
𝜆Grapher: A Resource-Efficient Serverless System for
GNN Serving through Graph Sharing

Haichuan Hu
Huazhong University of Science

and Technology
Wuhan, China

huhc@hust.edu.cn

Fangming Liu∗
Peng Cheng Laboratory

Huazhong University of Science
and Technology

fangminghk@gmail.com

Qiangyu Pei
Huazhong University of Science

and Technology
Wuhan, China

peiqiangyu@hust.edu.cn

Yongjie Yuan
Huazhong University of Science

and Technology
Wuhan, China

jayayuan@hust.edu.cn

Zichen Xu
Nanchang University
Nanchang, China
xuz@ncu.edu.cn

Lin Wang
Paderborn University
Paderborn, Germany

lin.wang@uni-paderborn.de

ABSTRACT
Graph Neural Networks (GNNs) have been increasingly adopted for
graph analysis in web applications such as social networks. Yet, effi-
cient GNN serving remains a critical challenge due to highworkload
fluctuations and intricate GNN operations. Serverless computing,
thanks to its flexibility and agility, offers on-demand serving of
GNN inference requests. Alas, the request-centric serverless model
is still too coarse-grained to avoid resource waste.

Observing the significant data locality in computation graphs
of requests, we propose 𝜆Grapher, a serverless system for GNN
serving that achieves resource efficiency through graph sharing
and fine-grained resource allocation. 𝜆Grapher features the follow-
ing designs: (1) adaptive timeout for request buffering to balance
resource efficiency and inference latency, (2) graph-centric sched-
uling to minimize computation and memory redundancy, and (3)
resource-centric function management with fine-grained resource
allocation catered to the resource sensitivities of GNN operations
and function orchestration optimized to hide communication la-
tency. We implement a prototype of 𝜆Grapher based on the repre-
sentative open-source serverless platform Knative and evaluate it
with real-world traces from various web applications. Our results
show that 𝜆Grapher can achieve an average savings of 61.5% in
memory resource and 47.2% in computing resource compared with
the state of the arts while ensuring GNN inference latency.

∗Corresponding author: Fangming Liu (fangminghk@gmail.com). H. Hu, Q. Pei, and
Y. Yuan are with the National Engineering Research Center for Big Data Technology
and System, the Services Computing Technology and System Lab, Cluster and Grid
Computing Lab in the School of Computer Science and Technology, Huazhong Univer-
sity of Science and Technology, 1037 Luoyu Road, Wuhan, China. F. Liu is with Peng
Cheng Laboratory, and Huazhong University of Science and Technology, China. Z. Xu
is with School of Mathematics and Computer Science, Nanchang University, China.
L. Wang is with Paderborn University, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00
https://doi.org/10.1145/3589334.3645383

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
serverless computing, graph neural networks, model serving
ACM Reference Format:
Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin
Wang. 2024.𝜆Grapher: A Resource-Efficient Serverless System for GNNServ-
ing through Graph Sharing. In Proceedings of the ACM Web Conference 2024
(WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3589334.3645383

1 INTRODUCTION

Graphs, as a fundamental data structure, are prevalent in various
domains including social networks [31, 52], financial networks [5,
41], and transportation networks [15, 34]. The rise of deep learning
has empowered graph neural networks (GNNs) to be a powerful tool
to extract features from graph structures [45, 46, 56]. Today, GNNs
have been widely used in online web services, e.g., social network
analysis [9, 23], short-video recommendation [26, 53], shopping
recommendation [40, 50], and financial fraud detection [28, 41].

However, efficient serving of GNNs—running GNNs for time-
sensitive inference tasks—remains a critical challenge, for the fol-
lowing reasons: (1) GNN inference is resource-hungry due to the
large graph size and complex operations, while applications im-
pose stringent service-level objectives (SLOs) on GNN inference
latency [54]. (2) The arrival of GNN inference requests in web
services is typically bursty and hard to predict [51]. (3) GNN execu-
tion intricately interleaves graph and tensor operations that show
diverging resource sensitivities [38]. The resource inefficiency of
GNN deployment leads to high operational costs for web services.

To deal with workload fluctuations, web services typically adopt
autoscaling techniques to adjust the provisioned resources vertically
and horizontally. Specifically, the system monitors a metric such
as the CPU or memory utilization and applies a threshold-based
scaling policy [4, 13]. Upon workload increases and the utilization
exceeds the threshold, a more powerful service instance (e.g., with
more CPU cores or memory) is launched to replace the current one
in the case of vertical scaling, or more service instances are added

https://doi.org/10.1145/3589334.3645383
https://doi.org/10.1145/3589334.3645383

WWW ’24, May 13–17, 2024, Singapore, Singapore Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

to serve requests in the case of horizontal scaling. The opposite will
be applied when the workload decreases and the utilization drops
below the threshold. While such autoscaling techniques can absorb
workload variations at large time scales, the long delay in changing
the provisioned resources (e.g., launching new virtual machines)
limits their capability of handling short-term request spikes.

Serverless computing (and its popular implementation function
as a service) offers new opportunities for efficient provisioning of
web services thanks to its agile event-driven model [16]. However,
a direct request-centric serverless deployment of GNN inference,
i.e., invoking a separate function to process each arriving request,
as done in financial fraud detection systems on AWS Lambda [6],
may not provide us with the promised efficiency gain. There are
two major reasons: (1) The fixed resource allocation for a function
invocation per request ignores the diverging resource sensitivities
of operations in different GNN execution stages, leading to low
overall resource utilization. (2) Per-request function innovation
leads to repeated computation and redundant memory usage across
requests that potentially share parts of their computation graphs.

In this paper, we present 𝜆Grapher, a scalable, resource-efficient
serverless system for GNN inference. Our key observation is that
GNN inference requests arriving in a given period show high spatial
data locality, i.e., their computation graphs overlap significantly.
Following this observation, 𝜆Grapher features the following designs
to achieve high resource efficiency. First, 𝜆Grapher buffers requests
and processes them in batches to exploit the data locality and re-
duce computation and memory redundancy. As request buffering
introduces extra delay, to strike a good balance between resource
efficiency and latency, 𝜆Grapher incorporates adaptive timeout con-
figuration to decide when the batch of requests in a buffer must be
dispatched to avoid latency SLO violation. Second, 𝜆Grapher adopts
graph-centric scheduling to perform GNN inference computation.
Specifically, we use multiple queues and distribute arriving requests
to these queues, aiming to maximize the spatial data locality of re-
quests in the same queue. To execute the aggregate computation
of batched requests, we merge the computation graphs of all these
requests and partition the merged graph accounting for locality
so that resources allocated for a partition can be released imme-
diately once the local computation is completed, leveraging the
agility of serverless functions. Finally, 𝜆Grapher employs resource-
centric function management which allocates resources to functions
catering to the resource sensitivities of the GNN operations per-
formed by each function and orchestrates functions into a pipeline
to reduce inter-function communication time overhead.

In short, this paper makes the following contributions. After con-
ducting a thorough empirical analysis of GNN workload variations,
data locality, and resource sensitivities of GNN operations (§2), we
• present a resource-efficient serverless system for GNN inference
(§3) featuring an adaptive timeout mechanism for request buffer-
ing to balance resource efficiency and end-to-end latency.

• propose a graph-centric request scheduler that exploits data lo-
cality to minimize computation and memory redundancy and
maximize resource elasticity.

• introduce a resource-centric function manager that caters the
resource allocation to the specific resource sensitivities of GNN
operations and orchestrates functions in pipelines to reduce inter-
function communication latency.

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch

88

88

Partitions1010

States55

R
e

q
u

e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Computation Graph0

2-Hop Computation Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline

Timeline

0-2

Recv
Aggregate

Send Recv
Update

Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

 C A

 B

3

2 1

0

Buffer 1

Buffer 0

Re-Schedule

New Arrival

μ1 = 0.2

μ0 = -0.2

2
μ1 = 0.2

13

μ0 = -0.3
0

2
μ1 = 0.1

1

μ0 = 0.2
03

2
μ1 = 0.25

13

μ0 = 0.0

0

μg = μ1 + μ0

Graph Sharing Degree of Requests

3 0······
50%

3 1······
40%

2 1······
20%

 D

2
μ1 = -0.05

μ0 = 0.4
03 1

……

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Global Maximum μg and Satisfying SLO

Local Maximum μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Figure 1: Typical GNN inference workflow.

0:00 6:00 12:00 18:00 24:00
Time (every 3 minutes)

0
25
50
75

100
125

RP
S

(a) Request-Level

0 1 2 3 4 5 6 7 8 9
Index of Request (103)

0
5

10
15
20
25
30

of

 V
er

tic
es

 (1
03)

(b) Graph-Level

Layer-1 Layer-2 Layer-3
Index of Layer

0
4
8

12
16
20
24

of

 A
gg

. V
er

tic
es

 (1
03)

(c) Layer-Level

Figure 2: Workload fluctuations in GNN inference.
• implement 𝜆Grapher on the serverless platform Knative. Our
evaluation with real-world traces shows that 𝜆Grapher achieves
an average savings of 61.5% in memory resource and 47.2% in
computing resource when compared to the state of the arts (§4).
§5 discusses related work and §6 concludes the paper.

2 BACKGROUND AND MOTIVATION

This section describes the fundamentals of GNN and the infer-
ence workflow in current systems, empirically studies the workload
fluctuations of GNN inference, motivates a graph-centric serverless
approach for GNN inference, and discusses the challenges in build-
ing an efficient graph-centric serverless system for GNN inference.

2.1 Fundamentals of GNN Inference
GNN basics. Denote the input graph as𝐺 = (𝑉 , 𝐸), where 𝑉 is the
set of vertices representing specific entities and 𝐸 is the set of edges
representing relationships between entities. Each vertex 𝑣 ∈ 𝑉 has
a feature representation ℎ𝑣 ∈ R𝑑 , where 𝑑 is the feature dimen-
sion. A GNN contains multiple layers, each comprising Aggregate
and Update operations. In each layer, every vertex 𝑣 aggregates
information from its neighboring vertices with

ℎ𝑙+1𝑣 := Φ𝑙
(
{ℎ𝑙𝑢 : 𝑢 ∈ N (𝑣)}

)
, (1)

where ℎ𝑙+1𝑣 is the representation of vertex 𝑣 in layer 𝑙 + 1, N(𝑣) is
the set of neighbors of vertex 𝑣 , ℎ𝑙𝑢 is the representation of neigh-
boring vertex 𝑢 in layer 𝑙 , and Φ𝑙 is the aggregation function. The
representation of each vertex 𝑣 is updated after each layer 𝑙 with

ℎ𝑙+1𝑣 := Υ𝑙 (ℎ𝑙+1𝑣 , ℎ𝑙𝑣), (2)

where the update function Υ𝑙 typically includes neural network
layers used to integrate information from the current layer and the
previous layer, resulting in a new representation for the vertex.
GNN inference workflow. GNN inference has been employed by
various time-sensitive online services, such as GraphLearn [1] and
PlatoGL [26]. Figure 1 shows a typical GNN inference workflow.
First, the request content is extracted as vertices and edges. Next,
the platform sets the vertex to predict as the target vertex and
extracts an 𝑛-hop computation graph. Then, the feature vectors are
extracted following the vertices/edges in this graph. Finally, this
graph and feature vectors are used as inputs for inference.

𝜆Grapher: A Resource-Efficient Serverless System for GNN Serving through Graph Sharing WWW ’24, May 13–17, 2024, Singapore, Singapore

A-1 U-1 A-2 U-2 A-3 U-3
Aggregate/Update - Layer Index

0

30

60

90

120

M
em

or
y

Us
ag

e
(M

B
m

s)

0

20

40

60

80

CP
U

Us
ag

e
(c

or
es

m
s)

Memory Usage
CPU Usage

(a) Resource Usage

1 2 3 4 5 6 7 8
Number of CPU Cores

0
30
60
90

120

La
te

nc
y

(m
s) E2E

Aggregate
Update

(b) Resource Sensitivity

Figure 3: Varying resource sensitivity of GNN operations.
The experiment is conducted with a 3-layer GCN.

0
3
6
9

12

Ov
er

la
p

Ve
rti

ce
s (

10
3) Overlap Vertices

0
20
40
60
80
100

Ov
er

la
p

Ra
te

 (%
)

Overlap Rate

0 20 40 60 80 100 120
Epoch (every 150 ms)

0
4
8

12
16

M
em

or
y

Fo
ot

pr
in

t (
GB

)

Graph-centric Request-centric Traditional

Figure 4: Computation graph overlap among requests over a
period and comparative resource consumption analysis of
traditional, request-centric, and graph-centric approaches.

2.2 Resource Inefficiency in Current Systems
Current GNN inference systems fall into two types: traditional
elastic cloud systems and request-centric serverless systems. The
former has pre-configured resources and applies autoscaling in
coarse grains based on monitoring metrics, as explained before.
Examples of this type include Alibaba’s GraphLearn [1] and Ten-
cent’s PlatoGL [26]. Request-centric serverless systems handle each
request by triggering a function invocation, allowing on-demand
processing based on the specific computation graph of the request.
AWS’s financial fraud detection system operates in this way [6]. Un-
fortunately, both types of systems suffer from resource inefficiency
for one or both of the following two reasons.
Multi-scale workload fluctuations in GNN inference. Using
widely recognized datasets of user request arrival traces from Twit-
ter [2] and datasets of requests on social network graphs from
Twitter [8], we show that the GNN inference workload fluctuates at
three levels: request, graph, and layer. Request-level fluctuations are
represented by burstiness in the user request intensity, measured
by requests per second (RPS), as shown in Figure 2a. Graph-level
fluctuations concern the size of the extracted computation graph
of each request. We use a typical setup of a 3-hop computation
graph from the target vertex for real-time inference and compare
the graph size difference between any two consecutively arriving
requests. Figure 2b shows the difference can be as large as 98.6×.
Layer-level fluctuations are represented by the difference in the
number of vertices at each GNN layer, demanding varying resources
to perform computation. Figure 2c shows that this difference can
reach 4× between Layers 1 and 2 and 9× between Layers 1 and 3.
Varying resource sensitivity of GNN operations. Each GNN
layer is composed of two main operations alternatively executed:
Aggregate and Update. Figure 15 (in Appendix A) shows the the
structure of three classic GNN layers, namely GCN [18], Graph-
SAGE [11], and GIN [48]. Taking a 3-layer GCN model as an ex-
ample, we investigate the demands and sensitivities of Aggregate
and Update to different resource types. Figure 3a shows that Aggre-
gate, a graph-based operation, is memory-bound, whereas Update,

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch
88

88

Partitions1010

States55

R
e
q

u
e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Context Graph0

2-Hop Context Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

右半部分的内容还是有些复杂
了，一些元素、符号的含义还

是看不懂，例如function内部的

圆圈和虚线、步骤9

该图想传达的信息，看上去和

system overview的右半部分差

不多。可以考虑省去该图

不清楚Function1中该怎么表示

两个target nodes，需要你再修
改一下；这两个步骤需要各起

一个标题

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline

Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

②Fetch N-Hop

Subgraph

Target Vertex

1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

 C A

 B

3

2 1

0

Buffer 1

Buffer 0

Re-Schedule

New Arrival

μ1 = 0.2

μ0 = -0.2

2
μ1 = 0.2

13

μ0 = -0.3
0

2
μ1 = 0.1

1

μ0 = 0.2
03

2
μ1 = 0.25

13

μ0 = 0.0

0

μg = μ1 + μ0

Graph Sharing Degree of Requests

3 0······
50%

3 1······
40%

2 1······
20%

 D

2
μ1 = -0.05

μ0 = 0.4
03 1

……

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Global Maximum μg and Satisfying SLO

Local Maximum μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Context Vertices

Overlap Vertices

Target Vertices

(a) Graph of requests A and B

A B AB ABO
Execution Mode

0

8

16

24

32

M
em

or
y

Us
ag

e
(M

B
m

s)

0

2

4

6

8

10

CP
U

Us
ag

e
(c

or
es

m
s)Memory Usage

CPU Usage

(b) Resource Usage

Figure 5: Resource utilization under different execution
modes. “A” and “B” represent individual executions, “AB”
represents batch processing without sharing, and “ABO” rep-
resents batch processing with sharing exploiting the overlap.

Coupling 1+5 2+4 3+3
Execution Mode

0
10
20
30
40
50
60

La
te

nc
y

(m
s)

E2E Aggregate Update

(a) Latency

Coupling 1+5 2+4 3+3
Execution Mode

0

2

4

6

8

10

M
em

or
y

Us
ag

e
(M

B
s)

0

50

100

150

200

CP
U

Us
ag

e
(c

or
es

m
s)Memory Usage

CPU Usage

(b) Resource Usage
Figure 6: Latency and resource comparison between decou-
pled and coupled groups. Decoupled group “i+j” means allo-
cating i CPU cores to Aggregate and j CPU cores to Update.
a tensor-based operation, is CPU-bound. Figure 3b shows that with
the increase of CPU cores, Aggregate shows a continuous latency
reduction (up to 4.5×) while the latency for Update quickly plateaus
with a maximum reduction of 2.2×. This implies that Aggregate is
more sensitive to CPU resource than Update.

Existing systems consider request-level workload fluctuations at
best, but none of them consider multi-scale workload fluctuations
and varying resource sensitivities of GNN operations.
2.3 New Opportunities
The above analysis motivates us to switch from the request-centric
serverless design to a graph-centric one. This design choice offers
the following new opportunities.
Exploiting data locality for graph sharing. Based on the Twitter
trace [2, 8], we observe a significant overlap between the compu-
tation graphs of requests arriving within a period. Figure 4 shows
that the overlap rate can reach 44.2% for epochs of 150 ms, leading
to considerable redundant computation and memory usage, which
can be avoided by batching requests and sharing intermediate re-
sults across requests [46]. We show in Figure 4 that a graph-centric
serverless approach could save, on average, 55.3% and 46.5% mem-
ory resource compared with the traditional and request-centric
serverless approaches, respectively. Figure 5 shows the resource
consumption of two consecutive requests under different execution
modes. It shows that batching requests and eliminating redundancy
reduces 21.3% of memory usage and 22.7% of CPU usage.
Decoupling GNN operations for fine-grained resource alloca-
tion. The sensitivity of Aggregate and Update to resources differs,
suggesting a resource-centric approach to function management.
Specifically, we can manage functions in resource groups, decou-
pling memory-sensitive Aggregate and compute-sensitive Update
and customizing fine-grained resource allocation for each of them.
Figure 6 shows that with this approach up to 52%memory reduction
and 25% CPU reduction can be achieved (see the “3+3” mode). On
the other hand, we pay the cost of slight latency increases, primarily
caused by the inter-function communication overhead.

WWW ’24, May 13–17, 2024, Singapore, Singapore Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch
88

88

Partitions1010

States55

R
e
q

u
e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Comput. Graph0

2-Hop Comput. Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline
Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Re-Scheduling

New Request

μg = μ1 + μ2

Graph sharing degree

of each combination

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Locally optimal μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

Indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

In
fe

re
n

ce
 N

o
d

e
s

States

Embeddings

Mem. Func.

Func. Config.

Com. Func.Com. Func.

Memory Size
Small

Core Number

Large

Vertex IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs Partition
plan88

88 Batch Partitions1010

States55

R
e
q

u
e
st

s
77

88 Batch

88 Batch

Buffer 1 μ1 = 0.2Buffer 1 μ1 = 0.2

Buffer 2 μ2 = -0.2Buffer 2 μ2 = -0.2

Buffer nBuffer n

……

R1 R2

R3

R4

20%
R1R1 R2R2

20%
R1 R2

40%
R4R4 R2R2

40%
R4 R2

50%
R4R4 R3R3

50%
R4 R3

Re-Scheduling Schemes

 A μ2 = -0.3 R3R3

μ1 = 0.2 R1R1 R2R2R4R4

 A μ2 = -0.3 R3

μ1 = 0.2 R1 R2R4

 B μ2 = 0.2 R3R3

μ1 = 0.1 R1R1 R2R2

R4R4

……
 C μ2 = 0.0

R1R1 R2R2R4R4R3R3

μ1 = 0.25

Globally optimal mg

with SLO guarantee

 D μ2 = 0.4 R3R3

μ1 = -0.05

R1R1

R1R1

R4R4

VS.

……

Figure 7: A system overview of 𝜆Grapher.

2.4 Design Challenges
The graph-centric serverless approach with fine-grained resource
allocation offers tremendous benefits, but also raises challenges.
C1: How to batch requests to exploit data locality? Request
batching is a de-facto optimization in inference serving systems for
improving resource efficiency. However, due to the heterogeneity
of request graphs and irregular memory access in the Aggregate
operation in GNN inference (see Figure 2b), batch processing can
be inefficient if not treated carefully. As we have shown signifi-
cant resource efficiency improvement can be achieved by reusing
intermediate results among batched requests. The challenge is on
quickly grouping requests to maximize the chance of reuse.
C2: How to efficiently execute batched requests? When batch-
ing requests, the computation graphs of these requests are merged
into a big graph, e.g., with millions of vertices. The memory needed
to host the merged graph can easily exceed the memory limit of
serverless functions, leading to scalability concerns. A quick idea is
to break down the merged graph into pieces and allocate a function
for each piece. The challenge is on partitioning the merged graph
at a suitable granularity to ensure scalability and take advantage of
the agility of serverless functions to achieve resource efficiency.
C3: How to conceal inter-function communication overhead?
Decoupling GNN operations and enabling fine-grained resource al-
location offers efficiency gains, but at the cost of extra inter-function
communication overhead. One typical approach is to construct a
pipeline to overlap function execution with communication. The
challenge is to fine-tune this pipeline so that all the functions in
the pipeline achieve load balancing to maximize overhead hiding.

3 SYSTEM DESIGN
We present 𝜆Grapher and its design in this section.

3.1 System Overview
To address the shortcomings of the request-centric serverless ser-
vice model discussed in Section 2.2, we develop a resource-efficient
serverless GNN inference system with a graph scheduling and re-
source management engine. The main idea behind the engine lies in
two aspects: (1) graph-centric scheduling which leverages the graph
sharing of consecutively arriving requests to reduce computation
and memory redundancy, and (2) resource-centric function manage-
ment which involves fine-grained resource allocation for functions
in the form of compute function groups and memory function
groups, catering to the compute-sensitive and memory-sensitive
operations, respectively, thereby maximizing resource efficiency.
𝜆Grapher aims to optimize the resource efficiency during GNN
serving while ensuring the latency SLOs of GNN requests.

Figure 7 illustrates the system overview of 𝜆Grapher. At the be-
ginning of the GNN serving, ❶ a continuous stream of user requests
arrives at the serverless platform. Then, ❷ the Parser analyzes the
content of the user requests, and the target IDs are dispatched to the
Configurator and the Router. Next, ❸ the Configurator queries the
vertex IDs of the computation graph from the graph database and
generates the data indices to send to the Router. According to the
data indices, ❹ the Router routes incoming requests to the buffer
with the highest degree of graph sharing. While the requests are
waiting, ❺ the Configurator collects the buffer states and queries
the built-in SLO and the service history to ❻ periodically adjust
the timeouts. As the requests are added to the Multi-Buffers, ❼ the
Graph Scheduler, with a global perspective, re-schedules the re-
quests to enhance the data locality, and extracts the computation
graphs, performing dynamic graph partitioning on each buffer.
When a buffer times out or is full, ❽ the batched requests are sent
to the newly created Orchestrator. The Orchestrator, based on the
graph partitions, ❾ scales and maps the workloads to the compute
functions and memory functions. ❿ The compute functions load
the neural network, while the memory functions load the graph
partitions and features. Finally, the functions perform collaborative
inference as per the orchestrated process.

3.2 Parser and Router
Target IDs. The Parser analyzes user requests to retrieve graph
structure IDs for inference. Graph analysis tasks can be categorized
into three types: vertex/edge/graph-level prediction. In this paper,
vertex-level prediction task is taken as an example, where the ID of
the vertex to be inferred is the target ID.
Routing strategy. The Router is responsible for routing each re-
quest to the buffer that has the highest graph-sharing degree for
that request to enhance data locality. Each request corresponds to
an 𝑛-hop computation graph 𝐺 (𝑉 , 𝐸) based on its target ID. The
data index𝑈𝑟𝑖 for a request 𝑟𝑖 is the vertex set 𝑉 of it computation
graph, denoted as as𝑈𝑟𝑖 = 𝑉𝑟𝑖 . The data index for a buffer 𝑏𝑖 is the
union of data indices for all requests it contains:

𝑈𝑏𝑖 = 𝑈𝑟0 ∪𝑈𝑟1 ∪ . . . ∪𝑈𝑟 𝑗 , 𝑟 𝑗 ∈ 𝑏𝑖 . (3)

The routing strategy directs requests to the buffer with the highest
graph sharing degree, determined by intersecting the buffers’ data
index with the request’s data index:

𝑆
𝑟𝑖
𝑏𝑖

=
��𝑈𝑏𝑖 ∩𝑈𝑟𝑖 �� /��𝑈𝑟𝑖 �� , ��𝑈𝑟𝑖 �� ≠ 0, 𝑏 𝑗 = argmax

𝐵
𝑆
𝑟𝑖
𝐵
, (4)

where 𝑆𝑟𝑖
𝑏𝑖

is the graph sharing degree of request 𝑟𝑖 with respect to
buffer 𝑏𝑖 in Multi-Buffers 𝐵, and 𝑏 𝑗 is the buffer with the highest
graph sharing degree for the request 𝑟𝑖 .

𝜆Grapher: A Resource-Efficient Serverless System for GNN Serving through Graph Sharing WWW ’24, May 13–17, 2024, Singapore, Singapore

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch
88

88

Partitions1010

States55

R
e
q

u
e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Comput. Graph0

2-Hop Comput. Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline
Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Re-Scheduling

New Request

μg = μ1 + μ2

Graph sharing degree

of each combination

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Locally optimal μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

Indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

In
fe

re
n

ce
 N

o
d

e
s

States

Embeddings

Mem. Func.

Func. Config.

Com. Func.Com. Func.

Memory Size
Small

Core Number

Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs Partition
plan88

88 Batch Partitions1010

States55

R
e
q

u
e
st

s
77

88 Batch

88 Batch

Buffer 1 μ1 = 0.2Buffer 1 μ1 = 0.2

Buffer 2 μ2 = -0.2Buffer 2 μ2 = -0.2

Buffer nBuffer n

……

R1 R2

R3

R4

20%
R1R1 R2R2

20%
R1 R2

40%
R4R4 R2R2

40%
R4 R2

50%
R4R4 R3R3

50%
R4 R3

Re-Scheduling Schemes

 A μ2 = -0.3 R3R3

μ1 = 0.2 R1R1 R2R2R4R4

 A μ2 = -0.3 R3

μ1 = 0.2 R1 R2R4

 B μ2 = 0.2 R3R3

μ1 = 0.1 R1R1 R2R2

R4R4

……
 C μ2 = 0.0

R1R1 R2R2R4R4R3R3

μ1 = 0.25

Globally optimal mg

with SLO guarantee

 D μ2 = 0.4 R3R3

μ1 = -0.05

R1R1

R1R1

R4R4

VS.

……

(a) New Request Arrives

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch
88

88

Partitions1010

States55

R
e
q

u
e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Comput. Graph0

2-Hop Comput. Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline
Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Re-Scheduling

New Request

μg = μ1 + μ2

Graph sharing degree

of each combination

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Locally optimal μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

Indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

In
fe

re
n

ce
 N

o
d

e
s

States

Embeddings

Mem. Func.

Func. Config.

Com. Func.Com. Func.

Memory Size
Small

Core Number

Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs Partition
plan88

88 Batch Partitions1010

States55

R
e
q

u
e
st

s
77

88 Batch

88 Batch

Buffer 1 μ1 = 0.2Buffer 1 μ1 = 0.2

Buffer 2 μ2 = -0.2Buffer 2 μ2 = -0.2

Buffer nBuffer n

……

R1 R2

R3

R4

20%
R1R1 R2R2

20%
R1 R2

40%
R4R4 R2R2

40%
R4 R2

50%
R4R4 R3R3

50%
R4 R3

Re-Scheduling Schemes

 A μ2 = -0.3 R3R3

μ1 = 0.2 R1R1 R2R2R4R4

 A μ2 = -0.3 R3

μ1 = 0.2 R1 R2R4

 B μ2 = 0.2 R3R3

μ1 = 0.1 R1R1 R2R2

R4R4

……
 C μ2 = 0.0

R1R1 R2R2R4R4R3R3

μ1 = 0.25

Globally optimal mg

with SLO guarantee

 D μ2 = 0.4 R3R3

μ1 = -0.05

R1R1

R1R1

R4R4

VS.

……

(b) Re-Scheduling Schemes

Figure 8: The global perspective optimization process.

3.3 Multi-Buffers and Configurator
Multi-Buffers.We observe a significant overlap among the compu-
tation graphs corresponding to user requests arriving continuously
over a period as discussed in Section 2.2. Therefore, we design
the Multi-Buffers which provides requests with an opportunity for
graph sharing with other requests which have same subgraphs,
by allowing requests to wait in the buffer for a certain period.
The Multi-Buffers, denoted as 𝐵, consists of multiple individual
buffers. The batched requests are sent to the functions for infer-
ence when the buffer times out or is full. Each buffer possesses
a 4-tuple (𝑅, 𝑆,𝑄, 𝐾) to characterize the state of the buffer at the
current moment, where 𝑅 denotes the requests per second for the
buffer, 𝑆 ∈ [0, 1] represents the average graph sharing degree of
all requests in the buffer, 𝑄 ∈ [0, 1] indicates the ratio between
the remaining time and the configured timeout of the buffer, and
𝐾 ∈ [0, 1] represents the ratio between the buffer’s configured time-
out and the maximum allowable timeout setting. The buffer timeout
is a crucial determinant of system performance. Optimal timeout
configuration ensures efficient graph sharing to achieve high re-
source efficiency without compromising request violations. In the
evolving inference service landscape, configuring buffer timeouts
judiciously is essential. The batch size is also dynamically adjusted,
determined by the resource limits of the functions and SLO slack.
Adaptive timeout configuration. The Configurator adapts buffer
timeouts dynamically, using the decision tree algorithm [49] to
swiftly balance the benefits of graph sharing and inference timeli-
ness, ultimately achieving a comprehensive performance. We em-
ploy real-world traces mentioned in Section 4 and utilize the built-in
SLO to conduct authentic service runs, thereby gaining service his-
tory. First, we determine the initial timeout 𝑇0 and the maximum
timeout 𝑇𝑚𝑎𝑥 for the buffer Based on the SLO:

𝑇0 = 𝛾 × 𝑆𝐿𝑂, 𝑇𝑚𝑎𝑥 = 𝛿 × 𝑆𝐿𝑂, 0 < 𝛾 < 𝛿 < 1. (5)

When the buffer reaches a threshold of new requests or a specific
time interval elapses, its state shifts, prompting a decision from the
decision set 𝑋 = {0} ∪ {1 × 𝜏, . . . , 𝑖 × 𝜏}. Two types of decisions
exist: 𝑥𝑖 = 0 preserves the current timeout, and 𝑥𝑖 = 𝑖 × 𝜏 extends
it, with 𝜏 as the unit time interval. To quantify the impact of each
decision, we propose a metric that measures the trade-off between
graph-sharing benefits and inference timeliness:

𝜇𝑏𝑖 = 𝛼 × 𝑆𝑏𝑖 − 𝛽 × 𝐷𝑏𝑖 , 𝛼 ∈ [0, 1] , 𝛽 ∈ [0, 1] , (6)

where 𝜇𝑏𝑖 represents the total performance gain of the buffer 𝑏𝑖 , 𝑆𝑏𝑖
signifies average graph sharing degree of buffer 𝑏𝑖 , 𝐷𝑏𝑖 represents
the average delay ratio in buffer 𝑏𝑖 due to waiting (i.e., average time
each request is delayed relative to the timeout), and𝛼 and 𝛽 are fixed
coefficients set by the developers. We record the buffer’s state and

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch

88

88

Partitions1010

States55

R
e

q
u

e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Comput. Graph0

2-Hop Comput. Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline
Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

 C A

 B

3

2 1

0

Buffer 1

Buffer 0

Re-Schedule

New Arrival

μ1 = 0.2

μ0 = -0.2

2
μ1 = 0.2

13

μ0 = -0.3
0

2
μ1 = 0.1

1

μ0 = 0.2
03

2
μ1 = 0.25

13

μ0 = 0.0

0

μg = μ1 + μ0

Graph Sharing Degree of Requests

3 0······
50%

3 1······
40%

2 1······
20% D

2
μ1 = -0.05

μ0 = 0.4
03 1

……

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Global Maximum μg and Satisfying SLO

Local Maximum μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

Indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

In
fe

re
n

c
e
 N

o
d

e
s

States

Embeddings

Mem. Func.

Func. Config.

Com. Func.Com. Func.

Memory Size
Small

Core Number

Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs Partition
plan88

88 Batch Partitions1010

States55

R
e

q
u

e
st

s
77

88 Batch

88 Batch

Figure 9: Demonstration of the dynamic graph scheduling.

the decision with the maximum performance gain when a decision
is made, utilizing this as historical experience.We employ a decision
tree regression model to fit the buffer state as independent variables
and the corresponding decisions as the dependent variable:

𝑀𝑜𝑑𝑒𝑙 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 .𝑓 𝑖𝑡 ((𝑅, 𝑆,𝑄, 𝐾), 𝑋). (7)

The generated Configurator brings us some decision-making heuris-
tics: 1) When benefits remain stable, the Configurator tends to favor
𝑥𝑖 = 0, conservatively maintaining the current timeout. 2) If the
buffer consistently receives requests that notably improve the av-
erage graph sharing degree, the Configurator typically chooses
𝑥𝑖 = 𝑖 × 𝜏 , greedily extending the timeout, the degree of which
depends on the magnitude of the benefit increase.

3.4 Graph Scheduler
The Graph Scheduler is responsible for scheduling of the compu-
tation graphs corresponding to the requests, which involves three
specific parts: 1) Globally schedule requests between the buffers
to achieve the optimal graph sharing; 2) Preprocess graphs to re-
duce computation and memory redundancy through graph sharing;
3) Dynamically partition the computation graphs to improve re-
source efficiency and provide scalability for inference.
Global perspective optimization. New requests are routed to
the buffer with the highest graph sharing degree according to the
strategy. However, this can cause graph sharing results to converge
towards local rather than global optima, as illustrated in Figure 8.
Hence, we introduce a global perspective optimization algorithm
to dynamically re-schedule remaining requests for graph sharing,
aiming for the global optimum, as demonstrated in Algorithm 1
in Appendix B. Whenever a new request enters the Multi-Buffers,
the Graph Scheduler places this request in the appropriate buffer
based on the routing strategy and evaluates the current buffer’s
performance gain (Line 1-Line 3). The Graph Scheduler identifies
requests in other buffers eligible for graph sharing with the new
arrival and computes their respective graph sharing degrees (Line 4-
Line 7). Next, the Graph Scheduler calculates the performance gain
if requests are moved in or out of the buffer (Line 8-Line 12). If the
performance gain improves after the scheduling, the Graph Sched-
uler adopts this decision by transferring the requests into the buffer
of the new request and removing them from their original buffer
(Line 13-Line 16). After global perspective optimization, subsequent
inference can fully benefit from graph sharing.
Graph sharing. The Graph Scheduler uses a hierarchically aggre-
gated computation graph (HAG), building upon prior research [14],
to merge redundant vertices and facilitate intermediate result shar-
ing, reducing computational and memory redundancy in batch
processing. The process of graph sharing primarily involves three
steps: 1) Expand the computation graph of the target vertex into

WWW ’24, May 13–17, 2024, Singapore, Singapore Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

1

Buffer0

Buffer1

T0

0

2

T1

3
2

3

1
0······

30%

3 1······
20%

3 2······
0%

局部视角
A

全局视角
C

0 31

2

Timeout

10ms

60ms

SLO: 200ms

0 31

全局视角
B

1 2······
10%

2

80ms

立即执行

继续等待

Timeout

0ms

50ms

决策

-80ms 立即执行，且
猛增资源

结果

Overlap利用最充分，
但请求0、1违例

Overlap利用不充分，
请求0、1没有违例

-10ms 立即执行，且
稍微增加资源

继续等待

Overlap利用较充分，
请求0、1、3没有违例

Users

Control Flow

Data Flow

Requests

SLO

Profiler

Configurator

Router

Service
History

Graph DB

22

• Statistics
• Target IDs

indices

Requests

Buffers

Requests

Buffers Conf.

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

44

55

44

33

11

99

66

88

22

······

Graph Scheduler

66 Graphs
Partitions77

77 Batch

77

77

Partitions

99

Bayesian
optimization

SLO

Service
History

• Request service time distribution
• Batch size distribution
• Batch service time distribution
• Request graph size distribution

• Request arrival distribution
• RPS

Profiler

• Buffer number [1, 10, 1]
• Batch size [100, 300000, 100]
• Timeout [0.1, 2, 0.1]

Buffers

······

0

2

Buffer0

Buffer1

T0

3

1

4

P0 P1

Partitions

P2

P3 P4

P5P6

P70

2

Buffer0

Buffer1

T1

3

1

4

5 Partitions

P0 P1 P2 P8

P3 P4

P5P6

×
×

P9

2-Hop Context

Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Function0

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

Function1

Buffer0

SLO: 500ms

T0

Initial Timeout: 100ms 0 1

target performance = 因Overlap的平均优化收益 – 请求被延误的时间之和 > 0.3

反解出可被延误的时间Timeout = Min(Timeout += 100ms, 150ms)

target performance < 0.3 且Timeout了 立即执行

根据SLO或之前周期平均值

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func

• Memory
• vCPU

Com. FuncCom. Func

Memory
Less

vCPU
More

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partitions88

88 Batch

88

88

Partitions

1010
States55

Requests77

内存函数

2

1

4
6

5

云函数工作流

8

计算函数

内存函数

内存函数

内存资源量

计算资源量

少 多

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

Inference Nodes

States

Embeddings

Mem. Func.

Configuration

Com. Func.Com. Func.

Memory Size
Small

Core Number
Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs
Partition
plan88

88

Batch

88

88

Partitions1010

States55

R
e

q
u

e
st

s
77

Batched Graph

Target Vertex

1-Hop Neighbors

2-Hop Neighbors

Partitions for

Layer-1 Input

+

+ + +

+ +

Aggregate

+ + +Embedding Aggregated Embedding

Update

2-Hop Comput. Graph0

2-Hop Comput. Graphn

……

Graph Sharing

…

Graph Partitioning

Memory Size
Small

Core Number

Large

Memory Function

C
o

m
p

u
te

F
u

n
ct

io
n

…

Partitions for

Layer-2 Input

Aggregate

& Update

Outputs

Shared Graph

Full-Graph in DB

Request Subgraphs

Buffers

 Exist Overlap

Functions

87

5

9

4

Target
Node

Context
Node

Timeline

RE

UP

SE

7&8

7&8

7&8

9

9

9

12

12

12

Timeline

RE
AG
SE

2 10
9 5

7&8

7 8

9

Timeline

RE

AG

SE

2 13 4

2

7&8

0

15

Timeline

Aggregate

Send

Timeline
Timeline

0-2

Recv
Aggregate

Send
Recv

Update
Send

3-5

9

① Send Request

Users

Front-End NodeGraph Database

② Fetch N-Hop

Computation

Graph

Target Vertex
1-Hop Neighbors

③ Send

Inference Node

2-Hop Neighbors

+

+ + +

+ +

Aggregate

+ + +

Embedding

Aggregated Embedding

Update

 C A

 B

3

2 1

0

Buffer 1

Buffer 0

Re-Schedule

New Arrival

μ1 = 0.2

μ0 = -0.2

2
μ1 = 0.2

13

μ0 = -0.3
0

2
μ1 = 0.1

1

μ0 = 0.2
03

2
μ1 = 0.25

13

μ0 = 0.0

0

μg = μ1 + μ0

Graph Sharing Degree of Requests

3 0······
50%

3 1······
40%

2 1······
20% D

2
μ1 = -0.05

μ0 = 0.4
03 1

……

Local Perspective Global Perspective

Suboptimal μg and Request timeout

Global Maximum μg and Satisfying SLO

Local Maximum μg

···

···

Partitions for Layer-1 Input Partitions for Layer-2 Input

10 11
9 10 11

9 10 11

6-8
0-2 3-5 6-8

0-2 3-5 6-8
0-2 3-5 6-8

0-2 3-5 6-8

9 10 11
9 10 11

Users

Control Flow

Data Flow

Requests

SLO

Parser

Configurator

Router

Service
History

Graph DB

55

Target IDs

Indices

Requests

Multi-Buffers

Requests

Timeouts

Orchestrator

In
fe

re
n

c
e
 N

o
d

e
s

States

Embeddings

Mem. Func.

Func. Config.

Com. Func.Com. Func.

Memory Size
Small

Core Number

Large

Node IDs

22

22

33

44

66

33

11

1010

77

99

55

······

Graph Scheduler

77 Graphs Partition
plan88

88 Batch Partitions1010

States55

R
e

q
u

e
st

s
77

88 Batch

88 Batch

Figure 10: Demonstration of the collaborative inference.

a computation tree; 2) Traversal the computation tree to merge
vertices at the same depth between different computation trees; 3)
Conduct the aggregation operation on the merged vertices only
once, and the intermediate results from the aggregation operation
can be reused in subsequent steps, as illustrated in Figure 5a.
Dynamic graph scheduling.When requestsmove between buffers,
their associated computation graph are transferred as well, with
dynamic incremental graph partitioning optimizing inference for
subsequent tasks. The dynamic graph scheduling serves two main
objectives, as shown in Figure 9: 1) Not all graph vertices participate
in the computation at every layer, as illustrated in Figure 2c. The
Graph Scheduler partitions the graph for each GNN layer, utilizing
serverless functions efficiently created and destroyed as needed.
2) Serverless functions have resource limitations and cannot load
all graphs stored in buffers. Dynamic graph scheduling provides
scalability for inference, addressing this constraint. Algorithm 2 in
Appendix B describes the specific dynamic graph partitioning pro-
cess. First, combine the graphs in the buffer with the arrived request
graph to generate the HAG, which is the data structure resulting
from shared graph scheduling (Line 1). Next, begin traversing from
the task vertex to its predecessor vertices (note that even in the case
of an undirected graph, it is represented as a directed graph), i.e., the
vertices required for its aggregation, which are formed as a partition
(Line 2-Line 9). The predecessor vertices visited in the previous iter-
ation are treated as new task vertices for the subsequent traversal,
and this process continues until the set of task vertices becomes
empty, at which point the algorithm concludes (Line 10-Line 12).
Finally, we obtain a two-dimensional list of graph partitions, where
each row represents the input for each GNN layer, and the gran-
ularity of these graph partitions is fine, providing scalability for
subsequent inference.

3.5 Orchestrator
The Orchestrator coordinates a set of serverless functions to per-
form GNN inference on batched requests, as shown in Figure 10,
following resource-centric management that maximizes resource
efficiency without violating SLOs, which comprises three stages:
1) The Orchestrator maps memory-sensitive graph workloads and
compute-sensitive tensor workloads to memory functions and com-
pute functions, respectively; 2) The Orchestrator employs a pipeline
collaborative inference mechanism to distribute communication
overhead among functions; 3) Based on the workloads and the
remaining time, the Orchestrator scales memory functions and com-
pute functions, customizing their resource allocation.
Workload mapping. The Orchestrator divides the GNN workload
into graph workloads and tensor workloads and manages serverless
functions with resource groups. The memory function group exclu-
sively handles graph workloads, i.e., memory-sensitive Aggregate

operations, while the compute function group exclusively loads
tensor workloads and handles computation-sensitive Update opera-
tions. To optimize resource usage, theOrchestrator maps GNN input
graph partitions to memory functions, aiming to assign the same
layer partitions to a single memory function. Exceeding memory
limits for partitions from the same GNN layer prompts mapping
excess partitions to new memory function instances. Tensor work-
loads, needing less memory, load neural networks for each GNN
layer into a single compute function instance. Vertices finishing
tasks early can exit batch processing and return results.
Collaboration between functions. The Orchestrator organizes
collaborative inference between functions in a pipeline fashion,
allowing the communication overhead between functions to be
distributed within their respective computations, as illustrated in
Figure 10. The entire pipeline process begins with the memory
function inferring the first layer of GNN, and thus, the granularity
of concurrent tasks in the pipeline is determined by the number of
graph partitions and vertices processed in parallel at each step by
the first layer memory function. The concurrent granularity needs
to be considered when allocating resources for functions.
Function scaling. The Orchestrator customizes resources for mem-
ory functions and compute functions based on workload size and
concurrent granularity, saving resources while ensuring SLO com-
pliance. Specifically, the allocated memory resource amount for
memory function 𝐹𝑚

𝑖
and compute function 𝐹𝑐

𝑖
are𝑀𝑚

𝑖
and𝑀𝑐

𝑖
:

𝑀𝑚
𝑖 = 𝑀𝑟 +𝑀𝐺𝑖

+𝑀ℎ𝑖 , 𝑀
𝑐
𝑖 = 𝑀𝑟 +𝑀𝑛𝑛, (8)

where𝑀𝑟 represents the runtime memory size,𝑀𝐺𝑖
represents the

memory size of loaded graphs, 𝑀ℎ𝑖 represents the memory size
of loaded embeddings, and 𝑀𝑛𝑛 represents the memory size of
the neural network. the Orchestrator allocates the CPU cores to
functions based the bayesian optimization [37]:

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(®𝐹, ®𝑋, ®Γ, ®𝑇𝑙) → ®𝐶 (9)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝐶𝑜𝑠𝑡 = 𝜔
∑︁

𝐹𝑚 ×𝑇𝑚
𝑙

+ 𝜂
∑︁

𝐹𝑐 ×𝑇𝑐
𝑙

(10)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 :
∑︁

𝑇𝑚
𝑙

+
∑︁

𝑇𝑐
𝑙
≤ 𝑇𝑠𝑙𝑎𝑐𝑘 (11)

where ®𝐹 represents the function vector, ®𝑋 represents the function
workload size vector, ®Γ indicates the concurrent granularity vector,
®𝑇𝑙 represents the inference time vector under different cores and
task size, ®𝐶 represents the core number vector, and𝜔 and 𝜂 indicate
the cost per unit of memory usage and cpu usage respectively,
which can be found in AWS Fargate Pricing [36].𝑇𝑚

𝑙
and𝑇𝑐

𝑙
indicate

the inference time of memory and compute functions, and 𝑇𝑠𝑙𝑎𝑐𝑘
indicate the SLO slack.

4 EVALUATION
In this section, we prototype 𝜆Grapher and evaluate it with real-
world traces from various web applications.

4.1 Experimental Setup
𝜆Grapher prototype. We prototype 𝜆Grapher based on the open-
source serverless platform Knative [19] with 3k LOC in Python
and Go. Specifically, we implement the Parser, Configurator, Router,
Multi-Buffers, Graph Scheduler, andOrchestrator in a VM instance as
middleware between the request source and the Knative platform,

𝜆Grapher: A Resource-Efficient Serverless System for GNN Serving through Graph Sharing WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: Graph Datasets from Real-World Applications

Graph Datasets |V| |E| Dim. N-hop SLO (s)
Bitcoin OTC [18] 5,881 35,592 1,024 3 0.3
KuaiRec [10] 4,738 4,676,570 58 2 0.6

Higgs Twitter [11] 456,626 14,855,842 1,024 3 1.0

and we deploy function instances through Knative Serving Service.
We build an in-memory database service for fast graph queries.
Baselines.We compare 𝜆Grapher with the state-of-the-art GNN
serving systems, including GraphLearn [1], representing the tra-
ditional cloud service architecture, and a financial fraud detection
system based on AWS Lambda [6], donated as AWSGNN, represent-
ing the request-centric serverless architecture. GraphLearn relies
on monitoring memory occupancy threshold metrics to scale in-
stances up or down, as most traditional elastic cloud services do [4].
AWSGNN dynamically allocates functions for each request based
on its computation graph size.
Web application traces.We utilize real-world traces from Twit-
ter [2] to generate the inter-arrival time of user requests, which
is widely used for evaluating inference systems. We use three
graph datasets from real-world applications to generate request
contents, including KuaiRec [10] from the video-sharing mobile app
Kuaishou [20], Bitcoin OTC [22] form Bitcoin transaction network,
and Higgs Twitter [8] from Twitter network, which are widely
applied in evaluating the GNN model designed for short-video
recommendation [29], financial fraud detection [21] and social net-
work analysis [35], respectively. The SLOs are set based on the
requirements of the application scenario, as described in the previ-
ous work [54]. The details of graph datasets are shown in Table 1.
GNNworkloads.We select three common GNNmodels with three
layers using the Deep Graph Library (DGL) [42] API, including
GCN [18], GraphSAGE [11], and GIN [48]. The structures of GNN
layers are shown in Figure 15 in Appendix A. The three-layer model
is used to evaluate both the BitCoin and Higgs Twitter traces, while
the two-layer model is used to evaluate the KuaiRec trace.
Testbed.We implement 𝜆Grapher on a cluster with 10 kc1.8xlarge.2
machines, each of which includes 32 CPU cores at 2.3GHz and
64 GB RAM (Ubuntu 18.04). We collect real service data on physical
machines, such as inference latency under various configurations.
To expedite the experimental process, we transform the prototype
implementation into a simulation mode as in [25].

4.2 Performance Comparison
We compare 𝜆Grapher with the state-of-the-art GNN serving sys-
tems, GraphLearn and AWSGNN, in terms of memory and com-
puting resource efficiency, as well as end-to-end (E2E) latency and
SLO violation rate. Figure 11 indicates that, compared to the state-
of-the-art, 𝜆Grapher can achieve an average of 61.5% in memory
resource and 47.2% in computing resource savings. Across three
web application traces, including Bitcoin OTC, KuaiRec, and Higgs
Twitter, the average graph sharing degrees of each buffer are 54.6%,
97.5%, and 58.6% respectively. The average graph sharing degree
across KuaiRec is close to 1 because of its graph density of 99.6%,
where each computation graph approximates the whole graph.
Memory resource efficiency. In different GNN workloads and
across various traces, 𝜆Grapher reduces memory resource usage by

GCN GraphSAGE GIN0
30
60
90

120

M
em

or
y

Us
ag

e
Pe

r R
eq

ue
st

 (M
B⋅

s)

GCN GraphSAGE GIN0
1
2
3
4
5

CP
U

Us
ag

e
Pe

r
Re

qu
es

t (
co

re
s⋅s

)

GraphLearn AWSGNN λGrapher

(a) Bitcoin OTC

GCN GraphSAGE GIN0
60

120
180
240

M
em

or
y

Us
ag

e
Pe

r R
eq

ue
st

 (M
B⋅

s)

GCN GraphSAGE GIN0
1
2
3
4

CP
U

Us
ag

e
Pe

r
Re

qu
es

t (
co

re
s⋅s

)

(b) KuaiRec

GCN GraphSAGE GIN0
300
600
900

1200

M
em

or
y

Us
ag

e
Pe

r R
eq

ue
st

 (M
B⋅

s)

GCN GraphSAGE GIN0
4
8

12
16

CP
U

Us
ag

e
Pe

r
Re

qu
es

t (
co

re
s⋅s

)

(c) Higgs Twitter

Figure 11: Resource efficiency between 𝜆Grapher and the
state of the arts under different traces and GNN workloads.

0 0.1 0.2 0.3
E2E latency (s)

0
0.2
0.4
0.6
0.8

1
CD

F
GraphLearn
AWSGNN
Grapher

(a) Bitcoin OTC

0 0.2 0.4 0.6
E2E latency (s)

0
0.2
0.4
0.6
0.8

1

CD
F

GraphLearn
AWSGNN
Grapher

(b) KuaiRec

0 0.2 0.4 0.6 0.8 1.0
E2E latency (s)

0
0.2
0.4
0.6
0.8

1

CD
F

GraphLearn
AWSGNN
Grapher

(c) Higgs Twitter

Figure 12: E2E latency between 𝜆Grapher and the state of the
arts. The red solid lines represent the SLOs.
58.9% to 72.5% compared to GraphLearn and 42.9% to 67.9% com-
pared to AWSGNN (on average 61.5%). GraphLearn, representing
traditional cloud-based systems, over-allocates resources before ser-
vice initiation and continuously monitors for request fluctuations
and system availability. However, its coarse instance resource scal-
ing granularity leads to significant memory wastage. On the other
hand, AWSGNN, representing request-centric serverless systems,
effectively manages request intensity fluctuations but lacks spatial
data locality utilization due to serving individual requests with indi-
vidual functions, resulting in memory redundancy during GNN in-
ference. 𝜆Grapher adopts a graph-centric task scheduling approach,
efficiently reducing memory redundancy by batching requests with
common subgraphs. Besides, 𝜆Grapher employs a resource-centric
approach, segregating graph workloads from tensor workloads to
avoid memory overhead during tensor computations.
Computing resource efficiency. Under various GNN workloads
and across different traces, 𝜆Grapher demonstrates a reduction in
computing resource usage, achieving savings ranging from 49.3%
to 57.2% compared to GraphLearn, and 27.8% to 56.9% compared to
AWSGNN (on average 47.2%). As shown in Figure 3, GNN opera-
tions vary widely in resource sensitivities. Both GraphLearn and
AWSGNN employ coarse-grained resource allocation for the entire
GNN, resulting in suboptimal computing resource utilization. In
contrast, 𝜆Grapher reduces computation redundancy through graph
sharing and offers a resource-centric function management mecha-
nism. By decoupling Aggregate and Update operations, 𝜆Grapher
enables fine-grained resource allocation and orchestrates a refined

WWW ’24, May 13–17, 2024, Singapore, Singapore Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

GCN GraphSAGE GIN0
150
300
450
600

M
em

or
y

Us
ag

e
Pe

r R
eq

ue
st

 (M
B⋅

s)

GCN GraphSAGE GIN0
2
4
6
8

10

CP
U

Us
ag

e
Pe

r
Re

qu
es

t (
co

re
s⋅s

)

10ms 100ms Adaptive

Figure 13: Results of the adaptive timeout configuration.

pipeline for customized functions to ensure load balancing, sub-
stantially enhancing computing resource efficiency.
E2E latency and SLO violation rate. Figure 12 depicts the cumu-
lative distribution function (CDF) plot of the E2E latency for each
system. Across the three traces, the average SLO violation rates of
each system are 1.55%, 0.15%, and 0.09% respectively. GraphLearn’s
strategy of over-provisioning resources ensures lower average E2E
latency but its coarse-grained and homogeneous resource alloca-
tion policy struggles with GNN request fluctuations, resulting in
a relatively high violation rate. AWSGNN sacrifices some infer-
ence performance to save resources, yet it cannot fully utilize SLO
slack. 𝜆Grapher maximizes resource efficiency by analyzing GNN
workloads and fully leveraging SLO slack.

4.3 Module Analysis
Adaptive timeout module. To validate the adaptive timeout mod-
ule’s performance, we set a fixed lower bound of 10ms and an upper
bound of 100ms, allowing 𝜆Grapher to dynamically adjust within
this range. We conduct tests on the largest-scale graph datasets
Higgs Twitter, as shown in Figure 13. The adaptive timeout mod-
ule saves an average of 18.1% of memory and 17.4% of computing
resources compared to the 10ms configuration, and achieves an
average 21.6% reduction in computing resource usage compared to
the 100ms configuration. The 10ms configuration overlooks data
locality, hampering resource efficiency, while the 100ms timeout, de-
spite optimizingmemory resource efficiency through graph sharing,
demands significant computing resources to meet SLO goals. The
𝜆Grapher dynamically adjusts the timeout, balancing the benefits
of graph sharing and the risk of violating SLOs.
Resource allocation module. We compare the resource alloca-
tion module’s performance, utilizing bayesian optimization (BODC),
against coupling and decoupling (DC) solutions in KuaiRec. Fig-
ure 14 shows that BODC saves an average of 34.5% memory and
21.7% computing resources compared to coupling, and 19.9% mem-
ory and 16.6% computing resources compared to DC. Coupling
results in wastage in computing resources during Aggregate op-
erations and memory resources during Update operations. Under
the DC approach, although separating graph and tensor workloads
saves some resources, there is a mismatch in execution speed be-
tween memory and compute functions. By analyzing historical
data, 𝜆Grapher utilizes bayesian optimization to determine the op-
timal resource allocation ratio for memory and compute functions,
maximizing resource efficiency.

5 RELATEDWORK

GNN inference. In the traditional distributed environment, recent
works focus on optimizing graph partitioning and resource map-
ping for acceleration [3, 17, 43, 55]. Wang et al. [43] propose an

GCN GraphSAGE GIN0
45
90

135
180

M
em

or
y

Us
ag

e
Pe

r R
eq

ue
st

 (M
B⋅

s)

GCN GraphSAGE GIN0
1
2
3
4

CP
U

Us
ag

e
Pe

r
Re

qu
es

t (
co

re
s⋅s

)

Coupling DC BODC

Figure 14: Results of the resource allocation module.

adaptive and efficient system for GNN acceleration on GPUs, which
preprocesses themodel and input graph to achieve reasonable graph
partitioning and resource mapping. In the cloud environment, in
order to solve the problem of graph data distributed in different
geographies, Zeng et al. [51] propose to conduct the GNN real-time
inference by adopting the fog computing paradigm to reduce the
communication overhead of the data collection before inference.
The above works focus on inference of static GNN models, which
pre-allocate computing node resources and provide services by
continuous monitoring. This scheme is difficult to dynamically and
adaptively allocate resources according to the fluctuation of user
requests, resulting in waste of resources.
Serverless graph system.Due to the elastic scalability and flexibil-
ity of serverless computing [16, 27, 44], some web applications have
been serverlessized, such as DNN inference or training [24, 33, 47],
and IoT services [7, 32]. In particular, some scholars propose to mi-
grate the graph processing system to the FaaS platform [12, 38, 39].
Toader et al. [39] implement the classic graph processing model
Pregel [30] on the FaaS platform in a simple engineering manner.
However, due to frequent data communication, the system per-
forms poorly in performing large-scale graph algorithms. Thorpe
et al. [38] make the GNN training process semi-serverless, intro-
ducing serverless threads to handle computation-sensitive tensor
operations, while graph operations that are sensitive to memory
resources are still executed on the CPU server. At present, there is
a gap in the work of serverless-based GNN serving.

6 CONCLUSION

In this paper, we identify the resource inefficiency problem in
current GNN serving systems. Through studying the web appli-
cation traces, we observe the spatial data locality in computation
graphs of requests. We propose a scalable, resource-efficient server-
less system named 𝜆Grapher for GNN serving. 𝜆Grapher supports
a graph-centric task scheduling strategy to reduce the computation
and memory redundancy and facilitates a resource-centric function
management mechanism which allocates resources to functions
catering to the resource sensitivities of GNN fine-grained opera-
tions. Compared to the state of the arts, our 𝜆Grapher prototype
can save an average of 61.5% in memory resource and 47.2% in com-
puting resource with real-world traces while meeting the SLOs.

ACKNOWLEDGMENTS
This work is supported in part by National Key Research & Devel-
opment (R&D) Plan under grant 2022YFB4501703, in part by The
Major Key Project of PCL (PCL2022A05), and in part by the NSFC
under grant 61972158. Lin Wang has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
Project-ID 210487104 - SFB 1053.

𝜆Grapher: A Resource-Efficient Serverless System for GNN Serving through Graph Sharing WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Alibaba. 2020. graph-learn: An Industrial Graph Neural Network. https://graph-

learn.readthedocs.io/en/latest/index_en.html[Online Accessed, 12-Feb-2024].
[2] ArchiveTeam. [n. d.]. Twitter streaming traces, 2017. https://github.com/

rickypinci/BATCH/tree/sc2020/traces[Online Accessed, 12-Feb-2024].
[3] Adam Auten, Matthew Tomei, and Rakesh Kumar. 2020. Hardware acceleration

of graph neural networks. In 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[4] AWS. [n. d.]. AWS Auto Scaling. https://aws.amazon.com/cn/autoscaling/[Online
Accessed, 12-Feb-2024].

[5] Stefano Battiston, Guido Caldarelli, Robert M May, Tarik Roukny, and Joseph E
Stiglitz. 2016. The price of complexity in financial networks. Proceedings of the
National Academy of Sciences 113, 36 (2016), 10031–10036.

[6] AWS Machine Learning Blog. [n. d.]. Build a GNN-based real-time fraud
detection solution using Amazon SageMaker, Amazon Neptune, and the Deep
Graph Library. https://aws.amazon.com/cn/blogs/machine-learning/build-
a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-
amazon-neptune-and-the-deep-graph-library/[Online Accessed, 12-Feb-2024].

[7] Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,
Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André da Costa.
2022. Serverless computing for Internet of Things: A systematic literature review.
Future Generation Computer Systems 128 (2022), 299–316.

[8] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. 2013.
The anatomy of a scientific rumor. Scientific reports 3, 1 (2013), 2980.

[9] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[10] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang,
Xiangnan He, Jiaxin Mao, and Tat-Seng Chua. 2022. KuaiRec: A Fully-Observed
Dataset and Insights for Evaluating Recommender Systems. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). 540–550. https://doi.org/10.1145/3511808.3557220

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and
Salman Avestimehr. 2021. Spreadgnn: Serverless multi-task federated learning
for graph neural networks. arXiv preprint arXiv:2106.02743 (2021).

[13] Brendan Jennings and Rolf Stadler. 2015. Resource management in clouds: Survey
and research challenges. Journal of Network and Systems Management 23 (2015),
567–619.

[14] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken.
2020. Redundancy-Free Computation for Graph Neural Networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for Computing
Machinery, New York, NY, USA, 997–1005.

[15] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:
A survey. Expert Systems with Applications (2022), 117921.

[16] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[17] Kevin Kiningham, Philip Levis, and Christopher Ré. 2022. GRIP: A graph neural
network accelerator architecture. IEEE Trans. Comput. (2022).

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Knative. [n. d.]. Knative is an Open-Source Enterprise-level solution to
build Serverless and Event Driven Applications. https://knative.dev/docs/
[OnlineAccessed,12-Feb-2024].

[20] Kuaishou. [n. d.]. Kuaishou is the video-sharing mobile app. https://https://www.
kuaishou.com/en/[OnlineAccessed,12-Feb-2024].

[21] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. ACM, 333–341.

[22] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 221–230.

[23] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019), 120–
131.

[24] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022. Tetris: Memory-
efficient Serverless Inference through Tensor Sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22).

[25] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yan-
ping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. 2023. AlpaServe:

Statistical Multiplexing with Model Parallelism for Deep Learning Serving. arXiv
preprint arXiv:2302.11665 (2023).

[26] Dandan Lin, Shijie Sun, Jingtao Ding, Xuehan Ke, Hao Gu, Xing Huang, Chong-
gang Song, Xuri Zhang, Lingling Yi, Jie Wen, et al. 2022. PlatoGL: Effective and
Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recom-
mendation. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 3302–3311.

[27] Fangming Liu and Yipei Niu. 2023. Demystifying the Cost of Serverless Com-
puting: Towards a Win-Win Deal. IEEE Transactions on Parallel and Distributed
Systems (2023).

[28] Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao, Yinan Shan,
Ramesh Raghunathan, Ce Zhang, and Jiawei Jiang. 2022. BRIGHT-Graph Neural
Networks in Real-time Fraud Detection. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Management. 3342–3351.

[29] Jingwei Ma, Kangkang Bian, Jiahui Wen, Yang Xu, Mingyang Zhong, and Lei Zhu.
2023. SRDPR: Social Relation-driven Dynamic network for Personalized micro-
video Recommendation. Expert Systems with Applications 226 (2023), 120157.

[30] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[31] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Informa-
tion network or social network? The structure of the Twitter follow graph. In
Proceedings of the 23rd International Conference on World Wide Web. 493–498.

[32] Li Pan, Lin Wang, Shutong Chen, and Fangming Liu. 2022. Retention-aware
container caching for serverless edge computing. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 1069–1078.

[33] Qiangyu Pei, Yongjie Yuan, Haichuan Hu, Qiong Chen, and Fangming Liu. 2023.
AsyFunc: A High-Performance and Resource-Efficient Serverless Inference Sys-
tem via Asymmetric Functions. In Proceedings of the 2023 ACM Symposium on
Cloud Computing. 324–340.

[34] Hao Peng, Hongfei Wang, Bowen Du, Md Zakirul Alam Bhuiyan, Hongyuan
Ma, Jianwei Liu, Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, et al.
2020. Spatial temporal incidence dynamic graph neural networks for traffic flow
forecasting. Information Sciences 521 (2020), 277–290.

[35] Huyen Trang Phan, Ngoc Thanh Nguyen, and Dosam Hwang. 2023. Fake news
detection: A survey of graph neural network methods. Applied Soft Computing
(2023), 110235.

[36] AWS Fargate Pricing. [n. d.]. Serverless Compute Engine–AWS Fargate
Pricing–Amazon Web Services. https://aws.amazon.com/fargate/pricing/
[OnlineAccessed,12-Feb-2024].

[37] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148–175.

[38] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al. 2021. Dorylus:
Affordable, Scalable, and Accurate {GNN} Training with Distributed {CPU}
Servers and Serverless Threads. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). 495–514.

[39] Lucian Toader, Alexandru Uta, Ahmed Musaafir, and Alexandru Iosup. 2019.
Graphless: Toward serverless graph processing. In 2019 18th International Sym-
posium on Parallel and Distributed Computing (ISPDC). IEEE, 66–73.

[40] Srinivas Virinchi, Anoop S V K K Saladi, and Abhirup Mondal. 2022. Recom-
mending related products using graph neural networks in directed graphs. In
ECML-PKDD 2022. https://www.amazon.science/publications/recommending-
related-products-using-graph-neural-networks-in-directed-graphs

[41] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph
attentive network for financial fraud detection. In 2019 IEEE International Confer-
ence on Data Mining (ICDM). IEEE, 598–607.

[42] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

[43] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An adaptive and efficient runtime system for
GNN acceleration on GPUs. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21).

[44] Zhaojie Wen, Yishuo Wang, and Fangming Liu. 2022. StepConf: Slo-aware
dynamic resource configuration for serverless function workflows. In IEEE INFO-
COM 2022-IEEE Conference on Computer Communications. IEEE, 1868–1877.

[45] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[47] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. 2021. 𝜆dnn: Achieving
predictable distributed DNN training with serverless architectures. IEEE Trans.
Comput. 71, 2 (2021), 450–463.

https://graph-learn.readthedocs.io/en/latest/index_en.html
https://graph-learn.readthedocs.io/en/latest/index_en.html
https://github.com/rickypinci/BATCH/tree/sc2020/traces
https://github.com/rickypinci/BATCH/tree/sc2020/traces
https://aws.amazon.com/cn/autoscaling/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/
https://doi.org/10.1145/3511808.3557220
https://knative.dev/ docs/[Online Accessed, 12-Feb-2024]
https://knative.dev/ docs/[Online Accessed, 12-Feb-2024]
https://https://www.kuaishou.com/en/[Online Accessed, 12-Feb-2024]
https://https://www.kuaishou.com/en/[Online Accessed, 12-Feb-2024]
https://aws.amazon.com/fargate/pricing/[Online Accessed, 12-Feb-2024]
https://aws.amazon.com/fargate/pricing/[Online Accessed, 12-Feb-2024]
https://www.amazon.science/publications/recommending-related-products-using-graph-neural-networks-in-directed-graphs
https://www.amazon.science/publications/recommending-related-products-using-graph-neural-networks-in-directed-graphs

WWW ’24, May 13–17, 2024, Singapore, Singapore Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[49] Min Xu, Pakorn Watanachaturaporn, Pramod K Varshney, and Manoj K Arora.
2005. Decision tree regression for soft classification of remote sensing data.
Remote Sensing of Environment 97, 3 (2005), 322–336.

[50] Hongxia Yang. 2019. Aligraph: A comprehensive graph neural network platform.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 3165–3166.

[51] Liekang Zeng, Peng Huang, Ke Luo, Xiaoxi Zhang, Zhi Zhou, and Xu Chen.
2022. Fograph: Enabling real-time deep graph inference with fog computing. In
Proceedings of the ACM Web Conference 2022. 1774–1784.

[52] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. 2022. Improving social
network embedding via new second-order continuous graph neural networks.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 2515–2523.

[53] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: efficient
graph neural network training at large scale. Proceedings of the VLDB Endowment
15, 6 (2022), 1228–1242.

[54] Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor
Prasanna. 2021. Accelerating large scale real-time GNN inference using channel
pruning. arXiv preprint arXiv:2105.04528 (2021).

[55] Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl
Busart. 2022. Model-Architecture Co-Design for High Performance Temporal
GNN Inference on FPGA. In 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1108–1117.

[56] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

A GNN LAYER STRUCTURES
Figure 15 shows the the structure of three classic GNN layers,
namely GCN [18], GraphSAGE [11], and GIN [48]. Each GNN layer
is composed of two main operations alternatively executed: Aggre-
gate and Update.

Aggregate

Update

GCN Layer GraphSAGE Layer

Aggregate

GIN Layer

Update Update

Aggregate

Update

Update

Figure 15: Classic GNN Layers.

B ALGORITHM DETAILS
Algorithm 1: Global Perspective Optimization Algorithm
Input :Multi-Buffers 𝐵 = {𝑏0, 𝑏1, . . . , 𝑏𝑖 };

Requests in the buffer 𝑏𝑖 = {𝑟𝑏𝑖0 , 𝑟
𝑏𝑖
1 , . . . , 𝑟

𝑏𝑖
𝑖
} ;

Arrived requests 𝐴 = {𝑟0, 𝑟1, . . . , 𝑟𝑘 };
𝐴’s routing IDs 𝐽 = { 𝑗𝑟0 , 𝑗𝑟1 , . . . , 𝑗𝑟𝑖 };

Output :Modified Multi-Buffers 𝐵′;
Parameters :Graph sharing degree of request with buffer

𝑆𝑟
𝑏
; Buffer to which the request is routed 𝑏 𝑗 ;

Data index of request𝑈𝑟 ; Average sharing
degree of buffer 𝑆𝑏 , 𝑆′𝑏 ; Average time ratio
delayed in the buffer 𝐷𝑏 , 𝐷

′
𝑏
; Performance

gain of buffer 𝜇𝑏 , 𝜇′𝑏 ; Fixed coefficients 𝛼, 𝛽 ;

1 foreach 𝑟𝑘 in 𝐴 do
2 routeRequestToBuf(𝑟𝑘 , 𝑗𝑟𝑘) → 𝑏 𝑗 ;
3 𝛼 × 𝑆𝑏 𝑗

− 𝛽 × 𝐷𝑏 𝑗
→ 𝜇𝑏 𝑗

;
4 foreach 𝑏𝑖 do
5 if 𝑏𝑖 ≠ 𝑏 𝑗 and 𝑆

𝑟𝑘
𝑏𝑖

> 0 then
6 foreach 𝑟𝑖 in 𝑏𝑖 do

7 𝑆
𝑟𝑘
𝑟𝑖 =

��𝑈𝑟𝑘
∩𝑈𝑟𝑖

����𝑈𝑟𝑘

�� ;

8 if 𝑆𝑟𝑘𝑟𝑖 > 0 then
9 modBufByDelRequest(𝑏𝑖 ,𝑟𝑖)→ 𝑆 ′

𝑏𝑖
, 𝐷′

𝑏𝑖
;

10 𝛼 × 𝑆 ′
𝑏𝑖

− 𝛽 × 𝐷′
𝑏𝑖

→ 𝜇′
𝑏𝑖
;

11 modBufByAddRequest(𝑏 𝑗 ,𝑟𝑖)→ 𝑆 ′
𝑏 𝑗
, 𝐷′

𝑏 𝑗
;

12 𝛼 × 𝑆 ′
𝑏 𝑗

− 𝛽 × 𝐷′
𝑏 𝑗

→ 𝜇′
𝑏 𝑗
;

13 if 𝜇′
𝑏𝑖

+ 𝜇′
𝑏 𝑗

> 𝜇𝑏𝑖 + 𝜇𝑏 𝑗
then

14 transferRequestToBuf(𝑟𝑖)→ 𝑏 𝑗 ;
15 delRequestFromBuf(𝑟𝑖 , 𝑏𝑖);
16 return 𝐵′;

Algorithm 2: Dynamic Graph Scheduling Algorithm
Input :Graph of the buffer 𝐺𝑏 (𝑉𝑏 , 𝐸𝑏);

Graph of the arrived request 𝐺𝑟 (𝑉𝑟 , 𝐸𝑟);
Target vertices IDs𝑊 = [𝑤0, . . . ,𝑤𝑖] ;

Output :Graph Partitions for each GNN layer
𝑃 = [[𝑝00, . . . , 𝑝0𝑖] , . . . , [𝑝𝑛0, . . . , 𝑝𝑛𝑖]]

Parameters :HAG 𝐻 (𝑉ℎ, 𝐸ℎ); Traverse depth 𝑛;
1 GenerateHAG(𝐺𝑏 (𝑉𝑏 , 𝐸𝑏),𝐺𝑟 (𝑉𝑟 , 𝐸𝑟))→ 𝐻 (𝑉ℎ, 𝐸ℎ);
2 [] → 𝑃 and 0 → 𝑛;
3 while𝑊 ≠ ∅ do
4 𝑝𝑛 = [];
5 foreach𝑤𝑖 in𝑊 do
6 traversePredecessors(𝑤𝑖 , 𝐻 (𝑉ℎ, 𝐸ℎ))→ 𝑝𝑛𝑖 ;
7 append(𝑝𝑛𝑖)→ 𝑝𝑛 ;
8 append(𝑝𝑛)→ 𝑝;
9 𝑝𝑛0 ∪ 𝑝𝑛1 ∪ . . . ∪ 𝑝𝑛𝑖 →𝑊 ;

10 𝑛 + 1 → 𝑛;
11 return 𝑃 ;

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fundamentals of GNN Inference
	2.2 Resource Inefficiency in Current Systems
	2.3 New Opportunities
	2.4 Design Challenges

	3 System Design
	3.1 System Overview
	3.2 Parser and Router
	3.3 Multi-Buffers and Configurator
	3.4 Graph Scheduler
	3.5 Orchestrator

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Module Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A GNN Layer Structures
	B Algorithm Details

