
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Demystifying the Cost of Serverless Computing:
Towards a Win-Win Deal

Fangming Liu∗, Senior Member, IEEE , Yipei Niu

Abstract—Serverless is an emerging computing paradigm that greatly simplifies the development, deployment, and maintenance of
cloud applications. However, due to potential cost issues brought by the widely adopted pricing, it is difficult to answer how to use and
operate serverless computing services from the perspectives of users and providers. To demystify the cost of serverless computing, we
present one of the first studies that develops an analytical model for serverless cost from the perspectives of users and providers, by
comparing it to Infrastructure-as-a-Service. Based on the model, driven by real-world traces, extensive simulation results verify the
following cost issues: 1) For the users, serverless is not always cost-saving, even possibly leading to expense explosion; 2) The
serverless providers are in urgent need of widening use scenarios to improve resource utilization and raise revenue; 3) The prevailing
pricing fails to neither reduce the risk of expense explosion nor meet the need of attracting more workloads. To remove the cost barrier,
we propose future function, auction-based pricing for serverless, to offer discounts to the users as well as boost profit for the providers.
Experimental results show the duration price of functions can be reduced by 57.5% on average for 13.5% of users yet without harming
the revenue of providers.

Index Terms—Serverless, FaaS, Cost Model, Pricing, Auction.

F

1 INTRODUCTION

S Erverless is a new cloud computing paradigm that
significantly simplifies the development, deployment,

and maintenance of applications. Users submit code to
serverless platforms and the code is executed as functions
when they are triggered. Different from Infrastructure-as-
a-Service (IaaS), serverless users do not need to maintain
any resource, e.g., virtual machines (VMs), which greatly
reduces operational cost.

Furthermore, with serverless, users are charged based
on the number of requests for functions and the execution
duration of functions. On the one hand, benefiting from the
on-demand charging, the users only pay for how many re-
sources they use, which is intuitively cost-saving. However,
on the other hand, with the pricing scheme, the users are at
risk of unexpectedly growing cost for three reasons: 1) The
expense of functions linearly increases with requests and
duration; 2) The duration price of functions is about 3.5×–

• This work was supported in part by National Key Research & De-
velopment (R&D) Plan under grant 2022YFB4501703 and in part by
The Major Key Project of PCL (PCL2022A05). (Corresponding author:
Fangming Liu)

• F. Liu is with Peng Cheng Laboratory, and Huazhong University of
Science and Technology, China. E-mail: fangminghk@gmail.com.

• Y. Niu is with the National Engineering Research Center for Big Data
Technology and System, the Services Computing Technology and System
Lab, Cluster and Grid Computing Lab in the School of Computer Science
and Technology, Huazhong University of Science and Technology, China.
E-mail: niuypei@hust.edu.cn.

5.6× higher than that of VMs 1; 3) The duration price of
functions is fixed and no discount is offered.

Such a paradox naturally raises two key questions from
the perspective of users: can serverless always be cost-saving
and when serverless is cost-saving? Concerning the cost issues
from users, other questions arise from the perspective of
providers as well: can serverless always be profitable and how to
profit more from serverless?

To answer the questions above, in this paper, we develop
an analytical cost model for serverless, so as to reveal
how to use and operate serverless computing services from
the perspectives of users and providers compared to IaaS.
Through extensive trace-driven simulations, our insights
firstly derive exact conditions when serverless is more
economical than IaaS. Specifically, serverless is cost-saving
when the workload demand is generally low, no matter
how the request arrival patterns are. Particularly, if the
workload demand fluctuates wildly, serverless is more cost-
saving. Then our cost model reveals serverless is always
profitable, since the duration price of functions is higher
than that of VMs. Additionally, serverless inherently allows
the providers to further boost profit by over-committing
more resources (selling more resources than the physical
infrastructure actually has).

However, our simulation results verify multiple cost
issues of users and providers. For serverless users, if user
requests continuously arrive constantly, the expense of

1. For AWS EC2 c6g.8xlarge instances, the on-demand pric-
ing plan is 0.472 × 10−5$/GB·second and the reserved price is
0.297 × 10−5$/GB·second. The duration price of AWS Lambda is
1.667×10−5$/GB·second (x86 type). Hence, the duration price of func-
tions is about 3.5×–5.6× higher than that of VMs (3.5 = 1.667×10−5

0.472×10−5 ,

5.6 = 1.667×10−5

0.297×10−5). The reason why the prices of functions are higher
is that FaaS platforms manage the resources of functions for users by
introducing extra services and components.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

serverless is lower at first but finally surpasses that of
IaaS, even leading to expense explosion. What’s worse, the
prevailing pricing strategy charges the users a fixed price,
leaving little opportunity for users to bargain. The users
yearn for discounts, especially when the workload demand
is predictably high. Concerning the potential cost issue,
users may hesitate to adopt serverless. As a result, from
the perspective of providers, although serverless is always
profitable for the high duration price and resource over-
commitment, the cost issues would hinder the growth of
users and workload demand, finally leading to a fall in
revenue. Worse, the widely adopted pricing of serverless
fails to provide any discount as an incentive to attract users
and increase workload demand.

These undesirable drawbacks restrict serverless to only
be used for limited scenarios and possibly cause a decline in
serverless. However, technically serverless can be a general
programming platform and should be able to support any
type of workload. To realize this, we should remove the cost
barrier by changing the pricing.

To provide a bilateral pricing strategy and enable the
provider and users to agree on a satisfactory price, we
propose future function based on the auction theory, where
functions won by bidders will be delivered in the future
instead of imminently. Specifically, the provider periodically
releases a certain amount of discounted functions, and all
the users are allowed to bid for them at lower prices (bid-
ding price). At the beginning of the time slot, the serverless
provider selects specific bidders as winners and determines
their payments (which are lower than the bidding price).
The winners are charged the payment during the future
period of time while others who fail to win the discounted
functions have to pay based on the original price. We
adopt a sub-optimal yet efficient algorithm, so as to ensure
truthfulness and social warfare maximum. Driven by the
real-world traces, simulation results show that the duration
price can be reduced by 57.5% on average yet the revenue
of providers barely shrinks.

The contributions of this paper are summarized as fol-
lows.

• We develop an analytical cost model for serverless.
By systematically examining a series of critical fac-
tors affecting the cost for both users and providers,
we provide a qualitative understanding of serverless
cost.

• Through extensive trace-driven simulations, we an-
alyze when and why serverless is more economical
or profitable than IaaS. Furthermore, we reveal that
serverless is not always cost-saving for the users and
the providers may face a loss of profit due to today’s
static pricing strategy.

• We design the future function, auction-based pric-
ing for serverless, to alleviate expense explosion for
users and raise revenue for providers. The pricing
plan attracts extra workloads to shape user demand,
ensuring as many users can receive discounts as
possible and the revenue of the provider does not
shrink.

The rest of this paper is organized as follows. Section 2
characterizes the performance and user demand of server-

less. Section 3 examines the cost and identifies the expense
explosion of serverless users. Section 4 further analyzes the
cost of providers. Section 5 reveals the cost barrier between
users and providers. Section 7 proposes the future function
and develops the auction-based pricing for serverless. Sec-
tion 8 discusses related work. Section 9 concludes the whole
paper.

2 CHARACTERIZING SERVERLESS

In this section, we develop a basic model for serverless
to characterize the performance and cost of serverless. A
serverless platform encompasses two parts: Function-as-a-
Service (FaaS) and Backend-as-a-Service (BaaS). FaaS provi-
sions computing services to cloud users based on functions.
Since functions are stateless, BaaS is introduced to maintain
mutable states for functions, for example, Pywren [1] uses
S3 to store intermediate data during shuffling stages.

2.1 Pricing Scheme of Serverless
The pricing scheme of serverless differs across cloud
providers. Hence, we select AWS Lambda [2], Microsoft
Azure Function [3], GCP Function [4], and Alibaba Cloud
Compute Function [5] to discuss it.

Pricing of FaaS. We compare the pricing plan of FaaS
providers in Table 1. The pricing plan of existing FaaS plat-
forms contains two tiers: free tier and charge tier. After the
free quota of the free tier is used up, the provider will charge
users for future function execution based on the pricing of
the charge tier. The charge tier contains two parts: request
and duration. The request part is the price of each request
that triggers a function. The duration part is the price of
function execution time. As shown in Table 1, the unit of
duration price is defined as memory capacity multiplexing
execution time, i.e., GB · second. Apart from memory, some
providers charge users for CPU usage, including, Aliyun
and GCP2.

Pricing of BaaS. The additional expense of interacting
with BaaS typically consists of two parts: data transfer and
service requests. Service requests are charged based on the
number of requests. IaaS and FaaS share the same pricing
strategy.

2.2 Performance of Serverless
The process of serving requests on serverless platforms
basically contains three phases: initialization, computing,
and backend services. As a result, the total execution latency
of serverless contains three parts: initialization latency of
functions, service latency of BaaS, and computing latency of
FaaS.

Initialization latency of functions. Functions are mostly
short-lived, the initialization latency, especially cold start la-
tency, hence plays a critical role in the overall performance.
In contrast, concerning that VMs are running for a long
period of time, although the startup time of VMs is higher,
the startup latency is relatively low.

Service latency of BaaS. Since functions on serverless
are stateless, running functions need to interact with native

2. Here we only discuss the fundamental pay-as-you-go schemes of
Serverless function.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Table 1: The comparison of pricing policies among FaaS providers.

Provider
Free tier Charge tier Configuration

Request
Price‡

Duration Price Request
Price‡

Duration Price Memory
vCPU:Mem†

Mem (GB·s) CPU (vCPU·s) Mem (GB·s) CPU (vCPU·s) Min Max

AWS 1 M 400000 0.00 0.2 per M 0.0000166667 0.00 128MB 10GB 1:1.728
Azure 1 M 400000 0.00 0.2 per M 0.000016 0.00 128MB 1536MB Unknown
GCP 2 M 400000 8333.33 0.4 per M 0.0000025 0.0000042 128MB 32GB 1:1.5–1:4

Alibaba 1 M 1000000 500000 0.2 per M 0.000002138 0.00002138 128MB 32GB 1:1–1:4
† The number of vCPU to the capacity of memory. (The number of vCPU : GB)
‡ “M” stands for million.

cloud services to maintain states, such as storage service,
database, message queue, etc. Compared to serverless, VMs
can maintain states in persistent storage locally and transmit
states via networking directly. Therefore, the latency of
managing states on IaaS can be omitted.

Computing latency of FaaS. Functions are more fine-
grained than VMs. As shown in Table 1, the memory
capacity of a function is less than 10GB. Only AWS and
Azure release the vCPU configuration of a function. Azure
Compute Unit (ACU) is not an authoritative metric, because
ACU is proposed and defined by Azure. ACU provides
a standard for comparing CPU performance across Azure
products. One ACU is currently standardized on Azure
Standard A1 as 1003. The memory-to-vCPU ratio (MB per
vCPU) of AWS Lambda is 1769, which roughly equals that
of compute-optimized EC2 instances, i.e., 2048. Resources of
a FaaS platform can be classified into three levels: platform,
framework, and function. Platform-level resources are con-
sumed by services that support the container orchestration
platform, such as Kubernetes, including etcd, kube-proxy,
and so on. Framework-level resources are occupied by com-
ponents that implement FaaS frameworks, such as Open-
FaaS and OpenWhisk, including queueing components,
front-end components, etc. Function-level resources are the
remaining parts allocated to functions for execution. Since
FaaS users do not own any cloud resources, as compared to
IaaS, the extra resource cost is on the framework level, not
on the platform level. As a result, the memory-to-vCPU ratio
of EC2 instances is 15% higher than that of AWS Lambda.
We define a certain amount of vCPU and memory as a
computing unit (e.g., 1vCPU and 1769MB memory). Hence,
a function is one computing unit and a VM has multiple
identical units.

For two identical computing units, if the resource uti-
lization is fixed, the performance can be enforced to be the
same. As a result, the computing latency of a function and
a VM are the same, but the throughput of a VM is multiple
times higher than that of a function.

2.3 User Demand of Serverless
To build the mathematical model, we first consider a
discrete-time model t ∈ {1, 2, ..., t, ...}. at is the request
arrival rate during the tth time slot. The number of vCPU
and the capacity of memory in one computing unit are
RvCPU and RMem, respectively. The resource demand of
request i on each computing unit is denoted as a vector ~ri.

3. Azure compute unit (ACU), https://learn.microsoft.com/en-us/
azure/virtual-machines/acu

Here we take vCPU and memory into consideration, i.e.,
~ri = (rvCPUi , rMem

i).

Table 2: The notations of cost model.

Notation Description

at The request arrival rate during the tth time slot.
KS(t) The expense of serverless during the tth time slot.
PF The duration price of FaaS.
lSi The total execution time of request i.
PB The sum of request prices of FaaS and BaaS.

RvCPU The number of vCPU in one computing unit.
RMem The capacity of memory in one computing unit.
V vCPU
F The vCPU utilization of FaaS.
VMem
F The memory utilization of FaaS.
~ri The resource demand of request i .
NR The scale of reserved VMs.
NO(t) The scale of on-demand VMs.
KI(t) The expense of IaaS during the tth time slot.
PR The price of reserved VMs.
PO The price on-demand VMs.

V vCPU
I The vCPU utilization of all the rented VMs
VMem
I The memory utilization of all the rented VMs

3 UNDERSTANDING COST OF USERS

In this section, we develop a cost model for serverless from
the perspective of users. To analyze when, why, and how
much serverless is more economical, we introduce the user
cost model of IaaS as a baseline.

To compare the cost of serverless and IaaS, we consider
the following setups: 1) Only one user is served on the IaaS
and serverless platforms, respectively; 2) Resource demand
of requests on the IaaS and serverless are the same; 3) The
resources allocated to the user are exclusively supported
by the same scale of underlying physical infrastructure,
implying that the scale is fixed when comparing FaaS with
IaaS.

We then analyze the cost of serverless and IaaS from
two aspects: expense and resource utilization. The expense
is referred to as the fee for executing functions or renting
VMs, while the resource utilization is defined as how many
resources paid by the user are utilized, indicating the cost-
effectiveness of FaaS or IaaS.

3.1 Cost of Using Serverless
Expense of serverless. As shown in Figure 1, the scale
of functions can automatically adapt to the scale of user
demand. The expense of serverless during the tth time slot

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

KS(t) is the sum of the FaaS and BaaS expenses, which can
be denoted as follows.

KS(t) = PBat + PFR
Mem

at∑
i=1

lSi ,

where PF is the duration price of FaaS, lSi is the total exe-
cution time of request i (including initialization, computing,
and BaaS), and PB is the sum of request prices of FaaS and
BaaS.

Remark. The expense of serverless incurs only when
the functions are active. As soon as the functions are com-
pleted, the serverless provider does not charge the user
immediately. The serverless users essentially pay for the usage
of functions.

Time

Request arrival

Figure 1: Expense of serverless is calculated based on the
number of requests for functions and the execution duration
of functions.

Resource utilization of FaaS. The vCPU utilization
V vCPUF and memory utilization VMem

F of FaaS are cal-
culated by dividing the resource demand by the resource
capacity allocated to the user, which are defined as follows,
respectively.

V vCPUF (t) =

∑at
i=1 l

S
i r

vCPU
i

RvCPU
∑at
i=1 l

S
i

, VMem
F (t) =

∑at
i=1 l

S
i r

Mem
i

RMem
∑at
i=1 l

S
i

.

Remark. The resource utilization of FaaS, e.g., CPU uti-
lization, is denoted as (

∑at
i=1 l

S
i r

vCPU
i)/(RvCPU

∑at
i=1 l

S
i) =

(
∑at
i=1

rvCPUi

RvCPU
· lSi)/(

∑at
i=1 l

S
i), which is the weighted arith-

metic mean of the resource utilization of functions (r
vCPU
i

RvCPU
).

The weights are the processing time of functions (lSi). This
means there is no waste of resources caused by idleness.

3.2 Cost of Renting IaaS
Typically, the VMs that an IaaS user rents are divided into
base and on-demand groups. VMs in the base group are
reserved instances for serving ordinary workload demand
and ensuring high availability, whose scale remains un-
changed. These VMs are rented for a long-term duration
with all-upfront (e.g., 1-year all-upfront [6]) to save cost [7].
Meanwhile, to deal with unexpected bursty workload de-
mand, on-demand VMs are employed to improve scalabil-
ity. With the bursty workload demand dying away, the on-
demand VMs are shut down to save cost.

Expense of IaaS. The expense of IaaS is calculated based
on the scale of VMs and the duration of renting VMs. As
shown in Figure 2, we assume that VMs the user rents are
homogeneous, where the scale of reserved and on-demand

Time

Request arrival

Reserved VMs

On-demand VMs

Figure 2: Typical solution to deploying applications to IaaS.
The resource utilization is updated at regular time intervals.
During the time interval, the scale of on-demand VMs
remains unchanged.

VMs are denoted as NR and NO(t), respectively. Hence, the
expense of IaaS during the tth time slot KI(t) is calculated
by summing up the expense of renting reserved and on-
demand VMs, which is calculated as follows.

KI(t) = PRNR + PONO(t),

where PR and PO are the prices of the reserved and on-
demand VMs.

Resource utilization of IaaS. The vCPU utilization
V vCPUI and memory utilization VMem

I are derived by di-
viding the resource demand by the resource capacity rented
by the user, which are denoted as follows.

V vCPUI (t) =

∑at
i=1 l

I
i r
vCPU
i

RvCPUΘN(t)
, VMem
I (t) =

∑at
i=1 l

I
i r
Mem
i

RMemΘN(t)
,

where lIi is the computing latency of request i running in a
computing unit of IaaS (the initialization is omitted and no
BaaS latency). N(t) is the total number of VMs during the
tth time slot and it equals NR+NO(t). Θ is the total number
of computing units a VM has.

Remark. The IaaS expense KI(t) monotonically in-
creases with the scale of the on-demand VMs NO(t), where
NO(t) is determined by the scaling strategy of the IaaS
user. Typically IaaS users leverage auto-scaling services to
adjust the scale of VMs: if the overall utilization of one
particular resource is above/below a threshold, the scale of
VMs grows/falls. However, the resource utilization cannot
be timely updated (AWS CloudWatch updates the load
statistics every 5 minutes at no charge and every minute
for an additional charge). As a result, when the bursty
workload demand dies out, the VMs of the user may be
over-provisioned. Worse, the scale of reserved VMs keeps
unchanged, incurring extra expense regardless of the work-
load demand. Above all, the IaaS users basically pay for renting
VMs, no matter whether the VMs are fully utilized (i.e., busy or
idle).

3.3 Is Serverless More Economical than IaaS?
Although the on-demand charging of serverless prevents
users from paying for idle resources, there exist potential
cost issues. Based on the formulation of expense in Sec. 3.1,
the expense of serverless monotonically increases with the
request arrival rate. When the applications are running long

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

enough, the expense of serverless will grow continuously,
possibly resulting in an expense explosion. Furthermore,
the duration price of functions is fixed and 3.5×–5.6×
higher than VMs, which makes it impossible to alleviate the
expense explosion. Concerning the lack of discounts, users
would hesitate to adopt serverless.

4 REVENUE OF SERVERLESS PROVIDERS

In this section, to identify the revenue crisis of serverless
providers, we develop a cost model to analyze why server-
less is more profitable than IaaS and how to increase profit.

4.1 Serverless is Resource-conserving
Functions are more fine-grained and light-weighted than
VMs, there is a huge benefit from selling short-lived slices
of physical machines that might otherwise go unused be-
cause of the difficulties of bin-packing VMs and the relative
slowness of VM scaling up/down.

Chances of over-committing resource. More impor-
tantly, as analyzed in Sec. 3, serverless sells function execu-
tion, while IaaS rents resources. Hence, serverless inherently
allows higher resource over-commitment.

As shown in Figure 3, since the IaaS providers have to
ensure that every user’s resources are available at any time,
two computing units (as well as the underlying physical re-
sources) are allocated to user i and j, respectively. Although
the computing units are idle, e.g., during [ti, t+1], resources
allocated to user i cannot be shared with user j. Conversely,
FaaS users only submit code to the provider and do not own
any resources. Functions become active only when they are
triggered, and shut down when they are complete. Hence,
users i and j can share one computing unit on FaaS. There
is no waste of resources when the demand of users is low,
making FaaS providers over-commit more resources.

Demand of User j

Demand of User i

Time

Infrastructure

2

t t+1 Timet t+1

IaaS FaaS

1 1

ti ti

Allocated to User j

Allocated to User i

Infrastructure

Figure 3: For IaaS, VMs are rented to users who hence
temporarily occupy the virtual and underlying physical
resources. The physical resources cannot be shared among
IaaS users even when they are idle, since it is necessary to
ensure that the virtual resource is available at any time.

Profiting from over-commitment. Typically, providers
can over-commit resources to improve infrastructure utiliza-
tion and raise revenue. The over-commitment (OC) ratio of
resource r is defined as the ratio of the allocated virtual
resources to the total physical resources, which can be

denoted as OCr =
C
′
r

Cr
. Although raising the OC ratio can

help improve resource utilization and make more profit, the
high OC ratio of the CPU inevitably incurs frequent context
switches, resulting in performance degradation. Suppose

that OCCPU vCPU are bound to each CPU core. The
overhead of processes gets scheduled (Φ) can be denoted
as φ · OCCPU , where φ is the CPU utilization of a process
for getting scheduled on the CPU core.

On a cloud platform, the resources are multiplexed
among users. This can take the form of time-multiplexing,
where the users take turns (e.g., the processor resource),
or space-multiplexing, where each user gets a part of the
resource (e.g., memory). Since the capacity of memory is
space-multiplexed, techniques of over-committing memory
basically adopt a strategy of saving space, e.g., virtio-
balloon, kernel-samepage-merging, and memory swap.
These techniques not only introduce significant overhead
but also harm the stability of the cloud system. However,
compared with memory, the CPU inherently allows more
over-commitment, since it is time-multiplexed in OS. Given
that the memory-to-CPU ratio is fixed, memory is the critical
resource that determines how much CPU is over-committed.

4.2 Cost of Providers
We take revenue and resource utilization into considera-
tion to examine whether serverless can profit from over-
commitment. The revenue is referred to be the total expense
of cloud users and the resource utilization means the uti-
lization of the underlying physical infrastructure. Similarly,
IaaS is selected as the baseline as well.

When modeling the resource utilization, we only con-
sider the computing services, i.e., FaaS and IaaS, excluding
backend services. To compare the revenue and resource
utilization between IaaS and FaaS, we make some necessary
setups: 1) The scale of the underlying infrastructure that
supports IaaS and FaaS is fixed; 2) The over-committed
capacity provisioned by IaaS and FaaS can be totally sold
to cloud users.

Revenue and resource utilization. The revenue of FaaS
or IaaS is calculated by summing up the expense of all the
users. The total number of computing units allocated to the
users during the tth time slot is denoted as gt. For each
computing unit g, the vCPU and memory utilization re-
quired by requests during the tth time are denoted as rvCPUg,t

and rMem
g,t , respectively. The CPU and memory utilization

(UCPU (t) and UMem(t)) of FaaS or IaaS can be calculated

as
∑gt
g=1(rvCPUg,t +Φg,t)lg,t

CCPU
and

∑gt
g=1 r

Mem
g,t lg,t

CMem
, respectively.

Remark. The total number of computing units g mono-
tonically increases with the memory over-commitment ratio.
Since FaaS platforms support higher OC ratios, the revenue
and resource utilization are higher than IaaS. lg,t is the
latency of the resource unit g being active during the tth

time slot. FaaS is more profitable than IaaS. Nevertheless,
such a conclusion is based on an assumption, i.e., all of the
over-committed capacity provisioned by FaaS can be totally
sold to cloud users. Consequently, in practice, FaaS may not
be as profitable as analyzed.

5 INSIGHT ON COST OF SERVERLESS

Based on the cost model, we conduct extensive simulations.
The detailed setup and results of simulations can be found
in Section 6. By analyzing the simulation results, we provide
multiple insights on the cost of serverless as follows.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Perspective of users. Generally, serverless is not cost-
saving as claimed from the cost perspective. Whether server-
less is economical depends on the arrival pattern and scale
of requests. If the user demand fluctuates drastically (e.g.,
the bursty and drastic patterns), FaaS is more cost-saving.
Particularly, the more wildly the user demand fluctuates,
the better FaaS performs. However, if the scale of requests
continuously increases, the expense of the bursty and drastic
patterns will surpass that of IaaS like the regular case, even
leading to expense explosion.

Perspective of providers. We produce multiple insights
on how to exploit FaaS and profit more from the perspective
of providers. Because of the high duration price of functions,
the revenue of FaaS is much higher than that of IaaS.
Since FaaS platforms inherently allow a higher memory OC
ratio, providers can raise the OC ratio to improve resource
utilization and increase profits.

The cost barrier of serverless. We can conclude that
serverless is conditionally cost-saving due to the prevailing
pricing. The potential expense explosion brought by the
pricing greatly limits the use scenarios of serverless and
hinders users from adopting serverless. As a result, al-
though the serverless providers have a chance to make a big
profit from over-committing more resources, the serverless
providers are now facing the possibility of revenue loss
due to the decrease in the number of users. The pricing of
serverless, which fails to neither offer discounts for users nor
fully exploit resources for providers, now become the cost
barrier between the user and providers against a win-win
deal.

6 SIMULATION OF SERVERLESS COST

In this section, we demonstrate the trace-driven simulation
results of the cost model to verify the cost issues of server-
less.

6.1 General Setup
Real-world traces. The function invocation counts of the
Azure Functions Trace 2019 [8] are selected to simulate
the request arrival. The resource utilization of containers
for online services in the Alibaba Cluster Trace 2018 [9] is
selected as the resource demand of functions.

Spec of VMs and functions. The functions are assumed
to be homogeneous as well, the memory is set as 1769MB
configured with 1 vCPU. We assume that all the VMs are
homogeneous and the spec of the VMs is set as 32 vCPU and
56608MB. The price of functions are based on AWS Lambda,
while that of VMs are based on c6g.8xlarge EC2.

6.2 Evaluation of User’s Cost
Trace. As shown in Figure 4, we select three typical traces,
i.e., regular (the request arrival follows a daily recursive
pattern), drastic (the scale of requests fluctuates wildly), and
bursty (the scale of requests is generally low except multiple
sudden spikes). The total number of requests in the three
cases is the same.

Setup. The time intervals are assumed in units of min-
utes. The duration price of FaaS and IaaS is in units of
$/GB·second. The users pay for on-demand EC2 instances

by the minute4 and the load statistics are updated every
minute5. The time interval of adjusting the scale of on-
demand VMs is set as 1 minute.

Baselines. The cost of IaaS depends on the scaling strat-
egy of VMs. Here we set two scaling strategies as base-
lines: auto-scaling (auto) and 80%-reserved (p80) strategies.
The auto-scaling strategy only prepares a minimal scale
of reserved VMs for high availability and base workload
demand while the scale of on-demand VMs automatically
increases or decreases based on the workload demand. The
80%-reserved strategy prepares a fixed scale of reserved
VMs whose capacity can satisfy the workload demand
during 80% of the whole time slots. The exceeding work-
loads are handled by the auto-scaling on-demand VMs. The
threshold of scaling is the average CPU utilization of the
user demand.

Comparison of resource utilization. We plot Figure 5
to investigate how the user demand affects the memory
utilization of FaaS and IaaS under 10% of full load.

In the bursty case, as plotted in Figure 5(a), the memory
utilization of IaaS is mostly lower than 30% and fluctuates
wildly due to the slowness of scaling up/down.

In the drastic case, as demonstrated in Figure 5(b),
although the dynamics of the user demand is wild, the
memory utilization of FaaS remains stable. However, due to
the coarse-grained scaling strategy, the memory utilization
of IaaS-p80 fluctuates drastically, indicating frequent over-
provision and under-provision.

In the regular case, as illustrated in Figure 5(c), for the
IaaS-auto case, the memory utilization becomes more stable
than other cases, indicating that the VMs are in a state of
busy and barely scale.

Above all, resources paid by the serverless user can be
more efficiently utilized while the resource efficiency of IaaS
depends on the scaling strategy and how the request arrival
pattern is. The memory utilization of FaaS is stably high
for all the cases, since the memory utilization of FaaS is
the weighted arithmetic mean of the memory utilization
of functions, implying that resource paid by the FaaS user
remains busy, i.e., no waste of resources caused by idleness.

Comparison of expense. We plot Figure 6 to investigate
how the user demand affects the expense of serverless under
full load. When the scale of requests is low, as shown in
Figure 6(a), 6(b), and 6(c), the expense of serverless is lower
than IaaS in each case, especially in the bursty case.

Whether the expense of serverless is less than that of IaaS
depends on the request arrival patterns and duration. As
shown in Figure 6(a), 6(b), and 6(c), the expense of serverless
is lower than that of IaaS at first. However, the expense of all
the cases finally surpasses that of IaaS. It is because that the
price of resource for functions are 3.5×–5.6× higher than
that of VMs. With the number of requests increasing, the
free quota is used up. Furthermore, the expense increases
with the scale of requests monotonically.

However, the turning points of all the cases differentiate
from each other. The turning point for the bursty case
appears the latest, while the turning point of the regular

4. https://aws.amazon.com/ec2/pricing/on-demand/
5. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

using-cloudwatch-new.html

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

0 480 960 1440

Time Interval (minute)

0

0.5

1
R

e
q
u
e
s
t
S

c
a
le

(a) Bursty

0 480 960 1440

Time Interval (minute)

0

0.5

1

R
e
q
u
e
s
t
S

c
a
le

(b) Drastic

0 480 960 1440

Time Interval (minute)

0

0.5

1

R
e
q
u
e
s
t
S

c
a
le

(c) Regular

Figure 4: Three typical workload traces selected from Azure Functions Trace 2019.

0 480 960 1440

Time Interval (minute)

0

0.2

0.4

0.6

0.8

M
e

m
o

ry
 U

ti
liz

a
ti
o

n FaaS IaaS-auto IaaS-p80

(a) Bursty, 10% load

0 480 960 1440

Time Interval (minute)

0

0.2

0.4

0.6

0.8

M
e

m
o

ry
 U

ti
liz

a
ti
o

n FaaS IaaS-auto IaaS-p80

(b) Drastic, 10% load

0 480 960 1440

Time Interval (minute)

0

0.2

0.4

0.6

0.8

M
e

m
o

ry
 U

ti
liz

a
ti
o

n FaaS IaaS-auto IaaS-p80

(c) Regular, 10% load

Figure 5: The memory utilization of IaaS and FaaS.

0 480 960 1440

Time Interval (minute)

0

1

2

3

4

5

E
x
p

e
n

s
e

 (
$

)

10 5

FaaS
IaaS-auto
IaaS-p80

Turning point

(a) Bursty, full load

0 480 960 1440

Time Interval (minute)

0

2

4

6

8

E
x
p

e
n

s
e

 (
$

)

10 5

FaaS
IaaS-auto
IaaS-p80

Turning point

(b) Drastic, full load

0 480 960 1440

Time Interval (minute)

0

5

10

15

E
x
p

e
n

s
e

 (
$

)

10 5

FaaS
IaaS-auto
IaaS-p80

Turning point

(c) Regular, full load

Figure 6: The expense of IaaS and FaaS.

case shows up the earliest. Such a phenomenon indicates
that the bursty case is the most suitable.

0 480 960 1440

Time Interval (minute)

0

0.5

1

1.5

R
e
v
e
n
u
e
 (

$
)

10 4

FaaS, OC=2.0

IaaS, OC=1.3

FaaS, OC=1.5

IaaS, OC=1.0

Figure 7: The revenue of FaaS and IaaS under different
memory OC ratios.

6.3 Evaluation of Provider’s Cost
To evaluate the revenue and resource utilization of FaaS, we
select the function invocation counts of a day to simulate
the user demand of an IaaS/FaaS from the Azure Functions
Trace 2019 [8].

Setup. To investigate how the OC ratio affects the re-
source utilization and revenue of providers, we conduct
a series of experiments under various values of the OC
ratio. As analyzed in Section 4, the memory OC ratio of
FaaS can be higher than that of IaaS. Based on the practical
experience of IaaS from IBM and OpenStack, the memory
over-commitment ratio should be set as 1.5 [10], [11]. Hence,
we tune the memory OC ratio of IaaS from 1.0 to 1.3 and
tune that of FaaS from 1.5 to 2.0, respectively.

Comparison of revenue. As plotted in Figure 7, com-
pared with IaaS, since the duration price of FaaS is higher
than that of IaaS, the revenue of FaaS is 6.0×–10.5× higher
than that of IaaS. Meanwhile, with the OC ratio increasing,
the revenue of FaaS and IaaS increase by 1.3× for selling
resources to more users.

Comparison of resource utilization. In terms of resource
utilization, as illustrated in Figure 8(a) and Figure 8(b), a
larger OC ratio improves resource utilization of both IaaS
and FaaS. As analyzed in Section 4, IaaS fails to over-commit
more memory nor CPU, making the resource utilization of
IaaS lower than that of FaaS.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

0 480 960 1440

Time Interval (minute)

0.02

0.04

0.06

0.08

C
P

U
 U

ti
liz

a
ti
o
n

FaaS, OC=2.0 IaaS, OC=1.3

FaaS, OC=1.5 IaaS, OC=1.0

(a) CPU Utilization

0 480 960 1440

Time Interval (minute)

0.2

0.4

0.6

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

FaaS, OC=2.0 IaaS, OC=1.3

FaaS, OC=1.5 IaaS, OC=1.0

(b) Memory Utilization

IaaS-1.0 IaaS-1.3 FaaS-1.5 FaaS-2.0

Over-commitment Ratio

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Over-commitment

Overall

(c) Overhead

Figure 8: The resource utilization and overhead of FaaS and IaaS under different memory OC ratios.

Comparison of overhead. Figure 8(c) illustrates the
overhead of FaaS and IaaS, including the overhead brought
by over-commitment, BaaS services, and cold start effect.
These factors increase the tail latency, which contributes
to the revenue as well. We observe that the overhead of
IaaS is generally less severe than FaaS. Although raising
the OC ratio can improve resource utilization and increase
revenue, with the CPU OC ratio increasing, it introduces
frequent context switches, which may degrade performance
and harm stability.

7 PRICING OF FUTURE FUNCTION

In this section, based on the analysis of the cost model, we
identify the disadvantages of the widely adopted pricing
strategy of FaaS and propose a dynamic pricing strategy for
FaaS.

7.1 Primitive Pricing Strategy of FaaS
We identify three disadvantages of the prevailing pric-
ing policy, including unfairness, risk of expense explosion
for users, and lack of incentive scheme for providers.
The pricing of functions contains two components: request
and duration. The duration price is the price of com-
puting resources that dominates the expense/revenue of
users/providers, so we here only discuss the pricing strat-
egy of the duration price.

Unfairness. The duration expense of functions is calcu-
lated by multiplying a fixed duration price by the resource
capacity allocated to a function and the execution duration
of the function. Such static pricing causes severe unfairness
for two reasons: the heterogeneity of cloud platforms and
the fluctuating demand of cloud users.

The infrastructure of cloud providers is a heterogeneous
system where servers have various types of hardware and
architectures of software, resulting in different comput-
ing performances. Consequently, some functions may be
scheduled to high-end servers while some are not, leading
to unfairness across FaaS users. From the perspective of
providers, it is also unfair to charge users a fixed price
regardless of the heterogeneity of infrastructure. Even if the
underlying infrastructure is homogeneous, the performance
of cloud platforms is volatile due to fluctuating user de-
mand. Hence, FaaS users are paying for different qualities
of services but at the same price. To eliminate the unfairness,
the price of functions is supposed to be dynamic, instead of
remaining unchanged.

Risk of expense explosion for users. Based on the real-
world trace released by Azure [8], the regular request arrival
pattern is ubiquitous. However, with the prevailing static
pricing strategy, regular patterns will incur expense explo-
sions. For the drastic and bursty cases, with the volume of
requests increasing, FaaS users face the risk of expense ex-
plosions as well. For example, a start-up burnt $72,000 when
internally testing Cloud Run within a few hours [12]. As a
result, serverless users may have concerns about causing
expense explosion.

Lack of incentive scheme for providers. On the one
hand, based on the best practices advised by FaaS providers,
the most typical use cases of FaaS are online applications.
The report of SPEC also reveals that 86% of the functions are
triggered on-demand as a direct result of a user interacting
with applications [13].

On the other hand, many academic works and FaaS
platforms extend use cases of FaaS to batch jobs, such as
big data analytics, video processing, and model training [1],
[14], [15], [16], [17], [18], [19]. Most batch jobs do not require
extreme scalability and interactivity but expect a cheap
price.

Due to lacking delay-tolerant use cases, the use scenarios
of serverless are limited. The providers are required to
offer discounts for the users as incentives to widen the use
scenarios and attract more users. Furthermore, serverless
providers can over-commit more resources, implying that
they need to deal with a more severe waste of spare capacity
than IaaS. However, the widely adopted serverless pricing
strategy provides little incentive for FaaS users to cooperate
with the provider in increasing user demand and improving
overall resource utilization.

Summary. Today’s serverless pricing strategy charges
users the same price, which is static, coarse-grained, and
unfair. As a result, FaaS providers are required to develop
a dynamic, fine-grained, and transparent pricing strategy,
not only meeting requirements of users for fairness and
reducing expense but also helping providers exploit spare
capacity and raise revenue.

7.2 How to Design a Dynamic Pricing?

To design such a dynamic pricing strategy, providers face a
key challenge: how to offer discounts to users as well as avoid
the loss of revenue? One promising solution is to attract extra
workloads to offset the loss brought by discounts. Typically,
applications outsourced to the cloud can be classified into

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

online services and batch jobs. Different from online ser-
vices, batch jobs run without end-user interaction, hence
choosing when to submit batch jobs is mostly flexible. As a
result, FaaS providers can influence the timing and amount
of batch job submissions with dynamic (lower) prices.

As analyzed in Sec. 7.1, concerning most use cases of
FaaS are on-demand services, attracting extra batch jobs
meets the requirements of widening the use scenarios of
FaaS. Furthermore, extra user demand of batch jobs can not
only offset the loss of discounts but also shape the overall
resource utilization.

To this end, the providers face the other challenge: how to
determine the dynamic prices based on platform capacity and user
demand? Concerning the capacity being limited and multiple
users expecting to gain discounts, an auction-based strategy
is appropriate to enable the negotiation between the users
and the provider.

Is Spot Instance directly applicable? In terms of dy-
namic pricing, AWS Spot Instance [20] is already released
to the cloud market, where users can pay a spot price that
is in effect for the period their instances are running. Can
the pricing strategy of Spot Instance be directly applied
to FaaS? Compared with Spot Instance, the challenges of
designing an auction-based pricing strategy for FaaS mainly
are threefold.

First, IaaS users bid for occupying resources, while FaaS
users bid for executing functions. When IaaS users are
rejected in the auction, their spot instances will be sus-
pended. However, for FaaS, it is challenging to save states
of functions for the short life-cycle, high concurrency, and
statelessness.

Second, for IaaS, Spot Instance is mainly designed for
batch jobs, which is supplementary to on-demand and re-
served instances. However, a universal auction-based pric-
ing strategy that covers both online services and batch jobs
is required for FaaS.

Third, for Spot Instance, all the users who win the
instances share the same payments; this is reasonable since
cloud resources are identical. However, FaaS basically pro-
visions function execution services, thus the performance of
every execution is volatile due to user demand, underlying
infrastructure, platform capacity, etc. As a result, users ac-
cepted in the auction should pay different prices.

To deal with the challenges, we propose future function
and design auction-based pricing.

7.3 Future Function Auction

We propose an auction where users bid for future function
execution. Specifically, at the beginning of each time slot,
the FaaS provider determines how many resources to be
prepared for discounted functions during the future time
slot. All the users are allowed to bid for the discounted
functions with expected prices (namely, the bidding prices,
which are lower than the original price). For the user whose
bid is accepted, functions invoked during the future time
slot can be paid based on the payment price (lower than the
respective bidding price) determined by the FaaS provider.
Otherwise, users who are rejected in the auction will pay for
function execution with the original price.

Algorithm 1: Winner selection

Input : Bids submitted by users, B = {Bi,∀i ∈ N}
Resource capacity, U = {Ui,∀j ∈M}

Output: Bids accepted in the auction, W
Bids rejected in the auction, F

1 Sort B based on virtual value w in descend order;
2 for Bi ∈ B do
3 if ~di < ~U then
4 W ∪ i;
5 Update resource capacity ~U ;
6 else
7 F ∪ i;
8 end
9 end

Table 3: The notations of future function.

Notation Description

M The number of resource types.
N The number of users who participate in an auction.
Bu

i The bid submitted by user i for future functions.
λi The estimated total request scale.
bi The expected (bidding) price of user i.
Bi The transformed bid of user i.
~di The total resources consumed by user i.
dji The resource j’s consumption of user i’s functions.
ri The total scale of resources consumed by user i.
pi The discounted price of future functions of user i.

Bidding for future function. Suppose that the FaaS
has M types of resources and the number of users who
participate in the auction is denoted as N .

User interface. Each bid submitted by user i for future
functions is denoted as Bui = (λi, bi), where λi and bi are
the estimated total request scale and the expected bidding
price during the future time slot, respectively. To estimate a
precise bidding price bi, FaaS users need to develop bidding
schemes based on historical request scale and resource us-
age. These metrics can be easily accessed via RESTful API
which is typically provided by commercial and open-source
FaaS platforms, including invocation times, CPU total time,
memory utilization, and so on [21], [22]. To relieve FaaS
users of developing bidding schemes, FaaS providers can set
basic schemes for users. If FaaS users choose to apply more
precise bidding schemes for more discounts, it is feasible for
FaaS users to utilize related techniques as IaaS users do in
AWS Spot Instance market [23], [24], [25].

Provider transformation. Each bid of user i is transformed
to Bi = (~di, ri, bi) by the FaaS provider. ~di is the total re-
sources consumed by functions of user i, which is evaluated
based on λ and historical statistics. Here ~di = (d1

i , ..., d
M
i) is

a demand vector with dji representing how much resource j
user i’s functions consume. ri is the total scale of resources
the provider charges user i, depending on λi and li, where
units of ri are $/(GB · second).

Given the bids from the users {Bi|i ∈ N}, the FaaS
provider selects winners and determines corresponding
payment vectors, which are denoted as ~x = (x1, ..., xN) and
~p = (p1, ..., pN), respectively. If xi = 1, it means user i

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

wins the future functions and it pays pi for them. The utility
obtained by user i is denoted as (vixi − pi)ri, where vi is
the true value of the functions. Note that if the user, who
wins ri of resources, yet fails to use them up, i.e., the scale
of resources allocated to future functions is less than ri, it
still has to pay for ri of resources with price pi. If the scale
of resources allocated to functions exceeds ri, the user has
to be charged at the original price for the exceeding part.
Otherwise, if xi = 0, it means user i is rejected and it has to
be charged with the original price for function invocations.

Estimated resource

User expense

pR

PR

f(x) = px

f(x) = (p-P)x + PR

%&
'

R

Figure 9: The impact of estimation error on expense.

Figure 9 plots the gap between the original expense and
the discounted expense if a user’s bid is accepted. As shown
in the figure, p is the discounted price and P is the original
price. R is the real resource scale charged by the provider,
mainly depending on λ. x is the estimated value of the
resource scale, so the expense of a winner can be denoted
as follows.

f(x) =

{
(p− P)x+ PR, x < R

px, x ≥ R

Based on the above function, the estimated value should be
as accurate as possible so that the user can obtain the largest
benefit. Furthermore, the estimated value should not exceed
PR
p , or the user will suffer from loss.

It is common to predict future request scales based on
historical data, such as LSTM, ARIMA, and so on. Although
it is challenging to predict request spikes, existing work
can achieve pretty high accuracy. For example, the overall
prediction accuracy of the number of calls per minute can
reach as high as 92.3% on average [26].

Definition 1. A future function auction is truthful, if and only
if each user is to report its true valuation, i.e., bi = vi, which
always maximizes its utility.

Definition 2. The social welfare in future function auction is
calculated as the sum of the user utility

∑
i∈N (vixi − pi)ri and

the FaaS provider’s utility
∑
i∈N piri. The social welfare hence

becomes
∑
i∈N virixi.

The social welfare maximization problem in the function
auction can be formulated into an integer linear problem:

max

N∑
i=1

virixi (1)

s.t. fj(d
j
1x1, ..., d

j
NxN) ≤ Uj ,∀j ∈M

where the constraint enforces the resource demand within
the supply. The auction is truthful if each bidder’s best

strategy is always to reveal her true valuation, regardless
of the other bidders’ valuations, and regardless of how bids
are decided. The social welfare is the sum of the values of
both bidders and providers.

Algorithm 2: Payment determination
Input : Bids accepted in the auction, W

Bids rejected in the auction, F
Output: Payment of bids accepted in the auction, ~p

1 for Bi ∈W do
2 Update ~Utemp = ~U −

∑N\i
j=1

~dj ;
3 for Bj ∈ F do
4 if ~Utemp + ~dj < ~U then
5 ~Utemp = ~Utemp + ~dj ;
6 if ~Utemp + ~di < ~U then
7 ~Utemp = ~Utemp + ~di;
8 Record the less critical bid lc = j;
9 else

10 Calculate payment pi =
bjrjDi
riDj

;
11 end
12 end
13 end
14 if j == length(F) then
15 Calculate payment pi = blcrlcDi

riDlc
;

16 end
17 end

7.4 Determining the Price for Future Functions
Theoretically, the Vickrey–Clarke–Groves (VCG) mechanism
can be employed to generate maximum social welfare while
enforcing truthfulness. However, a VCG mechanism is com-
putationally infeasible since Problem (1) is proved to be NP-
hard in [27], whose computation complexity is too high for
the future function auction.

As a result, we adopt a sub-optimal algorithm to solving
the future function auction, which is proved to be truth-
ful [28], [29], ensuring that bi = vi. The solution is described
as follows.

Step 1: winner selection. Calculate the virtual value of each
bid Bi, which is defined as w(i) = biri

Di
, where Di is the

weighted arithmetic mean of ~di, i.e., Di =
∑M
m=1 ω

m
i · dmi .

The virtual value indicates how much user i pays for the
resources its functions consume. Then based on the virtual
value, sort all the bids in descending order and apply a
greedy strategy to select accepted bids until the resource
supplied to discounted functions is used up. The detailed
pseudo code is shown in Algorithm 1.

Step 2: payment determination. For any bid Bi of accepted
bids W , we select a critical bid from the rejected bids F
and determine the payment of the accepted bid. We first
update W by excluding Bi as W ′. Then for any bid Bj in
F , we select the first rejected bid Bj which makes Bi fail
to be selected in W ′ (the total resource demand exceeds
the supply), i.e., the first rejected bid Bj whose resource
demand is less than that of the accepted bid Bi, as the
critical bid. Finally, the payment pi is calculated as bjrjDi

riDj
.

In other words, the payment is derived based on the virtual

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

value of the critical bid Bj . The detailed pseudo code is
shown in Algorithm 2.

The complexity of the algorithms is O(MN2 +N logN),
where N is the total number of bids submitted by users and
M is the total number of resource types. The complexity of
Algorithm 1 and Algorithm 2 areO(N logN) andO(MN2),
respectively.

Announcement. After the payment of users is deter-
mined, the announcement is required. In future function
pricing, the announcement contains two parts: discount and
virtual value. The discount announcement is for accepted
bids, while the other is for rejected bids. The discount
announcement sorts discounts in ascending order, every
individual winner can see the ranks in the announcement.
For the rejected users, they can see their ranks in virtual
value, so as to adjust the bidding strategy.

Security. A reverse inference process that investigates
how the provider set prices will not harm the security
of bidding systems. For example, Zheng et. al [23] study
providers’ setting of the bidding prices and answer the
question of how to bid for cloud resources. In terms of pre-
venting malicious bids, the truthfulness of future function
auction can achieve that.

…

B 1u B 2u B NuB iu
…

User bid transformation

Winner selection

B 1 B 2 B NB i

… …

… …

x = (x1, x2, …, xi, …, xN)

Payment determination

p = (p1, p2, …, pi, …, pN) Users

Discount

Discount announcement

User i

Figure 10: Expense of serverless is calculated based on the
number of requests for functions and the execution duration
of functions.

Summary. By now, serverless users can bid for future
functions with dynamic prices yet without suspending
them. Then we seek to design a pricing mechanism to
cover both online services and batch jobs. As shown in
Figure 10, users submit bids for future functions, then the
FaaS provider transforms the user bids into candidate bids.
After winner selection and payment determination, the FaaS
provider can determine which bids are accepted or rejected.

7.5 Weighing Loss and Profit
From the perspective of providers, for online services, since
the users are unable to control the request arrival, the users
have to pay for function execution whatever the price is. If
the future function auction which covers both online and
batch users is introduced, FaaS providers have to offer fu-
ture functions (i.e., discounted functions) to online services,
resulting in a loss of profit. However, the spare capacity can
be exploited to attract extra batch jobs to offset the loss.

As shown in Figure 12, resources consumed by online
services are referred to as base capacity, denoted as ~Uo.

Resources consumed by extra batch jobs are referred to
as spare capacity, denoted as ~Ub. Hence, with the future
function pricing, the sum of the base and spare capacity
may approach the max capacity of the platform, namely ~C .
Furthermore, the profit brought by extra batch jobs can off-
set the loss incurred by discounts offered for online services.
To reduce the loss, the serverless provider can decide how
many resources to support future functions of the online
users by tuning the supply ratio θ (a ratio of the capacity
consumed by online future functions to the base capacity).
The FaaS provider can choose to prefer profit or discount.

The problem of weighing the loss of online services
and the profit of batch jobs can be formulated as a bilevel
programming problem.

max
θ,~xbθ,~x

o
F(θ, ~xbθ, ~x

o)

s.t. ~Ub + θ~Uo ≤ ~C

~xoθ ∈ max A(~x, θ~Uo)

~xb ∈ max A(~x, ~Ub)

where maxA(~x, ~U) is the future function auction prob-
lem (1) and F(θ, ~xbθ, ~x

o) is defined as the sum of loss of
online services and profit of batch jobs.

Pricing scheme of future functions. The future function
pricing strategy is developed as follows. At the beginning
of each time slot, the spare capacity is supplied to dis-
counted functions of batch jobs. Then by evaluating the
profit brought by the spare capacity, the FaaS provider de-
termines how many resources to be supplied to discounted
functions of online services by tuning the supply ratio.
Then FaaS users can bid for discounted functions and the
FaaS provider selects specific ones to accept their bids and
determines their payments.

Table 4: Discount and acceptance ratio of online services and
batch jobs.

Supply Pay/Bid Pay/Price Acceptance

Online
10% 54.73% 46.08% 11.42%
20% 54.47% 40.54% 9.90%
40% 58.19% 43.51% 8.14%

Batch - 71.90% 39.89% 24.5%

Summary. Basically, future function provides a bilateral
mechanism where both users and providers can collaborate
to gain benefit. To reduce the risk of expense explosion,
users should estimate resource usage and request scale as
precisely as possible. For providers, to improve resource
utilization and attract user workloads, they are required to
select winners as many as possible.

7.6 Evaluation of Future Function Pricing
We now evaluate the future function pricing to answer the
following questions: 1) Can future function exploit the spare
capacity; 2) How much profit can future function gain; 3)
How much discount can future function offer?

Setup. We select the resource utilization statistics during
24 hours from Alibaba Cluster Trace [9] which includes
about 4000 machines in a period of 8 days to evaluate the
future function pricing strategy. We set the expected max

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

0 16 32 48

Time Interval (30min)

0

1

2
R

e
v
e

n
u

e
 (

$
)

10 4

Supply ratio = 0%

Supply ratio = 10%

Supply ratio = 20%

Supply ratio = 40%

(a) Revenue

0 16 32 48

Time Interval (30min)

0.1

0.2

0.3

C
P

U
 U

ti
liz

a
ti
o

n

Future Function Static

(b) CPU utilization

0 16 32 48

Time Interval (30min)

0.72

0.74

0.76

0.78

0.8

M
e

m
o

ry
 U

ti
liz

a
ti
o

n

Future Function Static

(c) Memory utilization

Figure 11: Revenue, CPU, and memory utilization of the FaaS platform under the future function pricing compared to the
static pricing.

Supply

ratio

Base capacity

Spare capacity

For online services

For batch jobs

Figure 12: Spare capacity is exploited to offset the loss
incurred by discounted functions of online services.

CPU and memory utilization as 35% and 80%, respectively.
If the CPU and memory utilization are below the expected
thresholds, the spare capacity will be used to supply dis-
counted functions for batch jobs. For the online services, we
set the supply ratio as 10%, 20%, and 40%. The price and
spec of functions and VMs are the same as those in Section 6.
In the simulation, we randomly generate a bidding price
ranging from 0.5 to 0.99 of the original price. Then, the
average values of the historical request scale and resource
usage during the last time slot are selected as estimated
values.

The future function involves two players: the provider
and the users. The revenue and discounts depend on
winner selection and payment determination strategies of
providers, which are required to ensure the future function
auction is truthful. Meanwhile, the expense of users is de-
termined by the estimation of resource scale. The estimation
techniques should be as accurate as possible so that the
bidding price approaches the true valuation.

In this section, we aim to evaluate the performance of
the future function auction, especially the winner selection
algorithm (Algorithm 1) and the payment determination
algorithm (Algorithm 2). Hence, for bidding strategies of
users, we randomly generate a bidding price ranging from
0.5 to 0.99 of the original price. Since prediction techniques
are not the main contribution of the future function auction,
we use average values of the historical data as estimated
values and omit evaluating user benefits.

Resource utilization. As shown in Figure 11, the CPU
and memory utilization increase and approach 35% and
80%, respectively. With the future function pricing, the
discounted functions for batch jobs improve the resource
utilization of the FaaS platform, implying that the FaaS
provider can exploit the spare capacity of infrastructure as
fully as possible.

Revenue. As shown in Figure 11(a), with supplying
more resources to discounted functions of online services,
the revenue of the FaaS provider decreases. The 0% supply

ratio case means the FaaS platform does not offer discounts
to online services at all, so the revenue is the profit brought
by the extra batch jobs. When the supply ratio is 40%, it
incurs a loss of $2544.2. Otherwise, the profit brought by
the spare capacity can offset the loss and make more profit.
By tuning the supply ratio, future function pricing allows
the FaaS provider to choose which is preferred, discount or
profit.

Discount. Table 4 demonstrates the discount rate and the
acceptance ratio of future function pricing. The acceptance
ratio is derived by dividing the number of accepted bids
by the total number of bids. Among all the online users
who participate in bidding future functions, 8.1%–11.4% of
the users can win the future functions. Generally, winners
can enjoy a 40.5%–46.1% discount and their payments are
54.4%–58.1% cheaper than their bids. Meanwhile, 24.5% of
bids for the discounted batch functions are accepted and the
price reduces by 57.5% on average.

8 RELATED WORK

Regarding serverless, [30] and [31] conduct a comprehensive
review of the pros and cons of serverless. Existing works
broadly can be classified into two categories. One is trying
to optimize the serverless platform to improve performance
and efficiency [32], [33], [34], [35], [36], [37]. The other aims
to outsource various applications to serverless platforms,
to acquire high performance with low cost [1], [15], [16],
[17], [18], [19], [30], [31], [38], [39], [40], [41], [42], [43], [44],
[45], [46]. However, none of the works justifies whether
serverless is cost-saving or profitable.

Performance of serverless. ServerlessBench is an open-
source benchmark suite for characterizing the performance
of platforms [47]. Wang et al. conduct a measurement on
mainstream serverless platforms from the perspective of
users [48]. Li et al. identifies the critical factors of server-
less platforms based on several popular open-source plat-
forms [49]. SAAF is developed to profile performance and
resource utilization of functions, so as to accurately predict
performance of FaaS-based applications [50]. Based on de-
velopers’ bid on resources, Bermbach et al. propose auction-
based approaches that determine what functions should be
offloaded from edge (fog) to cloud, aiming for improving
resource efficiency [51], [52]. However, none of the studies
conducts a review or quantitative analysis of the cost of
serverless. Maissen et al. develop FaaSdom, a benchmark
for FaaS platforms [53]. One of the test cases examines the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

cost of the current mainstream serverless cloud providers
but fails to compare the cost to IaaS platforms.

Cost of serverless. Lin et al. develop an economic model
to analyze the incentives of users and providers to adopt
serverless [54]. Different from [54], our model systemati-
cally examines the cost of serverless, to reveal the best use
scenarios of serverless and identify the drawbacks of the
prevailing serverless pricing. Wang et al. conduct a simple
measurement of the cost of FaaS and IaaS by running
machine learning training jobs on AWS Lambda and EC2,
respectively [18]. Driven by machine learning interference
workloads, Spock [55] evaluates the cost of serverless and
IaaS. Costless [56] optimizes the cost by fusing and placing
functions based on application workflows. Tayal et al. study
two real cases to compare the cost of serverless and serverful
applications and show that serverless is more expensive
than traditional cloud [57]. Each of these works provides a
case study of cost for a particular scenario, failing to provide
a comprehensive understanding of serverless cost. Our cost
model covers general request arrival patterns, aiming at
understanding and removing the cost barriers of adopting
serverless from the perspectives of users and providers.
A cost prediction of serverless workflows is developed
based on a Monte Carlo simulation of an abstract workflow
model [58]. However, such a cost prediction methodology
can not be used to compare the cost of serverless with IaaS.

Our work is one of the first studies that develops an
analytical model for serverless cost from the perspectives of
users and providers, by comparing it to IaaS cloud. Our
cost model mainly focuses on cloud scenarios, where a
massive scale of infrastructure is located in one region. We
try to analyze the cost when homogeneous infrastructure
is installed as IaaS and FaaS cloud, respectively. Hence,
benefiting from high bandwidth within a datacenter, the
impact of function placement can be omitted. Our cost
model does not cover the case where VMs/functions are
placed in different regions. Recently, edge computing has
been evolving into a serverless fashion. As a result, to adapt
edge-cloud scenarios, the model should be extended by
taking multiple factors relating to the cost of placement into
consideration, such as network bandwidth between edge
and cloud, the volume of data to be transferred among
functions, hardware specifications, and so on [52], [59]. How
to analyze the cost of IaaS and FaaS in edge-cloud scenarios,
where VMs and functions are located in geo-distributed
regions, requires further study yet is out of the scope of
our work.

Cost and performance of serverless. Lin et al. propose a
heuristic algorithm to balance the performance and cost of
serverless applications, ensuring quality of service as well as
controlling cost [60]. AMPS-Inf [61] is designed to save cost
and guarantee the Service Level Objective (SLO) of model
inference. These works mainly deal with the trade-off be-
tween the cost and performance of serverless applications,
yet fail in answering when serverless is more cost-saving
and more profitable than IaaS.

Pricing of serverless. Concerning pricing, most server-
less platforms adopt a static pricing strategy that charges
users a fixed price. To the best of our knowledge, the future
function is the first auction-based pricing plan for FaaS,
which provides a bilateral negotiation for the future price of

functions between the provider and the users. Mahajan et al.
propose to deploy applications to both FaaS and IaaS simul-
taneously to minimize cost. Then cloud providers can set
different prices for three solutions, i.e., VM, VM+Function,
and Function [62]. Yet, the price schemes in [62] are static,
which cannot provide discounts for users and increase prof-
its for providers.

9 CONCLUSION

We develop a cost model for serverless from the perspec-
tives of users and providers to answer how to use and op-
erate serverless computing services. Extensive trace-driven
simulations reveal that serverless is not always cost-saving
due to potential cost issues caused by the prevailing pric-
ing. From the perspective of providers, serverless is more
profitable than IaaS. However, today’s serverless pricing
prevents providers from profiting more. To remove the
cost barrier brought by the pricing, we propose the future
function, an auction-based pricing strategy, to reduce the
risk of expense explosion for users as well as increase profits
for providers. Experimental results show that the duration
price of winners can be reduced by 57.5% on average and
the revenue of the provider barely shrinks.

REFERENCES

[1] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the Cloud: Distributed Computing for the 99%,” in Proceedings of
ACM SoCC, 2017.

[2] AWS, “AWS Lambda,” [Online], https://aws.amazon.com/
lambda/.

[3] Microsoft Azure, “Azure Functions,” [Online], https://azure.
microsoft.com/en-us/services/functions/.

[4] Google Cloud Platform, “Cloud Functions,” [Online], https://
cloud.google.com/functions.

[5] Alibaba Cloud, “Function Compute,” [Online], https://www.
alibabacloud.com/product/function-compute.

[6] Amazon, “Amazon EC2 Reserved Instances Pricing,” [On-
line], https://aws.amazon.com/ec2/pricing/reserved-instances/
pricing/.

[7] Amazon, “AWS EC2,” [Online], https://aws.amazon.com/ec2/.
[8] Microsoft Azure, “Azure Functions Trace 2019,” [Online],

https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md.

[9] Alibaba, “Alibaba Cluster Trace Program 2018,” [Online], https:
//github.com/alibaba/clusterdata.

[10] IBM, “Resource Overcommit Allocation Ratios,” [On-
line], https://www.ibm.com/docs/en/prs/2.4.0?topic=
administering-resource-overcommit-allocation-ratios.

[11] OpenStack, “Overcommitting CPU and RAM,” [Online],
https://docs.openstack.org/arch-design/design-compute/
design-compute-overcommit.html.

[12] Sudeep Chauhan, “We Burnt $72K testing Firebase - Cloud Run
and almost went Bankrupt,” [Online], https://blog.tomilkieway.
com/72k-1/ & https://blog.tomilkieway.com/72k-2/.

[13] S. Eismann, J. Scheuner, E. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup, “A Review of Serverless Use
Cases and their Characteristics,” in arXiv, 2021.

[14] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless Linear
Algebra,” in Proceedings of ACM SoCC, 2020.

[15] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. Garcı́a-López,
“Serverless Data Analytics in the IBM Cloud,” in Proceedings of
ACM/IFIP Middleware, 2018.

[16] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
Serverless Video Processing Framework,” in Proceedings of ACM
SoCC, 2018.

[17] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads,” in Proceedings of USENIX NSDI, 2017.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[18] H. Wang, D. Niu, and B. Li, “Distributed Machine Learning with
a Serverless Architecture,” in Proceedings of IEEE INFOCOM, 2019.

[19] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“Cirrus: A Serverless Framework for End-to-End ML Workflows,”
in Proceedings of ACM SoCC, 2019.

[20] Amazon, “AWS EC2 Spot Instances,” [Online], https://aws.
amazon.com/cn/ec2/spot/.

[21] AWS Lambda, “Working with Lambda function metrics,”
[Online], https://docs.aws.amazon.com/lambda/latest/dg/
monitoring-metrics.html.

[22] Amazon CloudWatch, “Metrics collected by Lambda Insights,”
[Online], https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/Lambda-Insights-metrics.html.

[23] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to Bid the Cloud,” in Proceedings of ACM SIGCOMM, 2015.

[24] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot
instance market,” in Proceedings of IEEE INFOCOM, 2012.

[25] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang,
“Learning Cloud Dynamics to Optimize Spot Instance Bidding
Strategies,” in Proceedings of IEEE INFOCOM, 2018.

[26] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, G. Yang, and C. Xu,
“The power of prediction: Microservice auto scaling via workload
learning,” in Proceedings of ACM SoCC, 2022.

[27] W. Vickrey, “Counters peculation, auctions, and competitive
sealed tenders,” Journal of Finance, vol. 16, pp. 8–27, 1961.

[28] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth Revelation in
Approximately Efficient Combinatorial Auctions,” J. ACM, vol. 49,
no. 5, p. 577–602, Sep. 2002.

[29] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue Generation
for Truthful Spectrum Auction in Dynamic Spectrum Access,” in
Proceedings of ACM MobiHoc, 2009.

[30] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar,
J. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud
Programming Simplified: A Berkeley View on Serverless Comput-
ing,” EECS Department, University of California, Berkeley, Tech.
Rep., Feb 2019.

[31] J. M. Hellerstein, J. M. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing: One
Step Forward, Two Steps Back,” in Proceedings of CIDR, 2019.

[32] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers,” in Proceedings of
USENIX ATC, 2018.

[33] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: Towards High-Performance Server-
less Computing,” in Proceedings of USENIX ATC, 2018.

[34] S. Shillaker and P. Pietzuch, “Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing,” in Proceedings of USENIX
ATC, 2020.

[35] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou,
R. Van Renesse, and H. Weatherspoon, “X-Containers: Breaking
Down Barriers to Improve Performance and Isolation of Cloud-
Native Containers,” in Proceedings of ACM ASPLOS, 2019.

[36] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-Millisecond Startup for Serverless Computing
with Initialization-Less Booting,” in Proceedings of ACM ASPLOS,
2020.

[37] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the Wild: Characterizing and Optimizing the Server-
less Workload at a Large Cloud Provider,” in Proceedings of
USENIX ATC, 2020.

[38] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure,” in Proceedings of
USENIX NSDI, 2019.

[39] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A Dis-
tributed Framework for Emerging AI Applications,” in Proceedings
of USENIX OSDI, 2018.

[40] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless
Analytics,” in Proceedings of USENIX OSDI, 2018.

[41] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient Functional
Containers,” in Proceedings of USENIX ATC, 2019.

[42] F. Bakir, R. Wolski, C. Krintz, and G. S. Ramachandran, “Devices-
as-Services: Rethinking Scalable Service Architectures for the In-
ternet of Things,” in Proceedings of USENIX HotEdge, 2019.

[43] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skour-
tis, V. Tarasov, F. Yan, and Y. Cheng, “InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory
Cache,” in Proceedings of USENIX FAST, 2020.

[44] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λDNN: Achieving
Predictable Distributed DNN Training With Serverless Architec-
tures,” IEEE Transactions on Computers, vol. 71, no. 2, pp. 450–463,
2022.

[45] Z. Wen, Y. Wang, and F. Liu, “StepConf: SLO-Aware Dynamic
Resource Configuration for Serverless Function Workflows,” in
Proceedings of IEEE INFOCOM, 2022.

[46] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-Aware Container
Caching for Serverless Edge Computing,” in Proceedings of IEEE
INFOCOM, 2022.

[47] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin,
and H. Chen, “Characterizing Serverless Platforms with Server-
lessbench,” in Proceedings of ACM SoCC, 2020.

[48] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the Curtains of Serverless Platforms,” in Proceedings of
USENIX ATC, 2018.

[49] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understand-
ing Open Source Serverless Platforms: Design Considerations and
Performance,” in Proceedings of International Workshop on Serverless
Computing, 2019.

[50] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting Performance
and Cost of Serverless Computing Functions with SAAF,” in
Proceedings of IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress, 2020.

[51] D. Bermbach, S. Maghsudi, J. Hasenburg, and T. Pfandzelter,
“Towards Auction-Based Function Placement in Serverless Fog
Platforms,” in Proceedings of IEEE International Conference on Fog
Computing, 2020.

[52] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Tham-
sen, “Auctionwhisk: Using an auction-inspired approach for func-
tion placement in serverless fog platforms,” Software: Practice and
Experience, vol. 52, no. 5, pp. 1143–1169, 2022.

[53] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “FaaSdom: A
Benchmark Suite for Serverless Computing,” in Proceedings of
ACM International Conference on Distributed and Event-Based Sys-
tems, 2020.

[54] X. C. Lin, J. E. Gonzalez, and J. M. Hellerstein, “Serverless Boom
or Bust? An Analysis of Economic Incentives,” in Proceedings of
USENIX HotCloud, 2020.

[55] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,
G. Kesidis, and C. Das, “Spock: Exploiting Serverless Functions
for SLO and Cost Aware Resource Procurement in Public Cloud,”
in Proceedings of IEEE CLOUD, 2019.

[56] T. Elgamal, “Costless: Optimizing Cost of Serverless Comput-
ing through Function Fusion and Placement,” in Proceedings of
IEEE/ACM Symposium on Edge Computing, 2018.

[57] A. Tayal, E. Lam, D. Choudhury, M. Dickerson, G. Moovera, and
G. Arora, “Determining the Total Cost of Ownership of Server-
less Technologies when compared to Traditional Cloud,” Deloitte
Consulting, Tech. Rep., September 2019.

[58] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev,
“Predicting the Costs of Serverless Workflows,” in Proceedings of
the ACM/SPEC International Conference on Performance Engineering,
2020.

[59] A. Sandur, C. Park, S. Volos, G. Agha, and M. Jeon, “Jarvis: Large-
scale server monitoring with adaptive near-data processing,” in
Proceedings of IEEE ICDE, 2022.

[60] C. Lin and H. Khazaei, “Modeling and Optimization of Perfor-
mance and Cost of Serverless Applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 3, pp. 615–632, 2021.

[61] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost Efficiency,”
in Proceedings of ACM ICPP, 2021.

[62] K. Mahajan, D. Figueiredo, V. Misra, and D. Rubenstein, “Optimal
Pricing for Serverless Computing,” in Proceedings of IEEE GLOBE-
COM, 2019.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

Fangming Liu (S’08, M’11, SM’16) received the
B.Eng. degree from the Tsinghua University, Bei-
jing, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Hong
Kong. He is currently a Full Professor with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests in-
clude cloud computing and edge computing, dat-
acenter and green computing, SDN/NFV/5G and
applied ML/AI. He received the National Natu-
ral Science Fund (NSFC) for Excellent Young

Scholars, and the National Program Special Support for Top-Notch
Young Professionals. He is a recipient of the Best Paper Award of
IEEE/ACM IWQoS 2019, ACM e-Energy 2018 and IEEE GLOBECOM
2011, the First Class Prize of Natural Science of Ministry of Education
in China, as well as the Second Class Prize of National Natural Science
Award in China.

Yipei Niu received his B.Eng. degree from
Henan University, and M.Engr. degree from
Huazhong University of Science and Technol-
ogy. He is currently a Ph.D. student in the
School of Computer Science and Technology,
Huazhong University of Science and Tech-
nology, China. His research interests include
cloud computing, container networking, server-
less computing, and FPGA acceleration.

