
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 1

HiTDL: High-Throughput Deep Learning
Inference at the Hybrid Mobile Edge

Jing Wu, Lin Wang, Qiangyu Pei, Xingqi Cui, Fangming Liu∗, Senior Member, IEEE ,
Tingting Yang, Member, IEEE

Abstract—Deep neural networks (DNNs) have become a critical component for inference in modern mobile applications, but the
efficient provisioning of DNNs is non-trivial. Existing mobile- and server-based approaches compromise either the inference accuracy
or latency. Instead, a hybrid approach can reap the benefits of the two by splitting the DNN at an appropriate layer and running the two
parts separately on the mobile and the server respectively. Nevertheless, the DNN throughput in the hybrid approach has not been
carefully examined, which is particularly important for edge servers where limited compute resources are shared among multiple
DNNs. This paper presents HiTDL, a runtime framework for managing multiple DNNs provisioned following the hybrid approach at the
edge. HiTDL’s mission is to improve edge resource efficiency by optimizing the combined throughput of all co-located DNNs, while still
guaranteeing their SLAs. To this end, HiTDL first builds comprehensive performance models for DNN inference latency and throughout
with respect to multiple factors including resource availability, DNN partition plan, and cross-DNN interference. HiTDL then uses these
models to generate a set of candidate partition plans with SLA guarantees for each DNN. Finally, HiTDL makes global
throughput-optimal resource allocation decisions by selecting partition plans from the candidate set for each DNN via solving a
fairness-aware multiple-choice knapsack problem. Experimental results based on a prototype implementation show that HiTDL
improves the overall throughput of the edge by 4.3× compared with the state-of-the-art.

Index Terms—Deep learning inference, Edge computing, Resource allocation, Systems for machine learning.
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1 INTRODUCTION

THE rapid development of artificial intelligence has ren-
dered deep learning (DL) into a promising solution for

audio or video processing in modern mobile applications.
Applications like Google Assistant or Apple AR typically
employ pre-trained deep neural networks (DNNs) to per-
form inference tasks such as speech recognition [1], natural
language processing [2], [3], and object recognition [4], [5],
[6], [7]. Inference tasks take audio or image data as input and
use DNNs to generate predictions. Thanks to its remarkable
accuracy, DL has become the de facto approach for inference
in mobile applications.

However, DNNs are hard to deploy in the mobile envi-
ronment due to their intensive computation requirements.
In general, there are three approaches for DNN deploy-
ment: mobile-only, server-only, and hybrid. The mobile-only
approach relies on the mobile devices’ local processing and
energy power to deal with inference tasks. Due to the
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limitation in computation capacity and energy, mobile de-
vices fail to support the computation-intensity state-of-the-
art models, e.g., for speech recognition and natural language
processing [8], [9]. Alternatively, there are pre-trained mod-
els offered by embedded devices-oriented frameworks, e.g.,
TensorFlow Lite1, which optimize models by quantization,
pruning, etc. [10], [11]. However, these optimizations are
at the expense of accuracy [12]. The server-only approach
leverages the more abundant server resources (with more
powerful CPUs and sometimes also equipped with GPUs
or other accelerators [13]) to run full-size DNNs with high
accuracy by sending the raw input data to a cloud or edge
server. However, the raw input data (such as images or au-
dio/video clips) can be large in size, and sending it over the
(wireless) network can introduce significant latency as well
as performance variations [14], [15]. The hybrid approach
aims to reap the benefits of the former two by partitioning
the full-size DNN into two parts and run them on the mobile
and the server respectively [8], [14], [16], [17], [18], [19].
The mobile and the server exchange intermediate data for
the DNN layer at the partition point. Through adapting
the partition point, the hybrid approach can ensure mini-
mal inference latency under dynamic network conditions.
With the rapid penetration of edge platforms, the hybrid
approach has become a promising solution for mobile DNN
inference [14], which we call the hybrid mobile edge.

Despite its high promise, provisioning DNNs at the
hybrid mobile edge is challenging. An overview of the prob-
lem is shown in Figure 1. The DNN for a mobile application
is partitioned between the mobile device and the edge,

1. https://www.tensorflow.org/lite
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Fig. 1: Deep learning inference at the hybrid mobile edge.

where the first few DNN layers before the partition point
run on the mobile device and rest layers run on the edge.
The edge is shared among multiple mobile devices and each
of the (partial) DNNs running on the edge is allocated a
certain amount of resources for running its instance(s). On
the one hand, DNN-powered mobile applications typically
impose strict service-level agreements (SLAs) such as con-
strained end-to-end inference latency to ensure good user
experience [8], [20], [21], [22], [23]. This requires to search for
proper DNN-specific configurations (e.g., the DNN partition
point and the server resource allocation) under dynamic
network conditions. On the other hand, achieving high system
throughput, defined as the number of served inference
requests per unit time, is complicated due to the following
intertwined factors: (1) Multiple DNNs share the limited
edge resources which have to be allocated holistically for all
co-located DNNs with fairness considered. (2) Applications
running these DNNs have different priorities, e.g., mission-
critical applications must be prioritized over entertainment
applications when facing resource contention. (3) The co-
location of DNNs on the same edge platform leads to
inherently complex performance interference, which needs
to be considered when guaranteeing SLAs.

Numerous management frameworks for deep learn-
ing inference exist today, including Clipper [24], Grand-
SLAm [22], InferLine [23], and ALERT [25]. However, these
solutions mainly focus on the data center environment so
far. A recent line of studies explore how to achieve high
inference throughput via dynamic request batching and
resource scaling (including device selection and horizontal
scaling) for DNN inference serving pipelines [22], [23]. The
hybrid mobile edge involves network dynamics which im-
poses unique challenges and requires specific treatment [8].

In this paper, we propose HiTDL (High Throughput
Deep Learning)—a runtime framework for DNN provision-
ing at the hybrid mobile edge. HiTDL aims to achieve the
optimal overall system throughput by making informed
decisions on DNN partitioning and resource allocation,
considering priority, fairness, and performance interference,
while guaranteeing the SLAs of the DNNs. In essence,
HiTDL strikes to reconcile the following conflicting relation-
ships: (1) Pushing more DNN computation to the mobile
would improve the overall system throughput since the
DNN workload on the shared, resource-limited edge will
be reduced. (2) Pushing more DNN computation to the
edge would help with the SLA guarantee as the DNN runs

much faster on the edge. Since the limited edge resources are
shared among multiple DNNs, HiTDL needs to harmonize
such reconciliations for all co-located DNNs.

To achieve the above goals, HiTDL first builds perfor-
mance prediction models by profiling the throughput and
latency of different DNNs, as well as their co-location per-
formance interference, under varying resource availabilities
and partition points. Based on these performance models,
HiTDL then generates a bag of candidate partition plans
that can meet the SLA for each DNN under the current
network bandwidth condition. A partition plan consists of
the DNN partition point and the amount of computing
resources allocated to the (partial) DNN instance to run on
the edge. Finally, HiTDL holistically decides the resource
allocation for all DNNs to achieve the maximum overall
system throughput, which is measured by a utility function
defined as a weighted sum of the throughputs of all the
DNNs running on the edge. The weight can be used to
encode the priority of each DNN. More specifically, HiTDL
optimizes the utility function by making joint decisions for
the partition plan and the resources allocated for each DNN
based on solving a variant of the fairness-aware multiple-
choice knapsack problem (MCKP).

Overall, this paper makes the following contributions:

1) We design a new runtime framework to enable
adaptive DNN provisioning at the hybrid mobile
edge to achieve edge resource efficiency.

2) We build an accurate model for DNN performance
prediction by performing comprehensive analysis
on DNN throughput, latency, and co-location per-
formance interference with respect to resource avail-
ability and DNN partition point.

3) We propose an efficient algorithm for joint DNN
partitioning and edge resource allocation for hybrid
DNN provisioning under limited edge resources,
maximizing the system throughput while achieving
SLA, priority, and fairness goals.

4) We implement HiTDL on a system prototype and
carry out extensive performance evaluation. Our
experimental results show that HiTDL can improve
the overall edge throughput by 4.3× compared with
the state-of-the-art solutions.

The rest of the paper is organized as follows: Section 2
presents the background and our motivation. Section 3
discusses our system design. Section 4 introduces our DNN
performance prediction model for inference latency and
throughput. Section 5 and Section 6 describe our problem
formulation and algorithms for DNN partitioning and for
collaborative resource allocation among multiple DNNs.
Section 7 describes our implementation details and dis-
cusses our evaluation results. Section 8 represents related
work. Finally, Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section introduces the background and discusses the
motivation of our work.
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Fig. 2: (a) Inference latency under CPU and GPU: both can
satisfy the SLA. (b) The aggregate inference throughput of
the CPU-based instances is 85% of that of the GPU-based
instance.

2.1 Deep Learning
DL has become an important component in many mobile
applications. DL has been employed in intelligent personal
assistant applications such as Google Now and Microsoft
Cortana to provide intelligence by performing tasks like
speech recognition [1], image and video processing [4],
[5], [6], and natural language understanding [2], [3]. The
proliferation of DL largely attributes to the significantly
enhanced processing capability (e.g., more powerful CPUs
and domain-specific accelerators like GPUs and TPUs) over
the last year together with the sophistication of learning al-
gorithms. Additionally, open-source frameworks (e.g., Ten-
sorflow [26], Caffe [27], Pytorch [28], and Keras [29]) and
publicly available well-processed datasets (e.g., LibriSpeech
[30], ImageNet [31], and WordNet [32]) greatly simplify the
development pipeline of DL algorithms as well as their
deployment in production environments.

DL relies on DNNs which are typically structured in lay-
ers with different layers serving different purposes includ-
ing convolutional, fully connected, and pooling. A DNN
needs to be trained with labeled data before it can be
used for inference. To attain high accuracy, DNNs usually
contain a large number of layers [3] and are trained on large
datasets. Both DNN training and inference are computation
intensive. Efficient DNN training has been extensively stud-
ied [33], [34], [35], [36], [37], [38] and we focus on DNN infer-
ence in this paper. DNN-based mobile applications typically
impose strict SLA requirements such as constrained end-to-
end latency [8], [22], [39]. For example, a digital assistance
service like Amazon Alexa typically require the end-to-end
latency to be bounded within 200–300ms [23].

2.2 Inference Device Selection: CPU vs. GPU
For the majority of DNNs, GPUs can normally provide
lower inference latency and higher throughput. However,
the cost of GPUs is also higher in general. While GPUs are
nowadays widely used for both DNN training and infer-
ence, it is generally preferable to use CPUs for cost efficiency,
as long as CPUs can provide sufficient performance to meet
the application requirements (e.g., meeting the SLA of the
application). In addition, CPUs suffer low utilization in the
edge environment, e.g., 74% VMs in Alibaba ENS [41] have
less than 10% CPU utilization at average [42]. Such a high
level of CPU under-utilization offers ample opportunity for
cost optimization. Consequently, a central question to ask

is how to select between CPUs and GPUs for the inference
task of a specific application.

To verify this point we conduct a performance compari-
son between a CPU (Intel(R) Xeon(R) E5-2678 v3 2.50GHz)
and a GPU (Nvidia Geforce RTX 2080 Ti) when running
the Inception-v3 [40] model2 —a popular model for image
classification—with its SLA set to 200ms. The CPU contains
12 cores, where we use two cores to provision a model
instance and run in total six instances. For the GPU case, we
run one model instance with the GPU. Figure 2a shows the
inference latency where the GPU-based model instance runs
twice faster than the CPU-based model instances. However,
both cases can meet the application SLA. Figure 2b shows
that the aggregate throughput achieved by the CPU is 85%
of that of the GPU. On the cost side, it is worth noting
that the price of the CPU is around ten times lower than
that of the GPU. Even with a cloud platform like Amazon
EC2, the cost of a CPU-based instance is only half of that
of a GPU-based instance when achieving the same inference
throughput [41]. In essence, CPU achieves better cost effi-
ciency given that both the CPU and GPU can satisfy the
application SLA requirement. Therefore, in this work, we
focus more on CPU-based DNN inference. Nevertheless, the
proposed solution can be migrated to GPU-based scenarios
as discussed in Section 6.4.

2.3 Inference Performance: Latency vs. Throughput
As discussed, the hybrid approach for DNN inference parti-
tions the DNN into two parts and deploys these parts across
the mobile and the edge respectively. This is inspired by
the fact that intermediate data may be smaller than the raw
input and thus, the network delay can be reduced [8], [16],
[17]. However, the selection of the partition point, i.e., the
DNN layer to split, is critical as partial processing, which
happens on the mobile, is typically much slower than on
the edge. Neurosurgeon shows that hybrid deployment of
DNNs can achieve a speedup of 3.1× on average and up
to 40.7× over the mobile-only and cloud-only approaches
under varying network conditions [16].

There are multiple factors that can affect the overall
inference latency, particularly the network condition, the
DNN partition point, and the type and amount of allocated
edge resources. While the former two have been explored by
prior work [16], [17], [19], the question of how the amount
of allocated edge resources affects the overall inference
latency has not been carefully examined. Furthermore, they
directly assume that there are sufficient resources at the
edge, which are monopolized by a specific DNN. However,
the resources are limited and shared/multiplexed among
multiple DNNs. We take Inception-v3 [40] as an example
again, and explore the inference latency with respect to
the network bandwidth, the DNN partition point, and the
amount of edge resources.

Figure 3a shows that under the bandwidth of 83.4 Mbps
(i.e., at the 50% percentile of a real-world WiFi network
trace), there are three feasible partition plans, corresponding
to different numbers of CPU cores and different partition

2. The source code of Inception-v3 is given in
https://github.com/tensorflow/models/blob/master/research/slim/
nets/inception v3.py
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Fig. 3: (a) Inference latency and (b) throughput under
varying network bandwidths, when partitioned at different
layers and with different numbers of CPU cores. The solid
line stands for the SLA (i.e., 200ms), and the bandwidth 83.4
Mbps and 78.3 Mbps are at the 50% percentile and the 20%
percentile of a real-world WiFi network trace, separately.

points. However, when the bandwidth decreases to 78.3
Mbps (i.e., at the 20% percentile), only the partition plan
with the partition point of layer seven and the CPU core
number of four is feasible. Hence, deciding the partition
point and the edge resources requires exploring the com-
plex relationship between DNN partitioning and resource
allocation under dynamic network conditions. The DNN
inference throughput, as another crucial performance metric
to show if the allocated resources to DNNs are efficiently
utilized, should also be explored. We evaluate the inference
throughput of Inception-v3 at layer four and seven while al-
located with two or four CPU cores, respectively3. Figure 3b
shows that, without increasing the number of CPU cores,
only adjusting the partition point from layer four to layer
seven can improve the throughput significantly. Therefore,
it is a challenge but also an opportunity to examine the com-
pound impact of the network bandwidth, partition point,
and allocated edge resources to improve the DNN inference
performance.

At the hybrid mobile edge, DNN models require suf-
ficient edge resources to guarantee SLAs. In general, the
more edge resources a DNN receives, the faster the inference
can run and the higher inference throughput the DNN
can achieve. However, we find that the benefit of edge re-
sources on reducing inference latency and increasing infer-
ence throughout declines marginally. Based on this finding,
we claim that with a fixed amount of edge resources, it
is more beneficial to have multiple small DNN instances
than to have one large DNN instance given the small DNN
instance can already satisfy the SLA. This is confirmed by
the results shown in Figure 4a. As we can see, with in
total 8 CPU cores, having four 2-core Inception-v3 instances
(each partitioned at layer seven under the bandwidth of
83.4 Mbps) improves the inference throughput by over 1.6×
compared with having only one 8-core instance while both
instance types ensure the SLA.

2.4 Edge Resource Sharing

The server resources at the edge are usually shared by
multiple DNNs. Co-locating DNN instances on the same

3. Layer four and layer seven of Inception-v3 are MaxPool 3a 3x3
and MaxPool 5a 3x3 respectively, the shape of which are (73, 73, 64)
and (35, 35, 192), respectively.

TABLE 1: System Configuration Details in Two Resource
Allocation Plans.

Plan 1 Plan 2

Inc. Res. Mob. Inc. Res. Mob.

Layer 0 2 7 7 9 8
#cores 2 4 1 4 5 1

#instance 1 2 2 1 1 3

edge server improves the resource utilization, but it leads to
performance interference which affects the inference latency.
We measure the inference latency of Inception-v3 under
different numbers of CPU cores while co-locating with other
models4 and normalize it to the latency when Inception-v3
monopolizes the server. Figure 4b shows clear performance
interference. As a result, quantifying such interference is
critical in guaranteeing the SLA of the DNN.

Overall, edge resource allocation with the goal of max-
imizing the overall throughput is a complex problem that
requires taking into account all the factors we have dis-
cussed. To show this complexity, we perform experiments
with three DNNs, namely Inception-v3, ResNet-50 [42], and
MobileNet-v1 [43] which compete for the CPU cores on
a single edge server. We propose two resource allocation
strategies as Plan 1 and Plan 2, which are detailed in Table 1.
Note that all the models can meet their SLAs (details in
Section 7.1) under the two plans. As Figure 4c shows,
adjusting the resource allocation can improve the overall
throughput of the edge server by 1.7×.

3 SYSTEM DESIGN

In this section, we present the architecture and key compo-
nents of HiTDL – a runtime framework for adaptive DNN
inference for the hybrid mobile edge. The goal of HiTDL
is to maximize the overall throughput while guaranteeing
application-specific SLAs, i.e., bounded end-to-end latency.

3.1 Overview
HiTDL consists of five major modules: mobile manager,
model optimizer (MO), resource allocator (RA), model
adapter (MA) and model zoo. Mobile manager collects in-
formation from all the connected mobile devices: computing
capability, demanded DNN type, inference latency, and the
estimated bandwidth to the edge server periodically. Using
such information together with the detailed DNN archi-
tecture information from the model zoo, MO profiles the
DNN inference performance and generates all feasible DNN
partition plans that can guarantee the SLA of the application
behind the DNN. RA takes all the feasible partition plans
from all requested DNNs as input. It then picks specific
partition plans for each DNN, and allocates resources ac-
cording to each selected partition plan with the objective of
maximizing the total system throughput. Finally, MA fol-
lows the model partition and resource allocation decisions
to configure the mobile and the edge server and deploy the
DNNs across the two ends.

4. We increase the number of CPU cores for Inception-v3 and let
another DNN instance take the rest cores.
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Fig. 4: (a) Small DNN instances (with less CPU cores) are preferred over large ones; (b) Co-locating DNNs leads to
performance interference; (c) Resource allocation makes a huge difference to the overall throughput of the edge server.
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Fig. 5: HiTDL architecture and workflow.

3.2 Model Optimizer

MO is responsible for generating all the feasible partition
plans for each DNN. A partition plan includes three compo-
nents: the partition point (DNN layer), required edge server
resources to guarantee SLA, and the achievable inference
throughput. Guaranteeing the SLA is a challenging task due
to at least the following two reasons: (1) A DNN usually
has tens of layers and the partition point can be selected
from any of the layers. (2) A variety of factors including
network bandwidth, resource availability, and the cross-
DNN interference can influence the decision making as we
discussed in Section 2. Moreover, our goal is to achieve
the maximum inference throughput while guaranteeing the
SLA and the throughput is also conditioned by all these
factors. Overall, the search space of the partition point is
huge, and considering all these factors in resource allocation
will result in exponential time complexity.

MO explores the partition plan space efficiently and
generates a small set of feasible partition plans which can
guarantee the application SLA. To this end, MO adopts
a profiling-based method motivated by the fact that per-
formance metrics like inference latency and throughput of
DNN inference are predictable [16], [17], [22]. In particu-
lar, we build performance models for both DNN inference
latency and throughput with respect to three factors: parti-
tion point, resource availability, and cross-DNN interference
(Section 4). Based on these prediction models and insights,
MO examines all partition points that are possible to achieve
the SLA and finds out the minimum amount of resources to
satisfy the SLA for each partition point (Section 5). These
partition points and their corresponding resource allocation
constitute the final feasible partition plans, which will be

uploaded to RA for the global resource allocation on the
edge server.

3.3 Resource Allocator
RA decides how to assign resources to all the co-located
DNNs with the objective of achieving the highest overall
system throughput. In particular, RA has to select the most
suitable partition plans for each DNN from the set of all
feasible partition plans (including the partition point and
the demanded resources) generated by the MO as detailed
above, and then determine the number of instances for
each DNN. In this process, if the mobile-only execution
is feasible, RA will select it as the final partition plan to
improve the overall throughput. On the other hand, RA
needs to prioritize the mission-critical DNNs when facing
resource contention; meanwhile, it has to follow fairness
constraints so that no DNN, especially of low priority,
will be starved. We observe that this optimization problem
can be transformed into a variant of the multiple-choice
knapsack problem (MCKP) [44], which is well studied and
the optimal solution can be obtained efficiently with branch-
and-bound based methods [45], [46]. We will detail the
problem formulation, transformation, as well as the solution
in Section 6.

4 DNN INFERENCE PERFORMANCE ANALYSIS

In this section, we provide an in-depth analysis of the
performance of DNN inference with respect to inference
latency and throughput. We explore the impact of three
factors: resource availability, partition point, and cross-DNN
performance interference, on the DNN inference perfor-
mance. Based on our findings, we build prediction models
for estimating the DNN inference latency and throughput.

4.1 Exploring Performance Behavior
Resource availability. We choose three popular DNNs:
Inception-v3, ResNet-50, and MobileNet-v1, and measure
the inference latency of these DNNs when varying the
number of CPU cores from 1 to 8. Figure 7a depicts the
result, where we can see that the inference latency decreases
as the DNN gets more CPU cores. However, the latency im-
provement becomes marginal when sufficient CPU cores are
supplemented. The inference latency will finally converge to
a fixed value which is determined by the ratio of the non-
parallelizable component in the DNN.
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compared with that of the full DNN. The lines include
results obtained under CPU cores from 1 through 8.

Partition point. Model partitioning is an effective way of
reducing DNN inference latency [8], [16], [17]. The general
practice is to partition the DNN into two parts and run
them on the mobile and the server, respectively. Thus, it is
important to understand the latency of the partial DNN that
runs on the server under varying resources, which requires
to build a prediction model for the DNN at every layer.
This process is not scalable since it has to be done for every
DNN considering that the DNN may contain a large number
of layers. We argue that a single performance model can
be used to predict the latency of a partial DNN by taking
the ratio of the computing workload of the partial DNN to
that of the full DNN. To verify this argument, we conduct
experiments using again the three DNNs (i.e., Inception-
v3, ResNet-50, and MobileNet-v1) and compare the ratio
between the latency of the DNN righthand layers after the
partition point (which will be run on the edge server) to that
of the whole DNN under varying numbers of CPU cores.
Figure 6 shows the result where we can see that the latency
ratio is relatively stable under any resource conditions. As a
result, we can simply build a performance prediction model
for the full DNN and apply such a ratio at different layers
to obtain the predicted latency of the partial DNNs resulted
from the DNN partitioning at these layers.
Cross-DNN interference. As we discussed in Section 2,
the co-location of DNN instances on the same edge server
leads to considerable performance interference, which is
detrimental for SLA guarantees. We first examine the impact
of the amount of resources given to the DNN relative to
that given to the co-located DNNs. In particular, we mea-
sure the inference latency of Inception-v3, ResNet-50, and
MobileNet-v1 when their allocated CPU cores increase from
one to eight, while the other cores are occupied by another
DNN. We normalize the inference latency of the considered
DNN to the inference latency when the DNN monopolizes
the edge server with the same number of CPU cores. As
Figure 7b shows, the increase in inference latency due to co-
location interference decreases marginally when allocating
relatively more resources to the considered DNN. This can
be explained by the fact that when more CPU cores are used,
the average load of each CPU core is reduced, thus reducing
the possibility of resource contention with co-located DNNs.

TABLE 2: Parameter Definition of HiTDL.

Notation Description

C total number of available CPU cores
β fairness
k partition point
n number of allocated CPU cores

L(n) complete inference latency
S(k) partial inference latency ratio
I(n) interference ratio
L(n, k) partial inference latency

LM (k), LE(n, k) mobile/edge inference latency
TU , TD upload/download latency
TQ queueing latency

T (n, k) end-to-end inference latency
H(n, k) inference throughout
U(n, k) resource utility

Note that the amount of consumed memory is no more than
1GB [47], which the edge server can easily handle with its
sufficient memory resources (128GB in our case).

We also explore the performance interference with re-
spect to the number and the type of co-located DNN
instances. As Figure 7c shows, the inference latency of
Inception-v3, under different numbers of CPU cores, is
quite stable when varying the number of co-located DNN
instances which occupy the rest of cores. Meanwhile, we
also vary the type of the co-located DNN instances, and
the variation in the inference latency is negligible (less than
2ms).

4.2 Performance Modeling
Based on the above performance analysis, we model the
DNN inference latency with respect to the three factors:
resource availability, partition point, and cross-DNN inter-
ference. The notation is given in Table 2.
Resource availability. Inspired by Figure 7a, we use a
second-order polynomial to model the full DNN inference
latency with respect to the number of allocated CPU cores
in the absence of cross-DNN interference. The inference
latency L of a DNN when allocated n CPU cores is given
by

L(n) = c0 + c1/n+ c2/n
2, (1)

where c0, c1 and c2 are constants which can be obtained by
performing a regression analysis on the profiled numbers
for each DNN.
Partition point. As Figure 6 depicts, the latency ratio of a
DNN is determined by its partition point irrespective of the
number of allocated CPU cores. As a result, for each DNN
we measure the latency ratio S(k) at each partition layer k
offline and derive the inference latency of the partial DNN
when partitioned at layer k under n CPU cores as

L(n, k) = L(n) · S(k). (2)

Cross-DNN interference. From Figure 7b and Figure 7c we
can observe that the number of CPU cores allocated to a
DNN dominates the severity of performance interference,
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Fig. 7: (a) DNN Inference latency with respect to the number of allocated CPU cores; (b) Normalized DNN inference latency
under interference; (c) Inference latency under varying numbers of co-located DNN instances and allocated CPU cores.

rather than the number or the type of co-located DNN in-
stances. Therefore, we use the interference ratio I to quantify
the cross-DNN interference which is calculated as

I(n) = L̂(n, k)/L(n, k), (3)

where L̂(n, k) is the DNN inference latency when the DNN
is assigned with n CPU cores and the co-located DNNs
occupy the rest C − n CPU cores, where C is the total
number of available CPU cores on the edge server. We then
employ a polynomial to model interference ratio I which
can be obtained through regression as well. In a nutshell,
the DNN inference latency under performance interference
can be expressed by

L(n, k) = L(n) · S(k) · I(n). (4)

Given the inference latency, the inference throughput of the
DNN can be calculated as

H(n, k) = 1/L(n, k). (5)

5 DNN PARTITION PLANS GENERATION

A feasible partition plan for a DNN needs to meet the SLA,
i.e., the end-to-end inference latency, when deployed at the
hybrid mobile edge. The end-to-end latency is measured as
the duration from the time an inference request is sent to
the edge to the time the inference result is returned to the
mobile. In the hybrid DNN deployment, a DNN with K
layers is divided into two parts at the partition point k. The
layers [1, k] will run on the mobile, while the rest layers (i.e.,
layers [k + 1,K]) will run on the edge server. The end-to-
end latency is comprised of the execution time on both the
mobile and the edge server, plus the network transmission
delay as well as possible queuing delay in the pipeline.

We now formally analyze the end-to-end inference la-
tency of a DNN. We denote by LM (k) the execution time of
the first k layers of the DNN on the mobile and by LE(n, k)
the execution time of the rest K − k layers of the DNN on
the edge server under the configuration 〈n, k〉 where n is
the number of CPU cores. We use TU and TD to denote the
upload and download transmission delay, respectively. The
upload transmission delay can be computed as

TU = d(k)/BU , (6)

where d(k) represents the volume of the intermediate data
when the DNN is partitioned at layer k. BU is the upload

bandwidth of the mobile measured at runtime. The down-
load transmission delay is calculated as

TD = O/BD, (7)

where O is the output size of the DNN and BD is the
download bandwidth of the mobile measured at runtime.

The edge server holds a queue for each DNN which
buffers the incoming requests issued by the mobile devices
before they are processed, as shown in Figure 5. We use TQ

to denote the queuing delay which can be calculated as

TQ = (j − 1)LE(n, k), (8)

where j represents that the current request is the j-th in
the queue. This is because there are already j − 1 requests
waiting in the queue, and only when all of them have been
processed, each of which corresponds to the execution time
of LE(n, k), can the j-th request be served. Therefore, the
overall time that request j spends at the edge server is TQ+
LE(n, k). To prevent the requests from queuing too long and
thus violating the SLA, we limit the total queue length q as

q ≤ R/LE(n, k), (9)

where R is the combined request arrival rate of the DNN
and 1/LE(n, k) represents the DNN inference throughput.
Combining all the above analysis, the end-to-end DNN
inference latency can be expressed by

T (n, k) = LM (k) + TU + TQ + LE(n, k) + TD. (10)

To meet SLA requirement, the end-to-end latency T (n, k)
under any feasible configuration 〈n, k〉 should satisfy

T (n, k) ≤ SLA. (11)

Here, we explore how to figure out all the feasible parti-
tion plans. To this end, we take two general steps in a greedy
manner: 1) Filter — Depending on the current network
bandwidth we filter out all the partition points where the
sum of the mobile inference latency and the upload latency
has already exceeded SLA (line 3-4 in Algorithm 1). 2) Eval-
uate — For any partition point reserved from step (1) we
evaluate its demanded resources that can ensure SLA (line 5-
8 in Algorithm 1). More specifically, we take the inspiration
from the insights discussed in Section 2 that the inference
throughput benefits more by creating more small instances
rather than one big instance. We gradually increase the
number of CPU cores until the SLA has been satisfied, and
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then stop searching and check another partition point. The
above greedy strategy ensures all feasible partition plans are
allocated with the smallest possible number of CPU cores.

6 RESOURCE ALLOCATION

In this section, we discuss the global resource allocation
problem in HiTDL. As we discussed, each feasible parti-
tion plan for the co-located DNNs has different resource
demands and results in different inference throughputs. RA
(a core component in HiTDL as shown in Figure 5) needs to
take all the feasible partition plans of all DNNs into account
to conduct resource allocation, with the goal of maximizing
the overall throughput of the edge server. RA also needs
to reconcile model priority and fairness. To address such
a challenge, we first design a utility function to quantify
the system throughput weighted by the DNN priority sys-
tematically. Then, we transform the global resource alloca-
tion problem, which consists of selecting specific partition
plans and determining the number of instances for each
DNN, into a variant of the classic multiple-choice knapsack
problem (MCKP). Finally, we employ a branch-and-bound
algorithm to solve the problem.

6.1 Problem Formulation

Utility function. DNNs are deployed as instances running
on the edge server to offer the inference service to mobile
users. Each instance occupies a certain number of CPU cores
n and deploys a copy of a specific DNN model partitioned
at k. We define the following utility U(n, k) to evaluate the
inference throughput of an instance as

U(n, k) = w ×H(n, k)/min{R, 1/TU}, (12)

where H(n, k) and 1/TU are the expected DNN inference
throughout and the network throughput, respectively. Pa-
rameter w is the relative priority of the DNN and R is
the request rate (measured as requests per second or RPS)
at which each mobile device issues requests. The denom-
inator stands for the maximum number of requests that
the instance has to process for each mobile device. There
exists a large volume of research like tracking and result
reusing [48], [49] to reduce the number of requests that the
mobile offloads to the edge. Thus, R is generally smaller
than 1/TU in real-world scenarios. H(n, k)/min{R, 1/TU}
defines the number of mobile devices that the instance
can serve simultaneously, representing the efficiency of the
instance. The utility of a specific DNN is calculated by
summing up the utility of all its instances. The overall
utility of the edge server corresponds to the sum of the
utilities of all its co-located DNNs. Note that the utility
integrates both the throughput of each DNN and its relative
priority. Therefore, the goal of RA, as maximizing the overall
throughput of the edge server, can now be transformed into
maximizing the utility of the edge server.

This objective of the resource allocation is to allocate
the limited resources (i.e., CPU cores) of the edge server

to DNNs to maximize the overall utility with SLA, priority,
and fairness constraints. The problem can be formulated as

max
∑M

i=1

∑Ii
j=1Ui(ni,j , ki,j) · xi,j (13)

subject to
∑M

i=1

∑Ii
j=1ni,j · xi,j ≤ C, (14)∑Ii

j=1ni,j · xi,j ≤ Cβ, ∀i, (15)
Ti(ni,j , ki,j) ≤ Si, ∀j, (16)
xi,j ∈ Z, ∀i, ∀j. (17)

where M is the total number of co-located DNNs and
C is the total number of CPU cores on the edge server,
respectively. Ii is the number of feasible partition plans for
DNN i, and xi,j stands for the number of instances for DNN
i which implement partition plan j. β ∈ (0, 1] expresses the
degree of fairness while allocating resources. For example,
setting β to one means the least fairness and any DNN can
monopolize all the CPU cores. Equation 14 limits that the
total number of allocated resources can not exceed the total
available resources on the edge server. Equation 15 ensures
that the amount of resources allocated to each DNN follows
the fairness requirement.

6.2 Problem Transformation and Solution
As formulated above, HiTDL needs to select specific par-
tition plans for the DNNs while allocating them with ap-
propriate resources such that the overall throughput can be
maximized with SLA guarantee. This process is quite sim-
ilar to the classic multi-choice knapsack problem (MCKP)
regardless of certain differences. Particularly, MCKP is a
knapsack problem, where the items, having specific weights
together with values, are sorted into different classes. The
goal of MCKP is to select one item from each class to put
into the knapsack such that the total value of the selected
items is maximized while the total weight does not exceed
the knapsack’s capacity. As for HiTDL, the feasible partition
plans for each DNN model can be regarded as the sorted
items in different classes, each class for a DNN.

However, there exist differences between HiTDL and
MCKP. Specifically, HiTDL allows to select multiple feasible
plans for each model and create multiple instances for each
plan. This means that we need to release the constraint of
MCKP by allowing to select and replicate specific items
from each class, instead of one unique item. Besides, HiTDL
needs to ensure fairness and priority while allocating re-
source, which can be transformed into the constraints as the
maximal weights and selection order of the items from each
class, respectively.

The above transformation enables HiTDL with the fea-
sible algorithms for MCKP. In particular, the branch-and-
bound (BB) algorithm, as an exact algorithm, has been
widely used to solve MCKP [44], [45], [46]. BB divides the
huge solution space into a series of subspaces to enumerate
all possible solutions. Meanwhile, it utilizes pruning rules to
evaluate the upper and the lower bound of each subspace
and remove the regions that can not lead to a better solution
so as to accelerate the exploration for the optimal solution.

6.3 Diverse Network Conditions
HiTDL may face the scenario where the users access the
same DNN but experience different network bandwidth.
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Algorithm 1: HiTDL
Input: C : total number of available CPU cores

F : β fairness, B: bandwidth
M : number of DNN models
K = {Ki|i ∈ [1,M ]}: number of model layers
D = {dji |i ∈ [1,M ], j ∈ [1,Ki]}: volume of
intermediate data
S = {Si|i ∈ [1,M ]}: SLA requirements

Output:
〈
Z

′
,X

〉
: partition plans and number of

instances
1 Z← ∅

/* Find feasible partition plans */
2 for i ∈ [1,M ] do
3 for k ∈ [0,Ki] do
4 if LM

i (k) + dki /B < Si then
5 for n ∈ [1, βC] do
6 if Ti(n, k) ≤ Si then
7 Z [i].append((k, n))
8 break

/* Conduct MCKP-based allocation */

9 Z
′
,X← MCKP(C ,β,Z)

10 return
〈
Z

′
,X

〉

To solve the issue, we can intuitively create separate DNN
instances for each user, depending on their individual
bandwidth. However, this may result in a large number
of heterogeneous DNN instances, which can not be ef-
ficiently shared among users, thus deteriorating resource
utility. As an alternative, we propose a threshold-based
policy. Specifically, it adopts the lowest bandwidth of the
users to allocate resource (i.e., DNN instances) when their
difference in bandwidth is no more than a specific threshold;
otherwise, separate instances are created accordingly. This
threshold-based policy allows the users to share instances
at the expense of over-allocation, especially for the users in
good network conditions. HiTDL thus requires to carefully
set its threshold to achieve a high utility.

6.4 Extension to GPU

While HiTDL focuses on the allocation of CPU cores among
concurrent DNNs, it can be similarly transferred to GPU
resource allocation. In the GPU case, we can leverage CUDA
Multi-Process Services (i.e., MPS) to slice the GPU com-
puting resource, i.e., Streaming Multiprocessors (SMs) of
GPUs, into identical blocks [50], [51]. Then, a block can
be treated as the basic computing unit like a CPU core to
involve in profiling the inference performance of DNNs and
conducting the multi-plan partition as well as the MCKP-
based allocation.

7 EVALUATION

We have implemented a system prototype for HiTDL, based
on which we have conducted extensive experiments to val-
idate the performance of HiTDL under various conditions.

7.1 Implementation and Setup

Our system prototype uses a server equipped with Intel(R)
Xeon(R) E5-2678 v3 2.50GHz CPU with 12 physical CPU
cores, running Ubuntu 16.04.4, as the edge server. To ver-
ify the scalability, we use another server equipped with
a Intel(R) Xeon(R) Platinum 8269CY 2.50GHz CPU with
26 physical CPU cores. Since the system involves many
mobile devices, we use Raspberry Pi 4 and Jetson Nano
as the mobile device. To increase heterogeneity, we also
use a separate server with less powerful CPUs, running
Ubuntu 16.04.4, to emulate mobile devices. The DNN run-
time is TensorFlow v1.14 in Python 3.7. For controlling the
number of CPUs for each DNN, we configure the option
intra_op_parallelism_threads in TensorFlow, which
regulates the size of the thread pool used to accelerate the
DNN operations. We implement each DNN instance as a
separate subprocess while HiTDL runs in the main process,
which controls the lifecycle (e.g., starting and termination)
of DNN instances. The mobile device establishes a TCP con-
nection to the edge server for exchanging the intermediate
data. Besides, the mobile device depends on the partition
decision from the edge server to initiate its partial DNN.
In order to hide the network communication latency of this
process, we let the mobile device execute the current partial
DNN while listening for the new decision.

We implement five DNN models in our proto-
type, namely Inception-v3, ResNet-50, and MobileNet-v1,
EfficientNet-B0 [52], and Conv-TasNet [53]. The first three
models involve the comparison in overall performance in
Section 7.2. Then, EfficientNet-B0 and Conv-TasNet are
introduced additionally to verify the system’s scalability
in Section 7.6. The mobile-only latencies of these models
(without interference) are 0.221s, 0.192s, 0.164s, 0.241ms, and
0.407ms, respectively. We set SLA as 90% of each model’s
mobile-only latency [8]. It is worth noting that due to the
influence of the factors like available mobile resources and
cross-application interference, the practical mobile inference
latency may differ from the original measurement. To solve
this issue, HiTDL makes Mobile Manager (a core module
detailed in Section 3) monitor and report the performance
deviation to the ones stored in Model Zoo (a core module)
periodically to calibrate the stored model information.

HiTDL has hyper-parameters as fairness and priority.
Particularly, the fairness defines the maximal ratio of CPU
cores that each model can obtain. It should make the system
approach the “absolutely” fair allocation as close as pos-
sible and meanwhile leave a reasonable space to improve
the overall utility. On the other hand, the priority should
promise the mission-critical inference tasks with sufficient
CPU cores when facing resource contention. In this work,
we set the priority based on the DNNs’ top-1 accuracy [54],
which will be extended to more dimensions, such as the
popularity and the computation intensity of inference tasks
in the future. Depending on the above principles, we set the
fairness as 0.45, and the priority of Inception-v3, ResNet-
50, and MobileNet-v1 as 0.4, 0.4, and 0.2 while evaluating
the overall performance. When investigating the scalability,
the fairness is set as 0.4 while the priority of Inception-v3,
ResNet-50, and MobileNet-v1, EfficientNet-B0, and Conv-
TasNet configured as 0.1, 0.4, 0.1, 0.3, and 0.1, respectively.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 10

0
6

12
18

U
til

ity

0 5 10 15 20 25 30 35 40 45 50
Timestamp

50
60
70
80
90

100

BW
 (M

bp
s)

HiTDL
Efficiency-MCKP

Efficiency-Weighted
Inception BW

ResNet BW
MobileNet BW

(a)

0
6

12
18

U
til

ity

0 5 10 15 20 25 30 35 40 45 50
Timestamp

50
100
150
200
250

BW
 (M

bp
s)

HiTDL
Efficiency-MCKP

Efficiency-Weighted
Inception BW

ResNet BW
MobileNet BW

(b)

Fig. 8: Utility comparison between HiTDL and baselines
under real network traces as WiFi (a) and 5G (b).

In addition, we use the Linux tc utility to simulate the real-
world network traces, namely WiFi and 5G [55] shown in
Figure 8a (bottom) and Figure 8b (bottom), during evaluat-
ing HiTDL’s overall performance.

7.2 Overall Performance Comparison

We first compare HiTDL with six baselines in the aspects of
the total utility and the resource allocation decisions under
real-world network traces. The baselines are composed by
combining different DNN partitioning methods with differ-
ent resource allocation strategies. We consider three other
DNN partitioning methods. The efficiency-based method
partitions the DNN at the layer that achieves the high-
est efficiency (defined by the utility per unit resources).
The Neurosurgeon [16] method figures out the layer that
ensures the DNN with the minimal end-to-end inference
latency, and the input-based method offloads the inference
entirely to the edge server. HiTDL adopts a multi-plan
partitioning method that figures out all the feasible parti-
tion plans. For resource allocation, we consider a weighted
allocation strategy that allocates resources proportionally to
the DNN’s priority.
Utility. Figure 8a and Figure 8b show the utility of
HiTDL, Efficiency-MCKP, and Efficiency-Weighted under
real-world WiFi and 5G traces, respectively. Input-MCKP,
Neurosurgeon-MCKP, Input-Weighted, and Neurosurgeon-
Weighted obtain constant utility as 6.54, 4.55, 4.85, and 3.30
under WiFi traces. Their utility varies under 5G traces but
does not exceed 5.13, 3.55, 3.85, and 2.11, respectively.
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Fig. 9: Efficiency of each model under real-world WiFi traces
(shown in Figure 8a (bottom)).

TABLE 3: Resource Allocation of Input-Weighted, Input-
MCKP, Neurosurgeon-Weighted, Neurosurgeon-MCKP un-
der Real Network Traces.

Input Neurosurgeon

Inc. Res. Mob. Inc. Res. Mob.

Weighted 4 4 3 5 5 0
MCKP 4 2 5 5 0 5

We can see that HiTDL achieves the highest utility. This
is because different from the other three partition meth-
ods, multi-plan partitioning dynamically figures out all the
feasible partition plans, rather than one specific plan. All
these feasible plans are evaluated by MCKP-based alloca-
tion comprehensively with the goal of maximizing the over-
all utility. Both the adaptivity of partition and the holism
of allocation make HiTDL always outperform Efficiency-
MCKP, and meanwhile achieve the utility improvement of
around 2.2×, 3.17×, 1.69×, and 4.3× on average, when com-
pared with Input-MCKP, Neurosurgeon-MCKP, Efficiency-
Weighted, Input-Weighted, and Neurosurgeon-Weighted
under WiFi, respectively. This improvement is even ampli-
fied under 5G due to the increase in bandwidth.

The utility achieved by HiTDL experiences more vari-
ations, especially when MobileNet-v1’s bandwidth varies
significantly. Through breaking down the overall utility,
we find that HiTDL prefers to allocate more resources to
MobileNet-v1 due to its high efficiency (measured by utility
per core). This makes MobileNet-v1 dominate the overall
utility. Furthermore, the efficiency is affected by the network
bandwidth, and the decrease in bandwidth deteriorates the
efficiency, thus reducing the overall utility (explained in
Section 7.4) and vice versa. Particularly, Figure 9 illustrates
the efficiency of each DNN under the real-world WiFi traces
(shown in Figure 8a (bottom) ). We can see that MobileNet-
v1 experiences more fluctuations due to its severe variation
in bandwidth, e.g., at timestamp 31 and timestamp 35.
Resource allocation. We now investigate the detailed re-
source allocation to each DNN when running under real
network bandwidth traces. The baselines, namely Input-
Weighted, Input-MCKP, Neurosurgeon-Weighted, and
Neurosurgeon-MCKP, keep the same allocation to each
model along the whole time slots, which are detailed in
Table 3 where Inc., ResN., and Mob. stand for Inception-v3,
ResNet-50, and MobileNet-v1, respectively. The others de-
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Fig. 10: Resource allocation under WiFi (a) and 5G (b).

pict in Figure 10a and Figure 10b. We can see that under both
the WiFi and the 5G scenario, the weighted-based baselines
allocate more resources to Inception-v3 and ResNet-50 due
to their higher priority. In contrast, HiTDL, which depends
on the MCKP-based allocation, allocates more resources to
the DNNs of high efficiency like MobileNet-v1. Meanwhile,
the partitioning method also has an impact on resource allo-
cation. The baselines (i.e., solid green line and dashed blue
line) that adopt the efficiency-based partitioning experience
more variations than other partitioning methods. The reason
is that efficiency-based baselines only consider one partition
plan for each model. Although this plan own the highest
efficiency, it calls for more CPU cores in general. When the
system is unable to allocate sufficient CPU cores to create an
instance for a model (e.g., Inception-v3) due to the constraint
of fairness, the number of its allocated cores goes down to
zero. In contrast, HiTDL adopts the multi-plan partitioning,
which not only includes the plans that the efficiency-based
partitioning selects but also has other candidates. When the
system fails to support the plan of the highest efficiency,
HiTDL can offer other feasible choices. This increases the
possibility of getting resources and improves the overall
utility.
Latency distribution. We now assess the latency distribu-
tion of HiTDL and the baselines under WiFi and 5G. We can
see from Figure 11a and Figure 11b that HiTDL has larger
inference latency than baselines due to the fact that HiTDL
targets at maximizing the overall utility of the edge server
instead of minimizing inference latency. Although HiTDL
suffers longer latency, its SLA violation keeps at a reasonable
low level, i.e., 0.08, 0.09, and 0.002 for Inception-v3, ResNet-
50, and MobileNet-v1, respectively.
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Fig. 11: Inference latency distribution under WiFi (a) and
5G (b). The dashed vertical lines represents the SLA of each
DNN.

Runtime overhead and Efficiency. We evaluate the time
cost and the memory consumption of HiTDL, relying on
python module time5 and perf6, respectively. Specifically,
the average time cost in evaluating three DNN models
involved partition and allocation is 36ms. Meanwhile, the
runtime memory consumption is no more than 2.38MB.

7.3 Performance model

This section investigates the prediction accuracy (measured
by relative error) in inference latency of HiTDL and Neuro-
surgeon. For a fair comparison, we extend Neurosurgeon
to consider the impact of available resources (i.e., CPU
cores), by limiting, instead of monopolizing, the CPU cores
allocated to the DNNs on the server. To understand how
Neurosurgeon performs under varying resources, we build
performance prediction models for Neurosurgeon as fol-
lows: We first analyze the types (e.g., Conv and Pooling) and
the detailed settings (e.g., kernel size) of DNN layers, and
then profile the per-layer execution time under a varying
number of CPU cores, to generate the training dataset for the
performance prediction model. To achieve high prediction
accuracy, we train a specific prediction model for each

5. https://docs.python.org/3/library/time.html
6. https://man7.org/linux/man-pages/man1/perf.1.html
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TABLE 4: Average Relative Errors of HiTDL and Neurosur-
geon When Predicting DNN Inference Latency.

Inc. Res. Mob. Eff. Conv.

Neurosurgeon 0.41 0.25 0.7 0.46 0.07
HiTDL 0.06 0.06 0.06 0.05 0.05

given number of CPU cores, with 80% of the corresponding
dataset for training and 20% for testing.

Table 4 shows each DNN’s average relative errors in par-
tial latency under different numbers of CPU cores (ranging
from 1 to 8). We can see that Neurosurgeon suffers higher
relative errors by up to 11.6× when compared with HiTDL.
The main reason is that the prediction model for Neurosur-
geon works at a per-layer granularity, ignoring the fact that
the DNN runtime frameworks typically apply optimizations
on the execution of the DNN layers on the server [17]. This
leads to that the predicted execution time is often higher
than the actual execution time for the DNN layers, causing
high prediction errors. In contrast, the prediction model of
HiTDL works at the granularity of possible DNN segments
(DNN layers that will be run together, either on the mobile
device or on the edge server), taking into account the inter-
layer optimizations by the DNN runtime frameworks and
thus achieving higher prediction accuracy when compared
with Neurosurgeon.

On the other hand, each performance model has predic-
tion errors inevitably. Moreover, these errors will be ampli-
fied in modern DNNs (e.g., Inception-v3 and EfficientNet-
B0), especially when adopting the per-layer prediction as
done by Neurosurgeon. The reason is that the DNN layers
have high similarity in both the type and parameters, e.g.,
55.1% of the layers in Inception-v3 share the same struc-
tures. When the prediction error for a layer type that appears
in the DNN frequently is high, this error will show up in all
the layers of the same type, thus resulting in poor overall
prediction accuracy. To mitigate this issue, one could utilize
more advanced (but more complex) functions while consid-
ering more impacting factors to fit the prediction model. In
the extreme case, one could even maintain a table contain-
ing the execution time for the high-frequency layer under
varying resources, to improve overall prediction accuracy.
However, these two optimizations either lead to additional
manual efforts for decomposing the DNN, preparing train-
ing datasets, training prediction models, etc., or suffer from
low generality and thus poor scalability. In contrast, HiTDL
treats each layer as a part of the whole DNN (DNN segment)
regardless of their specific layer type or parameters (detailed
in Section 4), which simplifies the building of the prediction
models effectively, without sacrificing prediction accuracy.

7.4 Model Partitioning
In this section, we dive into the multi-plan partitioning
method used by HiTDL and analyze how network band-
width, fairness, and SLA affect the partition performance
in partition point, demanded CPU cores, and efficiency. To
simplify exposition, the SLA for each model is abstracted as
a ratio to its individual mobile-only latency and is marked as
the SLA factor. We investigate the partition performance of

Inception-v3, ResNet-50 and MobileNet-v3. We only present
the results of Inception-v3, and the other two models show
similar trends. Figure 12 depicts the results where the sub-
figures share the same axes, the y-axis is the layer index, the
x-axis represents different factors, and the coordinate stands
for different performance metrics. Moreover, only when the
value of the coordinate is nonzero (e.g., dark green blocks
in Figure 12a) is its corresponding layer (i.e., the y-axis of
the coordinate) a feasible partition. Its demanded CPU cores
and efficiency refer to the value that locates at the same
coordinate in Figure 12b and Figure 12c, respectively.
Network. We evaluate the impact of the network bandwidth
on DNN partitioning with respect to the partition layer, the
number of CPU cores, and efficiency, respectively. Figure 12a
(middle) shows that the number of feasible partition plans
(i.e., the number of dark green blocks given each specific
bandwidth) increases with the increase of the network
bandwidth. This is because, given a partition layer, a lower
bandwidth makes a larger network latency and leaves less
time for the DNN execution on the edge server, which leads
to increased demands in CPU cores. However, the impact
of CPU cores on reducing the inference latency declines
marginally. The edge’s limited resource fails to support
DNNs to achieve too short inference latency, making the
partition infeasible. When the bandwidth gets higher, the
constraints in inference latency are relaxed and the number
of demanded CPU cores decreases, which makes the pre-
vious infeasible partitions, owing to the lack of resources,
become feasible.

On the other hand, we can see from Figure 12c (right)
that the efficiency benefits from the increase in network
bandwidth due to more sufficient time budget left for the
edge and vice versa. Meanwhile, the efficiency is higher
when partitioned at a later layer given specific bandwidth
and CPU cores. This is because partitioning at later layers
corresponds to less computation on the edge server, and im-
proves the inference throughput of the DNN. The increase in
throughput given fixed CPU cores can effectively improve
the efficiency.
SLA. To assess the impact of SLA, denoted as SLA factor,
we vary it from 0.4 to 1. We can see from Figure 12a (left)
that the number of feasible partition plans increases with
the increase of the SLA. Similar to the increase of network,
a higher SLA means looser constraints in edge inference
latency as well as fewer demands in CPU cores. This allows
the resource-limited edge server to support more partition
plans. Note that feasible partitions for Inception-v3 take
place at several specific layers (i.e., Layer 0, 4, and 7), which
are generally of small volume in intermediate data to reap
lower network latency.
Fairness. We investigate the impact of fairness on DNN
partition performance by varying it from 0.15 to 1. As
Figure 12a (right) shows, higher fairness values enable more
feasible partition plans. This is because fairness defines the
maximal number of CPU cores that one DNN can occupy.
When it is set with a small value, the partition plans which
require more cores than the upper bound become infeasible
due to the lack of resources. Note that the partition point has
no direct correlation with the number of CPU cores. Later
partition points correspond to less computation on the edge
server but lower allowable inference latency, which means
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Fig. 12: Partition performance of Inception-v3 under varying SLA factors, network bandwidths, and fairness values. The
y-axis is the layer index and the value at each coordinate stands for different performance metrics.
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Fig. 13: System utility under varying SLA factors, network
bandwidth conditions, and fairness values.

the edge server needs to finish a light task quickly. This
tradeoff between computation and inference latency makes
it unable to conclude that later partition layers correspond
to less demanded cores and vice versa. The results shown in
Figure 12b (right) support the argument that the demanded
CPU cores of Inception-v3 at layer 4 is more than that of
layer 7, and meanwhile, the input layer corresponds to the
least cores among all feasible layers.

7.5 Resource Allocation

We now focus on the MCKP-based resource allocation in
cooperation with multi-plan partitioning (explained in Sec-
tion 7.4), and examine how SLA factor, fairness, network
bandwidth, and DNN priority affect the allocation perfor-
mance, namely the system utility and the detailed resource
allocation to each DNN. During this process, we vary a
specific factor while controlling the others to the default
value as Section 7.1.
Utility. We can see from Figure 13 that the MCKP-based
allocation is able to react to the relaxation of the constraints
in SLA, network bandwidth, and fairness to continuously
improve the overall utility.
DNN allocation. Excessively restricting SLAs makes the
system fail to allocate any resources to some DNNs due
to their lack of feasible partition plans (e.g., Inception-v3
and ResNet-50 under SLA factor of 0.3 in Figure 14 (left)).
Fairness makes its impact by limiting the maximal number
of CPU cores that can be allocated to a DNN. With the
fairness increasing, both the number and the efficiency of
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Fig. 14: Resource allocation under varying SLA factors,
network bandwidth conditions, and fairness values.
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Fig. 15: (a) System utility and (b) the number of allocated
CPU cores to Inception-v3 (I), ResNet-50 (R) as well as
MobileNet-v3 (M) under varying DNN priority. The x-axis
and the y-axis for each subplot stand for the priority of
Inception-v3 (PI ) and ResNet-50 (PR), and the priority for
MobileNet-v1 is calculated as 1− PI − PR.

feasible plans get increased. The MCKP-based allocation
senses the improvement and takes actions to allocate more
resources to the models of higher efficiency to improve the
overall utility. Specifically, We can be seen from Figure 14
(right) that HiTDL keeps increasing the number of CPU
cores allocated to MobileNet-v3, due to its higher efficiency.

The network bandwidth affects resource allocation by
affecting the feasible partition plan. A higher network band-
width brings more feasible partition plans, especially the
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Fig. 16: Proportion of CPU cores (12 in total) allocated to the
user when she faces varying bandwidths while accessing
the same DNN with another user. Specifically, the latter has
a fixed bandwidth as 80Mbps. Note that 1 means the two
users share instances.

ones with high efficiency along with more demanded cores.
The MCKP-based allocation reacts to the improvement in
efficiency and adjusts resource allocations accordingly.

We now focus on how the DNN priority affects the
resource allocation. As Figure 15b shows, the number of
CPU cores allocated to a model increases with the increase
of the model’s priority as expected. Note that the number of
CPU cores allocated to each DNN becomes zero when the
sum of Inception-v3 priority and ResNet-50 priority exceeds
1, which renders an invalid configuration.
Diverse network conditions. We now focus on the sce-
nario where the users access the same DNN but experience
different network bandwidth. Specifically, we explore the
detailed allocation for two users, one of whom experiences
a fixed bandwidth as 80Mbps while the other faces varying
bandwidths. Figure 16 illustrates the proportion of CPU
cores (12 in total) allocated to the latter. We can see that the
allocation is affected by the DNN type, network bandwidth,
and threshold simultaneously. For example, HiTDL cuts
down on its allocation to the user when the user suffers
bad network conditions (e.g., at 60Mbps and 65Mbps),
aiming at maximizing the overall utility. Meanwhile, the
increase in bandwidth may also incur resource reduction
(e.g., when the user accesses ResNet-50 at 95Mbps) because
of the marginal impact of resources on improving utility
(explained in Section 4).

7.6 Scalability.
We investigate the scalability of HiTDL when dealing with
more DNNs while running on a server with a higher num-
ber of CPU cores. Here, we introduce two additional models
as EfficientNet-B0 and Conv-TasNet, besides Inception-v3,
ResNet-50, and MobileNet-v1. All of these involved DNNs
co-run on a server equipped with 26 physical CPU cores.
The detailed setup (i.e., fairness and priority) of the experi-
ment is given in Section 7.1.

Figure 17 depicts the average utility of the baselines
normalized by HiTDL. We can see that HiTDL outperforms
the baselines up to 100× under both the WiFi and the 5G
network traces. Meanwhile, due to the effect of multi-plan
partition, HiTDL achieves the improvement by up to 8%

WiFi 5G
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 u
til

ity

Efficiency-MCKP
Input-MCKP
Neurosurgeon-MCKP

Efficiency-Weighted
Input-Weighted
Neurosurgeon-Weighted

Fig. 17: Average utility (normalized by HiTDL) of baselines
under different network conditions (i.e., WiFi and 5G).

when compared with Efficiency-MCKP. What’s more, this
improvement can be further amplified when configuring
ResNet-50 with higher priority. For example, when setting
ResNet-50 with the priority as 0.6 and the others with 0.1,
together with the fairness as 0.35, the improvement goes by
up to 25%.

8 RELATED WORK

8.1 Edge-based DNN Inference
There have been many studies on improving the perfor-
mance of mobile inference with an edge computing plat-
form [21], [39], [56], [57], [58], [59], [60], [61]. Liu et al. pro-
pose an edge assisted object recognition system that jointly
achieves high accuracy and low processing time by using
dynamic RoI encoding, rendering pipeline decoupling, and
fast object tracking [39]. Cachier is also an edge caching
system for object recognition applications, which employs
an adaptation engine to reduce the recognition delay by
exploiting object spatiotemporal locality and adjusting the
cache size dynamically [56]. Precog further extends the
idea and not only uses edge servers but also leverages
mobile devices to implement prefetching and caching on
the device [57]. However, these are feature-based inference
and do not employ DNNs. Guo et al. present FoggyCache,
a computation reuse system that utilizes the computation
results across devices at the edge by designing a two-level
cache to reduce the redundant computation [58]. Guo et al.
also take into consideration the fine-grained input similarity
and achieve approximately deduplicate computation across
applications [59]. Based on the partial-DNN sharing among
applications, Jiang et al. propose Mainstream to achieve
improments on aggregate application quality [60]. Wang
et al. propose an adaptation-based strategy which explores
applications’ behavior to filter frames and adjust the number
of concurrent instances within the edge so as to maximize
the overall utility [21]. None of these works target the DNN
resource sharing on edge servers following the hybrid DNN
provisioning approach.

8.2 DNN Partitioning
Recently, DNN partitioning has been extensively studied [8],
[10], [14], [16], [17], [18], [19], [62], [63]. Some works focus
on the training of DNNs in a distributed environment. To
optimize data parallel in NLP training, Kim et al. propose
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Parallax, a data parallel training system for DNN leveraging
the sparsity of model parameters [62]. Focusing on large-
scale DNN models, Wang et al. presents Tofu, a system
that partition the dataflow graph of large DNN models
across GPU devices to speed up the training [18]. Others
aims to optimize DNN inference on mobile devices. Neu-
rosurgeon [16] is the first work to partition DNN, which
profiles inference latency of each layer with respect to its
categories like fully-connected, convolutional, or pooling.
µLayer is an on-device inference system that achieves high
inference efficiency by DNN layer partitioning and distribu-
tion between mobile CPU and mobile GPU [10]. Eshratifar
et al. utilize an ILP-based method to obtain the optimal
partition point for achieving the minimum latency or energy
consumption [17]. Hu et al. propose DADS, a DNN partition
scheme that can minimize the overall delay of a request or
maximize the throughput [19]. PHsu et al. pay attention to
these modern DNNs partitioning and container-based de-
ployment for sliced DNN models to minimize the inference
latency [14]. Recently, early-exits, as a new mechanism to
decrease inference latency, has been introduced to DNN
partitioning [64], [65]. SPINN further improves the inference
latency via compressing the offloaded data and make early-
exist decisions based on the complexity of the input [8]. In
contrast, we study the problem of resource allocation for co-
locating DNNs on the edge server with DNN partitioning
and our goal is to achieve SLA guarantee and high through-
put simultaneously.

9 CONCLUSIONS

HiTDL demonstrates how to provision multiple DNNs
following the hybrid deployment approach over limited
resources at the edge. HiTDL’s goal is to achieve high
aggregate throughput of all co-located DNNs while guar-
anteeing the SLAs of all the DNNs. HiTDL achieves its
goal by building performance predication models for DNN
inference throughput and latency with respect to a set of
factors, generating a set of candidate partition plans for each
DNN, and allocating resources by selecting specific feasible
partition plans from the candidate set via solving a fairness-
aware multiple-choice knapsack problem. Experimental re-
sults confirm the effectiveness of HiTDL, where HiTDL
outperforms baseline solutions by 4.3× in throughput.
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