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Abstract—Flash deal applications, which offer significant ben-
efits (e.g., discount) to subscribers within a short period of
time, are becoming increasingly prevalent. Motivated by such
transient profit, flash crowds of subscribers request services
simultaneously. Considering the unique business logic, a hybrid
cloud with soft guarantee, i.e., bounding the response time
of delay-tolerant requests, has great potential to handle flash
crowds. In this paper, to cost-effectively withstand flash crowds
with soft guarantee, we propose a solution that makes smart
decisions on scheduling requests in the hybrid cloud and adjust-
ing the capacity of the public cloud. In respect of scheduling
requests, we apply Sequential Quadratic Programming (SQP)
to achieve soft guarantee. Furthermore, for adjusting capacity,
we design an online algorithm to tune the scale of the public
cloud towards jointly minimizing cost and response time, yet
without a priori knowledge of request arrival rate. We prove
that the online algorithm can obtain a competitive ratio of 1�6✏
against the optimal solution, where ✏ can be tuned close to 0.
By conducting extensive trace-driven experiments in a website
prototype deployed on OpenStack Mitaka and Amazon Web
Service, our solution reduces response time by 15% compared
with previous work under given budget.

I. INTRODUCTION

With the increasing population of online e-commerce users
and their interactions in the online forums, flash deal has
become a common marketing strategy in which websites offer
significantly discounted or limited products on sale for a short
period. The rise of social networks, such as Facebook and
Twitter, has further accelerated its growth, allowing popular
deals to spread virally. Such a model has become a norm
in many group buying websites, e.g., Groupon, and even in
traditional e-commerce vendors as well, e.g., Prime Day of
Amazon.

For example, on the Prime Day (July 15, 2015) that cel-
ebrates Amazon’s 20th anniversary, thousands of lightning
deals were offered, starting as often as every 10 minutes,
sales on Amazon’s Prime Day even exceeded Black Friday in
2014 [1]. In addition to Amazon’s Prime Day, when Apple’s
new iPhones are released, the pre-orders exceeded two million
in the first 24 hours [2]. Besides the discounted and pre-
ordered products, the income brought by flash deals has
appeared too as incentives. WeChat, the most popular mobile
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instant messaging platform in China, has offered virtual red
envelope containing virtual money that can be cashed out. A
red envelop is distributed to a group of WeChat users, but only
the first some persons who catch the chance would be able to
share the envelope and hence the money. Such an interesting
and fast way of getting red envelopes soon becomes popular,
and a total of 1.2 billion red envelopes (over $83 million) were
unleashed on the Chinese New Year’s Eve [3].
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Fig. 1. Common workflow of flash deal applications. When web servers
accept user requests, web servers need to wait for the results returned from
the application tier and then send responses back to users.
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Fig. 2. Workflow of flash deal applications with soft guarantee. When web
servers accept the user requests, instead of waiting for the results returned from
the application tier, web servers send responses back to users. The requests
are served asynchronously.

These flash deal applications demand for ultra fast responses
from both vendors and consumers. Unfortunately, during short
lifetimes of the flash deal applications, vendors have to handle
dramatic flash crowds of subscriber requests, which may lead
to long response time and even crash of applications. To put
things into perspective, in the Chinese New Year’s Eve, the
times of shaking phones to request red envelopes reached a
total of 11 billion and a peak of 810 million per minute [3].
Furthermore, the pre-orders of new iPhones exceeded two
million in the first 24 hours, rendering the Apple Store in
many regions to be unresponsive [2]. As a result, it is vital
for flash deal providers to maintain fast response time under
flash crowds.

Yet, given the incentive comes from the discounts (or
money in the red envelop case), it is possible for subscribers
to accept service degradation, i.e., postpone serving their
requests. Moreover, considering the simple business logic, it
is feasible to handle such flash crowds with soft guarantee,
i.e., guaranteeing the postponed requests to be served within
certain deadline. As illustrated in Fig. 1, a user sends a request
for a red envelop (discounted or limited product) to the web
tier of a flash deal application. Normally, the application
and database tiers process the request and return a result



to the web tier. Finally, the web tier sends a response to
the user. With soft guarantee, as shown in Fig. 2, as soon
as the web tier receives and verifies the request, it sends a
response to the user immediately, which significantly reduces
the interactive response time. However, the response only
contains the information that the user needs to wait for the
result. Then the request is sent to the asynchronous process
where we postpone serving it. After the application finishes
serving the request asynchronously, the user will get the result
whether she wins the red envelop or the product.

To improve interactive response time, the requests are
scheduled to two processes, i.e., the interactive and the
asynchronous processes. Correspondingly, how to schedule
requests to maintain fast interactive response time as well
as bound execution time of requests served asynchronously,
becomes a non-trivial problem.

From the perspective of flash deal providers, although
service degradation potentially relieves the pressure on the
infrastructure, they still have to address the dramatic surge in
user requests. To avoid long response time and even crashes
led by the flash crowds, a hybrid cloud solution is a preferred
strategy, which is adopted by 82 percent of enterprises [4].
As shown in Fig. 3, leveraging a hybrid cloud, the flash deal
providers outsource excessive workloads to the public cloud
via a dedicated connection offered by cloud providers, such
as AWS Direct Connect. However, given the short duration,
the flash deal providers can hardly have a priori knowledge
of request arrival rate. As a result, it is challenging for the
flash deal providers to make online decisions on adjusting
the capacity of the public cloud to achieve a cost-effective
solution during the long run of applications, i.e., maintaining
fast response time as well as incurring less outsourcing cost.
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Fig. 3. When flash deals arrive, the load balancer in the private cloud
outsources the excessive workloads to the public cloud. To facilitate com-
munication between the private and public clouds, most cloud providers offer
a dedicated connection for cloud tenants, such as AWS Direct Connect.

To handle flash deals cost-effectively with soft guarantee in
the hybrid cloud, our contributions lie in two folds. On the
one hand, to handle request-scheduling problem, we design
the Workload Distribution Algorithm (WDA) which is used
to distribute requests between the private and public clouds
to minimize response time. Afterwards we design the Ser-
vice Degradation Algorithm (SDA) to achieve soft guarantee,
which schedules partial requests to the asynchronous process
and maintains their execution time within an acceptable range,
so as to further reduce the response time. Both WDA and SDA
are designed by applying Sequential Quadratic Programming

(SQP) [5], which converges within only tens of iterations. On
the other hand, in respect of capacity adjustment, we design the
Capacity-Adjusting Algorithm (CAA) by adapting one-time
learning algorithm [6], so as to tune the scale of the public
cloud to obtain a cost-effective hybrid cloud solution, i.e.,
maximizing the performance-cost ratio as well as controlling
cost within budget. Through substantial theoretical analysis,
we prove that CAA can obtain a competitive ratio of 1�O(✏),
where ✏ is a small control parameter and can be tuned close
to 0.

In experiments, we build a private cloud with OpenStack
Mitaka [7] under nova-network [8] and rent 20 AWS
EC2 instances as the public cloud. Deploying a three tier
website prototype on the hybrid cloud platform, we conduct
real world trace-driven experiments to verify the efficacy of the
proposed solution. Compared with a previous solution in [9],
ours reduces response time by 15% on average under given
budget.

II. DESIGN OBJECTIVES AND SOLUTIONS

A. Design Objectives
Fast interactive response time and soft guarantee. Con-

cerning the bursty, fluctuating, and unpredictable flash deals,
it is challenging to make online decisions on scheduling
requests between the private cloud and the public cloud,
so as to achieve fast interactive response time. Moreover,
to further reduce interactive response time, we attempt to
schedule partial requests which are already assigned to the
public cloud to the asynchronous process, as shown in Fig. 3.
Although flash deals can accept service degradation, we need
to determine a maximum number of postponed requests and
ensure their response time within an acceptable range, i.e., soft
guarantee.

Cost-effectiveness. Besides achieving fast interactive re-
sponse time as well as soft guarantee, it is necessary to
design a cost-effective hybrid cloud solution, which spends
the least money on achieving the best performance. Here we
introduce a performance-cost ratio (PC ratio for short), which
is obtained by dividing the reciprocal of average response time
with outsourcing cost, to measure the cost-effectiveness of a
hybrid cloud solution. By maximizing the PC ratio, we can
obtain a cost-effective solution.

B. Our Solutions
Scheduling requests in two sub-stages. To achieve the

first design objective, scheduling currently arrived requests
under given cloud capacity contains two sub-stages. The first
is scheduling requests between the private and public clouds,
namely, workload distribution. In this sub-stage, we determine
how many requests to be served immediately in the public
cloud without taking service degradation into consideration.
The other is scheduling requests assigned to the public cloud
to the asynchronous process where requests get served within
certain deadline.

Adjusting capacity under given budget. Given that flash
deal providers lease the public cloud to handle excessive



TABLE I
KEY PARAMETERS

Notation Definition

� The average arrival rate of requests in a queueing system

µ The average service capacity of a queue

⇢ The traffic intensity of a queue, denoted as �
µ

f The average response time of requests in a queue

dt The average response time during the tth time slot

nt The number of running EC2 instances during the tth time slot

flash deals, the capacity of the public cloud plays a critical
role in maximizing PC ratio during the long run of flash
deal applications, i.e., reducing response time and controlling
cost. Hence, our solution needs to make online decisions
on adjusting the capacity of the public cloud, which in turn
impacts on the strategy for scheduling requests. In terms of
adjusting cloud capacity, most public cloud providers provi-
sion auxiliary services, which enable public clouds to scale
up or down automatically. For instance, the corresponding
service in AWS EC2 [10] is known as Auto Scaling [11].
However, such automatic adjustment in scale makes it difficult
to control cost. Therefore, to carefully control outsourcing
cost, cloud tenants need to adjust the capacity of the public
cloud proactively. According to the scaling policy in AWS
EC2, the tenants can adjust the number of running EC2
instances manually [12]. For cloud tenants, when leasing the
public cloud, they mostly set a budget in advance to limit
outsourcing cost. Hence, we introduce a budget from the
perspective of cloud tenants. Correspondingly, our solution
tunes the scale of the public cloud to maximize the PC ratio,
and finally controls outsourcing cost under a given budget.

III. SYSTEM MODEL

A. Queue-Based Model for Flash Deal Applications

1) Single-tier architecture: For flash deal applications de-
ployed in clouds, we initially assume that the application is de-
veloped as a single-tier architecture, as in previous study [13]–
[16]. We also assume that the request arrival is a Poisson
process [15], [17], [18] and the service time of requests is
generally distributed.

As such, we model the application as an M/G/1/PS queue,
which is motivated by early studies in this field. For example,
in [17], Pacifici et al. employ an M/M/1 queueing model to
compute response time of web requests; in [18], Villela et al.
use an M/G/1/PS model for each server in a tier, and similar
queueing model is used in [15] for an e-commerce application.
In the queueing model, when the request arrival rate is near
the service capacity, the average queueing delay approaches
infinity, implying that the application becomes unresponsive.
The key parameters are summarized in Table I.

Assuming that the service time x is i.i.d and its probability
distribution function is F (x). The performance of the applica-
tion, particularly the average response time, can be calculated
as:

fST
(�) =

R1
0

x
1�⇢

dF (x) = E[X]
1�⇢

, (1)

where ⇢ = �
µ is traffic intensity of the queueing system and

E[X] is the expectation of processing times in the single tier
system.

2) Multi-tier architecture: In practice, most applications
however are developed as a multi-tier architecture. For each
tier, we model it as an M/G/1/PS queue as in early stud-
ies [19]–[21]. Hence, we next extend the model by assuming
the application deployed in the cloud is of K-tiered.

Lemma 1. The request leaving process of the kth tier, i.e.,
the request arrival process of the (k + 1)th tier, still follows
Poisson process, and the arrival rate �k+1 = �k when the
queueing system is stable.

We prove the lemma in our technical report [22].
Based on Lemma 1, by summing up the average response

time of each tier fk, the average response time of requests
fMT which are served by the K-tier system can be estimated
as:

fMT
(�) = fMT

(�1,�2, ...,�K) =

KP
k=1

fST
k (�k), (2)

where ⇢k is the traffic intensity of the kth tier and denoted as
�k

µk
.
3) Soft guarantee: As aforementioned in Sec. I, considering

the delay-tolerant characteristics of flash deals, we postpone
serving certain requests and bounding their execution time
within a deadline, i.e., soft guarantee. As a result, we next
extend the multi-tier architecture with soft guarantee.

Obviously, not all the requests can accept such service
degradation. Furthermore, scheduling too many requests to
the asynchronous process also leads to bad user quality of
experience. Hence, we assume that the number of requests
which to be postponed and assigned to the asynchronous
process is ↵. Based on the sojourn time of each request in
the application, we classify the requests to be scheduled to the
asynchronous process into a set of different priority classes,
indexed by k 2 {1, 2, ...,K}. Hence, we have:

PK
k=1 ↵k  ↵, (3)

where ↵k is the number of requests scheduled to the
asynchronous process in the kth tier. As such, we model
the asynchronous process as a priority queue. We denote
the average response time of the asynchronous process as
follows [23]:

fAP
(↵) =

C
KP

k=1
↵k

(1�
K�1P

k=1

↵k
µAP )(1�

KP

k=1

↵k
µAP )

, (4)

where C = 1
2 (E

2[Xk] + V ar[Xk]) and µAP is the service
rate of the priority queue. Moreover, to avoid the sojourn time
approaching infinity, we need to enforce that:

KP
k=1

↵k

µAP < 1. (5)

B. Performance of Flash Deal Applications in Hybrid Cloud
Before presenting the performance model of the hybrid

cloud, we consider a discrete time model t 2 {1, 2, ...,m},
whose length equals to the average delay of starting up one



cloud instance (e.g., an Amazon’s EC2 instance [24]). During
each time slot, the number of EC2 instances in the system
therefore remains constant. Based on the time model and the
system model, we now estimating the average response time
in the hybrid cloud.

1) Response time in the private cloud: Considering the
capacity of the private cloud is limited and difficult to be
flexibly adjusted, we assume the application is single-tiered
and model it as an M/G/1/PS queue. Based on Eq. (1), the
performance of the application deployed in the private cloud
during the tth time scale, particularly the average response
time, can be calculated as:

dVt = fST
(�V

t ),

where �V
t is the number of requests assigned to the private

cloud during the tth time slot.
Remark: Based on the formulation above, when ⇢Vt , which

is calculated as �V

µV , is near 1, the average response time
approaches infinity. Hence, the number of requests assigned
to the private cloud has profound impact on performance,
which explains why a queue should be used here for modeling
the private cloud instead of a constant. Moreover, our efforts
mainly are devoted to the public cloud, we therefore also
model it as single-tiered, rather than multi-tiered for simplicity.

2) Transmission time in the dedicated tunnel: As discussed
above, the capacity of the private cloud is limited, and so
the hybrid cloud users leverage a public cloud to handle
bursty and immense flash deals. Using a dedicated tunnel,
the hybrid cloud users can offload the excessive requests to
the public cloud. For example, AWS Direct Connect [25] is a
dedicated network connection from users’ premises to AWS.
Using the AWS Direct Connect, the users can establish a
private tunnel between the public cloud and the private cloud,
which in many cases can reduce the network costs, increase
the throughput, and provide more stable network experience
than public Internet based connections. Here we still model
the tunnel as an M/G/1/PS queue, which has an average
transmission time as

dRt =

R1
0

x
1�⇢Rt

dF (x) = E[XR]

1�⇢Rt
,

where ⇢Rt = �R
t

µR
t

is traffic intensity of the private cloud.
3) Response time in the public cloud: Since the public

cloud plays a critical role in handling flash deals, we now
focus on the model of the application deployed in the public
cloud. Most applications are developed as a 3-tier architecture,
and we model them as M/G/1/PS queues.

The arrival of requests in the kth tier at the asynchronous
process, as well as the remaining request in the interactive
process, follows Poisson process. And the request arrival rates
are ↵k and �k � ↵k, respectively [26].

When we extend the multi-tier applications with service
degradation, based on the Eq. (2) and Eq. (4), the respective
average response time of interactive dIPt and asynchronous
processes dSG

t can be denoted as:

dIPt (�t,↵t) = fMT
(�t �↵t),

dSG
t (↵t) = fAP

(↵t).

C. Problem Formulation

1) Request-scheduling problem:
Sub-problem 1: workload distribution. When distributing

requests between the private and public clouds, there exist two
different cases: i) the capacity of the hybrid cloud exceeds the
request arrival rate; ii) the capacity of the hybrid cloud is lower
than the request arrival rate.

For the former case, Equation (1) can be used to estimate the
average response time, which unfortunately is not applicable to
the latter. To this end, we propose a general model to estimate
the response time in both cases, as below.

dHt =

�V
t

�t
dVt +

�U
t

�t
(dIPt + dRt ) +

�t��V
t ��U

t
�t

·D,

where D is a predefine maximum response time and dHt is the
average response time of requests in the hybrid cloud. Here
we assume that D is larger than the maximum response time
of all the requests in the interactive process. As a result, based
on the formulation, it is obvious that dHt is smaller than D.

Since it takes a certain time to start up an EC2 instance,
the capacity of the public cloud cannot change immediately
to handle the coming flash deals, i.e., the number of EC2
instances is constant during the tth time slot. Given the capacity
of the hybrid cloud, we need to distribute requests between
the private and public clouds. The objective is to make sure
that the application can provision the best services, i.e., try to
maintain fast response time. That is

min dHt (�V
t ,�U

t ) (6)
s.t. �V

t + �U
t � �t  0,

where �V and �U are the request arrival rate of the private
and public clouds, respectively.

Remark: This problem is a linearly constrained convex
problem. We use the Lagrange-Newton SQP method [27] to
solve it in Sec. IV-A. For the requests redirected to the public
cloud, we further determine how many requests to be assigned
to the asynchronous process.

Sub-problem 2: service degradation. For requests redi-
rected to the public cloud, i.e., �U

t , the postponed requests
are classified into different sets based on their sojourn times
in the hybrid cloud and each set is associated with a priority.
Requests with long sojourn time in the application have high
priority, which means that they are served early. For the
postponed requests, we define a deadline of the execution
time. We need to ensure that all the postponed requests are
completed before the deadline, which can be denoted as
follows:

dSG
t (↵t)  L, (7)

where L is the predefined deadline. dSD
t is the average

execution time of postponed requests, which can be derived
in Sec. III-B3 .

The problem can be formulated as follows:

min dIPt (↵t) (8)
s.t. (3), (5), (7).

Remark: This problem is a nonlinearly constrained convex
problem. Furthermore, more complicated than the workload



distribution problem, the constraint (7) is fractional, we there-
fore apply the Quasi-Newton SQP methods [28] to solve it in
Sec. IV-A.

2) Capacity-adjusting problem: In practice, when leverag-
ing public clouds, cloud tenants always have a budget b, which
limits the cost incurred by the system, i.e., only a limited
number of EC2 instances can be leased. Hence, we define that
the number of EC2 instances a tenant can boot is n, where
0 < n < N and N is the maximum number of EC2 instances
a tenant plan to lease.

During the tth time slot, the tenants need to decide how
many EC2 instances to run, so as to handle bursty and im-
mense flash deals smoothly as well as control the outsourcing
cost. The decision on leasing n EC2 instances can be denoted
as x

(n)
t , where all N entries are 0 except that the nth one is

1.
Meanwhile, the real capacity of an application deployed

in the hybrid cloud capt is defined as 1
dH
t

. As a result, the

performance-cost ratio ⇡
(n)
t is denoted as:

⇡
(n)
t =

capt
at·nt

=

1

atd
H
t J

T
x

(n)
t

,J = (1, 2, ..., N)

where at is the price of an EC2 instance and dHt is the average
response time of requests in the hybrid cloud. The PC ratio
means how many requests are served with unit amount of
money in each time unit, implying whether the application
provisions cost-effective services.

Due to the unpredictable flash deals and potentially chang-
ing price, ⇡t and at cannot be known in advance. The
decision xt must be made based on the two variables. Given
the previous t � 1 decisions {x1,x2, ...,xt�1}, and input
{⇡i, ai}ti=1, the decision xt has to satisfy

Pt
i=1 aiJ

T
xi =

Pt
i=1 c

T
i xi  b,

where c

T
i = ai · JT.

During the tth time slot, we need to maximize the PC ratio
and control cost within budget, which can be formulated as
follows:

max

Xm

t=1
⇡

T
t xt (9)

s.t.
Xt

i=1
c

T
i xi  b, (10)

i = 1, 2, ...,m,

where ⇡t = (⇡(1)
t ,⇡

(2)
t , ...,⇡

(n)
t , ...,⇡

(N)
t ) and xt 2

{x(1)
t ,x

(2)
t , ...,x

(n)
t , ...,x

(N)
t }.

Remark: The problem above is an online knapsack prob-
lem, which is known as NP-hard. Moreover, the problem
is a multi-dimension version, whose solution is a matrix,
making it more complicated to handle. Finally, considering
unpredictable and fluctuating flash crowds, it becomes much
more challenging to control cost within budget. In the next
section, we will demonstrate an effective online solution to it
without a priori knowledge of request arrivals.

IV. DESIGN OF ALGORITHMS

A. Algorithms for Scheduling Requests
For optimization with linear or quadratic objective function-

s, there exist a number of effective solutions, e.g., the active

set and the Goldfarb-Idnani method. The objective functions of
sub-problems (6) and (8) however are more complicated than
linear and quadratic ones, and we therefore use SQP method
to solve these sub-problems.

Based on Newton-Lagrange SQP method [27], we first
define the scalar-valued Lagrangian function for the workload
distribution problem (6) as follows:

L(�, u) = dHt (�) + ug(�),

where g(�) = �V
t + �U

t � �t.
Based on Karush-Kuhn-Tucker (KKT) conditions, it follows

that we only need to solve the quadratic problem (QPL) below:

min

1

2

l

TrdHt (�)l+ gT (�)l

s.t. g(�) + e

T
l  0,

where l is the step length when searching the solution to the
QPL and e is an all-one vector. The algorithm is demonstrated
as follows:

Algorithm 1 Workload Distribution Algorithm

1. Initialize �

(0) and k = 0;
2. Determine a solution lk and a corresponding Lagrange
multiplier u(0) of (QPL)k;
if lk > 0 then

�

(k+1) = �

(k) + lk;
Set k = k + 1 and repeat step 1.

end if

After determining how many requests to be redirected to the
public cloud, we then solve the service degradation problem.
We use the Quasi-Newton SQP method to solve it, which is
proved to be global convergence in [28]. First, we define the
Lagrangian function as follows:

L(↵,u) = dIPt (↵) + u

T
g(↵),

where g(↵) is derived from constraints (3), (5), (7), respec-
tively. g1(↵), g2(↵)  0 and g3(↵) = 0.

Then, we define the penalty function as follows:

�r(↵) = f(↵) +

1
r1
g1(↵) +

1
r2
g2(↵) +

1
r3
|g3(↵)|,

where r1, r2, r3 > 0.
Based on the algorithm in [5], we just need to solve the

following quadratic programming (QP) problem:

min

1

2

l

TBkl+ g

T
k l

s.t. h
(k)
i (l)  0,

h
(k)
i (l) = 0,

where Bk = r2dIPt (↵(k))+
3P

i=1
↵r2gi(↵k), h(k)

i (l) = g
(k)
i +

g
0

i(↵
k)l, and l is the step length when searching solution.

Finally, the algorithm can be demonstrated as follows.



Algorithm 2 Service Degradation Algorithm
1. Initialize x

(0), B0 and k = 0;
2. Determine a solution lk and a corresponding Lagrange
multiplier u(0) of (QP )k;
3. Determine a ✓k 2 [0, 1] with
�r(↵(k) + ✓klk) = min{�r(↵(k) + ✓klk)|0  ✓  1} and
set ↵(k+1) = ↵(k) + ✓klk;
4. Update Bk to Bk+1 and set k = k + 1. Go to step 2.

B. A Near-Optimal Algorithm for Adjusting Capacity
Here we use a one-time learning algorithm [6] for ca-

pacity adjustment. In [6], the one-time learning algorithm is
applied to single-dimension online problems, whose solution
is a vector. However, our capacity-adjusting problem is a
multi-dimension version. As a result, by adapting the one-
time learning algorithm for our multi-dimension problem, we
design an online algorithm and present substantial theoretical
analysis on its effectiveness.

First, we define a partial linear problem on the input during
{0, s}, where s = ✏m and 0 < ✏ < 1. The partial linear
problem defined only on the input during {0, s} is denoted as
follows:

max

Xs

t=0
⇡

T
t xt (11)

s.t.
Xs

t=0
c

T
t xt  (1� ✏)✏b,

xt 2 K, t 2 [0, s].

where ✏ = s
m . Next we have the corresponding dual problem:

min (1� ✏)✏b · p+
Xs

t=0
yt (12)

s.t. ctj · p+ yt � ⇡tj , j 2 [1, N ]

p, yt � 0, t 2 [0, s].

Let (p̂, ŷ) represent the optimal solution to problem (12). For
any given p, we define the strategy of adjusting the number
of VMs as follows:

xtj(p) =

(
1, ⇡tj > p · ctj ,
0, ⇡tj < p · ctj .

(13)

Among all the elements of xt that equal 1, we set them as 0
except which makes the value of ⇡tj � p · ctj the maximum,
i.e.,

xtj(p) =

(
1, j = argmax

j2N
{⇡tj � p · ctj},

0, else.
(14)

Finally, we propose our algorithm as follows:

Algorithm 3 Capacity-Adjusting Algorithm
Initialize p̂ and max;
for each t = s+ 1, s+ 2, ...,m do

for each j = 1, 2, ..., N do
Let xtj(p) = 1, if it makes ⇡tj � p · ctj the maximum;

end for
end for

Remark: In this algorithm, we first need to solve a small
scale partial linear problem (11) and obtain the dual solution

(p̂, ŷ). Then, during time slot t 2 {s, s + 1, ...m}, we use p̂
learned from problem (12) to decide the VM adjusting strategy
xt. Intuitively, when the scale of problem (12) is large, the
constraint (10) can be enforced with high possibility. On the
contrary, if the scale of the partial linear problem is small, p̂
learned from it can hardly enforce the constraint (10). Hence,
we now demonstrate the optimality of the algorithm as well
as the correlation between the budget b and ✏.

Assumption 1. For any p, there can be at most 1 column of
⇡t 2 {⇡i

��i 2 [1,m]}, i.e., ⇡tj , such that ⇡tj = p · ctj or
⇡tj � p · ctj = ⇡tl � p · ctl.

Based on the proof in [29], with probability of 1, no p can
satisfy 2 entries of ⇡t such that ⇡tj = p · ctj or ⇡tj � p · ctj =
⇡tl � p · ctl simultaneously by perturbing ⇡t with a random
variable . Furthermore, the effect of this perturbation can be
made arbitrarily small. Agrawal et al. have also made such an
assumption and proposed an effective algorithm in [6].

Lemma 2. For all t 2 [0,m], under Assumption 1, xt(p⇤)
and x

⇤
t differs no more than 1 value of t.

We prove the lemma in our technical report [22].
Remark: Lemma 2 demonstrates the gap between the

optimal solution xt(p⇤) of the dual problem and the optimal
solution x

⇤
t of the primal. However, in the algorithm, we use

the solution p̂ learned from the partial problem (11) instead
of the optimal solution p⇤. Hence, we next demonstrate that
p̂ is accurate enough as a substitute.

Lemma 3. The primal solution derived using sample dual
price p̂ is a feasible solution to the linear problem (9) with
high probability of 1� ✏ that

Pm
t=1 c

T
t xt(p̂)  b,

given that b � 3m ln(N/✏)
✏3 .

We prove the lemma in our technical report [22].
Remark: So far we showed that xt(p̂) is a feasible solution,

such that it can enforce
Pm

t=1 c
T
t xt(p̂)  b with a probability

of at least 1 � ✏ on condition that b � 3m ln(N/✏)
✏3 . However,

simply satisfying the constraint may make the objective value
far deviate from the optimum. Therefore, we then show that
xt(p̂) is indeed a near-optimal solution.

Lemma 4. The primal solution constructed using sample dual
price p̂ is a near-optimal solutions to the linear problem (12)
with high probability of 1� ✏ that

Pm
t=1 ⇡

T
t xt(p̂) � (1� 3✏)OPT,

given that b � 3m ln(N/✏)
✏3 .

We prove the lemma in our technical report [22].
Remark: Lemma 4 indicates that with probability of 1� ✏,

the online solution xt(p̂) taken over entire period {1, 2, ...,m}
is near optimal on condition that b � 3m ln(N/✏)

✏3 . Then we
try to prove the competitive ratio of the Capacity-Adjustment
Algorithm.

Proposition 1. For any ✏ > 0, the Capacity-Adjusting Algo-
rithm is 1� 6✏ competitive for the online linear problem (9).



We prove the proposition in our technical report [22].
Remark: By now, we have proved that the capacity-

adjusting algorithm can derive a competitive ratio of 1�6✏ a-
gainst the optimal value such that the condition b � 3m ln(N/✏)

✏3

holds. Intuitively, this condition may make b become so large
that any xt can enforce the constraint (10). However, in
practice, cloud tenants always set the budget b in advance.
Hence, the condition b � 3m ln(N/✏)

✏3 can provide a guideline
for cloud tenants to adjust ✏ and b.

V. PERFORMANCE EVALUATION

In this section, we evaluate the efficacy of our algorithms,
i.e., Workload Distribution Algorithm (WDA), Service Degra-
dation Algorithm (SDA), and Capacity-Adjusting Algorithm
(CAA).

Performance metrics. We take the average response time
as the key performance metric for WDA, SDA, and CAA. For
SDA, postponed requests are scheduled to the asynchronous
process, and hence we add the execution time of the postponed
requests as another performance metric.

Performance-cost ratio. When evaluating CAA, we cal-
culate the performance-cost (PC) ratio to judge whether it is
cost-effective.

Budget-cost ratio. To evaluate whether CAA can control
the outsourcing cost effectively, we consider the budget-cost
(BC) ratio, which is the ratio between cost and budget, as a
key metric.

A. Setup

1) Testbed: We build a private cloud on two servers with
OpenStack Mitaka [7] under nova-network [8]. Each
server has an Intel Xeon 2.6 Ghz (8 cores with hyper-
threading) CPU and a 1 GbE NIC connected to a 1 GbE
switch port. The servers run Linux 2.6.32 kernel, among which
one acts as a controller node and the other acts as a compute
node. At the same time, we rent 20 EC2 large type instances
on AWS as the public cloud part, whose details are listed in
Table II. The OpenStack platform provides easy access to
manage the EC2 instances in the public cloud, which is further
used to integrate the private and public resources into a hybrid
cloud. As such, we build a hybrid cloud scenario.

TABLE II
PARAMETERS OF EC2 LARGE INSTANCE

Type vCPU ECU Memory Storage (GB) Pricing
Detail 4 13 16GiB EBS Only 0.239 USD/Hour

In the evaluation, we use the online traffic in U.S. on Cyber
Monday measured by Akamai [30]. Data was collected from
U.S. retailers by Akamai’s Net Usage Index (NUI) and Real
User Monitoring (RUM), which is plotted in Fig. 4.

2) Implementation: We develop a 3-tiered website proto-
type to capture the characteristics of flash deal applications.
All the three tiers are deployed in one VM, so that we can
tune the capacity of the website horizontally by adding more
VMs. In each VM, the web tier is deployed by an Apache
HTTP server which is used to maintain HTTP connections and

retrieve static files. Behind the web tier, we deploy two Tomcat
9.0 servers as the application tier, which equally share sessions
and serve requests dispatched by APJ connector in Apache
2.4. These Tomcat servers execute a Servlet that queries
records of a table from a MySQL database. Considering flash
deals mostly involve query operations, we do not take data
consistency into consideration in the database tier.

To produce HTTP requests for the website, we design an
HTTP request generator with HttpClient 4.5.2 according to a
function obtained by fitting the trace in Fig. 4. Each request
is created as a thread and initialized with a timestamp of
birth. Based on the current capacity of the hybrid cloud, a
load balancer determines how to schedule the newly arrived
requests according to WDA and SDA. Then the load balancer
redirects the requests to each running VM. After scheduling
requests, based on CAA, the load balancer also adjusts the
number of running EC2 instances in AWS through EC2
API command line. By now one round of optimization is
completed.

B. Evaluating Algorithms for Scheduling Requests
To evaluate the effectiveness of the algorithms for schedul-

ing requests, we do not take capacity adjustment into consid-
eration. Instead, we set the capacity of the hybrid cloud as a
constant, so as to clearly demonstrate the impact brought by
the algorithms.

As mentioned in Sec. IV-A, after determining how many
requests to be served by the public cloud with the Work-
load Distribution Algorithm (WDA), we adopt the Service
Degradation Algorithm (SDA) to further reduce interactive
response time. For comparison, we set WDA as the baseline
algorithm. Meanwhile, when leveraging SDA, we need to set
the number of postponed requests in advance, i.e., ↵, which
is introduced in Sec. IV-A. Here we set ↵

� = 0.1, 0.2, 0.3
and corresponding cases are SDA-0.1, SDA-0.2, and SDA-0.3,
respectively. Actually, WDA is a special case of SDA whose
↵ = 0. Moreover, we set the deadline L as 2000ms.

Interactive response time. Fig. 5 plots the response time
of the interactive process under different values of ↵. By
scheduling partial requests to the asynchronous process and
postponing serving them, the values of response time of SDA-
0.1 are much lower than WDA’s in general. Specifically,
for WDA, 60% of values of response time exceed 500ms.
Compared with SDA-0.3, only 6% of values of response
time are over 500ms. Such a phenomenon implies that the
website under soft guarantee can better get over with the spikes
of flash crowds. Obviously, scheduling more requests to the
asynchronous process can reduce response time remarkably.
However, excessive postponed requests may lead to long exe-
cution time, making their response time exceed the predefined
deadline L. Hence, we plot the CDF of response time in the
asynchronous process in Fig. 6.

Response time of the asynchronous process. As shown
in Fig. 6, for all the cases, as ↵ increases from 0.1 to 0.3,
the proportion of requests, whose response time is within
2000ms, goes down from 98% to 63% correspondingly. Due to
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Fig. 4. The average online traffic in
the U.S. on Cyber Monday.
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Fig. 5. CDF of response time of
service degradation algorithms.
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Fig. 11. PC and BC ratios of
capacity-adjusting algorithms.

scheduling excessive requests to the asynchronous process, re-
sponse time of SDA-0.3 is hardly controlled within predefined
deadline, i.e., 2000ms. Interestingly, the trend of the lines in
Fig. 6 shows distinct stages. It is because we attach different
priorities to the postponed requests based on their sojourn
time. Requests with longer sojourn time have a higher priority
to get served, which leads to distinct classes of response time.

Convergence of WDA and SDA. Fig. 7 plots the CDF
of the number of iterations to achieve convergence. It clearly
shows that WDA can converge within 20 iterations and SDA is
able to converge within 30 iterations for 80% of the respective
total runs. Such results demonstrate the fast convergence of our
solution.

C. Evaluating Capacity-Adjusting Algorithm

To evaluate the Capacity-Adjusting Algorithm (CAA), we
tune ✏ and b to demonstrate its effectiveness. Furthermore, we
also compare CAA with CEOA in [9] under different values
of budget.

Impact of learning scale. To evaluate the impact of the
learning scale of the partial linear problem, i.e. s, we set
three cases of CAA on condition that budget keeps the same.
The three cases are named as CAA-0.1, CAA-0.15 and CAA-
0.2, where ✏ = s

m = 0.1, 0.15, 0.2, respectively. Fig. 8
demonstrates the interactive response time of CAA under
different values of ✏. In general, around 75% of values of
response time are less than 3500ms among the three cases.
For the requests whose response times exceed 3500ms, as ✏
increases, response time goes down. Based on the analysis in
Sec. IV-B, given a smaller ✏, the partial linear problem has a
lower budget. Hence, the price vector p learnt from the partial
problem indicates the online version is under a tight budget,
making response time increase slightly.

Fig. 9 plots the PC and BC ratios of CAA under different
values of ✏, respectively. As ✏ decreases, the PC ratio increases
correspondingly. Such a trend is accordance with the com-
petitive ratio of 1 � 6✏ derived in Proposition 1. Moreover,
with ✏ increasing, the cost incurred by CAA decreases and
stays within the budget. Such a fact verifies the conclusion in

Lemma 3, i.e., the outsourcing cost can be controlled under
the budget with a probability of 1� ✏.

Impact of budget. To evaluate the impact of budget,
we set budget b = 140($), 160($), 180($) and name the
corresponding cases as CAA-140, CAA-160, and CAA-180,
respectively. Fig. 10 plots the response time of CAA under
different values of budget. When the budget increases from
140 to 180, the response time decreases significantly. In
addition to performance, we plot the PC and BC ratios of
CAA in Fig. 11. As shown in Fig. 11, with b increasing, the
PC ratio goes up, which verifies Lemma 3 and Lemma 4. To
obtain a competitive ratio of 1� 6✏, the budget should satisfy
the condition that b � 3m ln(N/✏)

✏3 . As a result, a large budget
allows a smaller ✏, which contributes to a more near-optimal
value. In addition, based on the formulation of the partial linear
problem (11), a larger budget is identical to a smaller ✏, which
makes the PC ratio approaching the optimum. In respect of
cost, all the BC ratios are around 1, indicating that CAA is
effective in controlling cost.
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and CEOA.

Comparison with CEOA. We next compare CAA with
CEOA [9] under different values of budget. Fig. 12 plots
the response time of CAA and CEOA when budget equals
180($) and 220($). We observe that when budget increases,
the response time of CAA and CEOA decreases, respectively.
Furthermore, under the same budget, the values of response
time of CAA are lower than CEOA’s.

Fig. 13 illustrates the PC and BC ratios of CAA and CEOA
under different values of budget. As shown in Fig. 13, when
budget increases, the BC ratio of CEOA can be maintained
around 1, which means that CEOA can effectively control cost
with Lyapunov optimization techniques. However, the values
of PC ratio are lower than CAA’s, since the trade-off between



cost and performance is driven by a parameter V in CEOA.
Through Lyapunov optimization techniques, CEOA minimizes
the sum of cost and response time under a given value of V ,
instead of maximizing the PC ratio. Compared with CEOA,
CAA reduces response time by 15% and improves the PC ratio
by 19% on average, respectively.

VI. RELATED WORK

To improve the performance of web applications, Kamra
et al. present queue-based solutions that effectively bound the
response time, together with an admission controller [15]. The
focus of our paper is on improving the response time for flash
deal applications in a hybrid cloud. Based on SQP methods,
we design WDA and SDA for scheduling requests. Abdelzaher
et al. design a system for QoS management with graceful
service degradation [31]. To prevent web server from being
overloaded, they reduce the number of embedded objects per
page. We instead postpone serving delay-tolerant requests to
improve the performance of interactive processes.

Complementary to existing work [32], [33], hybrid cloud
is a promising solution to handle flash crowds, where cloud
tenants outsource excessive workload to a public cloud as
well as own a private cloud. Recent works have commonly
focused on provisioning a cost-effective solution. In [9], Niu
et al. study flash crowds of common e-commerce websites
in a hybrid cloud. Different from [9], we focus on flash deal
applications, where subscribers can accept service degradation.
By postponing serving requests, our solution not only reduces
response time but also controls cost within budget. Apart from
motivation, our online algorithm also has a competitive ratio,
which is stronger than the O(V, 1

V ) tradeoff achieved in [9].

VII. CONCLUSION

In this paper, we proposed a solution for flash deal applica-
tions to withstand flash crowds in a hybrid cloud. To achieve
a cost-effective hybrid cloud solution under soft guarantee,
we jointly handled request-scheduling and capacity-adjusting
problems. Concerning scheduling requests, we achieved fast
response time of the interactive process as well as guaranteed
requests served in the asynchronous process within a prede-
fined deadline. In terms of adjusting capacity, we tuned scale
of the public cloud with the objectives of performance-cost
ratio maximization as well as outsourcing cost minimization.
By adapting an online learning algorithm, we obtained a
competitive ratio of 1 � O(✏) against the offline optimal
solution. Extensive trace-driven experiments on a hybrid cloud
platform showed that compared with previous work, our solu-
tion reduced response time by 15% on average and effectively
maintained cost within the budget.
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