
DHL: Enabling Flexible Software Network
Functions with FPGA Acceleration

Xiaoyao Li1 Xiuxiu Wang1 Fangming Liu∗1 Hong Xu2
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China
2NetX Lab, City University of Hong Kong

Abstract—Network function virtualization (NFV) aims to run
software network functions (NFs) in commodity servers. As CPU
is general-purpose hardware, one has to use many CPU cores
to handle complex packet processing at line rate. Owing to
its performance and programmability, FPGA has emerged as a
promising platform for NFV. However, the programmable logic
blocks on an FPGA board are limited and expensive. Imple-
menting the entire NFs on FPGA is thus resource-demanding.
Further, FPGA needs to be reprogrammed when the NF logic
changes which can take hours to synthesize the code. It is thus
inflexible to use FPGA to implement the entire NFV service chain.

We present dynamic hardware library (DHL), a novel CPU-
FPGA co-design framework for NFV with both high performance
and flexibility. DHL employs FPGA as accelerators only for
complex packet processing. It abstracts accelerator modules in
FPGA as a hardware function library, and provides a set of
transparent APIs for developers. DHL supports running multiple
concurrent software NFs with distinct accelerator functions on
the same FPGA and provides data isolation among them. We
implement a prototype of DHL with Intel DPDK. Experimental
results demonstrate that DHL greatly reduces the programming
efforts to access FPGA, brings significantly higher throughput
and lower latency over CPU-only implementation, and minimizes
the CPU resources.

I. INTRODUCTION

Network function virtualization (NFV) aims to shift packet
processing from dedicated hardware middleboxes to commod-
ity servers [1]–[4]. Implementing network functions (NFs) in
software entails many benefits, including lower equipment
cost, better flexibility and scalability, reduced deployment
time, etc [5], [6]. However, compared to dedicated network
appliances, software NFs on commodity servers suffer from
severe performance degradation due to overheads of the kernel
TCP/IP stack [6]–[10].

To overcome this limitation, several high performance
packet I/O engines are proposed. Intel DPDK [11] and netmap
[7]) bypass the kernel network stack to obtain packets directly
from the NIC to improve the I/O of software NFs. For
example, DPDK only needs two CPU cores to achieve 40 Gbps

∗The corresponding author is Fangming Liu (fmliu@hust.edu.cn). This
work was supported in part by the National Key Research & Develop-
ment (R&D) Plan under grant 2017YFB1001703, in part by NSFC un-
der Grant 61722206 and 61761136014 and 392046569 (NSFC-DFG) and
61520106005, in part by the National 973 Basic Research Program under
Grant 2014CB347800, in part by the Fundamental Research Funds for
the Central Universities under Grant 2017KFKJXX009, and in part by the
National Program for Support of Top-notch Young Professionals in National
Program for Special Support of Eminent Professionals.

throughput for L3 forwarding [12]. Although these packet I/O
engines provide the high I/O, it is still resource-demanding
to deploy NFs that have computation-intensive processing
logic, such as IPsec gateway and Network Intrusion Detection
System (NIDS). For example, it takes as many as 20 CPU
cores to reach 40 Gbps when performing packet encryption
with IPsec [13].

To further improve the performance of software NFs, there
is an emerging trend to implement NFs on FPGA in both
academia [14]–[17] and industry [18]. As a form of pro-
grammable silicon, FPGA enjoys high programmability of
software and high performance of hardware. Yet most of
current FPGA solutions implement the entire NF, including
the complete packet processing logic, on the FPGA board to
the best of our knowledge. This approach suffers from several
drawbacks.

First, the FPGA-only approach is resource-wasting. NFs
generally contain complex protocol processing and control
logic, which consumes many resources when realized in
hardware circuit. Besides, there are many types of NFs, this
incurs very high deployment cost with much resource de-
manding. Second, developing and programming FPGA is time-
consuming. It usually takes hours to synthesize and implement
HDL (Hardware Description Language) source code to final
bitstream [14]. Since debugging and modifying the design of
NF is common in practice, the FPGA-only approach presents
a significant barrier to fast development.

We present dynamic hardware library (DHL)1, a CPU-
FPGA co-design packet processing framework that enables
flexible FPGA acceleration for software NFs. In DHL, FPGA
serves as a hardware accelerator, not as a complete network
appliance. Specifically, we extract the computation-intensive
part, such as encryption and decryption in IPsec, pattern
matching in intrusion detection, etc., and offload them to
FPGA as accelerator modules. We provide a DHL Runtime
that hides the low-level specifics of FPGA, and we abstract
the accelerator modules as hardware functions in FPGA that
NF developers can call just like calling a software function.
DHL decouples the software development of software NFs and
the hardware development of FPGA accelerator modules that
software developer and hardware developer can concentrate on
what they are capable at. In addition, it provides data isolation

1DHL is opensourced on github: https://github.com/OpenCloudNeXt/DHL.

that supports multiple software NFs to use accelerator modules
simultaneously without interfering each other.

This paper describes the DHL architecture and makes the
following contributions:

1) We propose DHL, a CPU-FPGA co-design framework
which not only enables sharing FPGA accelerators among
multiple NFs to maximize utilization but also eases the
developing effort by decoupling the software develop-
ment and hardware development.

2) We abstract accelerator modules in FPGA as hardware
functions and provide a set of programming APIs, which
enable software applications to easily leverage FPGA
accelerators with minimal code changes.

3) We design a high throughput DMA engine between CPU
and FPGA with ultra-low latency for network applica-
tion. We achieve this by adopting several optimization
techniques of batching, user-space IO and polling.

4) We build a prototype of DHL and implement it on a server
equipped with a Xilinx FPGA board. Our evaluation on
the prototype demonstrates that DHL can achieve similar
throughput as high as 40 Gbps compared with previous
FPGA-only solutions, while incurring reasonable latency
less than 10 µs.

The rest of the paper is organized as follows. In Section II,
we introduce the motivation and challenges of our work.
Section III describes the overview of DHL. The implemen-
tation details is presented in Section IV. Then we evaluate
our DHL system in Section V and discuss the improvement
and applicable scenarios in Section VI. Next, we survey the
related work in Section VII. Finally, the paper is concluded in
Section VIII.

II. MOTIVATION AND CHALLENGES

A. FPGA is Not Perfect

There is much work about using FPGA for packet process-
ing. Whether it is a specific NF (e.g., a router [19], redundancy
elimination [17], load balancer [20], etc.) or a framework
to develop high-performance NFs [14], [21], [22], they all
demonstrate the fact that a hardware-based design performs
better than a software design with general purpose CPU.

There are usually many types of NFs. When it comes to
FPGA, there are some vital limitations for implementing NFs.

Firstly, the programmable logic units (look-up tables, regis-
ters, and block RAMs) of an FPGA are limited. It is resource-
wasting to put everything into FPGA as every module with
specified functionality consumes dedicated logic units. Indeed,
we can use a more advanced FPGA which contains more
resources, but the price of high-end FPGA is very high. For
example as of July 2017 a Xilinx UltraScale chip costs up to
$45,7112, which is 20× higher than that of a CPU ($2,2803

for Intel Xeon E5-2696v4, 22 cores).
Secondly, it is not friendly to change existing logics. Al-

though FPGA is programmable and there is much prior work

2The price is from AVNET, https://www.avnet.com
3The price is from Amazon, https://www.amazon.com

[14], [21], [22] aiming at improving the usability, it still suffers
from long compilation time. When new requirements and bug
occur, it usually takes hours to re-synthesize and re-implement
the code.

B. CPU is Not That Bad

The emerging high performance packet I/O engines such
as Intel DPDK [11] and netmap [7] bring a new life to the
software NFs. As reported by Intel, just two CPU cores can
achieve 40 Gbps line rate when performing L3 layer forward-
ing [12]. Further, we survey a wide variety of common network
functions, and find that there are two types of processing in
data plane:

• Shallow Packet Processing: Executing operations based
on the packet header, i.e., L2–L4 layer headers, such as
NAT, L2/L3 forwarding/routing, firewall, etc.

• Deep Packet Processing: Executing operations on the
whole packet data, such as IDS/IPS, IPsec gateway, flow
compression, etc.

For shallow packet processing, as the packet headers follow
the unified protocol specification, it usually does not need too
much computation efforts. For example, it just needs to check
and modify the specified header fields. For most common
operations – table lookup, we find that searching an LPM
(longest prefix match) table takes 60 CPU cycles on average
(26 ns@2.4 Hz), as shown in Table I. It is fairly fast for CPU
to perform shallow packet processing.

However, in terms of deep packet processing, it usually
needs much more compute resources since data of higher
layers has no regular patterns. Regular expression match
from deep packet inspection (DPI) [23] and cryptographic
algorithms [24] in IPsec gateways usually take more CPU
cycles to complete the processing (again see Table I).

TABLE I
PERFORMANCE OF DPDK WITH ONE CPU CORE

Network Function Latency (cpu cycles) with one core Throughput
L2fwd 36 9.95 Gbps

L3fwd-lpm 60 9.72 Gbps
IPsec-gateway 796 1.47 Gbps

1 L3fwd-lpm uses longest prefix match (lpm) table to forward packets based
on the 5-tuple; IPsec-gateway uses AES-CTR for cipher and SHA1-HMAC
for authentication;

2 Test with 64B packets, Intel 10G X520-DA2 NICs, DPDK 17.05 on
CentOS 7.2, kernel 3.10.0, with an Intel Xeon E5-2650 V3 @ 2.30GHz
CPU.

C. CPU-FPGA Co-Design & Challenges

Considering the pros and cons of FPGA and CPU, an
intuitive solution is to combine them together that keeping the
control logic and shallow packet processing running on CPU
and offloading the deep packet processing to FPGA. Compared
with FPGA-only NF solution, FPGA-CPU co-design brings
four key benefits.

• First, it fully utilizes FPGA resources. Only the compu-
tationally intensive processing are offloaded to FPGA as
accelerator modules, which generally has a reasonable

resource requirement of LUTs and BRAM. Thus an
FPGA board can host more modules.

• Second, software NFs can flexibly use these FPGA
accelerator modules on-demand, without having to re-
implement them from scratch. This also saves a lot of
FPGA development time and effort.

• Third, the accelerator modules can be standardized to
perform standard compression and encryption/decryption
operations, which do not need to change often. For exam-
ple we can have a suite of accelerator modules for various
categories of AES algorithms. The rest of the NF logic is
in software, and can be flexibly and frequently changed
without modifying the FPGA accelerator implementation.

• Last, it decouples the software development of NF and the
hardware development of accelerators. This means that
hardware experts can make the best efforts to optimize
the accelerator design without considering the complexity
of the NF, and software NF developers do not need to be
aware of the details of accelerators.

Meanwhile, the requirements of high performance and high
scalability pose several challenges to a CPU-FPGA co-design
packet processing framework:

• Considering the high throughput and low latency require-
ment of network functions, it calls for a high throughput
data transfer solution which is applicable for small pack-
ets (64B to 1500B) with minimal transfer delay between
host and FPGA.

• When it comes to the multiple NFs situation, previous
work [14], [19], [20] is not applicable, as they only target
for one type of NF at a time. It should be a flexible
framework that supports multiple accelerator modules for
different NFs in an FPGA. Even more, in consideration
of the limited resource, it should support reconfigure
the accelerator modules without interfering other running
modules on the fly.

• When multiple NFs call the same/different accelerator
module in the same FPGA, how to ensure the data
isolation between them and how to return the post-
processed data to the right NF.

III. SYSTEM OVERVIEW

Here we give an overview of the DHL framework as shown
in Figure 1. We design DHL as a generic framework to enable
software NFs to easily access FPGA accelerators. In DHL,
only hardware function abstractions are exposed to software
developers in the form of a set of programming APIs, and the
accelerator sharing and management are transparently handled
by our DHL Runtime.

A. Packet I/O Engine

The packet I/O engine determines the raw performance of
the framework. We choose to use Intel DPDK [11] because
it provides a set of comprehensive and efficient primitives to
ease the development of high performance network packet pro-
cessing framework. For example, its lockless multi-producer
multi-consumer ring library is particularly useful for buffering

DHL Framework

NICs FPGAs

UIO Driver

Intel DPDK

Data Transfer Layer

UIO-based PMD

I/O Buffer Queue

Hardware Function
DHL Runtime

Manager

Software NFs

Deep Packet Processing

Hardware

Kernel

Userspace

Fig. 1. Overview of DHL framework.

TABLE II
DHL PROGRAMMING APIS

Functions Description

DHL register() an NF registers itself to the DHL Run-
time

DHL search by name() for the NF to query its desired hard-
ware function

DHL load pr() for the NF to load a partial reconfigu-
ration bitstream

DHL acc configure() for the NF to configure the parameters
of its desired accelerator module

DHL get shared IBQ() for the NF to get a shared input buffer
queue

DHL get private OBQ() for the NF to get its private output
buffer queue

DHL send packets() for the NF to send the raw data to
FPGA

DHL receive packets() for the NF to get the processed data
from FPGA

data from different software NFs where we need to aggregate
and distribute packets with minimal overheads. Its NUMA-
aware hugepage memory management library and multi-core
management library make it easy to built multi-socket and
multi-core framework.

B. Hardware Function Abstractions

The gist of DHL is that NFs offload the computationally
intensive processing to FPGA. However, it is difficult and
time-consuming to write or revise code that cover specifics of
FPGA offloading and carefully handle vendor-specific details.
To solve this, DHL provides hardware function abstractions
that enable FPGA offloading in the form of a function call.

The hardware function abstractions of DHL provide devel-
opers a familiar DPDK programming model that fully encap-
sulates the low-level specifics of FPGA. The DHL APIs for
NFs to interact with FPGA are shown in Table II. Using DHL,
a software NF can benefit from FPGA acceleration by easily
shifting the software function calls to hardware functions
with minimal code changes. In the following, we explain the

1 //pre-processing of packets
2 rte_ring_dequeue_bulk(ring_in, pkts, n_pkts, NULL);
3 for (i=0;i<n_pkts;i++) {
4 aes_256_ctr(pkts[i], ...);
5 }
6 //continue other processing

Listing 1. Original software NF code for encryption.

1 //register to DHL and enqueue packets to OBQ
2 nf_id = DHL_register();
3 acc_id = DHL_search_by_name(‘‘aes_256_ctr‘‘);
4 DHL_configure(acc_id, default_conf);
5 for (i=0; i<n_pkts; i++) {
6 pkts[i].nf_id = nf_id;
7 pkts[i].acc_id = acc_id;
8 }
9 struct rte_ring* IBQ = DHL_get_shared_IBQ(nf_id);

10 DHL_send_packets(IBQ, pkts, n_pkts);
11

12 //fetch packets from the OBQ
13 struct rte_ring* OBQ = DHL_get_private_OBQ(nf_id);
14 DHL_receive_packets(OBQ, pkts ,n_pkts);

Listing 2. Code with DHL using hardware function calls.

detailed process of transforming a software function call (in
Listing 1) to DHL hardware function calls (in Listing 2) using
an example of encryption.

From Listing 1, we can see that the NF calls a function
called aes_256_ctr() to encrypt a set of packets pkts.
To see how to accelerate the encryption function with DHL,
we turn to Listing 2. First the NF needs to register with the
DHL Runtime to get its nf id, and searches the hardware
function table for the hardware function named aes 256 ctr
to get the acc id. Then it configures the hardware function.
Before sending the raw data to FPGA, the nf id and target
acc id must be attached to the packets. At last, NF requests
a shared input buffer queue (IBQ) from DHL Runtime by
specifying its numa id (see Section IV-A2), and enqueues
all the packets to the shared IBQ. Meanwhile, the NF needs
to poll its private output buffer queue (OBQ) to get packets
returned from hardware function.

C. DHL Runtime

DHL Runtime handles with the underlying FPGA substrate
and hides all specifics of them.

In control plane, DHL Runtime manages all the accelerator
modules and FPGAs in the system. As Figure 2 shows, the
Controller in DHL is key component. On one hand, it responds
to the registration request of NFs to assign nf id and create
private OBQ for them. On the other hand, it maintains the
hardware function table and accelerator module database.
In detail, hardware function table stores the mappings of
hf name and acc id, and accelerator module database stores
the PR bitstream of all the supported accelerator modules
(more details see Section IV-C).

In data plane, DHL Runtime exploits the lockless ring as
the I/O buffer queue to buffer data and provide data isolation
among multiple NFs. Moreover, DHL proposes a generic high-

throughput low-latency data transfer layer between the host
and FPGAs, which exploits several optimization techniques,
such as batching data transfer of data packets, using user-space
I/O technology to map the register of FPGAs into user-space
to bypass the kernel, and polling the DMA engine to further
mitigate the latency.

IV. IMPLEMENTATION

We implement a prototype of DHL [25] on top of DPDK
and it needs no modification to DPDK. In this section, we
describe the implementation details.

A. Data Transfer Layer

Since both the latency and throughput are critical to network
functions, a low-latency, high-throughput data transfer layer is
essential to DHL framework.

1) UIO-based Poll Mode Driver: Most of FPGA-based
accelerating solutions are designed for large volume data pro-
cessing (data transfer size usually varies from tens to hundreds
megabytes) with millisecond level latency requirement, such
as genomic analysis, machine learning, video transcoding and
compression. It is unapplicable for network functions due
to their ultra-low microsecond-level latency requirement and
small packet size that an ethernet packet varies from 64 bytes
to 1500 bytes.

To meet the ultra-low latency demand, we design a
userspace I/O (UIO) based poll mode driver for the scatter-
gather (SG)4 packet DMA engine for FPGAs. Firstly, a stan-
dard in-kernel driver for the peripheral accelerating devices
needs to implement a set of standard system interfaces for both
data transfer and device configuration. User applications need
to use corresponding system calls, like write(), read(),
and ioctl(), etc, to interact with the in-kernel driver, which
takes many CPU cycles to deal with context switch between
user space and kernel space. By utilizing the UIO technology,
we map the registers and memory space of FPGAs to the
userspace memory address, thus DHL Runtime can directly
manipulate the FPGA and bypass the system kernel. Secondly,
interrupt is the common means for the peripheral accelerating
devices to return the post-processing data. Although it saves
CPU cycles to handle other processes, the interrupt handling
incurs extra processing latency for content switch. We avoid
this by realizing the driver in poll mode that we assign
dedicated CPU cores for data transfer. In detail, DHL data
transfer layer continually checks whether there is data to be
transferred to FPGAs or whether there are data returned from
FPGAs.

2) NUMA Aware: In a multi-core system, memory access
time depends on the memory location relative to a processor
(see Figure 3). Similarly, DMA transactions of data transfer
layer between FPGA to a remote host memory will degrade
I/O performance too. To avoid this, DHL carefully allocates
huge pages and sets CPU affinity in a NUMA-aware fashion.
The packet descriptors of DMA Engine, shared input buffer

4Scatter-gather refers to the process of gathering data from, or scattering
data into, the given set of buffers.

FPGA
NF1

NF2

NFn

... ...

Packer

Distributor

Acc1

Acc2

...

Accn

TX

RX

D
isp

a
tch

er

D
M

A

DHL Runtime

hf.name s.id a.id f.id

Acc.1 0 0 0

Acc.n 0 1 1

Acc.n+1 1 2 2

…

Controller

PR Region
Output Buffer Queue

Input Buffer Queue

Input Data Flow

Output Data Flow

FPGA Data Flow

FPGA Control Flow

Control Flow

Hardware Function Table

Config

Poll Mode

PRAccelerator
Module

Database

Fig. 2. The detailed architecture of DHL. In hardware function table, hf.name: hf name; s.id: socket id; a.id: acc id; f.id: fpga id.

CPU0 CPU1RAM RAM

Local Access Remote Access

FPGA1

PCIEFPGA0

PCIE
FPGA3

PCIE FPGA2

PCIE

Fig. 3. The block diagram of NUMA architecture server.

queues, and private output buffer queues are allocated in the
same NUMA node with the targeted FPGA. Moreover, DHL
Runtime schedules the CPU core in the same NUMA node to
execute the polling tasks.

3) Transfer batching: To evaluate our UIO based poll mode
driver and packet DMA engine, we implement a loopback
module in FPGA that simply redirects the packets received
from RX channels to TX channels without any involvement
of other components in FPGA. Figure 4 summarizes the
performance of our packet DMA engine with different transfer
size. As a base-line, we compare our UIO based poll mode
driver with the in-kernel driver [26] provided by Northwest
Logic, which also runs in poll mode.

Interestingly, shown from Figure 4(a) and Figure 4(b) when
evaluating the improvement of NUMA-aware feature, we find
that the NUMA-aware memory allocation gains no throughput
improvement and only gains about 0.4 µs (about 800 CPU
cycles) latency saving. This indicates that compared to data
transfer overhead between host memory and FPGA, the remote
memory access overhead is minimal.

Moreover, figure 4(a) shows that our UIO based poll mode
driver achieves higher throughput than in-kernel driver with
any transfer size. Also as shown in Figure 4(b), the round-trip
transfer latency of in-kernel driver is as high as 10 ms, while
our UIO based poll mode driver has very low latency of 2 µs.

However, we can see that up to 42 Gbps throughput, is
only obtained for transfer size bigger than 6 KB. Luckily,
the latency of 6 KB transfer size is only 3.8 µs. Since the
low throughput of small transfer size may severely bottleneck

Transfer Size
64B

128B
256B

512B
1KB

2KB
3KB

4KB
5KB

6KB
7KB

8KB
16KB

32KB
64KB

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

10

20

30

40

50

In-kernel

Different NUMA nodes

Same NUMA node

(a) Throughput

Transfer Size
64B

128B
256B

512B
1KB

2KB
4KB

8KB
16KB

32KB
64KB

L
a
te

n
c
y
 (
µ

s
)

10
0

10
1

10
2

10
3

10
4

10
5

In-kernel

Different NUMA nodes

Same NUMA node

(b) Latency

Fig. 4. The performance of the packet DMA engine with PCIe GEN3 x8.
Same NUMA node means the test is between the local memory and FPGA.
Different NUMA node means the test is between a remote memory and FPGA.

the ingress traffic of accelerator modules, thus leading a
severe accelerating degradation, we aggressively use batching
to transfer a bundle of packets to FPGA at a time. On the
other hand, the accelerator modules in FPGA usually employ
packet level parallelism. This implies the accelerators need to
manipulate multiple packets in parallel, and demands the batch
transfer of packets between the host and FPGA. To balance the
throughput and latency, the maximum batching size is limited
at 6 KB.

To achieve batching, there are two components, Packer
and Distributor in DHL Runtime (see Figure 2). When DHL
Runtime dequeues the shared IBQs to get ingress packets,
Packer groups them by acc id, and encodes the 2-Byte tag
pair (nf id, acc id) into the header of date field. Then the

Packer encapsulates the packets of the same group to perform
batching according to the pre-set batching size. At the same
time, Distributor polls the FPGAs to get the post-processed
packets. It first decapsulates the batched packets, and distribute
them to private OBQs in terms of their nf id.

4) Shared IBQs & Private OBQs: As Figure 2 shows, DHL
employs the lockless ring, provided by DPDK, to implement
the input buffer queues (IBQs, software NFs to data transfer
layer) and output buffer queues (OBQs, data transfer layer to
software NFs) to buffer and isolate the data between software
NFs.

At runtime, DHL needs to check the IBQs to get the raw
data and transfer them to FPGAs. Considering that assigning
one CPU core to poll all the IBQs increases latency and
assigning each IBQ a dedicated CPU core is costly, we treat
IBQs and OBQs in different way. Specifically, DHL Runtime
creates a multi-producer and single-consumer IBQ for every
NUMA node, and each IBQ is shared among the software NFs
that runs in the same NUMA node. Differently, DHL Runtime
creates a private single-producer and single-consumer OBQ for
each software NF so that each software NF can easily get the
post-processed data separately.

B. Data Isolation

DHL supports accelerating multiple NFs simultaneously
regardless of whether they call the same or different hardware
functions. Unlike the software execution model in which
CPU interprets the instructions to fetch data from memory
to perform processing, the raw data to be processed needs to
passes through the hardware circuits like a stream in FPGA.
How to ensure the data isolation among multiple accelerator
modules and how to distribute the post-processed data to each
software NF become a problem. Intuitively, we use the unique
identifier to distinguish different NFs and hardware functions.

1) Distinguish among Multiple NFs: To distinguish the raw
data from different NFs, software NFs need attach their nf id
to the raw data. When these data returned from FPGA, DHL
Runtime can distribute them to different private OBQ based
on the nf id tag.

2) Distribute Data to Different Accelerator Modules: There
is a module named Dispatcher in each FPGA, which is
responsible for dispatching the data sent from DHL data
transfer layer to different accelerator modules based on the
acc id, and re-packing the post-processed data to get them
back to host.

C. Accelerator Modules & Partial Reconfiguration

In DHL, software NFs only offload the deep packet pro-
cessing to FPGA to minimize the programming logic cell
consumption of each accelerator module. Therefore, we can
put more accelerator modules in the same FPGA to maximize
the resource utilization. Further, to meet the demand of the
changeable NFV environment and to provide more flexibility,
DHL supports reconfigure the accelerator module without
interfering other running accelerators on the fly. DHL enables

TABLE III
HARDWARE CONFIGURATION

Category Specification

CPU 2x Intel Xeon Silver 4116
(12 cores @2.1 GHz, 16.5 MB L3 cache)

RAM 128 GB (DDR4, 2400 MHz, 16GB x 8)

NIC 2x Intel XL710-QDA2 (dual-port 40 GbE)
2x Intel X520-DA2 (dual-port 10 GbE)

FPGA Xilinx Virtex-7 VC709 FPGA board
(XC7VX690T FPGA, PCIe 3.0 x 8)

this by adopting the Partial Reconfiguration (PR) technology
[27], [28] supported by most of the FPGA vendors.

With PR technology, the logics in the FPGA design are
divided into two types, static region and reconfigurable region.
In DHL, DMA engine, Dispatcher, Config module and PR
module belong to static region. Apart from the static region,
we divide the rest logic resource into several reconfigurable
parts.

When designing an FPGA, we first generate the config-
uration bitstream of the base design that keeps the recon-
figurable parts blank with data and configuration interfaces
defined. Then we fill the reconfigurable part with accelerator
module (e.g. Encryption, Decryption, MD5 authentication,
Regex Classifier, Data Compression, etc) in the base design to
generate partial reconfiguration bitstream. These PR bitsteams
are stored in the accelerator module database managed by the
DHL Runtime.

When a software NF looks up the hardware function table
with its desired hf name and socket id, if there is no
matched item in the table, the DHL Runtime will search accel-
erator module database to get the PR bitstream associated with
the hf name and update the table entry. Then, DHL Runtime
calls the DHL load PR() API to partially reconfigure the
FPGA. In detail, DHL Runtime sends the PR bitstream to
Reconfig module, and Reconfig module partially reconfigure
the target reconfigurable part in FPGA through ICAP (Internal
Configuration Access Port) without interfering other running
accelerator modules.

Importantly, DHL allows software developers to add their
self-built accelerator modules to accelerator module database
as long as following the specified design specifications. In the
base design of FPGA, we apply the same design specifications
for every reconfigurable part of a 256 bits width data-path
in AXI4-stream protocol and a 250 MHz clock. Following
these design specifications, software NF developers can design
their customized accelerator modules, and they can generate
their customized PR bitstreams by merging them into the base
design provided by DHL.

V. EVALUATION

A. Testbed

First we introduce our evaluation testbed. We use three Dell
R740 servers, one equipped with a Xilinx VC709 FPGA board

IPHeader Classification

IPsec Tunnel

OUTPUT

IPsec SA Matching

Ingress

(a) IPsec Gateway

Pre-processing

Rule Options Evaluation

OUTPUT

Pattern Matching

Ingress

(b) NIDS

Fig. 5. Workflow of IPsec gateway and NIDS.

(with PCIe Gen3 x8) plugged in a PCI-e GEN3 x16 slot on
which running the DHL, and the other two acting as a traffic
generator. Table III lists the specifications of these servers. All
the NICs are connected to a Top-of-Rack (ToR) Dell S6010-
ON switch [29]. We use DPDK-Pktgen [30] to generate and
sink traffic.

The host OS is Centos 7.4 (kernel 3.10.0), DPDK version
is 17.08. We set up 16 GB hugepages for DPDK runtime per
server.

B. Sample Applications

1) IPsec gateway: IPsec is widely used to protect com-
munications over Internet Protocol (IP) networks with cryp-
tographic security services. Figure 5(a) shows the generic
workflow of IPsec gateway. If the network packets match the
IPsec security association (SA)5, the IPsec gateway performs
encryptions and authentication on them. Since cryptographic
operations (encryption and authentication) used in IPSec are
highly computation-intensive and previous works [8], [14]
have shown that software based IPSec gateway behave poor
performance, we choose to offload them to FPGA.

2) Network Intrusion Detection System: Network intrusion
detection system (NIDS) analyzes and monitors the incoming
network packets for malicious activity. It usually uses Deep
Packet Inspection (DPI) to inspect the entire packet based on
the pre-defined signature ruleset. Figure 5(b) shows the generic
workflow of an NIDS. The NIDS reads packets, prepares them
for pattern matching, runs pattern matching to detect potential
attacks, evaluates various rule options, and finally passes or
drops the packets based on rule options. The pattern matching
used in NIDS is the bottleneck which consumes a lot of CPU
cycles for computation [31], [32], we choose to offload it to
FPGA.

For evaluation, these two applications are implemented
in two versions, CPU-only version and DHL version. The
CPU-only version is the pure-software implementation and is
built based on the pipeline mode offered by Intel DPDK. In
pipeline mode, the application is made up of separate I/O
cores and worker cores: the I/O cores are responsible for

5A security association is simply the bundle of algorithms and parameters
(such as keys) that is being used to encrypt and authenticate a particular flow
in one direction.

receiving/sending packet from/to NICs and enqueuing/dequeu-
ing them to/from the rings shared with worker cores, and
worker cores are responsible for the asynchronous processing
of these packets. In contrast, the DHL version offloads the
computation-intensive part (i.e., cryptographic operations of
IPsec gateway and pattern matching of NIDS) to FPGA.

We implement an IPsec gateway that encrypts packet pay-
load with the 256-bit AES scheme in CTR mode and creates an
authentification digest with HMAC-SHA1. For CPU-only ver-
sion, we use the Intel-ipsec-mb library6 for the block encryp-
tion and authentication. The Intel-ipsec-mb library uses the
Intel Multi-buffer [13] technology along with Intel SSE, AVX,
AVX2, AVX512 instruction sets to maximize the throughput
that CPU can achieve. In contrast, for DHL version we
implement an accelerator module, named ipsec-crypto, which
is the combination of AES 256 CTR algorithm for encryption
and the HMAC SHA1 algorithm for authentication.

We implement a signature-based NIDS that uses a Snort-
based [33] attack ruleset to monitor malicious activity. For
CPU-only version, we use Aho-Corasick (AC) pattern match-
ing algorithm [34] to scan ingress network traffic. Correspond-
ingly, we implement an accelerator module named pattern-
matching by porting the multi-Pattern string matching algo-
rithm [35] for DHL version.

C. Performance Gains for Single Application

First, we evaluate DHL with only one NF instance that we
run IPsec gateway and NIDS separately. We use the Intel
XL710-QDA2 NIC which supports up to 40 Gbps traffic
and needs 2 I/O CPU cores to achieve this rate. Table IV
summaries the configuration of CPU core assignment and
batching size. Specifically, we allocate 2 CPU cores for DHL
Runtime that one for sending data to FPGA, and the other for
receiving data from FPGA, and we set the batching size to 6
KB to match the 40 Gbps line-rate. Also, we allocate 2 CPU
cores for workers in CPU-only version. Besides, we design a
test that only takes 2 CPU cores to perform the IO operation
without computation processing as the base line.

Figure 6 shows the throughput and latency of the IPsec
gateway and NIDS. We can see that, taking the same 4 CPU
cores DHL version outperforms the CPU-only version. For
IPsec gateway, the DHL version reaches close to the peak
throughput of I/O throughput, from 19.4 Gbps with 64B
packets to 39.6 Gbps with 1500B packets, while the CPU-
only version achieves very low throughput, from 2.5 Gbps with
64B packets to 7.3 Gbps with 1500B packets. For NIDS, the
DHL version gains the throughput from 18.3 Gbps with 64B
packets to 31.1 Gbps with 1500B packets, while the CPU-only
version only achieves 2.2 Gbps with 64B packets to 7.7 Gbps
with 1500B packets. It is the pattern-matching module that
limits the maximum throughput of NIDS to 31.1 Gbps. Due
to the limited resource of a reconfigurable part, it is restricted

6Intel(R) Multi-Buffer Crypto for IPsec Library, a highly-optimized soft-
ware implementation of the core cryptographic processing for IPsec, which
provides industry-leading performance on a range of Intel(R) Processors.

TABLE IV
EXPERIMENT CONFIGURATION

Test Software NF Ethernet I/O
CPU-only DHL

Worker Total Runtime Batching Size Total cores

Single NF
IPsec Gateway 2 cores 2 cores 4 cores 2 cores 6 KB 4 cores

NIDS 2 cores 2 cores 4 cores 2 cores 6 KB 4 cores
Multi-NFs with

accelerator shared 1
IPsec Gateway 1 core

N/A N/A 2 cores 6 KB 4 cores
IPsec Gateway 1 core

Multi-NFs with
different accelerators 2

IPsec Gateway 1 core
N/A N/A 2 cores 6 KB 4 cores

NIDS 1 core
1 We run two IPsec gateway instances that use the same accelerator module IPsec crypto.
2 We run an IPsec gateway instance using the accelerator module IPsec crypto, and a NIDS instance using the accelerator module

pattern matching simultaneously.

Packet Size
64B 128B 256B 512B 1024B 1500B

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

10

20

30

40

50

CPU-only DHL ClickNP I/O

(a) Throughput of IPsec gateway

Packet Size
64B 128B 256B 512B 1024B 1500B

L
a
te

n
c
y
 (
µ

s
)

0

10

20

30

40

50

60

70

80

CPU-only DHL ClickNP

(b) Latency of IPsec gateway

Packet Size
64B 128B 256B 512B 1024B 1500B

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

10

20

30

40

50

CPU-only DHL I/O

(c) Throughput of NIDS

Packet Size
64B 128B 256B 512B 1024B 1500B

L
a
te

n
c
y
 (
µ

s
)

0

25

50

75

100

125

150
CPU-only DHL

(d) Latency of NIDS

Fig. 6. Throughput and processing latency of the single IPsec gateway/NIDS running with 40G NIC.

Packet Size
64B 128B 256B 512B 1024B 1500B

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

5

10

15

20

25
IPSec1 IPSec2

(a) Throughput of two IPsec gateway

Packet Size
64B 128B 256B 512B 1024B 1500B

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

0

5

10

15

20

25
IPsec NIDS

(b) Throughput of IPsec gateway and NIDS

Fig. 7. The throughput of multiple NFs with 10G
NICs.

to process no more than 8 characters per clock cycle, which
gives a theoretical throughput of 32 Gbps.

We measure the latency by attaching a timestamp to each
packet when the NF gets them from NIC. Before the packets
are sent out from NIC, we use the current timestamp to
minus the saved one. Figure 6(b) and Figure 6(d) shows the
processing latency under different load factors. We can see that
when packet size increases, the processing latency for CPU-
only version increases up to 72 µs for IPsec gateway and
138 µs for NIDS. For DHL version, both IPsec gateway and
NIDS incurs less than 10 µs in any packet size. Moreover, we
can see that the latency is higher of 64B packets than 1500B
packets. Since it needs to encapsulate more packets to reach
the batching size of 6 KB for 64B packets, that indeed incurs
more time to dequeue enough packets from shared IBQs.

Besides, as ClickNP [14] has implemented an FPGA-only
IPsec gateway, we compare our DHL framework with it in
terms of IPsec gateway. Since ClickNP is not opensourced that
we cannot reproduce their experiment with our platform, we
use the result reported in their paper. As shown in Figure 6(a),

we can see that the throughput of DHL is close to ClickNP
except for small packet size. From Figure 6(b), we find that
the IPsec gateway of ClickNP suffers more latency than DHL,
it is weird that it should not be so high if based on the delay
(cycles) of their elements reported in their paper.

From these single NF tests, we can see that DHL, using
four CPU cores, the CPU-FPGA co-design framework, can
provide up to 7.7× throughput with less to 19× latency for
IPsec gateway and up to 8.3× throughput with less to 36×
latency for NIDS .

D. Multiple NF Applications

Since there is only one FPGA board in our testbed, which
only can offer up to 42 Gbps data transfer throughput between
CPU and FPGA. To evaluate how DHL performs with multiple
NFs running simultaneously, it needs to divide the total
transfer throughput to each NF instance. So we use two Intel
X520-DA2 Dual port NICs (total four 10G ports) to provide
four separate 10 Gbps input traffic, total 40 Gbps input traffic,
and assign them to different NF instances. Unlike the 40G port
of Intel XL710-QDA2 NIC, only one CPU core is enough to

TABLE V
RECONFIGURATION TIME OF ACCELERATOR MODULES

Accelerator Module PR Bitstream Size PR Time

ipsec-crypto 5.6 MB 23 ms
pattern-matching 6.8 MB 35 ms

saturate the full 10 Gbps at any packet size for 10G port of
Intel X520-DA2 NIC.

In detail, we run two IPsec gateway instances to imitate the
situation that multiple NFs use the same accelerator module
(call the same hardware function), and an IPsec gateway
instance along with an NIDS instance to imitate the situation
that different NFs use the different accelerator modules in
the same FPGA. We assign two 10G ports to each instance
and each port assigned with one CPU core for I/O, thus the
theoretical maximum throughput of each instance is 20 Gbps
in total.

Figure 7(a) shows that both two IPsec gateway using the
same accelerator module ipsec-crypto can reach the maximum
throughput of 20 Gbps with any packets size. However, shown
from Figure 7(b), we can see that the throughput of IPsec
gateway is a little lower than NIDS. The reason for this is that
the pattern-matching accelerator modules incurs fewer delay
cycles than ipsec-crypto, thus NIDS can get the post-processed
data returned from FPGA faster.

From this multiple NFs test, we demonstrate that DHL
is capable of supporting multiple NFs whether they use
the same/different accelerator modules. Furthermore, different
accelerator modules may affect the accelerating throughput of
NFs a bit due to their different processing delays.

E. Partial Reconfiguration

To evaluate how partial reconfiguration works, we first load
the base design into FPGA and remain all the reconfigurable
parts blank. Then we start the IPsec gateway by loading
the ipsec-crypto accelerator module. After the IPsec gateway
is stable, we start the NIDS to dynamically reconfigure a
free reconfigurable part into pattern-matching. We change the
launching order and test again. There is no throughput degra-
dation of the running NF when we load the new accelerator
module into FPGA.

Table V presents the reconfiguration time of these two
accelerator modules. The reconfiguration time is the time
interval counted from calling the DHL load pr() function to
load PR bitsteam till status register indicating reconfiguration
done. We can see that the reconfiguration time is proportional
to the PR bitstream size and is very short.

F. Utilization of FPGA

From Table VI, we can see that both ipsec-crypto and
pattern-matching use a small portion of LUTs (Lookup tables),
2.18% for ipsec-crypto and 1.4% for pattern-matching. When
it comes to BRAM, the consumption is rather higher than
LUTs in which ipsec-crypto consumes 16.46% while pattern-
matching consumes 35.64% BRAM. For ipsec-crypto, the

TABLE VI
SUMMARY OF THE TWO ACCELERATOR MODULES AND STATIC REGION

Accelerator
Module

LUTs1 BRAM1 Throughput
(Gbps)

Delay
(Cycles)

ipsec-crypto
9464

(2.18%)
242

(16.46%)
65.27 110

pattern-matching
6336

(1.4%)
524

(35.64%)
32.40 55

Static Region
136183

(31.43%)
83

(5.64%)
N/A N/A

1 We use a Xilinx Virtex-7 VX690T FPGA with 433200 LUTs
and 1470 (x36Kb) BRAM blocks.

reason is our implementation of the cipher operation needs
to set up a 28 stages pipeline to provide up to 60 Gbps
throughput, which consumes massive registers to hold the
intermediate results. For pattern-matching, it is the multiple-
pipeline AC-DFA [35] that costs much BRAM. Apart from
the static region, there are enough resource to place 5 ipsec-
crypto or 2 pattern-matching in an FPGA. If we decrease the
size of the AC-DFA pipeline, it can put more pattern-matching
accelerator modules. Alternatively, we can use the latest FPGA
chip, which contains much more resource.

G. Developing Effort

For software development, it is easy to shift the existing
software NFs into DHL version by using the DHL program-
ming APIs. As shown from Listing 2 in Section III-B, it just
needs minimal modifications (tens of LoC, see Table VII) to
turn a pure software implemented NF to DHL version.

TABLE VII
THE TOTAL LINES OF CODE TO SHIFT THE CPU-ONLY NF INTO DHL

Accelerator Module ipsec-crypto pattern-matching
LoC1 33 35

1 Line of code. It represents how many lines of code
modified or added to shift a software function call
to the hardware function call.

For hardware development, we implement the two acceler-
ator modules, ipsec-crypto and pattern-matching, by directly
writing the verilog code, so that we can fully optimize for
performance. Alternatively, it can be quicker to develop the ac-
celerator modules by using the high-level language compilers
or tools [14], [21], [22], [36] in the price of some performance
degradation.

During the evaluation, DHL eases the developing efforts
from two aspects: (i) since DHL decouples the software
developing and hardware developing, we do both in parallel,
which provides us great flexibility; (ii) after we finished the
accelerator modules, we just leave them aside. When adjusting
the NFs to conduct different tests, we modify the codes and
compile the application totally in software fashion, which
significantly saves time.

VI. DISCUSSION

So far we have demonstrated that DHL is easy to use,
and it effectively increases the throughput of software NFs

by offloading computation-intensive tasks to FPGA. We dis-
cuss related issues, the current limitations, more applicable
scenarios here.

1) Vertical scaling: As shown in Section IV-A, our pro-
totype can only provide a maximum throughput of 42 Gbps
due to the PCI-e 3×8 specification, of which the theoretical
bandwidth is 64 Gbps. It restricts the accelerating capacity of
an FPGA when the aggregate throughput of NFs exceeds the
maximum throughput. To get higher throughput for an FPGA,
we can replace with an advanced one (e.g., PCI-e 3×16 with
126 Gbps), alternatively we can install more FPGA cards into
the free PCIe slots.

2) Batching size: By now, we aggressively set the batching
size of DHL Runtime as high as 6KB for maximum DMA
throughput. It incurs more waiting time to aggregate packets to
reach the batching size for small size packets, thus increasing
the latency. For future work, we are going to design a dynamic,
adaptive algorithm that DHL Runtime adjusts the batching
based on the traffic size. When the traffic is small, it decreases
the batching size to reduce latency.

3) Applicable to more: In this paper, we demonstrate the
ability of DHL to accelerate software NFs with the sample
applications of IPsec gateway and NIDS. Since DHL pro-
vides a set of transparent APIs for software developers to
interact with FPGA, it seems naturally applicable to other
software applications that contain computation-intensive tasks.
However, to support more (e.g., machine learning), it needs
to modify the data structure and DMA engine. Since DHL
targets software NFs, we choose the unified packet structure of
DPDK – rte mbuf , which is highly optimized for networking
packets, and has a limited maximum data size for 64 KB.
Moreover, DHL uses the scatter-gather DMA engine, it is
also highly optimized for networking packets which is usually
small.

VII. RELATED WORK

Click [37] offers a modular software architecture for router
implementation so as to enable easy programmability and scal-
ability. However, software NFs suffer lower performance than
hardware appliance. RouteBricks [6] is a scalable software
router that parallelizes packet processing with multiple CPU
cores as well as scaling across a cluster of servers to fully
exploit the CPU cores. It achieves 35 Gbps packet forwarding
performance with four servers. DoubleClick [38] improves
the performance by employing batching to packet I/O and
computation, showing 10x improvement to reach 28 Gbps for
IPv4/IPv6 packet forwarding rate.

To accelerate software packet processing, there is much
work exploiting GPUs. PacketShader [8] demonstrates the
feasibility of 40 Gbps packet forwarding speed for 64B packets
with GPU as accelerators. However, to achieve the 40 Gbps,
it requires up to 1024 batching size, which incurs at least 200
µs latency. To avoid the overhead of PCIe communication of
GPU, APUNet [39] proposes a APU-based packet processing
platform which decreases the maximum latency to 3.4 µs.

Due to the re-programmability and the ability to customize
the hardware, there is a large number of work implementing
network functions with FPGA, such as load balancer [20],
DNS server [21], IPsec gateway [14], Network Intrusion
Prevention [40]. They all demonstrate that FPGA can pro-
vide better performance than software solutions with higher
throughput and lower latency. However, most of these works
put the entire network function in FPGA, thus lacks flexibility
and scalability as we discussed in this paper.

We are not the first to combine CPU and FPGA to accelerate
network functions. For example, VNRE [17] gives an example
of using FPGA to accelerate NRE (Network Redundancy
Elimination), which offloads Rabin fingerprint computation
and CDC algorithm to FPGA. ClickNP [14] claims that it
supports joint CPU/FPGA processing and shows examples
of traffic generator and logger. However, there is no work
providing a unified framework for software network functions.
To the best of our knowledge, DHL is the first general
framework for CPU-FPGA co-design.

Designing FPGA needs to use HDLs, making it difficult
for the software developers who lack hardware skills. There
are some work providing developing tools and techniques
to simplify FPGA programming. ClickNP [14] proposes a
modular design and utilizes high-level synthesize tools to
develop network functions in FPGA with high-level language.
Emu [21] is a framework that enables application developers
to write network services in a C# language and makes them
automatically compiled to FPGA platform. We can fully
utilize these tools to help rapidly develop and test accelerator
modules.

VIII. CONCLUSION

In this paper, we first review current FPGA-based solu-
tions to accelerate network functions. Almost all of current
solutions tend to implement the entire NF on FPGA, which
exposes several drawbacks (e.g., resource-wasting and costly,
long compilation time), leading to high cost and lack of
programming flexibility to meet varying requirements in real-
world deployment. To tackle the above shortcomings, we
propose DHL, a CPU-FPGA co-design framework for high
performance packet processing. DHL allows the main body
of NFs (e.g., packets I/O and control logic) to run on CPU
and offloads computation-intensive processing to FPGA for
acceleration. It decouples the software-level programming and
hardware-level acceleration, and provides abstractions which
not only keeps the flexible programming for software NFs
modification, but also enables high performance of NFs with
less FPGA resources. In addition, it supports multiple software
NF applications to call the same/different hardware func-
tions on FPGA simultaneously without interfering each other.
Finally, we build a prototype of DHL system on a server
equipped with a Xilinx FPGA. Our evaluation demonstrates
that DHL can achieve similar throughput (as high as 40 Gbps)
using much fewer FPGA resources, while incurring reasonable
latency less than 10 µs.

REFERENCES

[1] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE, 2017, pp. 731–
741.

[2] T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for virtual
network functions,” in Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference on. IEEE, 2017, pp. 1322–1332.

[3] X. Fei, F. Liu, H. Xu, and H. Jin, “Towards load-balanced vnf assignment
in geo-distributed nfv infrastructure,” in Quality of Service (IWQoS),
2017 IEEE/ACM 25th International Symposium on. IEEE/ACM, 2017,
pp. 1–10.

[4] ——, “Adaptive vnf scaling and flow routing with proactive demand
prediction,” in INFOCOM 2018 - The 37th Annual IEEE International
Conference on Computer Communications. IEEE, 2018, pp. 1–9.

[5] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2014, pp. 459–473.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploiting
parallelism to scale software routers,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 15–28.

[7] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in USENIX
Annual Technical Conference, 2012.

[8] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in Proceedings of the ACM SIGCOMM 2010 confer-
ence. ACM, 2010, pp. 195–206.

[9] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the energy efficiency
of network function virtualization,” in Quality of Service (IWQoS), 2016
IEEE/ACM 24th International Symposium on. IEEE, 2016, pp. 1–10.

[10] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the
performance interference of co-located virtual network functions,” in
INFOCOM 2018 - The 37th Annual IEEE International Conference on
Computer Communications. IEEE, 2018, pp. 1–9.

[11] I. Corporation, “Intel data plane development kit,” http://dpdk.org/.
[12] “DPDK Intel NIC Performance Report,” http://fast.dpdk.org/doc/perf/

DPDK 17 05 Intel NIC performance report.pdf.
[13] Intel, “Processing multiple buffers in parallel to increase performance

on intel architecture processors.”
[14] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng,

“Clicknp: Highly flexible and high-performance network processing with
reconfigurable hardware,” in Proceedings of the 2016 ACM SIGCOMM
Conference. ACM, 2016, pp. 1–14.

[15] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE Micro,
vol. 34, no. 5, pp. 32–41, 2014.

[16] M. B. Anwer and N. Feamster, “Building a fast, virtualized data plane
with programmable hardware,” in Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures. ACM, 2009,
pp. 1–8.

[17] X. Ge, Y. Liu, C. Lu, J. Diehl, D. H. Du, L. Zhang, and J. Chen, “Vnre:
Flexible and efficient acceleration for network redundancy elimination,”
in Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional. IEEE, 2016, pp. 83–92.

[18] “LiquidIO II.” http://www.cavium.com/pdfFiles/LiquidIO II CN78XX
Product Brief-Rev1.pdf.

[19] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki, J. Crenne,
L. Gao, and R. Tessier, “Scalable network virtualization using fpgas,” in
Proceedings of the 18th annual ACM/SIGDA international symposium
on Field programmable gate arrays. ACM, 2010, pp. 219–228.

[20] S. Atalla, A. Bianco, R. Birke, and L. Giraudo, “Netfpga-based load
balancer for a multi-stage router architecture,” in Computer Applications
and Information Systems (WCCAIS), 2014 World Congress on. IEEE,
2014, pp. 1–6.

[21] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton, R. Clegg,
L. Mai, P. Bressana, R. Soulé, R. Mortier, P. Costa, P. Pietzuch,
J. Crowcroft, A. W. Moore, and N. Zilberman, “Emu: Rapid prototyping
of networking services,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17). Santa Clara, CA: USENIX Association, 2017, pp.

459–471. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/sultana

[22] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4FPGA: A Rapid Prototyping Framework for P4,”
in Proc. SOSR, 2017.

[23] T. N. Thinh, T. T. Hieu, S. Kittitornkun et al., “A fpga-based deep packet
inspection engine for network intrusion detection system,” in Electrical
Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), 2012 9th International Conference on.
IEEE, 2012, pp. 1–4.

[24] O. Elkeelany, M. M. Matalgah, K. P. Sheikh, M. Thaker, G. Chaudhry,
D. Medhi, and J. Qaddour, “Performance analysis of ipsec protocol:
encryption and authentication,” in Communications, 2002. ICC 2002.
IEEE International Conference on, vol. 2. IEEE, 2002, pp. 1164–1168.

[25] “OpenCloudNeXt DHL.” https://github.com/OpenCloudNeXt/DHL.
[26] N. Logic, “Northwest logic dma driver,” http://nwlogic.com/products/

docs/DMA Driver.pdf.
[27] Xilinx, “Vivado design suite user guide: Partial reconfiguration

(ug909),” https://www.xilinx.com/support/documentation/sw manuals/
xilinx2017 2/ug909-vivado-partial-reconfiguration.pdf.

[28] Intel, “Introduction of altera partial reconfiguration,” https:
//www.altera.com/products/design-software/fpga-design/quartus-prime/
features/partial-reconfiguration.html.

[29] “Dell networking s6000 spec sheet.” http://i.dell.com/
sites/doccontent/shared-content/data-sheets/en/Documents/
dell-networking-s6100-on-specsheet.pdf.

[30] “DPDK-Pktgen.” http://dpdk.org/browse/apps/pktgen-dpdk/.
[31] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and

K. Park, “Kargus: a highly-scalable software-based intrusion detection
system,” in Proceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012, pp. 317–328.

[32] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “Nba (net-
work balancing act): A high-performance packet processing framework
for heterogeneous processors,” in Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015, p. 22.

[33] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, vol. 99, no. 1, 1999, pp. 229–238.

[34] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed pattern
matching for network ids/ips,” in Network Protocols, 2006. ICNP’06.
Proceedings of the 2006 14th IEEE International Conference on. IEEE,
2006, pp. 187–196.

[35] W. Jiang, Y.-H. E. Yang, and V. K. Prasanna, “Scalable multi-pipeline
architecture for high performance multi-pattern string matching,” in
Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1–12.

[36] S. Singh and D. J. Greaves, “Kiwi: Synthesis of fpga circuits from par-
allel programs,” in Field-Programmable Custom Computing Machines,
2008. FCCM’08. 16th International Symposium on. IEEE, 2008, pp.
3–12.

[37] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM SIGOPS Operating Systems Review, vol. 33, no. 5,
pp. 217–231, 1999.

[38] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, “The power of batching
in the click modular router,” in Proceedings of the Asia-Pacific Workshop
on Systems. ACM, 2012, p. 14.

[39] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet:
Revitalizing gpu as packet processing accelerator.” in NSDI, 2017, pp.
83–96.

[40] N. Weaver, V. Paxson, and J. M. Gonzalez, “The shunt: an fpga-based
accelerator for network intrusion prevention,” in Proceedings of the 2007
ACM/SIGDA 15th international symposium on Field programmable gate
arrays. ACM, 2007, pp. 199–206.

