68.7 69.2 71.5 70.2 72.1 71.2
Attention Modules 70.7 71.3 71.8 71.2 71.8 72.1

6.2 EFFECT OF TASK DIFFICULTY AND DATA SETTINGS

We assess our method across diverse settings, including varying sample sizes, numbers of source
models, and task difficulties. We also study the impact of different compression ratios under both SFT
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and DPO paradigms. As shown in Fig. 9a and 9b, with a compression ratio (CR) 10%, our method
consistently retains nearly 100% of the original performance in both SFT and DPO settings. In a CR
ratio 5%, performance decreases as task difficulty increases - particularly under DPO - highlighting the
greater challenge of compression in preference-aligned scenarios. Fig. 9c shows our method is robust
on simpler tasks but less stable on DPO-based instruction-following tasks, highlighting both strengths
and limitations across alignment challenges. Further analysis of compression hyperparameters,
including rank and mixed-precision ratios, is in App. B.2.
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Figure 9: Performance trends across task difficulty using LLaMA3.1-8B-Instruct.

6.3 ROUTER BEHAVIOR AND SKILLPACK INTERACTION

We further examine how the router behaves under different task relationships and evaluate whether
combining multiple SkillPacks can provide additional benefits. When SkillPacks correspond to
highly similar tasks(e.g., different Chat LLMs), their latent features naturally overlap, making the
distinction between experts less pronounced. In these cases, top-1 routing is inherently ambiguous,
and ensembling the outputs of multiple SkillPacks—weighted by the router—can yield noticeable
performance gains, although with increased inference cost.

In contrast, when SkillPacks represent clearly distinct domains (e.g., finance vs. biomedicine),
the router learns a clean and confident mapping from input patterns to the most relevant expert.
Here, cross-expert ensembling offers little improvement because the underlying knowledge does not
reinforce each other. This behavior aligns with our empirical observations across different fusion
scenarios. Overall, the router functions as intended: it leverages complementary skills when tasks
are aligned, suppresses interference when tasks diverge, and maintains efficiency through selective
expert activation.

Table 6: Analysis of router behavior and multi-SkillPack ensembling across three fusion settings.

Methods Explicit LLM Fusion
(AlpacaEval 2.0)

Implicit LLM Fusion
(Avg. of 10 benchmarks)

Finance+Law+Bio
LLM Fusion

Inference
Overhead

FuseChat 11.63 / 16.89 55.2 47.33 1x
Grafting Top 1 SkillPack 16.56 (+4.9) / 25.42 (+8.5) 56.0 (+0.8) 49.62 (+0.23) 1.03x
Grafting Top 2 SkillPacks 17.33 (+0.8) / 26.28 (+0.9) 56.3 (+0.3) 49.64 (+0.02) 2.03x
Grafting Top 3 SkillPacks 17.49 (+0.2) / 26.72 (+0.4) 56.4 (+0.1) 49.62 (-0.01) 3.03x

6.4 LIMITATION AND FUTURE WORK

While our approach provides insights into knowledge transfer between LLMs, it relies on the quality
of prior supervised fine-tuning (SFT) and Direct Preference Optimization (DPO), with suboptimal
distillation limiting its ability to fully capture source model capabilities. Future work may explore
alternative inference strategies and develop automated, robust methods for compression operations
during deployment to improve efficiency, scalability, and robustness.

7 CONCLUSIONS

We present GraftLLM, a scalable framework for efficient cross-capability transfer in large language
models. By compressing task-specific updates into modular SkillPacks, our method preserves
knowledge while avoiding interference and forgetting. Experiments show strong performance in
knowledge fusion and continual learning, outperforming prior methods under various settings.
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under their respective licenses, without involving any personally identifiable or sensitive information.
The proposed methods are intended strictly for academic and scientific purposes, aiming to advance
understanding in machine learning rather than for deployment in high-stakes decision-making without
appropriate safeguards.

We acknowledge that advances in AI systems can entail potential societal risks, including concerns
related to fairness, misuse, privacy, and environmental impact arising from computational resource
demands. To address these issues, we prioritize responsible reporting of results, transparent disclosure
of limitations, and a clear distinction between research contributions and downstream applications.

Future research building upon this work should continue to evaluate potential ethical implica-
tions—particularly regarding bias, safety, and dual-use risks—and implement appropriate measures
to promote beneficial, equitable, and responsible outcomes.
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Appendix for Knowledge Fusion of LLMs via Modular SkillPacks

OVERVIEW

This paper proposes a knowledge grafting approach that efficiently transfers capabilities from hetero-
geneous LLMs to a target LLM using modular SkillPacks. The appendix is structured according to our
key contributions. We also make the project code available via an anonymous link for reproducibility:
https://anonymous.4open.science/r/GraftLLM-6DaGDCda326B

• Appendix A (Novelty and Contribution) provides additional experimental results on knowl-
edge compression as well as task-level results from the knowledge fusion experiments.

• Appendix B (Additional Analysis) includes ablation studies, hyperparameter analysis, and
time cost evaluation for the search process.

• Appendix C (Additional Results) outlines the computational resources and runtimes, along
with the training details and evaluation metrics.

• Appendix D (Baselines details) provides a detailed baseline description.

• Appendix E (Datasets details) provides a detailed dataset description.

• Appendix F (Implementation details) provides a detailed dataset description.

A NOVELTY AND CONTRIBUTION

We underscore the importance of cross-capability transfer across heterogeneous LLMs and identify
key limitations in current methods regarding generalization and adaptability. To this end, we propose
GraftLLM, which encapsulates transferable skills as compact SkillPacks, offering high performance,
robustness to forgetting, and practical integrability. To clearly demonstrate the innovation of our
method, we conduct a comparative analysis with existing state-of-the-art baseline methods.

Comparison with Multi-Teacher Distillation. (Wan et al., 2024a; Yang et al., 2024f; Zhang &
Yang, 2021) Our method offers several advantages:

1. It avoids the complex training procedures required by multi-task learning.

2. It achieves higher single-task performance ceilings.

3. It is naturally suited for distributed training and federated learning scenarios.

Comparison with Pairwise Distillation + Parameter Merging. Compared to approaches that
directly merge parameters after distillation (Du et al., 2024a; Yan et al., 2025), our method:

1. Employs a routing mechanism to avoid conflicts between capabilities from different source
models.

2. Circumvents the challenge of merging parameters with large differences.

3. Ensures balanced parameter allocation across tasks to mitigate interference.

Comparison with Pairwise Distillation + Router.

1. Compared to methods like TALL-Mask (Wang et al., 2024c) and EMR-Merging (Huang
et al., 2024) that rely on unified task vectors, our method achieves superior parameter
efficiency.

2. Compared to Twin-Merging (Lu et al., 2024), our approach supports large language models
and preserves near full-task performance.
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Comparison with PEFT-based distillation + Router. Our method provides significantly stronger
performance by first applying full-parameter fine-tuning to fully extract the capabilities of the source
model, and then using compression to reduce storage overhead. This enables our approach to preserve
critical task knowledge that PEFT-based methods (e.g., LoRa-MoE) (Ding et al., 2023; Hu et al.,
2022) often fail to capture, especially in complex scenarios such as Direct Preference Optimization
(DPO), where lightweight adapters struggle to inherit nuanced decision boundaries and preference
reasoning from the teacher model.

Comparison with Delta Compression Methods. We introduces several key improvements:

1. We propose a module-adaptive delta compression strategy, which prioritizes and com-
presses parameter updates based on the functional significance of each module—an aspect
not considered in previous works (Liu et al., 2024; Ping et al., 2024; Yang et al., 2025a).

2. Previous compression schemes typically neglect challenging tasks such as DPO, limiting
their robustness across diverse applications.

3. Our method is specifically designed for source-model capability transfer, whereas prior
techniques target more general or different objectives.

4. We explicitly consider downstream usability in scenarios like knowledge fusion and forget-
free learning, improving long-term flexibility.

5. Our method achieves a better trade-off between performance and storage efficiency
compared to earlier approaches.

B ADDITIONAL ANALYSIS

B.1 ADDITIONAL ABLATION STUDIES

To verify the generality of our conclusions, we conduct an additional ablation study on the HumanEval
Plus benchmark, using the same LLaMA3.1-8B-Instruct model and keeping the overall com-
pression ratio at approximately 5% across all settings, as discussed in Section Analysis 6.1. Similar
to the results on math task, we examine the effect of replacing or removing individual compression
modules. The results in Table 7 show consistent patterns: Mixed-precision quantization continues to
be the key to maintaining performance, while MLP modules remain highly sensitive to compression.
Applying suboptimal strategies to MLP layers results in clear performance drops, again highlighting
the importance of our module-aware adaptive strategy across different tasks.

Table 7: Ablation study on module-aware adaptive strategy on the HumanEval Plus benchmark.

Methods Null w/o Quantization w/o Mixed Quant Pruning SVD Low Rank SVD.
Embedding and Output Head 64.3 64.8 64.8 65.2 64.9 64.4

MLP Modules 62.7 63.8 64.8 63.5 65.2 64.4
Attention Modules 63.2 64.7 64.9 64.1 64.4 65.2

B.2 ADDITIONAL HYPERPARAMETERS ANALYSIS

We further analyze the impact of compression hyperparameters—including the SVD decomposition
rank and mixed-precision quantization ratios—on model performance. Experiments are conducted
on the LLaMA3.1-8B-Instruct model using the GSM8K and MATH validation sets, with results
reported as normalized accuracy. As shown in Figure 10, increasing the SVD decomposition rank and
employing higher-precision quantization consistently improve performance. Notably, the Attention
module is more amenable to compression, achieving 100% performance retention with a rank of
1000 under double-precision settings. In contrast, the MLP module requires higher compression
costs to reach comparable retention, highlighting the effectiveness of our proposed module-aware
adaptive strategy. Quantization-related parameters, such as bit-width, are kept consistent with prior
work, specifically Delta-CoMe (Ping et al., 2024), which employs training-free delta compression
with mixed precision. Pruning ratios and the energy-preserving threshold ϵ are determined via simple
grid search to balance compression efficiency and model performance.
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Figure 10: Performance trends across hyperparameters using LLaMA3.1-8B-Instruct.

B.3 ROUTER FOR SKILLPACKS

Table 8: Impact of the volume of training data on
router effectiveness in explicit LLM fusion.

Number of Samples 5000 10000 20000 90000

MT-Bench 7.28 7.36 7.56 7.70
AlpachaEval 2.0 (LC Win Rate) 20.37 23.46 25.31 25.42

The routing function R is conditioned on ei-
ther the source model or the task type and
dynamically assigns each SkillPack to the tar-
get model. In the case of explicit knowl-
edge fusion, the router is implemented as a
lightweight feed-forward network consisting
of four fully connected layers (input → 4096
→ 1024 → 256 → 5 outputs), equipped with
GELU activations and LayerNorm. The input features are drawn from the Llama2-7B embedding
head, whose 4096-dimensional hidden representation is directly fed into the router. The router is
trained using the same dataset employed for source-model distillation, with a batch size of 256, a
learning rate of 0.001, and approximately 5,000 training steps. We train the router using the training
datasets provided by FuseChat 2.0 (Wan et al., 2024b). Specifically, we collect the training loss on
this dataset from five target models, each obtained through pairwise distillation from a different source
model. These loss values serve as supervision signals, while input features are extracted from the
embedded representations of the input data. A five-way classifier is then trained to predict the most
suitable source model for each input. To evaluate the effect of routing quality, we vary the amount of
training data used for the classifier to obtain models of different capabilities, and analyze their impact
on fusion performance, as shown in Table 8. Since performance differences among source models
are more pronounced on the MT-Bench dataset, the improvements from routing are more significant
compared to AlpacaEval 2.0. For implicit knowledge fusion and forget-free learning experiments, we
directly assign different SkillPacks based on task types, without training an additional router.

C ADDITIONAL RESULTS

C.1 RESULT DETAILS OF KNOWLEDGE FUSION AN FORGET-FREE LEARNING

We provide additional details to supplement our previous experiments, including the results of
pairwise distillation and subsequent task vector compression in the heterogeneous knowledge fusion
setting, as shown in Table 9 for explicit knowledge fusion and Table 10 for implicit knowledge
fusion. These results demonstrate that our proposed GraftLLM framework effectively preserves
performance in most cases.

In addition, we present more details on the forget-free learning experiments in Table 11, further
highlighting the extent of catastrophic forgetting in forget-free learning scenarios and showcasing the
advantages of our method. Finally, we include visualizations related to knowledge fusion in Figure 11
and Figure 12, offering a more intuitive understanding of the behavior of different methods.

C.2 DETOXIFICATION WITH GRAFTLLM

We validate the effectiveness of our proposed GraftLLM method in the detoxification setting.
Specifically, we extract a detachable SkillPack from the detoxified model obtained through knowledge
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Table 9: Result details of explicit knowledge fusion on AlpacaEval 2.0 and MT-Bench. Reported
metrics include pairwise distillation, pairwise distillation with modular-aware adaptive compression
at 10% storage cost, and the performance retention ratio (%).

Pairwise Distillation Pairwise Distillation + Compression

Model #Params AlpacaEval 2.0 MT-Bench AlpacaEval 2.0 MT-Bench
Win Rate LC Win Rate Average Score Win Rate(%) LC Win Rate(%) Average Score(%)

OpenChat-3.5-7B Starling 7B 11.28 16.14 7.22 11.26(99.8) 16.06(99.5) 7.20(99.7)

OpenChat-3.5-7B SOLAR 7B 11.22 16.24 7.16 11.15(99.3) 16.21(99.8) 7.16(100)

OpenChat-3.5-7B InternLM 7B 11.93 15.33 7.23 11.54(96.7) 15.33(100) 7.12(98.5)

OpenChat-3.5-7B Mixtral 7B 11.71 16.46 7.28 11.41(97.4) 16.23(98.6) 7.24(99.5)

OpenChat-3.5-7B Qwen 7B 11.13 15.10 7.23 11.13(100) 15.03(99.5) 7.17(99.2)

Table 10: Result details of implicit knowledge fusion on various tasks. Reported metrics include
pairwise distillation, pairwise distillation with modular-aware adaptive compression at 8% storage
cost, and the performance retention ratio (%). For tasks where performance degrades after distillation,
we report results using the original target model instead.

Model Pairwise Distillation Pairwise Distillation + Compression
General Tasks

MMLU-Pro MMLU-redux GPQA-Dia MMLU-Pro MMLU-redux GPQA-Dia
LLaMa-3.1-8B-Instruct 51.3 73.0 37.7 51.3(100) 73.0(100) 37.7(100)
Qwen-2.5-7B-Instruct 55.6 76.6 38.1 55.4(99.6) 76.2(99.5) 38.1(100)

Mathematics Tasks
GSM8K MATH AMC23 GSM8K MATH AMC23

LLaMa-3.1-8B-Instruct 88.8 56.2 37.5 88.2(99.3) 55.9(99.5) 35.0(93.3)

Qwen-2.5-7B-Instruct 92.6 75.3 57.5 92.0(99.4) 75.0(99.6) 55.0(95.7)

Code Tasks
HumanEval MBPP HumanEval MBPP

LLaMa-3.1-8B-Instruct 72.0 73.0 72.0(100) 72.8(99.7)
Qwen-2.5-7B-Instruct 85.7 84.8 85.6(99.9) 84.5(99.6)

Instruction Following
AlpacaEval 2.0 MT-Bench AlpacaEval 2.0 MT-Bench

LLaMa-3.1-8B-Instruct 65.4 9.0 64.8(99.1) 8.8(97.8)

Qwen-2.5-7B-Instruct 63.6 9.0 61.5(96.6) 8.7(96.7)
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Figure 11: Comparison of explicit knowledge
fusion methods for heterogeneous LLMs on Al-
pacaEval 2.0, including parameter size analysis.

GraftLLM

Figure 12: A comparison of implicit knowledge
fusion methods for heterogeneous LLMs with
Qwen-2.5-7B-Instruct as target model.

editing. This modular SkillPack can be seamlessly integrated into the base model, enabling it to retain
both detoxification capability and general-purpose performance. Our experiments are conducted on
the mainstream chat model LLaMA3-8B-Instruct (Dubey et al., 2024b). We select three existing
knowledge editing methods as baselines: FT-L (Meng et al., 2022), WISE (Wang et al., 2024e), and
DINM (Wang et al., 2024d). Other common approaches, such as ROME (Mitchell et al., 2022) and
MEMIT (Meng et al., 2023), require identifying specific model regions based on knowledge entities
for parameter modification, making them less suitable for LLM detoxification tasks.
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Table 11: Result details of continual learning on code and math tasks with modular-aware adaptive
compression at 10% storage cost.

Method Additional Original task (Code) New task (Math) AverageParameters HumanEval HumanEval+ MBPP MBPP+ GSM8K MATH AMC23

LLaMA3.1-8B-Instruct - 68.3 61.6 66.9 54.8 85.9 50.7 25.0 59.0
Sequential Distillation - 69.1 63.2 67.4 55.9 87.5 55.7 30.0 61.3

Distillation on Code - 72.0 65.2 73.0 62.7 85.2 50.3 22.5 61.6
After Compression 803M 72.0 65.2 72.2 61.8 85.2 50.1 20 61.3

Distillation on Math - 67.8 60.8 66.2 54.3 88.8 56.2 37.5 61.7
After Compression 803M 67.4 60.2 66.2 54.1 88.2 55.9 35.0 61

Multi LoRA r256 1.48B 68.8 61.8 67.7 55.6 86.2 51.3 25.0 59.5
Model Grafting[ICML23] 803M 70.4 63.9 69.1 57.5 87.2 53.4 27.5 61.3

Model Tailor[ICML24] 803M 71.4 64.2 71.1 59.4 87.6 54.5 27.5 62.2
GraftLLM (ours) 803M 72.0 65.2 72.2 61.8 88.2 55.9 35.0 64.3

We conduct our experiments on the SafeEdit benchmark (Wang et al., 2024d) using the
EasyEdit framework (Wang et al., 2023). For all methods involving training components, we uti-
lize the training and validation sets for model development and evaluate the final performance on the
test set. As shown in Table 13, our method achieves detoxification performance comparable to DINM,
while better preserving the general capabilities of the base model. Overall, GraftLLM outperforms
the previous best approach by 1.76 points in terms of the average score across detoxification and
general tasks.

C.3 CASE STUDIES ON SKILLPACK KNOWLEDGE

We present qualitative examples illustrating how the router handles inputs that combine biomedical,
financial, and legal terminology, as shown in Tab. 12. For each input, we report the selected SkillPack
and the corresponding domain knowledge it encodes. As shown in the table below, the router
consistently selects the SkillPack aligned with the dominant semantic cue, and each SkillPack captures
coherent, domain-specific knowledge—for instance, dose–response reasoning in Biomedicine and
regulatory interpretation in Law. These examples provide a clear qualitative understanding of the
information encoded in each SkillPack and how the router effectively manages mixed-domain queries.

Table 12: Qualitative examples illustrating router behavior and the knowledge captured by SkillPacks.

Input Example Router (Top-1) Knowledge Captured in SkillPack
Does increasing the dose im-
prove overall return under the
current treatment policy?

Biomed Captures clinical reasoning such as dose–
response relationships, treatment efficacy, and
pharmacological effects.

What regulatory constraints
apply when reporting adverse
outcomes that may affect finan-
cial liability?

Law Encodes legal concepts including regulatory
compliance, reporting requirements, and liabil-
ity interpretation.

Evaluate whether the com-
pound shows significant im-
pact on long-term yield.

Biomed Stores biochemical and pharmacological knowl-
edge regarding compound effects, biological im-
pact, and experimental outcomes.

D BASELINES DETAILS

This section provides a detailed description of the baseline, as outlined below.

• FuseLLM (Wan et al., 2024a) is the first to introduce multi-teacher distillation for fusing
knowledge from heterogeneous large language models.

• FuseChat 2.0 (Wan et al., 2024b) fuses chat LLMs of different scales and structures through
lightweight pairwise fine-tuning into target models of the same size. It uses a statistics-based
token alignment for compatibility and merges the targets in parameter space.
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Table 13: Detoxification performance and general performance of vanilla LLMs and various detoxifi-
cation methods on SafeEdit. The detoxification performance (detoxification success rate) is multiplied
by 100. DG-Avg represents the average performance across the four DG metrics. The best and
second-best results on each model are highlighted in bold and underlined, respectively.

Method Detoxification Performance (↑) General Performance (↑) Average (↑)
DS DGonlyQ DGotherA DGotherQ DGotherAQ DG-Avg Fluency KQA CSum

LLaMA3-8B-Instruct 14.82 55.41 31.14 13.88 31.43 32.97 7.89 64.83 25.81 29.26

FT-L[NeurIPS22] 82.18 97.75 90.90 79.83 93.81 90.57 6.42 63.03 25.51 53.54

WISE[NeurIPS24] 81.43 81.24 81.99 68.86 80.30 78.10 5.64 62.99 25.90 50.81

DINM[ACL24] 82.89 99.24 98.87 99.70 99.78 99.40 1.20 62.98 25.18 54.33

GraftLLM (ours) 82.83 98.84 98.46 99.70 99.34 99.08 7.89 64.83 25.81 56.09

• FuseChat 3.0 (Yang et al., 2025b) further introduces implicit model fusion and a DPO-based
strategy to enhance alignment and integration performance across heterogeneous LLMs.

• Task Arithmetic (Ilharco et al., 2023) first defines the concept of “task vectors” and merges
these vectors into a pre-trained model to execute multi-task learning. The model is produced
by scaling and adding the task vectors to the initial model as θm = θinit + λ ∗

∑n
t=1 τt.

• Ties-Merging (Yadav et al., 2024) further solves the task conflict problem in Task Arith-
metic (Ilharco et al., 2023). It eliminates redundant parameters and resolves symbol conflicts
through three steps: Trim, Elect Sign, and Disjoint Merge.

• DARE (Yu et al., 2023) sets the majority of delta parameters to zero and rescale the rest
by θ′ = θ · (1/(1 − p)) where p is the proportion of delta parameters dropped, therefore
efficiently reduces parameter redundancy.

• LoraHub (Huang et al., 2023) employs Low-rank Adaptations to dynamically combine
task-specific modules for cross-task generalization, and adapts to new tasks by configuring
θ′ =

∑K
k=1 wk · θk.

• PCB-Merging (Du et al., 2024a) effectively adjusts parameter coefficients through balancing
parameter competition within model population.

• InfiFusion (Yan et al., 2025) enhances Universal Logit Distillation with Top-K selection
and Logits Standardization to improve cross-model alignment. Top-K filters noisy outputs,
while standardization ensures consistent logit distributions across diverse models.

• TALL-Mask (Wang et al., 2024c) localize the task-specific information in a multi-task
vector, which deactivates irrelevant parts for each task in the merged multi-task vector with
binary masks.

• EMR-Merging (Huang et al., 2024) first selects a unified model from all weights, then
generates lightweight task-specific modulators—masks and rescalers—to align direction
and magnitude with each source model.

• Delta-CoMe (Ping et al., 2024) propose a mixed-precision delta-compression method that
employs varying bit-widths for different singular vectors based on their singular values

• Model Grafting (Panigrahi et al., 2023) introduces the concept of skill localiza-
tion—identifying where task-specific skills reside within the model—and proposes a method
to efficiently acquire them.

• Model Tailor (Zhu et al., 2024) derives a sparse mask to identify the “model patch” through
a fusion of salience and sensitivity analysis, and then decorates the patch to enhance
performance.

E DATASETS DETAILS

E.1 TRAING DATASETS FOR EXPLICIT KNOWLEDGE FUSION

We use a comprehensive training dataset, FUSECHAT-MIXTURE (Wan et al., 2024b), from various
sources. This dataset covers different styles and capabilities, featuring both human-written and
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model-generated, and spanning general instruction-following and specific skills. These sources
include:

Orca-Best1: We sampled 20,000 examples from Orca-Best, which is filtered from the GPT-4 (1M)
partition of Orca (Mukherjee et al., 2023) based on maximum length and clustering of instructions.

Capybara2: We incorporated all the 16,000 examples of Capybara, which is a high-quality collection
of multi-turn synthetic conversations.

No-Robots3: We included all the 9,500 examples of No-Robots, which is a dataset created by skilled
human annotators for supervised fine-tuning.

ShareGPT-GPT44: We utilized all 6,200 examples from ShareGPT-GPT4, which exclusively uses
dialogues generated by GPT-4 in ShareGPT.

Oasst-Top15: We selected 5,000 examples from Oasst-Top1, which is a refined version of
Oasst1 (Köpf et al., 2024), a human-annotated assistant-style conversation dataset.

MetaMathQA 6: We sampled 10,000 examples from MetaMathQA (Yu et al., 2024), which is
augmented from the GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al., 2021b) datasets for
mathematics problem-solving.

OSS-Instruct 7: We chose 10,000 examples from OSS-Instruct (Wei et al., 2023), which contains
code instruction data synthesized from open-source code snippets.

Evol-Alpaca 8: We sampled 10,000 examples from Evol-Alpaca, which is a code instruction dataset
generated by GPT-4 with evol-instruct proposed by WizardCoder (Luo et al., 2024).

Python-Code 9: We selected 10,000 examples from Python-Code, which comprises instructions and
responses generated by GPT-3.5 and GPT-4 for python code generation.

We followed the data processing code in FastChat (Zheng et al., 2024a) to clean instances containing
non-English or special characters. Then, we split long conversations into blocks with a maximum
length of 2048 tokens, resulting in the final FUSECHAT-MIXTURE with 95,000 samples.

E.2 TRAING DATASETS FOR IMPLICIT KNOWLEDGE FUSION

The training datasets used in the implicit knowledge experiments are listed in Table 14. Additionally,
we provide the Hugging Face repository names and corresponding links for the target LLMs, source
LLMs, and the reward model.

E.3 EVALUATION BENCHMARKS

AlpacaEval-2 (Li et al., 2023b) comprises 805 instructions from five different datasets and assesses
models using two metrics: length-controlled (LC) win rate and raw win rate (WR) (Dubois et al.,
2024). GPT-4-Preview-1106 serves as both the baseline model and the evaluator for the other models.

MT-Bench (Zheng et al., 2023) contains 80 multi-turn dialogues across eight categories, including
writing, roleplay, reasoning, math, coding, extraction, STEM, and humanities. Each response is
evaluated by GPT-4 on a scale from 1 to 10, with the average score reported for each dialogue turn
across the 80 dialogues. We use GPT-4-0613 as the judge model following the official setting.

MMLU-Pro (Wang et al., 2024g) is an enhanced version of the MMLU dataset, designed to ad-
dress issues such as noisy data and reduced difficulty due to advances in model capabilities and

1https://huggingface.co/datasets/shahules786/orca-best
2https://huggingface.co/datasets/LDJnr/Capybara
3https://huggingface.co/datasets/HuggingFaceH4/no_robots
4https://huggingface.co/datasets/shibing624/sharegpt_gpt4
5https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25
6https://huggingface.co/datasets/meta-math/MetaMathQA
7https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
8https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
9https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
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Table 14: Details of open-source models and datasets used in Implicit Knowledge Fusion.

Name Huggingface ID
Target LLMs

Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct
Qwen-2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct

Source LLMs
Mistral-Large-Instruct-2407 Mistral-Large-Instruct-2407
Gemma-2-27B-it google/gemma-2-27b-it
Qwen-2.5-72B-Instruct Qwen/Qwen2.5-72B-Instruct
Llama-3.1-70B-Instruct meta-llama/Llama-3.1-70B-Instruct

Reward Model
ArmoRM-LLaMA3-8B-v0.1 RLHFlow/ArmoRM-Llama3-8B-v0.1

Datasets
UltraFeedback princeton-nlp/llama3-ultrafeedback-armorm
Magpie-Pro-DPO Magpie-Align/Magpie-Llama-3.1-Pro-DPO-100K-v0.1
HelpSteer2 nvidia/HelpSteer2
OpenMathInstruct-2 nvidia/OpenMathInstruct-2
LeetCode greengerong/leetcode
Self-Oss-Instruct-SC2 bigcode/self-oss-instruct-sc2-exec-filter-50k
Alpaca-GPT4-Zh llamafactory/alpaca_gpt4_zh
Magpie-Qwen2-Pro-Zh Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese

increased data contamination. MMLU-Pro increases challenge levels by expanding multiple-choice
options from 4 to 10, requiring reasoning across more questions, and incorporating expert-reviewed
annotations for improved quality and reduced noise.

MMLU-redux (Gema et al., 2024) is a re-annotated subset of the MMLU dataset created through
manual assessment from 14 human experts. GPQA-Diamond (Rein et al., 2023) is a challenging
knowledge benchmark crafted by PhD-level domain experts in biology, physics, and chemistry. The
dataset contains questions that are straightforward for experts but difficult for laypersons. We evaluate
the highest quality diamond set comprising 198 questions.

Arena-Hard (Li et al., 2024b) is a challenging instruction-following benchmark that closely aligns
with the human preference ranking from Chatbot Arena, a crowd-sourced platform for evaluating
LLMs. It spans 250 high-quality topic clusters including 500 well-defined technical problem-
solving queries. We report the win rate against GPT-4-0314 using GPT-4-Preview-1106 as the judge
model. GSM8K (Cobbe et al., 2021a) is a set of grade-school math word questions that evaluates
mathematical reasoning capabilities.

MATH (Hendrycks et al., 2021a) is a dataset of math problems ranging in difficulty from middle
school to high school competition level. It tests a wide range of mathematical skills, including algebra,
calculus, number theory, and probability.

AMC 2310 (Yang et al., 2024b) refers to the 2023 American Mathematics Competition, featuring
25 multiple-choice questions that test advanced high school mathematics, including trigonometry,
advanced algebra, and elements of calculus.

HumanEval (Chen et al., 2021) evaluates code generation capabilities by presenting models with
function signatures and docstrings and requiring them to implement the function body in Python.

MBPP (Austin et al., 2021) is a dataset of simple programming problems designed to assess the
ability of models to generate short Python code snippets from natural language descriptions.

10https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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F IMPLEMENTATION DETAILS

F.1 TRAINING DETAILS

Explicit Knowledge Fusion In this experiment, we primarily focus on effectively integrating
chat LLMs with diverse architectures and varying model sizes. We select six representative
source models: OpenChat-3.5-7B (Wang et al., 2024a), Starling-LM-7B-alpha (Zhu
et al., 2023), NH2-SOLAR-10.7B (Kim et al., 2023), InternLM2-Chat-20B (Cai et al., 2024),
Mixtral-8x7B-Instruct (Wang et al., 2024a), and Qwen-1.5-Chat-72B (Bai et al., 2023).
We use OpenChat-3.5-7B as the pivot model and starting point for generating target LLMs, given
its well-balanced size and performance. Initially, we apply pairwise knowledge fusion to produce five
target models with uniform architecture. Subsequently, these target models’ knowledge is combined
through either parameter merging or routing mechanisms.

Implicit Knowledge Fusion The construction of data plays a vital role in facilitating the Implicit
Model Fusion approach showcased in FuseChat-3.0 (Yang et al., 2025b). We perform SFT+DPO
on four task-specific datasets to obtain four individually fine-tuned models, each achieving strong
performance on its corresponding task. We describe the procedures for selecting prompts, sampling
responses, and assembling the dataset, explaining the reasoning behind each design choice.

• Prompt Selection: To enhance the target LLMs’ abilities across multiple fields—including
instruction following, math, coding, and Chinese—we assemble a diverse dataset. This is
done by carefully choosing samples from well-regarded open-source community datasets,
followed by specific filtering and preprocessing steps to ensure quality and relevance.

• Response Sampling: For each prompt in the curated dataset, we generate responses
primarily from four leading source LLMs. Our response sampling strategy is tailored
to each domain, leveraging vLLM11 (Zhu et al., 2023) as the inference backend. We
perform multiple sampling runs using different random seeds to ensure diversity. The
sampling parameters for each source model are as follows: for Gemma-2-27B-it,
Mistral-Large-Instruct-2407, and Llama-3.1-70B-Instruct, we set the
temperature to 0.8 and top-p to 0.95; for Qwen-2.5-(Math)-72B-Instruct, we use
a temperature of 0.7, top-p of 0.8, and a repetition penalty of 1.05.

• Preference Pairs: To construct preference pairs from models with diverse output styles, we
select the best and worst responses generated by the same source model for each pair. This
intra-model pairing strategy reduces reward bias caused by heterogeneous response styles,
prevents reward hacking, and provides a more controlled and reliable preference signal. The
data construction process varies by domain: for instruction-following and conversational
data, we use an external reward model to evaluate responses; for mathematics and coding
domains, responses are verified through rule-based systems.

The final dataset D consists of 158,667 entries, with 94,539 allocated to the SFT phase (DSFT) and
64,128 preference pairs for the DPO phase (DDPO). The dataset composition is provided in Table 15.

F.2 HYPERPARAMETER SETTINGS

Explicit Knowledge Fusion we follow a same experiment setting as FuseChat 2.0 (Wan et al.,
2024b), we train the target LLMs using a batch size of 128 and a maximum length of 2048 on a
single node with 8x80GB NVIDIA A800 GPUs for three epochs, which takes approximately 9 hours.
The models are optimized using the AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.9
and β2 = 0.999. We use a weight decay of 0.0 and gradient clipping of 1.0. A cosine learning rate
schedule is employed, with a maximum learning rate of 5e-6 and a warmup ratio of 0.03.Our training
framework is implemented based on the HuggingFace Transformers (Wolf et al., 2020).

Implicit Knowledge Fusion In our SFT experiments, we use the Llama-Factory library12 (Zheng
et al., 2024b) to implement the fine-tuning. For all target models, we perform fine-tuning for 3 epochs,
with a batch size of 128 and a maximum sequence length of 2048 tokens. A cosine learning rate

11https://github.com/vllm-project/vllm
12https://github.com/hiyouga/LLaMA-Factory
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Table 15: The constitution of Implicit Knowledge Fusion dataset in SFT phase and DPO phase. As
no suitable reward models were available for Chinese, we used all samples for SFT and omitted the
DPO phase.

Category Dataset Count #DSFT #DDPO

Instruction Following UltraFeedback 51,098 20,439 30,659
Magpie-Pro-DPO 20,374 8,149 12,225
HelpSteer2 9,435 3,774 5,661

Mathematics OpenMathInstruct-2 51,803 40,188 11,615

Coding LeetCode 3,113 1,877 1,236
Self-Oss-Instruct-SC2 12,892 10,160 2,732

Chinese Language Alpaca-GPT4-Zh 2,471 2,471 0
Magpie-Qwen2-Pro-Zh 7,481 7,481 0

Total 158,667 94,539 64,128

Table 16: Hyperparameters for different target models during the SFT and DPO stages.

Target Model SFT Learning Rate DPO Learning Rate DPO λ DPO Loss Type

Llama-3.1-8B-Instruct 5× 10−6 8× 10−7 10 LLN-DPO
Qwen-2.5-7B-Instruct 2× 10−6 3× 10−7 0.01 LDPO

schedule with a warmup ratio of 0.1 is employed. In DPO experiments, we utilize the alignment-
handbook13 as the training framework for DPO. All post-SFT target models undergo training for
one epoch with a batch size of 128 and a maximum sequence length of 2048. A cosine learning rate
schedule with a warmup ratio of 0.1 is used. Checkpoints are saved every 100 steps, and the best
checkpoint from the last two is selected. The hyperparameter configurations for different models are
detailed in Table 16.

F.3 COMPUTATIONAL RESOURCES AND RUNTIMES

We report the resource consumption and runtime of our module-adaptive compression strategy in
Table 10. The overall compression overhead is calculated as the weighted sum of each module’s
storage cost, with weights corresponding to the proportion of parameters in each module. Additionally,
we provide the compression time for each module, which mainly depends on the parameter count
and the amount of data used for GPTQ (Frantar et al., 2022). In all our experiments, we use the C4
validation split 14 as the calibration set for GPTQ, which is widely adopted in previous GPTQ-based
quantization research. Since pruning and SVD typically require only a few minutes, we omit their
time costs and primarily report the runtime for quantization. In practice, the compression strategy
can be adjusted according to task complexity and model type.

Table 17: Storage and time costs of our proposed adaptive compression strategy. The Storage Cost is
defined as the ratio of the compressed module size to that of the corresponding original parameters.

Modules Compression Strategy Quantization Strategy Storage Cost (%) Time Cost
Embedding & Head Pruning with α = 0.5 4bits 12.5 8 minutes

MLP Module SVD with r = 1400 [8, 3, 2] bits for rank [20, 180, 1200] 5.43 53 minutes
Attention Module SVD with r = 1000 [8, 2] bits for rank [20, 980] 5.59 22 minutes

In addition, we provide a detailed comparison of training and inference resource usage across different
methods (see Tab. 18). In all experiments, we adopt top-1 router activation, so that during inference,
the computational overhead primarily comes from the router forward pass and the SkillPack de-
compression step. Both of these steps introduce a negligible increase in latency, accounting for about

13https://github.com/huggingface/alignment-handbook
14https://huggingface.co/datasets/allenai/c4/en/c4-validation.
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3% of the total inference time, demonstrating that our method maintains efficiency comparable to
baseline models.

Table 18: Resource analysis of GraftLLM compared to representative LLM fusion baselines.

Method Model Size Router Size Training Cost (GPU h) Compression Cost Inference Overhead
FuseLLM 7B – 132 h – 1.00×
FuseChat 7B – 132 h 4 min 1.00×
Twin-Merging 21B 21M 132 h + 8 min 9 min 1.03×
GraftLLM (Ours) 9.2B 21M 132 h + 8 min 163 min 1.03×

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, large language models were used solely for minor stylistic
enhancements and occasional grammatical corrections. All conceptual insights, analytical reasoning,
and interpretive conclusions were generated entirely by the authors. No algorithmic assistance was
sought in the formulation, design, or substantive content of the work, and full scientific responsibility
lies solely with the human contributors.
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