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Abstract

The data appetite for Vision-Language Models (VLMs)001
has continuously scaled up from the early millions to bil-002
lions today, which faces an untenable trade-off with data003
quality and inevitably introduces Noisy Correspondence004
(NC) samples. Undoubtedly, such semantically unrelated005
data significantly impairs the performance of VLMs. Previ-006
ous efforts mainly address this challenge by estimating re-007
fined alignment for more precise guidance. However, such008
resource-intensive pipelines that train VLMs from scratch009
struggle to meet realistic data demands. In this paper, we010
present a brand new perspective that seeks to directly elimi-011
nate the harmful effects of NC in pre-trained VLMs. Specif-012
ically, we propose NCU, a Noisy Correspondence Unlearn-013
ing fine-tuning framework that efficiently enhances VLMs’014
robustness by forgetting learned noisy knowledge. The key015
to NCU is learning the hardest negative information, which016
can provide explicit unlearning direction for both false pos-017
itives and false negatives. Such twin goals unlearning pro-018
cess can be formalized into one unified optimal transport019
objective for fast fine-tuning. We validate our approach with020
the prevailing CLIP model over various downstream tasks.021
Remarkably, NCU surpasses the robust pre-trained method022
on zero-shot transfer while with lower computational over-023
head. The code will be released upon acceptance.024

1. Introduction025

The pursuit of general intelligence has driven progress in026
multimodal learning, which seeks to integrate and under-027
stand multiple sensory modalities like humans. Large-scale028
vision-language training, exemplified by CLIP [37], is seen029
as a key milestone in multimodal learning due to its remark-030
able transfer capabilities in real-world applications, such as031
image-text retrieval [13, 22, 34] and robotics control [41].032

However, much of their success can be attributed to033
scaling laws enabled by massive training data. As every034
coin has two sides, the insatiable demand for data forces a035
difficult trade-off between quantity and quality, which in-036
evitably introduces noisy correspondence into the training037
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Figure 1. Illustration on the core concept of NCU. The twin
goals unlearning process is guided by the learned hardest negative
information. For the FP, tNeg

i directly pulls vi away from the mis-
matched ti. While for the FN, tNeg

i acts as a distance upper bound
to facilitate modeling many-to-many relations.

set. Taking the CC3M dataset [39] as an example, despite 038
being filtered from 500 million images, it still contains at 039
least 3% [20] unrelated image-text pairs, i.e., false positive. 040
To make matters worse, training on massive data necessi- 041
tates larger batch sizes (32K used in CLIP), which increases 042
the likelihood of unpaired samples sharing semantic simi- 043
larities, i.e., false negative. Undoubtedly, such two-aspects 044
noisy correspondence can significantly impair the perfor- 045
mance of vision-language models. 046

To endow robustness against NC, one natural direction 047
is to revise the pre-training paradigm [1, 3, 11, 12, 21] that 048
supervises VLMs with refined alignment. However, exist- 049
ing methods require training from scratch and may rely on 050
guidance from external large models [3, 11]. Such resource- 051
intensive pipelines obviously struggle to face the realistic 052
demand, especially with today’s billion-scale datasets [38]. 053
Hence, it is necessary to address the NC problem in vision- 054
language training with a cost-effective method. 055

In this paper, we think outside the box of robust pre- 056
training and pose an important question: Can we directly 057
eliminate the harmful effects of NC in pre-trained VLMs? 058
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To answer this question, we resort to machine unlearning059
[2] and present NCU, a Noisy Correspondence Unlearning060
fine-tuning framework that improves the robustness of CLIP061
by erasing learned noisy knowledge. Machine unlearning is062
a reversed learning process that aims to delete the influence063
of specific training samples from trained models. Despite064
its promise in widespread tasks [7, 9], unlearning the NC065
in VLMs remains unexplored due to a key challenge: the066
ambiguous forgetting direction would corrupt the learned067
semantic structure in the feature space. To address this,068
we propose to learn the hardest negative information that069
can provide explicit unlearning direction. As illustrated in070
Fig. 1, on the one hand, the negative information would di-071
rectly serve as reliable supervision for forgetting false posi-072
tives. On the other hand, it would facilitate the modeling of073
many-to-many relationships among unpaired data for for-074
getting false negatives. Then, we show that such twin goals075
unlearning process can be formalized as one unified opti-076
mal transport problem, which efficiently fine-tunes CLIP to077
resist both FP and FN.078

Our main contributions are highlighted below:079
• To the best of our knowledge, this work could be the first080

study to eliminate the harmful effects of noisy correspon-081
dence from pre-trained CLIP.082

• We propose the NCU framework, which efficiently un-083
learns FP and FN with explicit direction derived from the084
hardest negative information.085

• We demonstrate that NCU achieves significant improve-086
ments over CLIP on several downstream tasks and sur-087
passes the previous robust pre-training method with lower088
computational overhead.089

2. Related Work090

Noisy Correspondence Learning. Noisy correspon-091
dence refers to the alignment error presented in multimodal092
data. The false positive is a typical NC problem, where ir-093
relevant multimodal pairs are wrongly treated as matched.094
To alleviate this, several techniques have been developed in095
various multimodal applications, including cross-modal re-096
trieval [16, 18, 20, 36], video temporal learning [17, 30],097
multimodal person re-identification [35, 47], question an-098
swering [23], and image captioning [10, 24]. In more com-099
plex scenarios, e.g., vision-language pre-training [19, 21],100
models also suffer from false negatives caused by the train-101
ing paradigm [12], where similar unpaired samples are102
forced to be distant. Considering the computational burden103
of large VLMs, this work presents a low-carbon solution to104
directly improve the robustness of pre-trained VLMs.105

Contrastive Vision Language Models. Contrastive vi-106
sion language models (VLMs) [8, 13, 14, 33, 44, 48] aim107
to learn visual representations by the corresponding textual108
supervision, which have attracted significant attention due109

to their simplicity and powerful representation capability. 110
Pioneering works CLIP [37] and ALIGN [22] have shown 111
great success via learning from massive image-text pairs. 112
However, such web-crawled data are noisy [38, 42] and in- 113
evitably harm the efficacy of existing VLMs. To tackle this 114
issue, a series of works attempted to train the VLM with re- 115
fined soft image-text alignments by label smoothing [12], 116
knowledge distillation [1], fine-grained intra-modal guid- 117
ance [11], text rewriting [3], or positive-negative contrastive 118
loss [21]. Besides, OT-based methods[40, 46] have also 119
emerged as they naturally model such matching problems. 120
Despite the success, previous works focus on training ro- 121
bust VLMs from scratch, which overlooks readily available 122
pre-trained models and incurs unnecessary computational 123
costs. To this end, this paper pioneers an efficient approach 124
to enhance model robustness by unlearning noisy informa- 125
tion from pre-trained models. 126

Machine Unlearning. Recent advances in MU mainly fo- 127
cus on practical approximate unlearning, which seeks to 128
mimic the behavior of a model re-trained from scratch. 129
Driven by privacy concerns, existing MU works [7, 9, 32] in 130
computer vision focus on image classification that attempts 131
to forget specific classes. In parallel, MU has also become a 132
popular topic in large language models due to its capability 133
to eliminate harmful responses [31, 50]. However, multi- 134
modal forgetting remains under-explored in the literature. 135
Pioneering works [26, 27] studied data-free class removal 136
for CLIP’s downstream image classification. To date, none 137
of the existing MU methods has explored the unlearning of 138
noisy concepts from VLMs. 139

3. Preliminaries 140

3.1. Contrastive Language-Image Pre-training 141

CLIP is a vision-language model trained on millions of 142
web-harvested image-text pairs. We consider a batch of 143
N image-text pairs {vi, ti}Ni=1 sampled from a cross-modal 144
datasetD, where vi and ti represent the raw image and cor- 145
responding text, respectively. The goal of CLIP is to train 146
two modality-specific encoders that bring matched pairs 147
closer while pushing unmatched ones apart. Specifically, 148
image embedding vi ∈ Rd and text embedding ti ∈ Rd are 149
obtained by passing vi and ti through the image encoder 150
fv and text encoder ft, respectively, where d is the embed- 151
ding dimension. The encoded l2 normalized embeddings 152
are then aligned in the feature space by minimizing the con- 153
trastive objective, i.e., InfoNCE loss: 154

LCL
v→t = − 1

N

N∑
i=1

log
exp (⟨vi, ti⟩/τ)∑N
j=1 exp (⟨vi, tj⟩/τ)

, (1) 155

where ⟨·⟩ represents the inner product and τ is a trainable 156
temperature parameter. As InfoNCE loss is symmetric, we 157
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can define LCL
t→v similarly. The complete CLIP training ob-158

jective is formulated as: LCLIP = LCL
v→t + LCL

t→v .159

Despite its promising performance, the standard con-160
trastive learning can suffer from the noisy correspondence161
problem in two aspects. First, the web-collected pairs in-162
evitably contain an unknown portion of mismatched data,163
i.e., false positives. Second, hard target alignment neglects164
the potential semantic similarity among unpaired samples,165
i.e., false negatives, especially under large batch settings.166

3.2. Machine Unlearning167

Given a CLIP model (also named reference model) {fv, ft}168
that is already trained on a cross-modal dataset D, machine169
unlearning aims to fine-tune the model to forget a specific170
subset DFG ⊆ D while maintaining effectiveness on the171
retained set DRT = D \ DFG. Ideally, the model should172
behave as if it were trained without any sample from DFG.173
In principle, re-training the model from scratch on DRT174
would serve as the gold standard. However, since CLIP175
is trained on massive-scale data, it is unrealistic to obtain176
a forget set that includes all noisy information, especially177
when some data are not publicly accessible. Therefore,178
we focus on an approximate unlearning approach in which179
D = DFG ∪ DRT does not need to contain all train-180
ing pairs, making the unlearning process more practical for181
real-world scenarios.182

The most straightforward method to unlearn is gradient183
ascent or its variants, which optimizes the negative pre-184
diction loss over the forget set. Another typical approach185
is performing forget loss that encourages the model to re-186
learn the modified form of undesired data. For example,187
we can update CLIP by minimizing InfoNCE loss in pair188
{vi, t̃i} ∼ DFG to forget the relation between vi and ti,189
where t̃i ̸= ti could be random or hand-crafted text to re-190
place the original. Based on these, existing MU methods191
have shown promising progress in class forgetting and LLM192
privacy protection. However, applying these strategies to193
CLIP unlearning poses a key challenge: the ambiguous for-194
getting direction would corrupt the learned semantic struc-195
ture in the feature space. In other words, the model forgets196
the undesired data by learning other meaningless patterns.197

4. Methodology198

To tackle the above issues, we introduce the Noisy Corre-199
spondence Unlearning (NCU) framework. In the following,200
we first introduce the division of forget and retained sets in201
Sec 4.1. Subsequently, we elaborate on learning the hardest202
negative information in Sec 4.2 and explain how to formal-203
ize the twin goals unlearning process into an optimal trans-204
port object for efficiently fine-tuning in Sec 2. The overall205
training pseudo-code is shown in Supplementary A.206

4.1. Identifying the Forget Set 207

Unlike standard MU tasks with a predefined forget set, we 208
need to manually identify mismatched samples from CLIP’s 209
training data to construct it. As pre-trained CLIP has shown 210
strong representation capability, we propose using the basic 211
similarity score to obtain DFG and DRT , i.e., 212

ωi =
1

2

[
exp (

〈
vi, ti

〉
/τ)∑N

j=1 exp (
〈
vi, tj

〉
/τ)

+
exp (

〈
ti,vi

〉
/τ)∑N

j=1 exp (
〈
ti,vj

〉
/τ)

]
.

(2) 213
By comparing (vi, ti) with other cross-modal samples in the 214
batch, ωi serves as a clean confidence that measures the ex- 215
tent of semantic match. Then, we select pairs with the low- 216
est P% of ωi within the batch as false positives to construct 217
the forget set DFG, while treating the remaining in-batch 218
pairs as the retained set DRT . 219

Note that DFG and DRT are dynamically selected at 220
each batch, which enjoys two merits: 1) CLIP could be effi- 221
ciently updated with one intra-batch optimization; 2) The 222
forget-retain ratio could be flexibly adjusted through the 223
predefined parameter P . 224

4.2. Learning Hardest Negative Semantics 225

To guide CLIP with an explicit unlearning direction, we aim 226
to learn the hardest negative semantics as supervision. In- 227
tuitionally, for an irrelevant pair (vi, ti) that misleads the 228
model with ‘vi and ti are matched’, we encourage the 229
model to forget this information by relearning that ‘vi and 230
ti are not matched’. From a data utilization viewpoint, this 231
paradigm is similar to negative learning[25] that supervises 232
the model with complementary information [18], i.e., push- 233
ing the candidate away from other unpaired samples. Dif- 234
ferently, our method seeks the hardest negative information 235
to avoid uncertain optimization directions. 236

To achieve this, we incorporate a set of learnable vec- 237
tors to represent the textual negative semantics inspired by 238
prompt learning [51]. Specifically, for any training pair 239
(vi, ti), the token features of ti are combined with m shared 240
prompt vectors to present the corresponding negative se- 241
mantics tNeg

i in the feature space. While such prompt- 242
driven semantic negation of CLIP has demonstrated success 243
in out-of-distribution detection [29, 43], existing methods 244
are confined to closed-set downstream tasks with limited 245
category concepts. In contrast, our challenge lies in ex- 246
tending the semantic opposite operation into the open-set 247
knowledge that CLIP pre-trained. 248

Intuitively, the hardest negative satisfies two constraints 249
in the feature space: 1) tNeg

i needs to maximize its distance 250

from vi and ti; 2) tNeg
i should maintain certain similarity to 251

those unpaired images, as it is not a wrong description [43] 252
despite being semantically irrelevant to vj . Furthermore, we 253
only useDRT to learn the prompt tokens to avoid overfitting 254
caused by noisy correspondence. For notation simplicity, 255
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Figure 2. Illustration of the optimization objective to learn the hardest negative semantics. (a) Previous attempts that directly maximize
the L2 distance prevent tNeg

i from providing certain guidance for unpaired images, e.g., vk. (b) We bound the similarity with margins for
a more relaxed semantic separation, but it may lead to uncertain targets, e.g., tNeg

i and tNeg′
i . (c) We further preserve relation structures

for precise objectives. The intuition is that the opposite text should also maintain semantic relationships, e.g., ⟨ti, tNeg
j ⟩ ≈ ⟨tj , tNeg

i ⟩.

we denote Ñ as the size of DRT within each batch. Based256
on the above insights, we propose the following intra-modal257
and cross-modal training objectives.258

Text Relation Opposite. It encourages semantic sepa-259
ration between the embeddings of negative text and its260
original. Most previous works [29, 43] typically reduce261
the per-instance similarity gap among textual pairs, e.g.,262
∥ti−tNeg

i ∥2 → 2 [43] to directly maximize its L2 distance.263
However, such rigid constraint incurs a crucial limitation in264
the open-set semantic space—enforcing maximal distance265
pushes tNeg

i away from unpaired images (Fig. 2(a)), which266
is contrary to our objective. To this end, we propose a re-267
laxed similarity bound to constrain the semantic separation:268

269

Lsep =
1

Ñ

Ñ∑
i=1

(
[α−⟨ti, tNeg

i ⟩]++[⟨ti, tNeg
i ⟩−β]+

)
, (3)270

where α < 0 and β < 0 are the margin parameters to lo-271
cate ⟨ti, tNeg

i ⟩ ∈ [α, β], and [x]+ = max(x, 0) is the hinge272
function. As illustrated in Fig. 2(b), although minimizing273
Eq.(3) enables tNeg

i to be distant from ti while remaining274
relatively similar to unpaired images, the broad range of275
variations makes training convergence difficult. To address276
this issue, we propose to perform semantic opposite at the277
relation level instead of the instance level, which is achieved278
by preserving the geometrical structures among all negative279
and original text within the batch:280

Lrel =
1

Ñ

Ñ∑
i=1

Ñ∑
j=1

(
⟨ti, tNeg

j ⟩ − ⟨tj , tNeg
i ⟩

)2
. (4)281

As shown in Fig. 2(c), regularizing the negative-original re-282
lation consistency can guide tNeg

i toward a precise location283
in the feature space.284

Image-text Matching Opposite. It aims to model the 285
alignment between the embeddings of negative text and im- 286
ages. As discussed, tNeg

i provides positive supervision to 287
unpaired images while separating from its paired image, 288
which presents opposite matching patterns to the normal 289
contrastive objective. To achieve this, we take inspiration 290
from Sigmoid loss [49] that efficiently supports such multi- 291
positive alignment. Specifically, it guides per cross-modal 292
pair independently by the binary matching target: 293

Litm =
1

Ñ

Ñ∑
i=1

Ñ∑
j=1

(
log

1

1 + exp(mij(−⟨ti,vj⟩/τ))

+ log
1

1 + exp(−mij(−⟨tNeg
i ,vj⟩/τ))

)
,

(5) 294

where mij equals 1 for i = j and −1 for i ̸= j. In Eq.(5), 295
the first part follows the standard one-to-one matching to 296
retain the original CLIP knowledge, while the second part 297
utilizes the opposite binary target, i.e., −mij , to bring tNeg

i 298
closer to multiple images. 299

With the visual encoder frozen, the overall loss for learn- 300
ing the hardest negative semantics is balanced by a scaling 301
factor λ and given by: 302

LHN = λ(Lsep + Lrel) + Litm. (6) 303

4.3. Hardest-Negative Guided Noise Unlearning 304

The hardest negative semantics serve dual purposes in eras- 305
ing the learned noisy correspondence: 1) guide CLIP to 306
unlearn the false positive pair (vi, ti) by matching vi with 307

tNeg
i . 2) While for the well-matched pair (vi, ti), t

Neg
i as- 308

sists in inferring the soft alignment among unpaired data to 309
unlearn the false negative pattern. To efficiently fine-tune 310
CLIP, we formalize such twin goals unlearning process into 311
one unified Optimal Transport problem. 312

Optimal Transport. OT seeks to establish a flexible 313
alignment between images and captions by computing a 314
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Figure 3. Overview of the Noisy Correspondence Unlearning process. With the learned negative prompt frozen, we formulate an
optimal transport problem guided by the hardest negative and then use the solved transport plan to robustly fine-tune the model ft and fv .

minimal-cost transport plan, where the cost refers to the315
expense of transporting mass from source to target distri-316
bution and is generally set to a distance measure [15]. Let317
C ∈ RN×N

+ denotes the cost matrix for the mini-batch,318
where [C]i,j = 1− ⟨vi, tj⟩ is the cosine distance of vi and319
tj . Γ ∈ RN×N

+ denotes the corresponding transport plan320
that [Γ]i,j represents the alignment probability between vi321
and tj . Formally, the objective of OT is defined as follows:322

min
Γ∈Π(µ,ν)

⟨Γ,C⟩ − ϵH(Γ)

s.t. Π(µ,ν)={Γ∈RN×N
+ |Γ1N = µ,Γ⊤

1N = ν},
(7)323

where 1N denotes a N -dimensional all-one vector, µ,ν ∈324
RN are probability measures representing the relative im-325
portance of each image and caption. Without prior knowl-326
edge, µ = 1

N 1N and ν = 1
N 1N are considered to be uni-327

formly distributed since each pair is sampled independently.328
H(Γ) is an additional entropy regularizer controlled by the329
smooth parameter ϵ, which enables the OT objective to be330
solved by the rapid Sinkhorn-Knopp algorithm [6].331

Boosting OT via Hardest Negatives. To endow the trans-332
port plan with dual forgetting purposes, we reformulate333
Eq.(7) by imposing guidance from the hardest negative in-334
formation. Specifically, for each image vi, we extend its335
transport target from {ti}Ni=1 to include its paired negative336

text tNeg
i . As shown in Fig. 3, the negative text composes337

a new alignable column for the transport objective, which338

append the cost matrix C to C̄ ∈ RN×(N+1)
+ , i.e.,339

[C̄]i,N+1 = 1− ⟨vi, t
Neg
i ⟩, [C̄]i,j = [C]i,j ,∀i, j ∈ [1, N ].340

For the two parts DFG and DRT within each batch, the341
hardest negative should impose different guidance for dis-342
tinct unlearning goals. To this end, we propose a mask-343
base constraint to the corresponding transport plan Γ̄ that344
regulates the effect of tNeg

i . Specifically, the mask matrix345

M ∈ RN×(N+1)
+ satisfies that 346

[M ]i,j =


0, if (vi, ti) ∈ DFG and j = i,

0, if (vi, ti) ∈ DRT and j = N + 1,

1, otherwise.
(8) 347

For the toy example illustrated in Fig. 3, if the pair is consid- 348
ered to be mismatched, the transport mass between vi and 349
ti should be constrained to zero. Conversely, for the well- 350
matched pair, tNeg

i acts as a lower limit where the transport 351
mass between vi and tj should be higher than it. Following 352
the solver from [15], we model the mask constraint as the 353
Hadamard product form that Γ̂ = M ⊙ Γ̄, and the opti- 354
mal alignment is formulated as (detailed Sinkhorn solution 355
is presented in Supplementary B): 356

Γ̂∗ = argmin
Γ̂∈Π(µ,ν̄)

⟨Γ̂, C̄⟩ − ϵH(Γ̂), (9) 357

where ν̄ = 1
N+11N+1 to satisfy the additional column. 358

The Unlearning Objective. Although Γ̂∗ provides the 359
more refined alignment, we suggest further incorporating 360
an identity-like matrix I for two merits. First, diagonal el- 361
ements are set as 1 for true positives to retain the initial 362
alignment. Second, [I]i,N+1 = 1 to enhance the unlearning 363
for the possible false positive (vi, ti) ∈ DFG. Thus, the 364
overall alignment balanced by the factor γ is defined as: 365

T = γΓ̂∗ + (1− γ)I. (10) 366

To fine-tune CLIP with this soft alignment, we use the KL 367
divergence to optimize the matching distribution. Formally, 368
we denote the batched similarity matrix as P ∈ RN×(N+1) 369
where Pi = [⟨vi, t1⟩, . . . , ⟨vi, tN ⟩, ⟨vi, t

Neg
i ⟩]⊤. We ob- 370

tain P v2t
i and P t2v

i by applying row-wise and column-wise 371
softmax operation to P , respectively. Correspondingly, let 372
T v2t
i and T t2v

i be the row-wise and column-wise normal- 373
ized refined alignment for the i-th sample, respectively. The 374
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OT-guided re-aligning is defined as:375

Lotr =
1

N

N∑
i=1

KL(T v2t
i ∥P v2t

i )+
1

N + 1

N+1∑
i=1

KL(T t2v
i ∥P t2v

i ).

(11)376
Moreover, we empirically observe that preserving the tex-377
tual semantic separation term can make the unlearning more378
stable. Thus, the final unlearning objective is defined as:379

LUL = Lotr + Lsep. (12)380

5. Experiment381

In this section, we experimentally analyze the effectiveness382
of NCU in unlearning the NC knowledge from CLIP.383

5.1. Setup384

Datasets. Our experiments are conducted on three vision-385
language datasets at different scales and noise: Concep-386
tual Captions 3M (CC3M) [39], Conceptual Captions 12M387
(CC12M) [4], and YFCC15M-R (provided by [14], an388
LLM-recaptioned subset from the YFCC100M [42]). All389
datasets are web-crawled and contain an unknown portion390
of NC pairs, e.g., CC3M is estimated to include at least391
3% false positives. We evaluate NCU on ImageNet and392
15 common downstream datasets for classification perfor-393
mance and on MSCOCO and Flickr30K for retrieval capa-394
bility. Details for datasets are shown in Supplementary C.395

Unlearning Details. Following CLIP, we consider two396
architectures for the image encoder, i.e., ViT/B16 and397
ViT/B32, while the text encoder adopts the transformer ar-398
chitecture. We consider a CLIP pre-trained on dataset D,399
e.g., CC3M, CC12M, or YFCC15M-R, as our reference400
model, then we perform the NC unlearning on D or its401
subset to enhance CLIP’s robustness. For all experiments,402
we allocate 2 epochs for learning negative semantics and 8403
epochs for noise unlearning. All models are trained with a404
batch size of 2,048 on 16 NVIDIA V100 GPUs. Detailed405
training settings are presented in Supplementary D.406

Evaluation Protocol. We evaluate NCU’s transferabil-407
ity with Zero-Shot (ZS) classification accuracy and Lin-408
ear Probing (LP) accuracy. For ZS classification, we fol-409
low CLIP’s [37] prompt templates to compute distances be-410
tween class text embeddings and image features. For LP,411
we follow the mainstream setting [8, 37] that trains a lin-412
ear classifier using L-BFGS on features extracted from the413
frozen image encoder. Besides, we evaluate the retrieval414
performance with the Recall at rank K (R@K) metric.415

5.2. Evaluation on Diverse Downstream Tasks416

To verify the generalization of NCU, we compare it with417
CLIP on three different types of downstream tasks.418

Zero-Shot Transfer. We compare the zero-shot perfor- 419
mance of CLIP and NCU on 16 popular image classifica- 420
tion datasets. We follow the prompt templates suggested in 421
the CLIP paper [37] to form each class name into a nat- 422
ural sentence. As demonstrated in Tab. 1, our NCU ap- 423
proach significantly outperforms the baseline CLIP model 424
on both ImageNet and other downstream datasets. Specif- 425
ically, across all fine-tuning datasets and all model archi- 426
tectures, NCU gains in the range of 2.8% ∼ 4.1% in top-1 427
accuracy on ImageNet and 2.5% ∼ 4.0% on average over 428
the other downstream datasets. This reveals that NCU can 429
successfully eliminate the impact of NC on CLIP by robust 430
fine-tuning with the same dataset. 431

Image-Text Retrieval. We present the zero-shot cross- 432
modal retrieval performance on the testing set of Flickr30K 433
(1K) and MSCOCO (5K) in Tab. 2. Our method consider- 434
ably outperforms the vanilla CLIP in almost all cases. For 435
instance, when fine-tuning CLIP (ViT-B/32) pre-trained on 436
the CC3M dataset, our NCU method achieves a 7.7% im- 437
provement in average recall scores on Flickr30K and 4.8% 438
improvement in average recall scores on MSCOCO. This 439
finding indicates that NCU can remarkably enhance the 440
alignment of images and text in the embedding space. 441

Linear Probing. Tab. 3 reports the linear probing perfor- 442
mance on 4 representative downstream datasets. Our NCU 443
consistently surpasses CLIP in the vast majority of cases, 444
suggesting that the visual embeddings learned by our NCU 445
are more effective and transferable than CLIP. 446

5.3. Compared to Robust Methods 447

In this section, we compare NCU with other robust- 448
designed techniques against NC on zero-shot ImageNet1K 449
classification task, i.e., gradient ascent (GA), and SoftCLIP 450
[11]. Specifically, we evaluate GA as a standalone method, 451
where −LCLIP is performed on DFG for handling FPs 452
and LCLIP with label smoothing is performed on DRT for 453
FNs. SoftCLIP is a noise-robust SOTA method that trains 454
CLIP from scratch by additional intra-modal guided align- 455
ment, i.e., ROI features. As shown in Tab. 4, although GA 456
is a naive unlearning strategy, it still achieves observable 457
performance gains. Meanwhile, SoftCLIP’s self-similarity 458
modeling fails to excavate supervision from false positives, 459
which may explain why it performs worse than GA in 460
some cases, e.g., CC12M with ViT-B/32. By contrast, our 461
NCU achieves solid improvements by forgetting both false 462
positives and false negatives, outperforming SoftCLIP by 463
1.1% ∼ 2.3% without external guidance. 464

5.4. Ablation Study 465

To investigate the effectiveness of specific components in 466
our method, we carry out some ablation studies on Ima- 467
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Model Architecture: ViT-B/16

CC3M
CLIP 52.3 55.2 24.1 10.9 1.0 50.1 11.9 11.1 6.9 12.9 19.5 25.0 13.5 0.8 81.7 25.1 16.0
NCU 59.1 54.3 28.8 12.3 1.1 50.1 14.1 14.8 7.4 16.3 22.8 32.3 21.7 1.5 86.3 28.2↑3.1 20.0↑4.0

CC12M
CLIP 77.0 66.5 38.3 21.2 2.5 47.7 33.4 51.9 7.3 64.2 39.0 44.7 21.2 25.5 91.4 42.1 40.6
NCU 80.9 79.3 49.1 23.2 2.7 48.0 31.7 52.7 10.1 66.5 41.9 52.6 28.6 29.0 93.2 46.0↑3.9 43.4↑2.8

Model Architecture: ViT-B/32

CC3M
CLIP 47.7 54.2 18.0 7.6 1.2 50.1 9.3 9.1 6.0 7.4 16.2 16.0 15.5 0.8 77.7 22.5 11.8
NCU 53.0 56.7 25.9 10.4 1.7 50.1 10.2 10.5 6.5 10.5 19.0 22.2 16.7 1.4 80.1 25.0↑2.5 14.6↑2.8

CC12M
CLIP 76.3 68.2 35.2 16.1 2.8 50.1 29.3 37.6 6.4 54.1 30.1 39.2 22.5 14.8 90.8 38.2 33.8
NCU 80.4 68.5 41.4 19.3 2.6 52.8 28.6 43.4 7.2 62.4 35.7 48.3 31.3 18.1 92.5 42.2↑4.0 36.7↑2.9

YFCC15M-R
CLIP 53.7 67.0 34.4 13.1 1.1 49.3 22.1 18.6 11.0 13.5 20.3 29.3 23.0 1.7 83.7 29.5 17.8
NCU 58.2 69.5 37.8 15.3 1.8 49.9 29.2 23.7 11.2 16.1 23.1 34.0 23.3 1.8 86.7 32.1↑2.6 21.9↑4.1

Table 1. Zero-shot transfer evaluation of different models.

Dataset Architecture Model
Flickr30K 1K Testing MSCOCO 5K Testing

Image-to-Text Text-to-Image
Average

Image-to-Text Text-to-Image
AverageR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CC3M
ViT-B/16

CLIP 27.6 54.2 65.8 19.0 40.5 51.3 43.1 12.8 30.9 42.7 9.7 25.4 35.2 26.1
NCU 32.1 60.7 71.9 25.2 49.5 61.0 50.1↑7.0 15.8 36.9 48.4 12.1 29.7 40.1 30.5↑4.4

ViT-B/32
CLIP 14.0 35.2 47.7 11.5 27.9 37.8 29.0 7.0 20.1 28.9 6.0 16.7 24.0 17.1
NCU 21.3 44.5 55.7 15.7 36.3 46.4 36.7↑7.7 10.7 25.7 35.4 8.1 21.3 30.2 21.9↑4.8

CC12M ViT-B/32
CLIP 50.3 77.2 85.9 37.9 64.8 74.2 65.1 26.8 54.0 65.9 20.0 42.4 54.2 43.9
NCU 53.0 77.3 85.0 38.4 66.6 76.7 66.2↑1.1 28.2 54.7 66.7 20.0 42.8 54.3 44.5↑0.6

YFCC15M-R ViT-B/32
CLIP 57.4 81.6 89.1 40.8 66.4 75.4 68.5 35.0 60.9 71.8 22.6 46.0 58.0 49.1
NCU 58.0 83.2 89.7 42.5 69.9 78.8 70.4↑1.9 34.3 62.0 73.5 24.6 49.0 60.8 50.7↑1.6

Table 2. Zero-shot cross-modal retrieval evaluation of different models.

Dataset Architecture Model
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CC3M
ViT-B/16

CLIP 54.38 62.20 54.36 48.13
NCU 55.60 62.85 54.74 49.90

ViT-B/32
CLIP 46.96 52.30 46.96 40.20
NCU 48.20 52.82 46.85 41.49

CC12M
ViT-B/16

CLIP 70.94 82.83 78.99 66.70
NCU 71.36 84.76 79.18 66.65

ViT-B/32
CLIP 66.05 78.41 70.12 59.19
NCU 66.63 78.63 70.76 60.34

YFCC15M-R ViT-B/32
CLIP 60.46 61.90 59.09 51.07
NCU 60.75 62.85 60.46 52.29

Table 3. Linear probing comparison of different models.

geNet1K with models unlearned on CC3M. We first ab-468
late the contributions of two key components of NCU, i.e.,469
negative prompt and text relation opposite. Specifically, in470
the variant V1, we replace the learnable prompt tokens by471
prepending some textual negative prefixes to raw captions,472
e.g., ‘the image has no’ or ‘this picture lacks’. In the variant473
V2, we use maximal L2 distance loss [43] as a substitute for474
our text relation opposite. Besides, we validate the impact475
of different NC unlearning by intervening with the refined476

Dataset Model
Model ImageNet1K

Architecture ZS top-1

CC3M

CLIP

ViT-B/16

16.0
Gradient Ascent 16.7 ↑0.7
SoftCLIP 18.9 ↑2.9
NCU 20.0 ↑4.0

CC3M

CLIP

ViT-B/32

11.8
Gradient Ascent 12.1 ↑0.3
SoftCLIP 13.3 ↑1.5
NCU 14.6 ↑2.8

CC12M

CLIP

ViT-B/16

40.6
Gradient Ascent 41.6 ↑1.0
SoftCLIP 42.1 ↑1.5
NCU 43.4 ↑2.8

CC12M

CLIP

ViT-B/32

33.8
Gradient Ascent 35.1 ↑1.3
SoftCLIP 34.4 ↑0.6
NCU 36.7 ↑2.9

Table 4. Zero-shot top-1 performance on ImageNet1K.

alignment, i.e., V3 and V4. As shown in Tab. 5, we observe 477
that: 1) Using negative textual prefixes also shows competi- 478
tive results, demonstrating the generalization of our method. 479
However, we argue that the learnable prompt is preferable, 480
except for performance gains, operating to features makes 481
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Model
ImageNet1K ZS top-1
ViT-B/16 ViT-B/32

NCU 20.0 14.6
V1 (w/o Hardest Negative Prompts) 19.3 ↓0.7 14.4 ↓0.2
V2 (w/o Text Relation Opposite) 18.8 ↓1.2 13.9 ↓0.7
V3 (w only False Negatives Unlearning) 17.7 ↓2.3 13.5 ↓1.1
V4 (w only False Positives Unlearning) 19.2 ↓0.8 14.3 ↓0.3

Table 5. Ablation studies on zero-shot transfer task (ImageNet1K)
of models unlearned on CC3M.

it possible for NCU to extend to modalities beyond text.482
2) Simply maximizing the distance between negative and483
original text embeddings leads to suboptimal performance,484
which aligns with our analysis in Fig. 2. 3) Both types of485
NC impair CLIP’s performance, among which the false pos-486
itive causes a more severe impact. While NCU achieves the487
best performance by forgetting such noisy knowledge.488
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Figure 4. Effect of NCU with varying fine-tuning dataset sizes on
zero-shot image classification and cross-modal retrieval.

5.5. NC Unlearning with Partial Data489

In this section, we conduct an interesting study to verify490
whether CLIP can improve robustness by only unlearning491
NC with a portion of the pre-trained data. To this end, given492
a CLIP pre-trained on CC3M as the reference model, we493
evaluate NCU using different data portions ranging from494
0.5 million to 3 million image-text pairs. Fig. 4 plots the ZS495
top-1 accuracy on ImageNet1K and the average of recalls on496
MSCOCO 5K. Remarkably, even when unlearning on less497
than 20% of the original data (0.5M), NCU achieves sig-498
nificant performance gains while preserving overall knowl-499
edge learned in CC3M. With the accessible data increas-500
ing, NCU shows consistent improvements on both zero-shot501
downstream tasks. This phenomenon indicates NCU’s flex-502
ibility in enhancing the robustness of models with limited503
data, which is valuable to handling VLMs pre-trained with504
partially private or proprietary data.505

(a) NCU (b) CLIP

Figure 5. Similarity scores distribution of positive and negative
pairs from CLIP and NCU. Both models are based on ViT/B16
and learning from the CC3M training set.

5.6. Visualization and Analysis 506

To intuitively show the robust embedding space that is re- 507
fined by our approach, we plot the distribution of normal- 508
ized similarity for CLIP and NCU on the validation set of 509
CC3M. In Fig. 5, we illustrate similarity scores for positive 510
pairs, mean of negative pairs, and top 5% maximum of neg- 511
ative pairs. First, we observe that NCU produces a wider 512
distribution of positive similarity scores, capturing more 513
fine-grained matching degrees among positive pairs. Sec- 514
ond, NCU improves the feature discrimination, which leads 515
to a more significant separation between positive and neg- 516
ative pairs. Lastly, NCU provides more appropriate mea- 517
sures for hard negatives, which maintains separation from 518
both positive and other negative pairs. 519

6. Limitations and Future Works 520

Our work still has certain limitations due to the finite com- 521
puting capability, including 1) This work only uses CLIP 522
to explore the efficacy of NCU. Further research is needed 523
to confirm its applicability in other VLMs, such as BLIP- 524
2 [28], and even larger VLMs like VisionLLM [45] or In- 525
ternVL [5]. 2) The current experiments are mainly con- 526
ducted on million-scale data, and we plan to extend it to 527
larger-scale datasets to verify NCU’s generalization. 528

7. Conclusion 529

This work provides a new thinking in robust vision- 530
language learning. Instead of re-training models from 531
scratch, we suggest eliminating the harmful effects of noisy 532
correspondence from pre-trained models. To this end, we 533
propose NCU, a robust fine-tuning framework that effi- 534
ciently unlearns noisy correspondence in CLIP. Our key 535
concept is to learn the hardest negative information that 536
can provide explicit unlearning direction to resist both FP 537
and FN. We formalize such twin goals unlearning process 538
into one unified OT problem for fast fine-tuning. Extensive 539
experiments are conducted to verify that NCU can endow 540
CLIP with strong robustness against noisy correspondence. 541
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