
Archer: Adaptive Memory Compression with Page-Association-Rule Awareness for
High-Speed Response of Mobile Devices

Changlong Li1,2,3, Zongwei Zhu4,5∗, Chao Wang4,5, Fangming Liu6,7, Fei Xu1, Edwin H.-M. Sha1, Xuehai Zhou4,5

1School of Computer Science and Technology, East China Normal University
2Jianghuai Advance Technology Center, Hefei 230026, China

3MoE Engineering Research Center of Hardware/Software Co-Design Technology and Application
4School of Software Engineering, University of Science and Technology of China, Hefei 230026, China

5Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
6Huazhong University of Science and Technology 7Peng Cheng Laboratory

Abstract
In mobile systems, memory can be compressed page-by-page
to save space. This approach is widely adopted because mem-
ory data is accessed by page. However, this paper shows that
the system response speed is significantly limited by page-
grained compression. In this paper, we observe that approx-
imately a quarter of anonymous memory pages are highly
correlated, even though the association is implicit. Inspired by
this, we propose Archer, an association-rule-aware memory
compression framework in mobile systems. Archer demon-
strates that memory in mobile devices should be compressed
using flexible granularity, rather than relying solely on tra-
ditional page compression. To further integrate association-
rule mining techniques into system design, we redesign the
LRU mechanism and propose an adaptive memory compres-
sion region. Experimental results show that the average app
launching speed is 1.55x faster when enabling Archer, and the
average photographic speed and frame rate increase by 1.42x
and 1.31x, respectively, compared to the state-of-the-art.

1 Introduction

With mobile applications’ increasing demands for memory
and a steady increase in the number of cached apps, memory
resources are scarce on mobile devices. Such a trend will be
more obvious as many memory-intensive tasks, like AI [1],
AR/VR [2], and Transformer [15] are implemented. To ad-
dress this issue, memory compression techniques are adopted
in mobile systems (e.g., Android, iOS) [3–7,9]. By compress-
ing the least essential pages, the space can be saved for new
memory demands.

There have been many studies on optimizing memory com-
pression by improving the algorithm [7, 49, 50], minimizing

∗Corresponding authors: Zongwei Zhu, Email: zzw1988@ustc.edu.cn.
This work was supported in part by the National Key R&D Program of China
(2024YFB4504400), Dreams Foundation of Jianghuai Advance Technol-
ogy Center (No. 2023-ZM01Z011), NSFC under Grant No. 62302169 and
No. 62372184, Major Key Project of PCL under Grant PCL2024A06 and
PCL2022A05, and Shenzhen Science and Technology Program under Grant
RCJC20231211085918010.

its effect [5, 41], or making use of app characteristics [4, 6, 9].
For example, Liang et al. proposed a foreground-aware page
reclaim scheme called Acclaim [5]. With Acclaim, pages be-
longing to the foreground application are denied to compress.
ASAP [6] and SEAL [9] explored the characteristics of app
launching required pages and boosted the launching speed
by optimizing the memory (de)compression process. Exist-
ing solutions compress memory data at the page level, which
is reasonable because memory is managed and accessed by
pages. Page-granularity compression, as opposed to larger
granularities, helps avoid read amplification. However, this
paper reveals that such an approach wastes CPU bandwidth
and introduces significant context-switching overhead. Our
study indicates that the response latency can increase by up
to 2.31x when suffering frequent compression.

This paper analyzes the page footprint of popular appli-
cations and finds a large number of highly correlated pages.
These pages are either accessed together or rarely accessed.
Such internal associations are implicit and difficult to be aware
of, just like the relationship between diapers and beer in mar-
kets. If we can mine the association rule of memory pages
and compress the highly correlated pages together, the system
performance has the potential to be further improved with
minimized read amplification.

Inspired by this observation, this paper proposes Archer,
an Association-rule aware memory compression framework
for the high speed response of mobile devices. Implementing
such a system is not straightforward, as several fundamental
challenges must be addressed. First, traditional association-
rule mining techniques [38–40] cannot be directly ported to
mobile systems, as there are too many dynamically changing
memory pages and associations. Mobile operating systems
use LRU-based page management [12]. While effective for
general workloads, LRU is inefficient for data mining and
poorly suited to identifying page associations. To leverage
association-rule mining in system design, the underlying data
management structure must be reengineered in a data-mining-
friendly manner. Second, the number of associated pages
varies. For instance, page A might be highly correlated with

1



three other pages, while page B might be linked to five. Ad-
ditionally, large-grain compression is not always ideal. For
example, if an app requires 4KB of memory, but the sys-
tem compresses 64 pages (each 4KB) together, rather than
compressing a single page, it will increase the response time.
Therefore, compression granularity should be adaptable based
on page associations and memory demand. Traditional com-
pression mechanisms, designed with fixed granularity, cannot
accommodate this. To enable adaptive compression, the ad-
dress space and compression region need to be redesigned.
Third, given that mobile devices have limited resources, the
proposed solution must be lightweight and not interfere with
the performance of foreground applications.

To tackle the challenges, this paper further proposes three
components: a footprint stream generator (FSG), a frequent-
pattern tree list (FT-List) structure, and an adaptive compres-
sion region (ACR). The FT-List manages pages with app
awareness. The combination of FSG and FT-List simplifies
the indexing and management of associated pages. Using
ACR, memory data in mobile systems can be compressed at
any granularity. We have implemented Archer on real-world
devices. Our evaluation shows that enabling Archer improves
app launch speed by 1.55x. Additionally, photographic speed
and frame rate increase by 1.42x and 1.31x, respectively, com-
pared to the state-of-the-art solutions [3] [6]. More impor-
tantly, the tail latency is significantly reduced.

In summary, this paper makes the following contributions:

• We observe that there are internal associations among
anonymous memory pages, a factor overlooked in previ-
ous operation system designs.

• This is the first work that proposes the possibility of
large-grain compression in mobile systems. By leverag-
ing internal page associations, memory compression can
overcome the current performance ceiling without the
need for hardware infrastructure changes.

• This paper demonstrates that LRU is inadequate for data
mining on memory pages and introduces a novel struc-
ture, the FT-List. Additionally, we propose ACR to man-
age adaptively compressed data.

• Archer is app-agnostic without requiring any change to
applications’ codes, and compatible with existing mech-
anisms. Experimental results show a significant alle-
viation (up to 55%) of the poor response issue when
memory is exhausted, compared to the state-of-the-art.

2 Background and Motivation

2.1 Memory Management of Mobile OS
Reclaim File-backed and Anonymous Pages. As in typical
Linux-like operation systems (OS), memory-demanding re-
quests of an application in mobile systems are delivered to

the kernel through page fault. The kernel tries to assign 2order

pages from free_list [10]. In the buddy system, each f ree_list
has an order, where the order is an integer ranging from 0 to
10. When enough pages are allocated, the application contin-
ues execution. Acquiring free pages is mostly done quickly.
If no sufficient free pages are available, it takes a rather long
time to create free pages by memory reclamation.

Two kinds of pages can be reclaimed: file-backed and
anonymous pages. File-backed pages are indexed by file sys-
tems and anonymous pages are generated by processes at
runtime [4]. These pages are reclaimed through compression.
When enough space is saved, the buddy system reallocates
pages and responds to the application. If the memory is not re-
claimed on time, a low memory killer daemon (lmkd) will kill
several background applications so that the occupied memory
space can be released [11]. It results in the loss of the app
state and slows down the app’s launching speed [4].
Process of Memory Compression. Two LRU (least-recently-
used [12]) lists are maintained to manage the anonymous
pages: active and inactive list. When performing compression,
pages on the inactive LRU list are selected as candidates. They
are evicted from the list and delivered to the compression
driver. The compression algorithm is registered as a driver in
the Linux kernel and will be called to compress the pages one
by one. The compressed pages are stored in the compression
region, which is usually organized as a virtual RAM disk [3].

2.2 Limitations of Page Compression

Mobile systems perform compression in page granularity.
This does not block the regular app execution when their
demand for memory is not intensive. However, modern apps
tend to demand a large amount of memory in a short time.

2.2.1 Workloads for Analysis

To understand how page-grained compression affects the user
experience, we conducted experiments on a HUAWEI P20
smartphone with three typical scenarios.

• Scenario A: App launching. Fast app launching is cru-
cial for the user experience on mobile devices. As in-
vestigated, people launch apps hundreds of times per
day [13, 16]. To start up an app, the system does a lot of
operations to make the launch activity visible to a user.
Generally, decades of megabytes of memory space are
required to launch an application.

• Scenario B: Continuous shooting. Users are increas-
ingly engaging with the physical world through a digital
lens, spending a large portion of their time with the inte-
grated camera on phones. Modern smartphones consume
a lot of memory to take pictures, especially when the
camera is in continuous shooting mode, which allows

2



multiple photographs to be taken within a short time
frame and in rapid succession.

• Scenario C: Short-form video. People nowadays are
spending more and more time on short-form videos [8,
17]. Users watch these videos serially (e.g., based on
a search or user-specific recommendations), with the
ability to swipe from one to the next at any time. During
the process, video data is buffered in the memory through
the network [18], consuming a lot of space.

This paper describes the response time of the above scenar-
ios with different metrics and methods. First, we adopt Adb
(Android debug bridge [19]) to launch apps and record their
launching time. Second, the speed of continuous shooting
is quantified by calculating how many photos are taken per
second. We deploy an additional device to record the pho-
tographic process via video. Then analyzes the video and
calculates the performance using StagesepX [20]. Third, the
frame rate is utilized to quantify the smooth experience of
short-form video playing and switching. It depicts whether
a user can smoothly interact with the screen. We employ
Systrace [21] to monitor the FPS (frames-per-second).

2.2.2 Response Time Analysis

The response time of each scenario is evaluated in three situa-
tions: abundant, regular, and scarce. “Abundant” refers to the
case where no app is cached in the background. The memory
is enough to afford the tested application. “Regular” refers
to the case when there is some memory used by background
apps but enough free pages. In this case, the memory com-
pression procedure is triggered but not frequently. “Scarce”
is the case where background apps are almost exhausting the
memory resources. Specifically, twenty apps run in advance
and switch to the background, consuming more than 90% of
the space. The evaluation method is detailed in Section 5.2.1.

Figure 1(a) shows the launching latency of mobile apps.
Each app is tested for ten rounds and the average is taken. The
tested apps are picked from the most popular ones of various
categories on the Google application market, including Face-
book, PUBG Mobile, Amazon, Twitter, YouTube, Chrome,
WeChat, and Google Map. The average latency increased by
68.7% when the memory was scarce, compared to the regular
usage case.

Figure 1(b) depicts the process when the camera takes pho-
tos continuously. The Y-axis represents the timeline. Each
circular icon in the figure represents a photo taken at that
moment. It illustrates that 16 photos can be taken within one
second when the memory is abundant, while only 10 photos
are taken in the Scarce case. The response time of the continu-
ous shooting is prolonged by 1.6x when the memory is under
pressure. In addition, Figure 1(c) shows that the frame rate of
short-form video playing and swiping reduced from around
50fps to 27fps (see the grey curve) on average. It demonstrates

0

2000

4000

6000

8000

10000

12000

Facebook PUBG
Mobile

Amazon Twitter Youtube Chrome WeChat GoogleMap

Ti
m

e 
Co

st
 (m

s)

Abundant Case Regular Case Scarce Case

20

25

30

35

40

45

50

55

60

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

Fr
am

e 
Ra

te
 (f

ps
)

Abundant Regular Scarce

1

0.5

0

Ti
m

el
in

e 
(s

)

Abundant Regular Scarce

(a) App launching latency

(b) Process of continuous shooting (c) Frame rate of short-form videos

PUBG

Figure 1: Response time of the mobile applications signifi-
cantly increased when the memory is under pressure.

the response time increases when bursts demand a large space
for an exhausted memory. Such a significant slowdown can
potentially affect the user experience negatively.

2.2.3 Root Causes of User-perceived Delay

The degraded response speed could be caused by CPU or I/O
issues. This paper examines both possibilities.

We modified the kernel into two versions: fileRec and anon-
Rec, and compared to the original kernel (bothRec). FileRec
refers to a kernel version that only allows file-backed page
reclamation, say, no memory compression. Contrary, com-
pression is allowed under anonRec, while reclamation toward
file-backed pages is discarded. In this case, memory reclaim
will not induce additional I/Os. In the bothRec version, both
anonymous and file-backed pages are allowed to be reclaimed.
These kernels are deployed on a P20 phone and measured
separately. For each kernel version, we cold-launch the appli-
cation and record the time cost in two cases: (i) launch the
app when the available memory is enough; (ii) do that when
the memory is almost exhausted.

Figure 2(a) shows that the launching speed is close between
bothRec, fileRec, and anonRec when the available memory
is enough. This is because the reclaim operations are not
performed in this case. In case (ii), the average launching
speed increased by 72.1% under bothRec. It illustrates that
memory reclaim harms the system response speed1. From
the evaluation results of fileRec and anonRec, we can see
the latency is increased by 26.2% when enabling file-page
reclaim, while increased by 58.7% when enabling memory
compression. I/O is a main bottleneck in many situations
and many solutions were proposed to improve it [16, 26].

1Memory reclaim is a necessity to cache more applications in the back-
ground. Hence, even though the introduced performance penalty, modern
mobile OSes still widely support this feature.

3



However, the results illustrate that memory compression can
also significantly affect the response speed. Its effect is high
for two reasons. First, we observe that more than 93% of
file-backed pages have not been modified. The OS releases
them directly, without writing back. Instead, all anonymous
pages are dirty (modified). All anonymous pages should be
compressed in practice. Second, the ratio of anonymous pages
keeps increasing during usage. As investigated, the average
ratio of anonymous and file-backed pages increased from
around 1:1 to 3:1 during usage [27].

30

40

50

60

70

bothRec noRec
anonRec fileRec

Ti
m

e 
co

st
 (s

)

U
til

iza
tio

n 
(%

)

Normalized launching time (%)
4020 60 80 1000

(a) App launching time (b) CPU utilization

0

1

2

3

4

5

6

bothRec fileRec anonRec

Case (i) Case (ii)

Figure 2: Root cause analysis.

A slow compression procedure can severely degrade the
performance of the tested applications. One of the key rea-
sons behind this performance degradation is the synchronous
reclamation mechanism, called direct reclaim. Direct reclaim
harms the performance because any page allocations must
wait for the compression process to finish. As a result, the
main task of the foreground app is suspended until its mem-
ory demand is met. This problem is known as priority inver-
sion [28]. Even though the kernel thread kswapd can compress
asynchronously, the buddy system may still get stuck in a loop
before enough space is released.

2.3 Potential Benefit Discussion

Figure 2(b) depicts the CPU utilization during app launching.
To easily show the relationship, we normalize the launching
times and sort them from short to long. Based on that, CPU
utilizations are compared from [0th, 20th]-percentile to [80,
100th]-percentile of the sorted launching time.

As evaluated, the average CPU utilization without memory
compression is 46.9% (NoRec in case-i) and 51.6% (fileRec
in case-ii). This value remains relatively low (i.e., 53.8% on
average in the anonRec case) when memory compression
is enabled during app launching. It demonstrates that the
resources are not fully utilized. This is because the default
compression mechanism deals with memory pages one by
one, leading to a result that compression operations are fre-
quently interrupted by the software stack and context switch.
For example, the system needs to evict the pages going to
compress from the LRU list and balance the active and inac-
tive LRU lists. By tracing the corresponding kernel functions
like shrink_active_list() in mm/vmscan.c, we observe
that page compression operations are frequently mixed with

the above software stack functions. These problems can be
alleviated if compressing the data together.

3 Opportunities of Large-grain Compression

It is reasonable to compress pages individually. By doing
so, read amplification is eliminated. Here, read amplification
refers to the ratio of ‘the total size of the decompressed data’
to ‘the size of the accessed data’.

Different from traditional computers, we observe that ac-
cessed pages on mobile devices have high associations, as the
operation system and user behaviors difference. It allows us
to conduct larger-grain compression and avoid read amplifica-
tion simultaneously. To analyze the correlation, we collected
the page access sequence and obtained each page’s virtual
address. The page access event can be detected by the original
Linux kernel interface [30]. Then we convert virtual addresses
to physical addresses using function virt_to_phys(). The
physical address is adopted as page identification. The col-
lected footprint is delivered to a laptop and analyzed offline.

This paper makes use of the association-rule mining tech-
nique to explore the internal relationship of the accessed
pages. This technique was conceived as an unsupervised learn-
ing task for finding close relationships between items. The
meaning of an association rule is: if antecedent X is satis-
fied, then it is highly likely that consequent Y will also be
satisfied [31–33]. To explore the relation of memory pages,
we explore the association confidence of all page combi-
nations. The value of Confidence (X → Y ) represents the
probability of accessing page Y when page X was accessed:
P(Y|X)=P(XY)/P(X). Two pages are considered as highly
associated if they are always accessed within N footprints. N
is set as 32 in this evaluation. We calculate the confidence
of all page combinations using an association-rule mining
algorithm (Apriori with Python [34]).

Then we sort the page combinations according to their
association confidence value. Based on that, the page com-
binations are compared from [0th, 10th)-percentile to [90th,
100th]-percentile. The higher this value is, the more corre-
lated the pages are. Among all the combinations, 26.3% have
a high possibility (>80%) to be accessed together. In some
scenarios, the ratio is up to 34.1%. In addition, the number
of page combinations in [0, 20) is 71.1% on average, while
rarely combinations are located in the [20,80) range. This
indicates that the correlation between the accessed pages is
polarized: either having no relationship or being accessed
simultaneously almost all the time.

This is because a large number of pages are only accessed
in specific scenarios. For example, we observe that 36.2% of
the anonymous pages are only demanded in the app launching
phase on average. When running the PUBG Mobile, more
than 58MB (59,392 pages) are only accessed when entering
the Battle mode. These pages are not used except by the
UNREAL engine [35] of the mobile game. Furthermore, many

4



applications call the camera component. To share the data
between the CPU and the camera accelerator, like DSP [36],
the camera demands a DMA buffer for ION memory (using
ion_alloc()). We find 92.1% anonymous pages belonging
to the camera have never been accessed except when calling
the camera. Among them, 74.3% of pages are accessed more
than 8 out of 10 times when the camera starts up.

0

10

20

30

40

50

[0
, 1

0)

[1
0,

 2
0)

[2
0,

 3
0)

[3
0,

 4
0)

[4
0,

 5
0)

[5
0,

 6
0)

[6
0,

 7
0)

[7
0,

 8
0)

[8
0,

 9
0)

[9
0,

 1
00

]

N
um

. o
f I

te
m

se
ts

(x
 1

,0
00

,0
00

)

Association confidence of page combinations (%)

Figure 3: Association of accessed anonymous pages.

In normal cases, page-grained compression is enough to
save memory space. When suffering burst memory demand-
ing, like the scenarios discussed in Section 2.2.1, compressing
the associated pages with higher granularity becomes impor-
tant. As shown in Figure 3, more than a quarter of pages have
high association. If we can identify these pages and make
full use of them, the system response speed can be signifi-
cantly improved in burst memory-demanding scenarios, with
minimized read amplification. For clarity, we simplify the
experiment and only show the correlation between page com-
binations. Note that associations do not just occur between
two pages in practice. For example, eight or even more highly
inter-associated pages are also observed in our evaluation.

4 Design

4.1 Archer Overview
This paper proposes Archer, an association-rule aware mem-
ory compression framework for mobile devices. The basic
idea is to mine the internal association rules of memory pages
and compress those that are highly correlated together. The
design consists of three core components: a footprint stream
generator (FSG), a frequent-pattern tree list (FT-List), and an
adaptive compression region (ACR).

FSG is responsible for mining association rules based on
the page access footprint, generating footprint streams, and
sending them to the FT-List. FT-List differs from traditional
LRU structures by efficiently depicting and indexing page
associations. Together with FSG, it enables the compression
of highly correlated pages. ACR allows flexible page com-
pression and storage based on the discovered associations.

The workflow is as follows: (❶) During normal device
usage, the footprint of accessed pages is collected by the
FSG component. (❷) FSG encapsulates adjacent accessed
pages into transactions using a sliding window mechanism.

FSG

Anon Pages in Buddy System ACR

RAM DiskBuffer

……

Items Transactions

…

LRUFP-Tree 1FP-Tree n

UID_1UID_ n Head

Compression Engine (e.g., lz4)

FT-List

1

2
3

4

68

9 7

M
em

ory reclaim
 (e.g., ksw

apd)

5

order

Figure 4: Archer Framework Architecture.

(❸) These transactions are sent to an association-rule mining
model that identifies highly correlated pages. This model is
integrated into the FT-List component. (❹) In FT-List, pages
are appended on either a LRU list or frequent-pattern trees
(FP-tree). Page associations can be updated during runtime.
(❺) When performing memory reclaim, pages maintained by
FT-List will be checked. (❻) If the memory demand is not
urgent, Archer compresses pages on the LRU list one by one
(narrow track). (❼) Compressed pages are then stored in the
compression region. (❽) If memory demand becomes urgent,
the compression switches to the wide track, where associated
pages are compressed together. (❾) These compressed objects
are stored in the compression region.

4.2 Footprint Stream Generator
In the traditional association-rule mining algorithms (e.g.,
Aporio [38], FP-Growth [39], CHARM [40]), a frequent pat-
tern set will be built to contain all the elements whose fre-
quency is greater than or equal to the minimum support2

count. Following this rule, pages that are only accessed one
time will be ignored. Such an approach is useful in mining a
static transaction data set. However, in mobile systems, page
access occurs continuously during runtime. Archer should
be able to update the page association information as pages
are accessed. Motivated by this, Archer collects page access
patterns during runtime and generates a footprint stream. Now
we introduce how the stream is generated.

In the original Linux kernel, page access events are moni-
tored for page activity updating. Based on the existing inter-
face, Archer can aware of page access without introducing
additional computing overhead. We adopt the physical page
address instead of the virtual address to identify pages because
the virtual addresses of many pages belonging to different
applications are duplicated.

Archer maintains a FIFO (first-in-first-out) circular queue
to record the page access history. When an anonymous page
is accessed, Archer obtains its physical address, which is
treated as an item, and inserts it into the queue. The in-flight

2Support is a parameter of association-rule mining algorithms. It refers
to the relative frequency of an item set in a dataset.

5



items constitute a data stream. Since page access is one of the
most frequent operations in the system, aggressive data min-
ing will negatively affect the system’s performance. Hence,
Archer processes the stream in a semi-offline way. It collects
the items in real time but is allowed to delay mining their
association, asynchronously.

A daemon is added as a separate control unit inside the
kernel. It transfers the sequence items to transactions. We
generate transactions using a fixed-size sliding window. For a
window of width w, transactions are generated in three cases:
(1) When X (X ≥ w) items are in the queue, Archer caches
the items as a transaction and evicts them from the queue.
Then the head pointer of the queue moves w steps and the
window slides to the new head position. (2) If ⌈w

2 ⌉ ≤ X < w,
the window will suspend for ∆T time long. When timeout, the
X items are evicted from the queue and the sliding window
moves X steps. (3) If X < ⌈w

2 ⌉, the window suspends until
one of the above two conditions is satisfied.

Example. Taking Figure 5 as an example, pages with the
following addresses: 0x3E, 0x29, 0x313, 0x32, 0x10, 0x2F,
0x45, 0x3E, 0x29, 0x32, 0x10, 0x2F, 0x11, 0x3E, 0x29,
0x13, 0x28, 0x29, 0x13, 0x37, 0x2F, 0x28, 0x3E, 0x51,
0x29, 0x10, 0x10, were accessed in that order. In this ex-
ample, the window width w and queue length Lq are set as 6
and 10, with t0 being the earliest and t26 being the latest access.
At ti, the head pointer of the queue stays at the ti-th slot. Fol-
lowing the aforementioned strategy, Archer initially detects
the number of items in the sliding window. At time t5, 6 pages
are inserted into the queue within ∆T , that is, t5−t0 < ∆T , the
window evicts the 6 pages and delivers them to a transaction
buffer. Then, the sliding window moves 6 steps and detects
the coming items again. At time t11, Archer generates a new
transaction. After that, four new items come before time out.
At time t11 +∆T , Archer converts the four items 0x11, 0x3E,
0x29, and 0x13 to a transaction. Similarly, Archer generates
two transactions at time t15 +∆T and t26 separately.

People may use the phone busily in some periods while
putting the phone down at other periods [37]. Page accessing
is relatively frequent when the human-machine interaction is
busy. As a result, page accessing induced newly generated
items can quickly fill the queue. It means the coming items
cannot be processed on time. In this case, Archer discards the
earliest dispatched item in the queue without processing it.
We believe it is worth ignoring some item processing when
human-machine interaction in the foreground is busy.

The generated transactions constitute a footprint stream
and are delivered to FT-List for further processing.

4.3 Frequent-pattern Tree List

4.3.1 Mining the Footprint Stream

FP Growth is a highly efficient method for association rule
mining. By maintaining an FP-tree, page associations are

t0 t1 t2 t3 t4 t5

3E 29 13 32 10 2F

t6 t7 t8 t9t10 t11

at time t5

45 3E 29 3210 2F
at time t11

11 3E 29 13

t12 t13 t14 t15

at time 
t11+△T

28 29 13 372F

t16 t17 t18 t19t20

at time 
t15+△T

28 3E 51 29 10 10

t21 t22 t23 t24 t25 t26at time t26

Figure 5: Example of transaction generation.

clearly represented. The tree’s branches are built in descend-
ing order of frequency, with each node, except the root, rep-
resenting a memory page. Pages are sorted based on the fre-
quency of their occurrence, and the count is updated each time
a page appears in a transaction. Each transaction is mapped
to a path in the tree, with overlapping paths from different
transactions keeping the tree compact. In summary, associated
pages can easily be identified by traversing the FP-tree. This
paper does not focus on optimizing the data mining algorithm,
the algorithm detail can be seen at [22]. With the variant of
the FP Growth [23], page associations can be updated based
on the footprint stream.

Archer maintains a heartbeat with a cycle of three seconds
in default to monitor the buffer and periodically mine the
transactions inside. To avoid resource contention, we suspend
the mining operation if the system is detected to be too busy.
Specifically, in our implementation, we consider the system
to be busy when CPU utilization exceeds 80%.

Note that mining continuously will not induce high over-
head. If the device is used frequently, the number of accessed
pages will grow rapidly. In such cases, overflowed transac-
tions are discarded, ensuring that Archer’s mining cycles re-
main within an upbound. Conversely, if the device is seldom
used, Archer’s energy consumption does not accumulate lin-
early over time, as page access frequency is lower. When no
sufficient transactions in the queue, Archer will defer trigger-
ing the mining task until after several heartbeats.

Despite the maturity of association-rule mining techniques,
they cannot be directly applied to system management. The
high number of memory pages makes global-scale mining
costly and inefficient. Moreover, appending all pages to a
single FP-tree would result in slow traversal and updates.
Additionally, in the kernel, pages are indexed by LRU lists,
which makes scanning and evicting highly correlated pages
from the list inefficient. To address these challenges, this

6



paper co-designs LRU with FP-tree and proposes FT-List.

4.3.2 Codesign LRU with FP-Tree

The frequent-pattern tree list (FT-List) is motivated by a key
observation: most highly correlated memory pages belong to
the same application. In the preliminary study in Section 3,
two sets of statistics were compared. First, we group pages
and mine the associations within each group. The total number
of associated pages was then calculated. Second, the total
number of associated pages was counted without considering
which application they belonged to. The results revealed that
93.1% of associated pages were from the same application.
Thus, Archer focuses on app-aware association mining and
management, rather than analyzing the entire memory scope.

FT-List Structure. As illustrated in Figure 4, the main
branch of FT-List consists of several nodes (in dark color).
The first node is a pointer to the inactive anonymous LRU list,
while the remaining nodes serve as roots of FP-trees. Unlike
traditional FP-trees where the root node is represented as null,
in FT-List, the root node is used to distinguish applications
by recording their unique IDs (UIDs). In Android, every app
has a unique UID that remains fixed once the app is installed.

All associated pages belonging to a specific app are ap-
pended to the FP-tree under the corresponding UID. As the
system is used, a footprint stream is generated, and the trees
in FT-List are updated accordingly. The UIDs on the main
branch of FT-List are sorted based on the activity of their re-
spective apps. For simplicity, the Android priority mechanism
(Adj [24]) is used to determine activity. The more inactive an
app is, the closer its node is to the head of the FT-List.

Adaptive Compression with FT-List. During regular us-
age, Archer enters the code path of the original page reclaim.
The system directly evicts the inactive page from the list
and compresses it. When suffering burst memory demands,
Archer selects the associated pages through scanning FT-List
from head to tail. Then compressing them together. More than
a quarter of pages in the memory can be processed in batch.
It is enough to cope with sudden memory demanding.

In practice, the function _alloc_pages_nodemask() is
called during memory reclaim. The parameter order is passed
to this function, determining how many pages (2order) need to
be reclaimed in one round. If fewer pages are found, the next
FP-tree will be checked. Note that not all pages in an FP-tree
are pairwise associated; the tree uses a grouping mechanism
to ensure that only pages with strong associations are com-
pressed together. All the data mining-related structures are
maintained in the memory, so the process can be done quickly.

4.4 ACR: Adaptive Compression Region

To compress pages together, all candidate pages are moved
to the swap cache in batch. Archer merges them in the swap
cache into a block, then delivers the block I/O (BIO) to the

adaptive compression engine. BIO represents an in-flight
block I/O request in the kernel [48]. Archer compresses
the large-size BIO by calling compression algorithms. The
compression engine parses this structure and obtains the
pages. Since the compression algorithm requires contiguous
memory as the input of compression in the implementation,
Archer copies the physical pages to a buffer. After compres-
sion, the binary-format contents of the pages in the buffer are
converted to a smaller-sized block. Since the number of pages
in the buffer varies, the size of the compressed data is not
fixed. Archer stores the compressed block to a compression
region and manages the address dynamically.

The compression region should be redesigned to adapt
to the new situation. Modern adaptive compression solu-
tions [49, 50] are either not compatible with the existing page
compression mechanism or bring too much overhead, as they
ignore the redesigning of the compression region and software
stack for memory reclamation. This paper proposes ACR to
address this issue. In modern mobile systems, ZRAM [3] is
the most widely adopted page compression solution. To sim-
plify our design, we implement ACR based on the existing
address indexing method and structure of ZRAM. Now we
introduce how the compression region is managed in page
granularity, then show our modification on it.

In the original system, compressed data are stored in a main
memory region. Archer manages this compression region
as a virtual block device (RAM disk). ZRAM manages the
compression region based on the buddy system, it allocates
memory space using the __alloc_page() interface. These
pages are used to store the compressed objects. For easy
distinction, pages in the compression regions are called slots.
Since the data in main memory is compressed by page, the
size of one page after compression is smaller than one slot
(4KB). So multiple compressed pages can be stored in the
same slot. ZRAM manages the content of each compressed
page as an object and indexes it by a handle. The handles
are indexed by the page table entry (PTE). In this way, the
compressed page can be found when a page fault occurs.

We still use the object structure to manage the data when
compressing the memory data with a bigger size. However,
the compression block when enabling Archer is usually bigger
than the 4KB slot. Archer divides the big block into multiple
objects and stores them separately. Objects are also indexed
by handles, so the content of one block is indexed by multiple
handles. If pages are flagged, which means they are com-
pressed in huge size, the pages’ PTE will point to the same
handle. The handle points to a metadata structure, instead
of the corresponding object. The metadata consists of two
elements: an array to store the page table information of all
pages belonging to the corresponding block; and a pointer
that helps indexing all handles of this block. Figure 6 shows
that page 1 and page 2 are compressed in page granularity
(narrow track), while page 3 to page 6 are compressed to-
gether (wide track). The compressed content of the later four

7



pages is stored as object 3 and object 4, which is indexed
by two handles. For ease of differentiation, the second-layer
handle is named vhandle.

vh
an

d
le

vh
an

d
le

in
d

e
x

Metadata of Archer

PTEFlag

Page10

Page20

Page31

Page41

Page51

Page61

Handle

Handle

Handle

Slot (4KB)

Slot (4KB)

…

Adptive Compr. RegionPage Table

object1 object2

object3

object4

Figure 6: Address management of the compression region.

When accessing the compressed page in Archer region, the
page fault is triggered. We modified the interrupt handling
function of page fault so that it additionally checks the page
flag. If the required page was compressed individually, the
decompression method is the same as ZRAM. Otherwise,
Archer decompresses the block that contains the demanded
page. Based on the handle list (vhandles in the figure), all ob-
jects of the block can be found and decompressed. Since PTE
information of all compressed pages is recorded as metadata,
Archer knows which page each segment of the decompressed
block belongs to. After decompression, Archer feeds back the
page fault. The other decompressed pages are maintained in
the swap cache.

This approach has two advantages. First, the highly corre-
lated pages decompressed together, which helps enhance the
CPU bandwidth when performing decompression. Second,
the other decompressed pages are maintained in the swap
cache instead of discarded, these prefetched pages will be
accessed at high speed.

5 Evaluation

5.1 Evaluation Setup
This paper evaluates Archer against the original Linux mem-
ory compression scheme and the state-of-the-art solutions in
mobile systems. The experiments are performed on Google
Pixel6 Pro, Pixel3, and HUAWEI P20. The Pixel6 Pro is
equipped with Google Tensor cores, 12GB DDR4 RAM,
and 128GB UFS Flash, running Android 13.0. The Pixel3
is equipped with Qualcomm Snapdragon 845 core and 4GB
memory. Android 10.0(r41) runs on it. The P20 is equipped
with HiSilicon Kirin970 core and 6GB memory. Android 9.0
is deployed on the device.

The parameters in the evaluation are set as follows: The
compression region sizes of Pixel6, Pixel3, and P20 are set as
2048MB, 512MB, and 1024MB. They determine how many
pages are allowed to compress at maximum. The watermark
threshold of the three is 1024, 512, and 512, respectively.
The min- and high-watermark are 0.8x and 1.2x of the low-
watermark, which follows the default configuration in the

Linux kernel. The large-grain compression is woken up when
the parameter order in one round reclamation is detected
larger than 8. Regarding the association-rule mining model,
the queue length (Lq) and ring buffer size are set to 256 and
128KB, respectively. For the FP-tree of FT-List, the confi-
dence and support count are set to 70% and 0.2. The width w
and the timeout threshold ∆T of the sliding window are set
to 32 and 3s by default. In addition, we set the compres-
sion buffer as 128KB in the evaluation. We use lz4 [53]
to compress the data. This algorithm is widely adopted by
commercial smartphones as the default for its efficiency in
(de)compression3.

5.2 Benefit on User Experience

Now we explore Archer’s overall effect on the user experi-
ence in three typical scenarios: app launching, continuous
shooting, and short-form videos. Four schemes are evalu-
ated for comparison: ZRAM [3], ASAP [6], Static Huge-Size
Compression (SHSC) [54], and the proposed Archer. ZRAM
is the default page compression scheme in modern mobile
systems. In addition to ZRAM, this paper compares ASAP.
Archer and ASAP improve the performance focuses on the
compression and decompression phases, respectively. In ad-
dition, the huge page mechanism (SHSC) can also realize
huge-grain compression. The impact of huge pages on the
system is comprehensive and complicated. To make a fair
comparison, we realize fix-sized (de)compression but retain
the 4KB management mechanism of other modules.

5.2.1 App Launching Speed

The effect of Archer on app launching is complicated since
there are two launching styles. When first launching an app,
the system needs to recreate all of the app’s activities. On
the contrary, when a user starts an app that was moved to the
background recently, it is more likely that the life cycle of
this app has not ended. The former is called cold launch and
the latter is called hot launch. We evaluate the two launching
styles separately. All the evaluations are performed with a
good Wi-Fi connection and the battery is fully charged.

Before the evaluation, we ran 20 workload apps in advance
(see Table 1). We launched an app and used it for 30 seconds.
Then switch it to the background and start the next one. Nor-
mal operations like scrolling and clicking are included in the
usage. During the process, memory was quickly filled, and
page reclaim was triggered frequently. Note that some apps in
the background may be killed by Android LMK (low memory
killer [11]). This is close to real usage scenarios. After this,
more than 87% of memory space is occupied.

3In addition to lz4, we also considered other compression algorithms
commonly used in mobile systems, such as lzo, Snappy, QuickLZ, and zlib.
Our preliminary evaluation indicates that their (de)compression throughput
is lower than that of lz4.

8



0

2000

4000

6000

8000

10000

Ti
m

e 
Co

st
 (m

s,
 P
ix
el
6)

ZRAM ASAP SHSC Archer

0

4000

8000

12000

16000

Ti
m

e 
Co

st
 (m

s,
 P
ix
el
3)

ZRAM ASAP SHSC Archer

0

3000

6000

9000

12000

Ti
m

e 
Co

st
 (m

s,
 P
20

)

ZRAM ASAP SHSC Archer

0

500

1000

1500

2000

2500

Ti
m

e 
Co

st
 (m

s,
 P
ix
el
6) ZRAM ASAP SHSC Archer

0

1000

2000

3000

4000

Ti
m

e 
Co

st
 (m

s,
 P
ix
el
3)

ZRAM ASAP SHSC Archer

0

1000

2000

3000

4000

Ti
m

e 
Co

st
 (m

s,
 P
20

)

ZRAM ASAP SHSC Archer

(a). Time cost of cold launching on Pixel6, Pixel3, and P20 phones

(b). Time cost of hot launching on Pixel6, Pixel3, and P20 phones

Figure 7: App launching speed comparison.

Table 1: List of workload applications.
Category Workload Application

Social Network Skype, Zoom, WhatsApp, LinkedIn, Google+
Multimedia MXPlayer, Netflix, Snapchat, Tencent Video

Mobile Game Angry Birds, Asphalt 8, Fruit Ninja, Arena of Valor
Life Alipay, BOA, eBay, Taobao, Uber, Lift, Evernote

We cold-launch the eight tested apps and record the launch-
ing speed. Each app is evaluated for ten rounds and the aver-
age is taken. Figure 7(a) shows that the average speed of cold
launching with Archer increased by 37.2% on Pixel6, 30.6%
on P20, and 32.9% on Pixel3, compared to ZRAM. With
Archer, the memory is more efficiently allocated to satisfy the
memory demand of app launching.

Here, Pixel6 shows more significant performance improve-
ments than devices with smaller memory capacities. This is
because applications on resource-rich smartphones tend to
request more memory compared to those on low-end devices4.
For example, we observe PUBG Mobile dynamically adjusts
its graphics and textures based on the device’s capabilities.
This observation leads us to conclude that the burst memory
demand problem will not be mitigated by increasing resource
allocation. Instead, it is likely to worsen in the future as ap-
plications continue to scale their resource usage to match the
growing hardware capabilities of high-end devices.

Also shown in the figure, taking Pixel6 as an example, it
takes 3,902ms on average to cold launch an app with ZRAM,
while the time cost is reduced by 39.5% with SHSC. It in-
dicates that large-grain compression has benefits in improv-
ing the launching speed. SHSC’s effect on cold launching
is higher than Archer. This is because the former scheme
conducts a more aggressive large-size compression. However,
subsequent experiments will show that it causes severe read
amplification in other usage scenarios. ASAP’s impact on

4On a high-end smartphone, it might enable ultra-HD textures and detailed
animations, consuming GB-level memory. In contrast, on a low-end device,
it restricts graphics to low or medium settings and loads fewer assets.

cold launching is not obvious. This is because no earlier re-
claimed pages need to be swapped in during cold launching.
Its advantages are not reflected in this case.

Furthermore, we evaluate their effect on hot launching.
Figure 7(b) illustrates that the average launching speed on
the three platforms is enhanced by 55.3%, 47.5%, and 29.6%,
respectively. Archer boosts the speed from two aspects. On
one hand, memory is reclaimed more efficiently. The buddy
system can allocate memory space to support hot launching
quickly. On the other hand, pages of the tested app may have
been compressed. It takes time to decompress them when
relaunching. We will analyze the detail in Section 5.3.

The impact of SHSC on hot launching varies among apps.
About 43.75% of them experience slower launch times rather
than improvements when this scheme is enabled. SHSC com-
presses data using a static, large granularity. However, not
all compressed data is needed during a hot launch. SHSC
fails to account for page associations, which means that some
contents of a large compressed page may not be necessary
during launch. As a result, despite SHSC increasing compres-
sion throughput, the negative effects of read amplification can
outweigh the benefits in certain cases. These findings demon-
strate that compression granularity should be dynamically
adjusted to meet the complex demands of mobile systems.

ASAP outperforms ZRAM by 28.3% on the Pixel6, 28.1%
on the Pixel3, and 25.4% on the P20. This improvement is due
to the switch footprint estimator, which enhances anonymous
page decompression. Archer is compatible with ASAP, these
two schemes can boost both compression and decompression
with coordination. The results illustrate that Archer ourper-
forms ASAP. For example, by 16.6% on the Pixel6. This is
because Archer not only accelerates swap-in pages during hot
launching (leveraging large-grain compression to maximize
CPU bandwidth), but also improves the speed of swap-out
pages: during hot launches, the system needs to reclaim mem-
ory to accommodate the necessary pages, and with Archer, the

9



page reclaim process is faster, further boosting performance.

5.2.2 Photographic Performance and Frame Rate

Figure 8 shows Archer’s effect on photographic performance
and frame rate. To understand the benefit, the two scenarios
are evaluated under different memory pressures. Specifically,
before testing the Camera and TikTok, N apps are launched
and switched to the background (see the X-axis in the figure).
For example, “TikTok+6Apps” in the figure means we evalu-
ate TikTok when 6 apps were switched in the background in
advance. It is expected that performance will worsen immedi-
ately after switching to the tested app and then improve over
time, so we conducted the following evaluation after the sys-
tem settled. Specifically, after switching the tested app to the
foreground, we wait for 30 seconds before the measurement.

Continuous shooting using the camera. Figure 8(a) illus-
trates that the continuous shooting performance significantly
degraded when the memory is under pressure. Pixel6, Pixel3,
and P20 are evaluated separately. On each device, we evaluate
ten rounds and take the average. Taking Pixel6 as an exam-
ple, 24 photos are taken on average when no additional app
consumes memory. This value decreased to 13 when memory
was exhausted. Such reduction is alleviated when enabling
Archer. It demonstrates that Archer’s benefit appears when
the memory is under pressure. As the red text in the figure
shows, the photographic speed up by 1.42x on Pixel6, 1.34x
on Pixel3, and 1.22x on P20, compared to the original system.

SHSC can also improve the camera’s response speed. How-
ever, its negative effect is also obvious, especially when
memory is not scarce. Note that the performance when pre-
launching 6 and 8 applications in Pixel3 is similar. It is be-
cause this smartphone can only cache 6 apps on average.
Additional apps in the background are killed.

10

14

18

22

26

0 2 4 6 8 10 12 14 16

N
um

. o
f p

ho
to

s 
(P
ix
el
6)

N

ZRAM
ASAP
SHSC

6

8

10

12

14

16

0 2 4 6 8

N
um

. o
f p

ho
to

s 
(P
ix
el
3)

N
ZRAM ASAP
SHSC Archer

8

10

12

14

16

18

0 2 4 6 8

N
um

. o
f p

ho
to

s 
(P
20

)

N

ZRAM
ASAP
SHSC

cv cvcv

6

11

16

0 2 4 6 8

N

ZRAM ASAP SHSC Archer

cv

1.42x

1.34x
1.22x

30
35
40
45
50
55
60
65

0 2 4 6 8 10 12 14 16

Fr
am

e 
ra

te
 (f

ps
, P

ix
el
6)

N

ZRAM ASAP

SHSC Archer

20

25

30

35

40

45

50

0 2 4 6 8

Fr
am

e 
ra

te
 (f

ps
, P

ix
el
3)

N

ZRAM ASAP

SHSC Archer

30

35

40

45

50

55

0 2 4 6 8

Fr
am

e 
ra

te
 (f

ps
, P

20
)

N

ZRAM ASAP

SHSC Archer
cv

1.31x

1.36x
1.35x

(a). Number of consecutive photos per second

(b). Frame rate of short-form videos

Figure 8: Effect on photographic performance and frame rate.

FPS of short-form videos using TikTok. If the frame
rendering cannot be handled on time, the screen display may
become jerky or slow from the user’s perspective. This is
based on human eye sensitivity [55]. As shown in Figure 8(b),

the frame rate degraded when the memory is under pressure.
Taking Pixel6 as an example, the frame rate is 37.5fps on
average in the original system (see the ZRAM case). This
metric is increased by 31% with Archer. Similar improvement
is also observed on Pixel3 (by 36%) and P20 (by 39%).

5.2.3 Effect on Tail Latency

More importantly, in the above evaluations, we observe that
the tail latency (i.e., the worst-case scenario across ten rounds
of evaluation for each use case) is significantly reduced, which
is critical for enhancing user experience. The summarized
results are presented in Figure 9. For instance, on the Pixel6,
the tail launching latency for eight apps is reduced by 44.9%
for cold launches and 60.3% for hot launches (see Figure
9(a)). Furthermore, the worst-case performance in continuous
shooting and frame rendering improves by 1.6x and 1.3x,
respectively (see Figure 9(b)).

0

2

4

6

8

10

12

14

Fa
ce

bo
ok

PU
BG

Am
az

on

Tw
itt

er

Yo
ut

ub
e

Ch
ro

m
e

W
eC

ha
t

G
oo

gl
eM

ap

Ti
m

e 
co

st
 o

f c
ol

d 
la

un
ch

 (s
)

Baseline
Archer

0

1

2

3

4

5

6

Fa
ce

bo
ok

PU
BG

Am
az

on

Tw
itt

er

Yo
ut

ub
e

Ch
ro

m
e

W
eC

ha
t

G
oo

gl
eM

ap

Ti
m

e 
co

st
 o

f h
ot

 la
un

ch
 (s

)

Baseline
Archer 10

16

0

5

10

15

20

Baseline Archer

N
um

. o
f p

ho
to

s

32.6
43.3

0

20

40

60

Baseline Archer

Fr
am

e 
ra

te
 (f

ps
)

(a). Application launching

(b). Photographic

(c). Frame rate

Figure 9: Tail latency comparison.

5.3 Performance Benefit Analysis
We collect the page access history and corresponding times-
tamps on Pixel6 during the above evaluation. To minimize
the impact on the evaluation results, the collected information
is analyzed offline. According to the statistics, 75.3% of the
anonymous pages are identified as having no strong associa-
tion with others, but the rest 20%+ correlated pages play an
important role in the burst memory-demanding scenarios.

Compressed Pages during App Launching. In terms of
app cold launching, an average of 61.7MB pages are com-
pressed during each launching process. Among them, 80.5%
pages are compressed in large grain on average. We record
the task states on the cores using Systrace and breakdown
the launching process. It illustrates that the task suspending
time was effectively reduced. The hot launching process is
more complicated because some launching required pages are
located in the memory while some have already been com-
pressed. As counted, 45.8MB pages are compressed during
each hot launching process on average, and 83.2% of them are
compressed in large grain. In addition, an average of 20.7MB
pages are decompressed in this phase. This is because part of
the launching required pages have been compressed earlier.

Thanks to the efficient FP-Growth technique, Archer can
quickly degrade the association of ‘drifted’ pages. Most of the
pages with constantly drifting associations are sifted out by

10



the miner. After the above evaluation, we further use the phone
for two hours and compares the association. We observe that
96.3% pages that were identified as associated are still highly-
correlated. It demonstrates that the associations identified as
‘high’ remain stable over time in real-world usage.

Compression Throughput. We collect the timestamp
of the compressed pages and calculate the throughput. As
evaluated, the throughput of 4KB-grained compression with
Archer is 205.1MB/s. This is close to ZRAM. For ‘≥512KB’
compression, the throughput reaches 522.6MB/s. It demon-
strates that the pages are compressed much more efficiently
during app launching, compared to the original 4KB-grain
compression. Similarly, large-grain compression is observed
in continuous shooting and short-form video scenarios.

In addition to the above scenarios, Archer also evaluated
transformer, an emerging memory-intensive application. It
requires a large amount of memory during inference due to
the quadratic scaling of self-attention and high-dimensional
embeddings. As evaluated, the average latency of transform-
ers is 7.3x higher than CNNs. When enabling Archer, latency
is reduced by 39.2% on Pixel6. Archer allows memory to be
allocated more efficiently to load the N ×N attention matrix
and intermediate representations.

Sensitive Study. The performance benefit is affected by
parameter configurations of Archer. Figure 10 shows the eval-
uation results with different queue and transaction buffer sizes
on Pixel6. All the queues and buffers are set as FIFO (cycle
queue and ring buffer), except for the ‘+∞’ case.

When the structure size is not very large, the frame rate is
optimized with the size increase. For example, the frame rate
is 49.1fps on average in the <32, 16> case, while increased by
18.7% in the <256, 128> case. However, when the structure
size kept increasing, the frame rate decreased instead. In the
extreme case, where the size of the queue and buffer is unlim-
ited (<+∞, +∞>), the frame rate is only 48.7fps on average.
When the size of the queue and buffer is small, the smooth
experience deteriorates because the read amplification is high.
As a result, the average latency of page access increased. In
addition, since many unnecessary pages are decompressed,
the increased memory pressure induces more reclaim opera-
tions. Considering the memory and computing overhead, we
do not encourage setting the size with a very high value.

The effect of Archer is also affected by other parameters,
like the width of the sliding window (w), the timeout threshold
∆T , and the confidence value of the association-rule mining
model, et al. Also, improper configuration may induce ag-
gressive resource usage. Since the space is limited, this paper
only shows the evaluation results of part parameters. Still, it is
worth noting that a proper parameter set on one device should
not port to the other devices straightforwardly. This is because
the computing and memory capability between the two de-
vices, as well as the OS settings on them, are different. We
suggest to configure Archer on mobile devices customized.

48.750.551.352.449.348.547.9+∞

49.150.354.857.253.252.150.4512

49.654.756.559.757.254.351.9256

48.554.457.158.356.653.752.2128

48.153.255.957.657.255.251.364

47.551.754.155.254.351.850.532

47.149.451.651.750.850.249.116

+∞10245122561286432

Queue Size

Bu
ffe

r S
ize

Figure 10: FPS under different <queue, buffer> pairs.

5.4 Potential Penalty Analysis
5.4.1 Read Amplification

One potential penalty is that Archer may increases the read
amplification when accessing compressed pages. We ana-
lyzed the access footprints and calculated the read amplifica-
tion. When a compressed page is demanded, we detect how
many pre-decompressed pages are accessed shortly. We say a
page-read request is amplified if other pre-compressed pages
are not accessed in the following w footprints or within one
minute. As evaluated, 92.6% of the batch-processed pages are
accessed soon, the read amplification is no more than 1.08.

Of course, batch decompression prolongs the latency of the
demanded page. It is hard to accurately detect the time cost
of every page accessed online, so we compare the latency to
decompress a 4KB and 256KB file with a micro-benchmark.
Specifically, we obtain page content by writing the data to a
laptop. Each collected page is stored as a file on the laptop5.
We process them in two ways: separately and in batches. The
comparison results illustrate that it takes 17.6% longer time
to decompress 64 pages than one page. However, the whole
process can be completed within sub-µs. More importantly,
the latency to access the prefetched pages (the associated
pages that are decompressed in advance) is reduced. In terms
of Archer’s overall performance benefit and high accuracy,
batch decompression has small effect on the performance.

5.4.2 Energy Consumption

Archer’s impact on energy consumption is multifaceted. On
one hand, data mining operations result in additional en-
ergy usage. To minimize this, we employ FP-Growth for
association-rule mining, as it is more energy-efficient com-
pared to traditional methods like Apriori. On the other hand,
Archer’s efficient compression reduces context switches and
retry operations, which helps conserve energy.

This paper evaluates Archer’s overall effect on power con-
sumption. The remaining battery percentage is used as the

5The laptop is used to collect memory pages and convert them into files.
After the collection phase, these page files are transferred to the mobile device
for further measurement.

11



metric. During the evaluation, the workload apps (see Table
1) were launched and used in the foreground for one hour
on two Pixel6 phones. We evaluate them at the same time.
Specifically, two devices are controlled by two hands. Two
hands perform the same operations at any time. Among them,
one device runs Archer and the other does not. Battery reduc-
tion is recorded. We repeat the evaluation for eight rounds.
In case of possible differences between the two devices, we
rotate the Archer running equipment during each round.

There is a significant difference in battery usage between
different rounds. This is because the app and user behavior in
each round varies. But in any round, the battery reduction of
the two devices is close. Specifically, the energy consumption
when enabling Archer is 0.69% more on average. That is,
suppose the phone can be used for 12 hours without charging,
it can still be used for more than 11.92 hours when enabling
Archer. In comparison with the persistent energy consumption
of touchscreen [57], the effect of Archer is negligible.

5.4.3 Memory Overhead

Archer maintains a mapping table, incurring a space overhead
in the memory. In the implementation, all batch-compressed
pages are recorded as metadata. There is a variable that points
to the handle of the correlated pages. The other variables, like
the handle structure, are maintained in the original kernel, so
will not introduce additional memory consumption. Suppose
there are 1,048,576 anonymous pages (4GB) in total, and
30% of them are highly correlated. Our evaluation shows
the average size of frequency itemsets is 6.4. Taking this
into account, 384KB additional space is required to store the
mapping table. Corresponding variables will be deleted if
corresponding pages are decompressed, so the metadata will
not keep accumulating.

The other source of memory consumption is the item queue
and transaction buffer. Archer uses cycle queue and ring buffer
structure to avoid unlimited memory consumption. Each item
(unsigned long type) in the queue is 64 bits. The width of
the sliding window is set to 32 by default, so each transaction
is 64×32 bits. Our evaluation illustrates that it is enough to
cache 128 items and 512 transactions in most cases. Therefore,
the queue and buffer consume 1KB (128 items × 64 bits) and
128KB (512 transactions × 32 items × 64 bits), respectively.
In addition, as introduced in Section 4.4, Archer maintains a
buffer to cache the candidate pages. Our statistic demonstrates
that the number of pages in the same association group gen-
erally does not exceed 32. Hence, we set the upbound of the
compression buffer as 128KB (32×4KB). The hundred-KB
level consumption is acceptable compared to the GB level
available memory in the device.

Such small energy and memory consumption is due to our
optimization in the design. Theoretically, if Archer brings all
page access footprints in the model and performs association
mining all the time, for example, disabling the low-power

mode, the mining accuracy can be enhanced. However, in
daily usage, the page access frequency can be very high. One
cannot have an infinite memory space to cache the items and
transactions. Besides, optimistically bringing footprints may
create CPU contention, which degrades the overall perfor-
mance. Archer trades off the overhead with comparatively
lower page-association mining accuracy. We will discuss this
in detail in the following section.

6 Related Work

Various schemes have been proposed to optimize memory
compression in mobile systems [28, 29, 45, 64, 66, 67]. SEAL
[9] and ASAP [6] illustrate that a high fraction of pages dur-
ing app launching are accessed together. The former com-
presses launching required pages in prior, and the latter boosts
launching speed by decompressing launching required pages
in batch. In this paper, we showed that the page correlation
characteristic does not only appear in the launching phase.
Marvin [4] found that many compressed pages may be ac-
cessed again in a short time since the runtime garbage col-
lection (GC). Acclaim [5] and Ice [41] help reduce the total
number of compression operations. These solutions perform
compression in page granularity and ignore the potential ben-
efit of large-grain compression in mobile systems. Archer fills
the gap of this field, and is compatible with existing solutions.

There are also many studies focused on improving data
compression [58–62, 69]. BAC [49] adjusts the compression
intensity dynamically and achieves a better tradeoff between
compression speed and ratio. To get an outstanding compres-
sion ratio, EDC [50] applies different compression algorithms
to the same data and selects the best one. EROFS [7] and
RTO [63] are designed for file systems. Unlike traditional
compression, they make the result of compression closer
by considering the characteristics of file systems. Towards
the association-rule mining technique, algorithms like Apo-
rio [38], FP-growth [39], Eclat [65], and CHARM [40] have
been proposed decades ago. There have been many optimiza-
tion solutions [31–33, 46, 47] in recent years. Our work is in-
spired by these studies. Based on them, this paper further pro-
posed PAM and ARC, which realize lightweight association-
rule mining and flexible memory compression.

7 Conclusion

This paper proposed Archer, an association-rule aware mem-
ory compression framework for mobile devices. It first shows
the opportunity for large-grain compression in mobile sys-
tems. Archer is the first work that introduces association-rule
mining techniques on memory compression. Experimental re-
sults show that the average app launching speed is 1.55x faster
when enabling Archer, and the average photographic speed
and frame rate increase by 1.42x and 1.31x, respectively.

12



References

[1] TensorflowLite on Android. https://tensorflow.
google.cn/lite.

[2] X. Liu, C. Vlachou, F. Qian, C. Wang, and K. H. Kim.
Firefly: Untethered multi-user VR for commodity mo-
bile devices. In Proceedings of the USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC),
pp.943-657, 2020.

[3] The resource code of Zram in the Linux kernel,
https://www.kernel.org/doc/Documentation/
blockdev/zram.txt.

[4] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang.
End the senseless killing: Improving memory manage-
ment for mobile operating systems. In USENIX An-
nual Technical Conference (USENIX ATC), pp.873-887,
2020.

[5] Y. Liang, J. Li, R. Ausavarungnirun, R. Pan, L. Shi, T.
W. Kuo, and C. J. Xue. Acclaim: Adaptive memory re-
claim to improve user experience in Android systems. In
USENIX Annual Technical Conference (USENIX ATC),
pp.897-910, 2020.

[6] S. Son, S. Y. Lee, Y. Jin, J. Bae, J. Jeong, T. J. Ham,
J. W. Lee, and Y. Hongil. ASAP: Fast Mobile Appli-
cation Switch via Adaptive Prepaging. In USENIX An-
nual Technical Conference (USENIX ATC), pp.365-380,
2021.

[7] X. Gao, M. Dong, X. Miao, W. Du, C. Yu, and H. Chen.
EROFS: A Compression-Friendly Readonly File System
for Resource-scarce Devices. In USENIX Annual Tech-
nical Conference (USENIX ATC), pp.149-162, 2019.

[8] Qiang Chen and Changlong Li. Argus: Real-Time
HQ Video Decoding with CPU Coordinating on Con-
sumer Devices. In IEEE Real-Time Systems Symposium
(RTSS), 2025.

[9] C. Li, L. Shi, Y. Liang, and C. J. Xue. SEAL: User
Experience-Aware Two-Level Swap for Mobile Devices.
In Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), pp.4102-4114,
2020.

[10] Y. Liang, J. Li, X. Chen, R. Ausavarungnirun, R. Pan,
T. W. Kuo, and C. J. Xue. Differentiating cache files for
fine-grain management to improve mobile performance
and lifetime. In 12th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 20), July 2020.

[11] AOSP Foundation, The low memory killer daemon,
https://android.googlesource.com/platform/
system/core/+/master/lmkd/README.md.

[12] Linux Foundation, Least-recently-used (lru) algorithm
in Linux kernel, https://www.kernel.org/.

[13] Huang, J., Zhang, Y., Qiu, J., Liang, Y., Ausavarung-
nirun, R., Li, Q., and Xue, C. J. More Apps, Faster Hot-
Launch on Mobile Devices via Fore/Background-aware
GC-Swap Co-design. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Volume 3, pp. 654-670, 2024.

[14] H. H. Sung, J. A. Chen, W. Niu, J. Guan, B. Ren,
and X. Shen. Decentralized Application-Level Adap-
tive Scheduling for Multi-Instance DNNs on Open Mo-
bile Devices. In USENIX Annual Technical Conference
(USENIX ATC), pp.865-877, 2023.

[15] ChatGPT of OpenAI, https://openai.com/blog/
chatgpt.

[16] W. Guo and K. Chen and H. Feng and Y. Wu and R.
Zhang and W. Zheng. MARS: Mobile application re-
launching speed-up through flash-aware page swapping.
In IEEE Transactions on Computers (TC), pp.916-928,
2016.

[17] R. Davis, Short-form video market soars: people are
spending more and more time on short-form video,
https://variety.com/2021/streaming/news/
china-short-video-market-study-1235001776/.

[18] Z. Li, Y. Xie, R. Netravali, and K. Jamieson. Dash-
let: Taming Swipe Uncertainty for Robust Short Video
Streaming. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pp.1583-
1599, 2023.

[19] Android Debug Bridge, https://androidmtk.com/
download-minimal-adb-and-fastboot-tool.

[20] Stagesepx: detect stages in video automatically, https:
//github.com/williamfzc/stagesepx.

[21] The Systrace tookit of Android, https://developer.
android.com/topic/performance/tracing.

[22] FP-Growth Algorithm in Data Mining, https:
//medium.com/image-processing-with-python/
fp-growth-algorithm-in-data-mining-e1064accf6a3

[23] Li, Q., and Peng, W. Research on Association Rules
Mining for Data Stream. International Core Journal of
Engineering, 8(2), 218-225, 2022.

[24] The Android Adj mechanism. https://android.
googlesource.com/platform/frameworks/
base/+/refs/tags/android-11.0.0_r45/
services/core/java/com/android/server/
am/OomAdjuster.md

13

https://tensorflow.google.cn/lite
https://tensorflow.google.cn/lite
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://android.googlesource.com/platform/system/core/+/master/lmkd/README.md
https://android.googlesource.com/platform/system/core/+/master/lmkd/README.md
https://www.kernel.org/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://variety.com/2021/streaming/news/china-short-video-market-study-1235001776/
https://variety.com/2021/streaming/news/china-short-video-market-study-1235001776/
https://androidmtk.com/download-minimal-adb-and-fastboot-tool
https://androidmtk.com/download-minimal-adb-and-fastboot-tool
https://github.com/williamfzc/stagesepx
https://github.com/williamfzc/stagesepx
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/tracing
https://medium.com/image-processing-with-python/fp-growth-algorithm-in-data-mining-e1064accf6a3
https://medium.com/image-processing-with-python/fp-growth-algorithm-in-data-mining-e1064accf6a3
https://medium.com/image-processing-with-python/fp-growth-algorithm-in-data-mining-e1064accf6a3
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r45/services/core/java/com/android/server/am/OomAdjuster.md
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r45/services/core/java/com/android/server/am/OomAdjuster.md
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r45/services/core/java/com/android/server/am/OomAdjuster.md
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r45/services/core/java/com/android/server/am/OomAdjuster.md
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r45/services/core/java/com/android/server/am/OomAdjuster.md


[25] Brands are fighting over milliseconds. https://www.
forbes.com/sites/steveolenski/2016/11/10/
why-brands-are-fighting-over-milliseconds/
?sh=4f52e2f14ad3.

[26] C. Li, C. Wang, X. Zhou, and Edwin H.-M Sha. Flash-
DAM: Flexible I/O Throttling for the User Experience
of Mobile Systems. In IEEE 41st International Confer-
ence on Computer Design (ICCD), pp. 239-242, 2023.

[27] G. Wei, C. Li, R. Xu, Q. Zhuge, Edwin H.-M Sha. Spar-
row: Flexible Memory Deduplication in Android Sys-
tems with Similar-Page Awareness, In 24th Design, Au-
tomation and Test in Europe Conference | The European
Event for Electronic System Design and Test (DATE),
2024.

[28] S. Hahn and S. Lee and I. Yee and D. Ryu and J. Kim.
Fasttrack: Foreground app-aware I/O management for
improving user experience of Android smartphones. In
USENIX Annual Technical Conference (USENIX ATC),
pp.15-28, 2018.

[29] Y. Q. Chou, L. W. Shen, and L. P. Chang. Rectifying
Skewed Kernel Page Reclamation in Mobile Devices
for Improving User-Perceivable Latency. ACM Trans-
actions on Embedded Computing Systems, 22(5s), pp.
1-22, 2023.

[30] Page access mark in Linux, https://lkml.indiana.
edu/hypermail/linux/kernel/1304.3/02605.
html.

[31] A. Telikani, A. H. Gandomi, and A. Shahbahrami. A
survey of evolutionary computation for association rule
mining. In Information Sciences, pp.318-352, 2020.

[32] J. Dongre, G. L. Prajapati, and S. V. Tokekar. The role
of Apriori algorithm for finding the association rules
in Data mining. In International Conference on Issues
and Challenges in Intelligent Computing Techniques
(ICICT), pp.657-660, 2014.

[33] Using the FP Growth algorithm in Python to for frequent
itemset mining, https://towardsdatascience.com/
the-fp-growth-algorithm-1ffa20e839b8.

[34] The Apriori algorithm development using Python
language, https://towardsdatascience.com/apriori-
association-rule-mining-explanation-and-python-
implementation-290b42afdfc6.

[35] UNREAL engine for mobile games. https://www.
unrealengine.com/en-US/.

[36] D. Xu, M. Xu, Q. Wang, S. Wang, Y. Ma, K. Huang, and
X. Liu. Mandheling: Mixed-precision on-device dnn
training with dsp offloading. In Proceedings of the 28th

Annual International Conference on Mobile Computing
And Networking, pp.214-227, 2022.

[37] Y. Zheng, C. Li, Y. Xiong, W. Liu, C. Ji, Z. Zhu, and
L. Yu. iAware: Interaction Aware Task Scheduling for
Reducing Resource Contention in Mobile Systems. In
ACM Transactions on Embedded Computing Systems
(TECS), pp.1-24, 2023.

[38] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proceedings of the eleventh international conference
on data engineering, pp.3-14, 1995.

[39] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern
tree approach. In Data mining and knowledge discovery,
pp.53-87, 2004.

[40] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algo-
rithm for closed itemset mining. In Proceedings of the
SIAM international conference on data mining, pp.457-
473, Society for Industrial and Applied Mathematics,
2002.

[41] C. Li, Y. Liang, R. Ausavarungnirun, Z. Zhu, L. Shi, and
C. J. Chun. ICE: Collaborating Memory and Process
Management for User Experience on Resource-limited
Mobile Devices. In European Conference on Computer
Systems, 2023.

[42] K.Wang, L. Tang, J. Han, and J. Liu. Top down fp-
growth for association rule mining. In Advances in
Knowledge Discovery and Data Mining: 6th Pacific-
Asia Conference (PAKDD), pp. 334-340, 2002.

[43] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining
frequent patterns in data streams at multiple time gran-
ularities. In Next generation data mining, pp.191-212,
2003.

[44] M. H. Al and M. Chowdhury. Effectively prefetching re-
mote memory with Leap. In USENIX Annual Technical
Conference (USENIX ATC), pp.843-857, 2020.

[45] X. Zhu, D. Liu, K. Zhong, J. Ren, and T. Li. Smartswap:
High-performance and user experience friendly swap-
ping in mobile systems. In Proceedings of the 54th
Annual Design Automation Conference (DAC), pp.1-6,
2017.

[46] L. Bustio-Martínez, R. Cumplido, M. Letras, R.
Hernández-Leon, C. Feregrino-Uribe, and J. Hernández-
Palancar. FPGA/GPU-based acceleration for frequent
itemsets mining: A comprehensive review. In ACM Com-
puting Surveys (CSUR), 54(9), pp.1-35, 2021.

[47] C. Fernandez-Basso, M. D. Ruiz, and M. J. Martin-
Bautista. New Spark solutions for distributed frequent

14

https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://lkml.indiana.edu/hypermail/linux/kernel/1304.3/02605.html
https://lkml.indiana.edu/hypermail/linux/kernel/1304.3/02605.html
https://lkml.indiana.edu/hypermail/linux/kernel/1304.3/02605.html
https://towardsdatascience.com/the-fp-growth-algorithm-1ffa20e839b8
https://towardsdatascience.com/the-fp-growth-algorithm-1ffa20e839b8
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/


itemset and association rule mining algorithms. In Clus-
ter Computing, pp.1-18, 2023.

[48] J. Courville and F. Chen. Understanding storage I/O
behaviors of mobile applications. In 32nd Symposium
on Mass Storage Systems and Technologies (MSST),
pp.1-11, 2016.

[49] C. Li, D. Feng, Y. Hua, W. Xia, L. Qin, Y. Huang, and Y.
Zhou. BAC: Bandwidth-aware compression for efficient
live migration of virtual machines. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications,
pp.1-9, 2017.

[50] B. Mao, S. Wu, H. Jiang, Y. Yang, and Z. Xi. EDC:
Improving the performance and space efficiency of flash-
based storage systems with elastic data compression.
IEEE Transactions on Parallel and Distributed Systems,
pp.1261-1274, 2018.

[51] Sysfs mechanism in the Linux kernel, https://docs.
kernel.org/filesystems/sysfs.html.

[52] Sysctl mechanism in the Linux kernel. https://man7.
org/linux/man-pages/man8/sysctl.8.html.

[53] The Lz4 in the Linux kernel. https://github.com/
torvalds/linux/blob/master/include/linux/
lz4.h.

[54] The huge page mechanism in the Linux ker-
nel. https://docs.kernel.org/admin-guide/mm/
hugetlbpage.html.

[55] T. Masashi and U. Takeshi. Smartphone user interface.
In FUJITSU Science Technical Journal, 2013.

[56] D. Wei, and G. Feng. Compression and Storage Algo-
rithm of Key Information of Communication Data Based
on Backpropagation Neural Network. In Mathematical
Problems in Engineering, 2022.

[57] Y. Choi, S. Park, and H. Cha. Graphics-aware power
governing for mobile devices. In Proceedings of the
17th annual international conference on mobile systems,
applications, and services, pp.469-481, 2019.

[58] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R.
Burny, S. Butt, and P. Ranganathan. Software-defined far
memory in warehouse-scale computers. In Proceedings
of the 24th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp.317-330, 2019.

[59] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghu-
nathan. Approximate memory compression. In IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 28(4), pp. 980-991, 2020.

[60] Sardashti S. and Wood D. A. Could compression be
of general use? evaluating memory compression across
domains. In ACM Transactions on Architecture and
Code Optimization (TACO), 14(4), pp. 1-24, 2017.

[61] Shafiee, A., Taassori, M., Balasubramonian, R., and
Davis, A. MemZip: Exploring unconventional benefits
from memory compression. In IEEE 20th International
Symposium on High Performance Computer Architec-
ture (HPCA), pp. 638-649, 2014.

[62] Pekhimenko, G., Seshadri, V., Kim, Y., Xin, H., Mutlu,
O., Gibbons, P. B., and Mowry, T. C. Linearly com-
pressed pages: A low-complexity, low-latency main
memory compression framework. In Proceedings of
the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 172-184, 2013.

[63] X. Zhang, J. Li, H. Wang, D. Xiong, J. Qu, H. Shin, and
T. Zhang. Realizing transparent OS/Apps compression
in mobile devices at zero latency overhead. In IEEE
Transactions on Computers, pp.1188-1199, 2017.

[64] G. Lim, D. Kang, M. Ham, and Y. I. Eom. SWAM:
Revisiting Swap and OOMK for Improving Application
Responsiveness on Mobile Devices. In The 29th Annual
International Conference On Mobile Computing And
Networking (MobiCom), 2023.

[65] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), Vol. 97, pp.283-286, 1997.

[66] C. Li, L. Shi, and C. J. Xue, MobileSwap: Cross-Device
Memory Swapping for Mobile Devices, In Design Au-
tomation Conference (DAC), 2021.

[67] C. Li, Y. Liang, L. Shi, C. Wang, C. J. Xue, and X.
Zhou, Flexible and Efficient Memory Swapping Across
Mobile Devices with LegoSwap, In IEEE Transactions
on Parallel and Distributed Systems (TPDS), 2023.

[68] M. Ju, H. Kim, M. Kang, and S. Kim. Efficient memory
reclaiming for mitigating sluggish response in mobile
devices. In IEEE 5th International Conference on Con-
sumer Electronics, pp.232-236, 2015.

[69] E. Choukse, M. Erez, and A. R. Alameldeen. Com-
presso: Pragmatic main memory compression. In 51st
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp.546-558, 2018.

15

https://docs.kernel.org/filesystems/sysfs.html
https://docs.kernel.org/filesystems/sysfs.html
https://man7.org/linux/man-pages/man8/sysctl.8.html
https://man7.org/linux/man-pages/man8/sysctl.8.html
https://github.com/torvalds/linux/blob/master/include/linux/lz4.h
https://github.com/torvalds/linux/blob/master/include/linux/lz4.h
https://github.com/torvalds/linux/blob/master/include/linux/lz4.h
https://docs.kernel.org/admin-guide/mm/hugetlbpage.html
https://docs.kernel.org/admin-guide/mm/hugetlbpage.html

	Introduction
	Background and Motivation
	Memory Management of Mobile OS
	Limitations of Page Compression
	Workloads for Analysis
	Response Time Analysis
	Root Causes of User-perceived Delay

	Potential Benefit Discussion

	Opportunities of Large-grain Compression
	Design
	Archer Overview
	Footprint Stream Generator
	 Frequent-pattern Tree List
	Mining the Footprint Stream
	Codesign LRU with FP-Tree

	ACR: Adaptive Compression Region

	Evaluation
	Evaluation Setup
	Benefit on User Experience
	App Launching Speed
	Photographic Performance and Frame Rate
	Effect on Tail Latency

	Performance Benefit Analysis
	Potential Penalty Analysis
	Read Amplification
	Energy Consumption
	Memory Overhead


	Related Work
	Conclusion

