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Abstract—The proliferation of deep-learning-based mobile and
IoT applications has driven the increasing deployment of edge
datacenters equipped with domain-specific accelerators. The
unprecedented computing power offered by these accelerators
puts a heavy burden on the cooling system, motivating more
potent cooling techniques like cold water cooling. However, we
observe that cold water cooling results in significant energy waste
in edge datacenters due to the fluctuating resource utilization
both spatially and temporally. To tackle this issue, we propose
the concept of “working smarter” by slowing down accelerators
deliberately whenever possible and enabling warm water cool-
ing during these times to achieve cooling efficiency. Based on
this concept, we develop Hyco—a hybrid water cooling system
tailored for edge datacenters running deep learning workloads.
First, Hyco features a zone-based cooling architecture enabling
dynamic switching between cold water and warm water cooling.
Then, based on a lightweight latency estimation method, Hyco
incorporates a learning-based scheduling scheme to determine
“which” accelerator workers and “when” to slow down through
an adaptive and intelligent power-latency trade-off for deep
learning models. The simulation with real-world traces shows
that Hyco reduces the cooling energy consumption by up to
34.74× while satisfying latency constraints more than 99% of
the time for deep-learning-based applications.

Index Terms—Edge datacenters, water cooling, deep neural
network, deep reinforcement learning, energy efficiency.

I. INTRODUCTION

AS a critical infrastructure for edge computing, edge dat-
acenters are rapidly emerging in urban areas to support

real-time services. Deloitte predicts that the global market for
the intelligent edge is growing at a compound annual growth
rate of around 35% [1]. As one of the representative edge

This work was supported in part by the National Key Research & Develop-
ment (R&D) Plan under grant 2022YFB4501703, and in part by The Major
Key Project of PCL (PCL2022A05). Lin Wang was supported in part by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 210487104 - SFB 1053. (Corresponding author: Fangming Liu)

Q. Pei, Y. Yuan, H. Hu, and C. Yu are with the National Engineering Re-
search Center for Big Data Technology and System, the Services Computing
Technology and System Lab, Cluster and Grid Computing Lab in the School
of Computer Science and Technology, Huazhong University of Science and
Technology, 1037 Luoyu Road, Wuhan 430074, China. E-mail: {peiqiangyu,
huhc, yuchen}@hust.edu.cn, jayayuan@outlook.com

L. Wang is with Paderborn University and TU Darmstadt, Germany. E-mail:
lin.wang@uni-paderborn.de

Dong Zhang and Bingheng Yan are with Jinan Inspur Data Co.,Ltd. E-mail:
{zhangdong, yanbh}@inspur.com

F. Liu is with Huazhong University of Science and Technology, and Peng
Cheng Laboratory, China. E-mail: fangminghk@gmail.com

Manuscript received xxxx xx, 2024; revised xxxx xx, 2024.

2008 2011 2013 2016 2018 2020 2023
Year

0

20

40

60

80

TF
LO

PS
 (F

P3
2)

0

200

400

600

800

TD
P 

(W
)

M1060
M2090 K40

P100
V100

A100

H100TFLOPS
TDP

Fig. 1. The performance (TFLOPS) and power demand (TDP) of Nvidia
GPUs. The text labels denote the GPU models.

workloads, deep neural network-based (DNN-based) services
have been progressively deployed in the edge datacenters [2],
such as edge-assisted augmented reality (AR) [3] and au-
tonomous driving [4]. The recent advancement of large lan-
guage models like ChatGPT [5] has further accelerated this
trend. However, their widespread proliferation also prompts
a significant increase in housing high-powered heterogeneous
hardware at the edge [6], [7] from graphics processing units
(GPUs) to application-specific integrated circuits (ASICs).
Such an ever-increasing demand for computing power, joined
by the end of Dennard scaling and the slowing of Moore’s
law, has escalated power consumption and carbon footprints
of edge datacenters to unprecedented levels at the same time.
Figure 1 shows the computing performance and thermal design
power (TDP)1 of representative Nvidia GPUs launched from
2008 to 2023. It is worth noting that the TDP remained stable
in the past but started surging in 2018 as the performance
grew.

Facing the rapidly growing power density, edge datacenters
are getting increasingly hotter, which puts great pressure on
efficient cooling. Extremely potent cooling techniques like
cold water cooling are indispensable so as to timely take away
the heat from hotter hardware though at the expense of high
cooling energy. According to a recent report [8], the power us-
age effectiveness (PUE)2 of a typical edge datacenter can reach
as high as 2, much higher than that of cloud datacenters [10],
e.g., 1.1 averagely achieved by Google in 2021 [11]. Figure 2
illustrates the cold water cooling architecture in detail. We can
see that after absorbing heat from each hardware component
through a cold plate, the water flows back to the centralized

1TDP refers to the maximum amount of heat in watts that a processor can
generate under the maximum load.

2PUE is an indicator used to reflect the energy efficiency of a datacenter
and is defined as the ratio of the total facility energy and the IT equipment
energy [9]. Therefore, a value closer to one means higher efficiency.
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Fig. 2. The water cooling architecture in an edge datacenter.

cooling tower and/or the chiller to exchange heat and finally
returns to the computer room with a much lower temperature.
This temperature is usually set extremely low, e.g., 7∼10°C,
to satisfy the cooling demands of all hardware components. To
achieve high cooling efficiency, researchers have put forward
warm water cooling by increasing the temperature of the
chilled water to about 40∼45°C [12]. However, because of
its limited cooling capacity, warm water cooling could be no
more safe for hardware components running at a high power
level like 1 kW of the latest Nvidia B200 GPU.

We observe that in edge datacenters, hardware components
reach their maximum power only occasionally. Unlike cloud
workloads, edge workloads are highly dependent on user
behaviors: there would be diverse latency requirements as
well as varying hardware utilization levels depending on user
scenarios. For example, AR-enhanced head-up display for cars
(AR-HUD for short) [13] imposes tight latency constraints
to ensure driving safety, while AR-based indoor navigation
(AR-NAV for short) can generally tolerate higher latency.
Hardware utilization levels also fluctuate significantly and
asynchronously: a high demand for transportation could lead to
a high utilization level of the AR-HUD workload during rush
hours, while the utilization level of the AR-NAV workload can
grow high on weekends; both workloads will own very low
utilization at night. A recent study on edge datacenters [14]
confirms this phenomenon: there exists significant fluctuation
in hardware utilization both spatially and temporally in edge
datacenters due to the daily behaviors of end-users [15].

Besides these diurnal utilization fluctuations, there also exist
second-level and even sub-second-level fluctuations, owing to
different amounts of computations within and among DNN
models when performing inference. For example, the FLOPs
of each layer in the YOLOv3 model [16] varies between
262,144 and 303,300,608 (the difference is over 1,000×), and
its power draw fluctuates between less than 80 W and 250 W
during an inference process on an Nvidia Titan Xp GPU.
Since the layer composition of a model varies a lot, not to
mention the difference in power demands of different models.
Recent literature develops an adaptive batching technique for
inference serving [17], [18], while different batch sizes further
increase the power fluctuation. For example, the average power
draw of ResNetV1-101 grows from around 133 W to 211 W

when the batch size increases from 1 to 5. Such characteristics
of edge workloads result in a severe power-cooling mismatch
issue both spatially and temporally. However, in view of the
coarse-grained cooling architecture and unavoidable cooling
delay, existing water cooling systems cannot solve the issue
by adjusting the water temperature dynamically according to
the runtime power levels of each hardware component. Recent
studies on fine-grained cooling architectures [12], [19] also
face limitations, such as limited scalability for high-powered
accelerators [12] and a lack of support for managing tempo-
ral power-cooling mismatches during second-level and sub-
second-level power fluctuations in inference workloads [19].

To improve the PUE by employing warm water cooling
at non-peak spaces and times, we propose the concept of
“working smarter not harder” to reach a “sweet point”
revealed in Section II-C, by slowing down accelerators for a
portion of workloads deliberately, based on a fact that limited
performance drop is acceptable during non-peak periods as
long as their latency requirements are satisfied. As shown
later in Figure 5, by imposing a power limit on hardware
components, the cooling efficiency can be improved by a
significant margin by using cooling tower-based warm water
cooling. However, we need to carefully decide which acceler-
ator workers and when these workers can be slowed down,
in order not to affect the quality-of-service (QoS) of edge
workloads, i.e., inference latency. To address these challenges,
we propose Hyco, a HYbrid water COoling system that
improves the PUE by making smart use of warm water cooling
in edge datacenters. Specifically, we make the following four
contributions:

• We identify critical challenges imposed by edge infer-
ence workloads on efficient cooling which behave much
differently from traditional cloud workloads.

• We propose a concept of “working smarter not harder” in
edge datacenters to reach a sweet point. Based on that,
we design a valve-controlled zone-based water cooling
architecture to make smart use of cooling tower-based
warm water cooling together with chiller-based cold
water cooling.

• To determine which workers and when to slow down,
we develop an inference latency estimation method and
design a lightweight learning-based scheduling scheme.
The scheduler evaluates the energy demand and timing
pattern of edge workloads, and chooses the best candi-
date worker cooled by either warm or cold water with
performance-aware power capping.

• We build a hardware prototype to collect thermal data un-
der various cooling conditions and evaluate Hyco through
simulations using real-world traces. The evaluation results
show that Hyco achieves at most 34.74× cooling energy
reduction, with a latency violation rate of only 0.67%.
The estimation for 2,000 small-scale edge datacenters
indicates that Hyco can reduce carbon footprints by about
4.8 kt CO2 and monetary costs by $4,874,000 annually,
compared to the conventional water cooling system.

The rest of the paper is organized as follows. In Section II,
we present the background of edge datacenters and analyze
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Fig. 3. CPU utilization variations of four representative VMs during seven days in edge datacenters (every two minutes) [14]. The red circles indicate two
utilization spikes and one plummet. Note that there are actually more spikes and plummets since we sample the trace for readability.
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Fig. 4. Power fluctuations of five different inference tasks. The colored and non-colored periods indicate an inference task execution and idle states waiting
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critical challenges in cooling. To address the challenges, in
Section III, we propose a hybrid water cooling system tailored
to edge datacenters named Hyco, present a DNN inference
latency estimation method, and provide the problem formu-
lation of energy-efficient DNN inference scheduling. Then,
in Section IV, we design a learning-based scheme to solve
this problem in an intelligent way. The evaluation results are
presented in Section V. At last, we discuss the related work
in Section VI and conclude our work in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first describe three characteristics of
edge datacenters. Then, we analyze representative cooling
techniques as well as their limitations for edge datacenters.
Finally, we motivate the idea of making smart use of warm
water cooling to address these limitations based on new
observations.

A. Characteristics of Edge Datacenters

Extending the cloud, edge datacenters are distributed at the
network edge to provide latency-critical computing services,
especially AI-centric intelligent services, to end-users. Hence,
the characteristics of edge datacenters are highly dependent
on user behaviors [15]. Comparing them with cloud datacen-
ters, we summarize three key distinct characteristics of edge
datacenters revealed by a recent measurement study [14] and
our further measurements.

Higher performance requirements. As compared to cloud
applications, edge applications tend to be deployed on slightly
more virtual machines (VMs) and each VM is allocated

with much more hardware resources due in large part to
the higher performance requirements, such as low delay and
high reliability [14]. For example, about 10% of the edge
applications use no fewer than 50 VMs but this number is
only 6.1% for cloud applications. Moreover, the median of
CPU cores allocated to a VM is eight and one in the studied
edge and cloud datacenters, respectively, and over 60% VMs
in the edge datacenters require more than four CPU cores,
while the number is only 10% in the cloud.

Lower utilization levels. Although the amount of resources
allocated to each edge application is much higher than that for
cloud applications, the overall edge hardware utilization levels
are lower. For example, the average hardware utilization of as
many as 74% VMs is less than 10% in the edge datacenters,
while it is only 47% in the cloud. Despite higher capital and
operating costs, edge service providers usually over-provision
hardware resources possibly due to the higher performance
requirements of edge applications and a lack of understanding
of their specific resource demands [14].

Larger utilization fluctuation. The significant impact of
user behaviors makes the hardware utilization fluctuate signif-
icantly in edge datacenters. For instance, the median number
of the variation coefficient of hardware utilization in edge
datacenters is twice that in cloud datacenters. Based on the
measurement results in [14], we plot the CPU utilization
variations of four representative VMs running in the edge
datacenters in Figure 3. For most VMs, the CPU utilization
remains at a relatively low level generally and grows to a
higher level periodically, e.g., from 23:00 to 24:00 every day
when users tend to play on their mobile phones. For VM2,
however, the CPU utilization remains high all the time. There
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are also many unexpected spikes or plummets. For example,
as indicated by the circles in Figure 3, the utilization of VM1
increases abruptly to more than 80% at the end of the third
day, and the utilization of VM2 suddenly decreases to less
than 40% at the beginning of the sixth day. In addition to the
above diurnal utilization fluctuations, we notice that there are
significant second-level and even sub-second-level fluctuations
of edge inference workloads. We conduct an experiment using
three representative DNN models on our local server equipped
with an Nvidia Titan Xp GPU and monitor GPU power
variation during inference executions with the py3nvml tool.
As plotted in Figure 4, different models and internal layers,
as well as batch sizes, will all lead to very different power
demands that fluctuate over time.

The above three characteristics place a heavy burden on
efficient cooling for edge datacenters. Specifically, the high-
performance demands are driving edge datacenters to deploy
more domain-specific accelerators like GPUs and other ASICs,
and their astonishing TDPs increase the cooling demands. The
large utilization fluctuation and low utilization levels further
cause a severe power-cooling mismatch issue, which will be
discussed in the following.

B. Cooling for Edge Datacenters

The most commonly-used cooling techniques in cloud dat-
acenters include free cooling, air cooling, water cooling, and
immersion cooling. However, the former two techniques are
no more suitable for edge datacenters [19]. First, free cooling
relies on the natural environment to provide free cooling
sources, such as cold air and lake water, which cannot be easily
accessed by edge datacenters located in the urban. Second, air
cooling adopts hot aisle and cold aisle containment to realize
air circulation, which is no more suitable for edge datacenters
with ever-increasing power density due to its low cooling
capacity [20]. Recently, water cooling and immersion cooling
have gradually taken the place of air cooling due to their higher
cooling efficiency and larger cooling capacity. However, recent
studies [21]–[23] also highlight significant challenges in server
reliability and maintenance under immersion cooling. Thus,
we argue that water cooling, as a more mature technique, is
currently a promising solution for edge datacenters. As shown
in Figure 2, in a water-cooled edge datacenter, the chilled
cooling water directly flows across each hardware component
to absorb its generated heat through an attached cold plate.
Then, the heated water flows back to the cooling tower and/or
chiller and gets chilled again.

The use of the cooling tower and/or chiller depends on the
environment and water temperature. When the environment
temperature is low, the cooling tower alone can cool down
the water by evaporating a small volume of water. Then,
the chiller can be turned off if the required cooling water
temperature is comparable to the environment temperature.
On the contrary, when the environment temperature exceeds
the required water temperature, e.g., during hot days or when
requiring excessively cold cooling water, the chiller is indis-
pensable in removing the remaining heat with a significantly
higher energy footprint. Therefore, researchers have recently
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proposed warm water cooling to improve PUE by reducing the
use of the chiller [12], [24]. However, warm water cooling not
only aggravates the hardware safety-performance trade-off but
also has a hard time satisfying the cooling demand of emerging
high-powered accelerators housed by the edge datacenters.

As presented in Section II-A, the hardware utilization varies
considerably both spatially and temporally, and thus, a large
number of accelerators, especially when underutilized, are
overcooled under cold water cooling. To deal with this power-
cooling mismatch issue, Jiang et al. [12] propose a thermoelec-
tric cooler-based (TEC-based) warm water cooling solution,
i.e., using warm water for global cooling and TECs to cool
down some overutilized processors. However, this solution
cannot be easily extended to high-powered accelerators due
to the installation problem and limited cooling capacity of
TECs [19]. Recently, Pei et al. [19] advance a fine-grained
water cooling architecture for heterogeneous hardware, such
as CPUs and GPUs, in edge datacenters, which addresses
the power-cooling mismatch issue by providing customized
cooling water through valves according to the cooling demand
of each hardware component. However, it is somewhat costly
to install control valves for every hardware component, and it
still cannot handle temporal power-cooling mismatches under
the second-level and sub-second-level power fluctuations of
inference workloads as illustrated in Figure 4.

In addition to water cooling, there are numerous stud-
ies on solving the power-cooling mismatch issue in air-
cooled [25]–[31] and immersion-cooled [21], [22] systems
through thermal-aware workload scheduling, power throttling,
and/or cooling control. However, as illustrated in Figure 2, the
cooling mechanism of water cooling differs significantly from
that of air or immersion cooling, making these approaches
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Fig. 7. System overview of Hyco in an edge datacenter.

inapplicable to water-cooled edge datacenters. Moreover, these
studies primarily focus on conventional cloud workloads and
cannot effectively manage user-facing inference workloads
that have stringent performance requirements and exhibit sig-
nificant power fluctuations at second and sub-second levels.
This highlights the need for a tailored approach that accounts
for the specific characteristics of inference workloads to im-
prove cooling efficiency.

C. Working Smarter Not Harder

DNN inference has become a core component in vari-
ous intelligent edge applications [32], [33]. While existing
literature claims to achieve extreme hardware performance
when executing these inference tasks at the edge, we observe
that although many deep learning applications impose strict
performance constraints and demand high computing power as
much as possible, others only report relaxed requirements [34].
Such characteristics can be exploited to save computing energy
by adjusting hardware performance based on the specific needs
of each application. However, the energy saving is generally
trivial and marginal considering the near-linear relationship
between hardware performance and energy consumption [27].

Besides hardware energy, we observe a significant cooling
energy reduction by switching from chiller-based cold water
cooling to cooling tower-based warm water cooling under
a lower power limit of computing hardware. As shown in
Figure 5, for the Unet model running on an Nvidia GPU, when
the hardware power limit decreases from 250 W to 125 W,
the cooling energy decreases by up to 97.8% by switching
to warm water cooling, while the inference latency increases
from 20 ms to 27 ms (i.e., 35% higher) somewhat undesirably.
Interestingly though, as observed, the maximum benefit arises
primarily from crossing the “sweet point”, which is defined
as the transition point from relying on energy-consuming cold
water cooling to allowing energy-efficient warm water cooling,
achieved by tuning the hardware power limit appropriately.
In the example given in Figure 5, just allowing warm water
cooling can bring remarkably 96.4% cooling energy reduction
while incurring only 1.7% latency increase (i.e., 0.35 ms).
After crossing the sweet point, reducing the power limit
aggressively only brings marginal benefits but incurs relatively
high performance degradation.

To this end, rather than setting the default power limit
(i.e., TDP) all the time or aggressively reducing the power
limit which sacrifices the performance severely, we propose
to impose a power limit just below the “sweet point” with
minor performance degradation for applications with relaxed
requirements. As illustrated in Figure 6 (using the same trace
as in Figure 4), after crossing the sweet point, the energy-
consuming chiller-based cold water [35] can be eliminated for
Tasks 2, 3, and 4, and the energy-efficient cooling tower-based
warm water [36] is adequate to preserve desired performance
for them. By contrast, in the case that Task 5 owns relatively
high power demands and Task 1 imposes a tight latency
requirement, the two corresponding components should still
be cooled by the cold water.

To achieve adaptive while cost-effective switching between
cold water and warm water cooling, we develop a zone-
based cooling architecture and a performance-aware schedul-
ing scheme that handle both spatial and temporal cooling
mismatches. Now, Tasks 2, 3, and 4 in Figure 6 may be
scheduled to the warm water cooling zone. The scheduler is
responsible for making such decisions, i.e., which accelerator
workers and when to slow down under the concept of “working
smarter not harder”.

III. HYCO: A HYBRID WATER COOLING SYSTEM

In this section, we present Hyco, a hybrid water cooling
system for deep learning in edge datacenters. We begin with
the system overview, and then elaborate on a DNN inference
latency estimation scheme. Finally, we formulate the energy-
efficient DNN inference scheduling problem.

A. System Overview

Figure 7 shows the system overview of Hyco. There are
three core parts involved, i.e., the cooling system, IT hard-
ware system, and control system. Based on the observations
presented in Section II-C, we design a zone-based water cool-
ing architecture and formulate a DNN inference scheduling
problem with the goal of improving energy efficiency.

(1) Cooling system. A zone-based water cooling archi-
tecture is developed to make smart use of both cold water
cooling and warm water cooling as shown in the right block of
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Figure 7. At the inlet of each server rack, an L-type three-way
ball valve [37] is installed to dynamically select either warm
water or cold water to flow into the water pipes of the rack.
Provided with cold water chilled by the chiller, all components
are able to run at their maximum power, i.e., TDP, without
the risk of overheating. On the contrary, for other components
cooled by warm water without active chilling, there must be
a power limit to guarantee the hardware safety with a slight
performance drop. The power limit is set according to the
sweet point.

(2) IT hardware system. In a small-scale edge datacenter,
there are usually only a limited number of server racks,
and each rack contains a number of high-powered servers
with heterogeneous hardware components, including CPUs,
GPUs, and other accelerators. Based on the cooling water
type and server state, we divide the server racks into three
types logically, i.e., cold-water-active (C), warm-water-active
(W), and warm-water-sleeping (S), and the server racks are
numbered with the letter W, C, or S at the beginning. It is
worth noting that the sleeping state can reduce idle power to
near zero as compared to the active state [38]. Moreover, based
on the server type and hardware type, the hardware pool can
be divided into six groups as shown in Figure 7, i.e., CPU or
GPU followed by the letter of either C or W or S.

(3) Control system. As shown in Figure 7, once receiving
an inference request, Hyco needs to estimate the inference
latency on different components before scheduling to ensure
the latency constraint. First, the parser parses the model’s
architecture information to generate a .cfg file that contains
each layer’s type and parameters, and connections among lay-
ers in the computational directed acyclic graph (DAG). Next,
the estimator estimates the model’s inference latency based on
the estimated latency of all its layers and their connections.
Then, the scheduler dispatches the inference task through
performance-aware power capping to make smart use of warm
water cooling, based on the predicted inference latency on
each type of hardware, the predefined latency requirement,
the remaining idle hardware resources, and the current “sweet
point” value that is influenced by the ambient environment and
determined based on outdoor temperature monitors. Finally,
the executor executes the task on the assigned hardware
component and tunes the valve as needed. In the following,
we will dig into the key design of the estimator and scheduler.

B. Estimator: Lightweight Latency Estimation

There are already several schemes to get the inference
latency of DNN layers and models, including profiling of-
fline [39], profiling at run time [40], and leveraging linear
regression models to make estimations [41]. While profiling of-
fline beforehand and profiling at run time can yield accurate in-
ference latency values, they come with significant drawbacks.
Specifically, profiling models offline and storing all the model
profiles in a database can lead to substantial storage costs, high
updating costs, and long searching time as the number of DNN
models grows to thousands or even tens of thousands [42]. For
profiling models at run time when a new request arrives, there
would be significant system delays and heavy computation

burden by executing the inference for repeated times (e.g., 20)
on each hardware type. In comparison, Neurosurgeon [41]
proposes an estimation method with linear regression models.
Although there is negligible runtime overhead, this method
can incur high estimation errors according to our experimental
results. For instance, our trials show that the relative error for
just a single convolutional layer on GPU already reaches as
high as 70.3%, making this method completely unworkable in
our scenarios requiring strict latency guarantees.

To estimate DNN layers’ and models’ inference latency in
real time and accurately, we first make extensive measurements
of common layer types under different parameters to study
their runtime characteristics. We notice that the relationships
between the inference latency and layer parameters are intri-
cate and not simply linear or polynomial in a large range.
To effectively learn such intricate relations, we apply a series
of lightweight, piecewise two-layer DNN models to make the
estimations. Specifically, we leverage the Profiler tool [43] in
TensorFlow [44] to collect the inference latency information of
each layer type with different parameters. Then, we divide the
measurement results into several statistic regions and analyze
the empirical relationships between the inference latency and
the layer parameters in each region separately. For regions
with similar relationships, we merge them together to reduce
the number of stored estimation models. Finally, for each
merged statistic region, we apply a two-layer lightweight DNN
model to learn such a relationship, which achieves relatively
high accuracy. After estimating the inference latency of each
layer, we leverage the critical path analysis to get the model’s
inference latency from the first layer to the end, based on the
computation DAG of the DNN model generated by the parser.

C. Scheduler: Making Smart Use of Warm Water Cooling

In an edge datacenter supporting real-time DNN in-
ference, there is a sequence of user requests U =
{u1, u2, ..., ui, ..., u|U |} arriving successively during a time
period T , and each of the user requests needs to be scheduled
to a non-sleeping component h ∈ H , including CPU-W, CPU-
C, GPU-W, and GPU-C. To avoid performance interference
among tasks, we assume that each component only conducts
one task at a time as prior work [45] does. In the case that
there is no available non-sleeping component to serve requests,
another server rack in the sleeping state needs to be switched
on. As shown in Figure 7, since all the servers in the same
rack share the same power strategy (i.e., switch on or off)
and cooling strategy (i.e., warm water or cold water cooling),
even if only one server within a rack needs to be switched on
and becomes active, all the rest will wake up and consume
idle energy and corresponding cooling energy. We use bh,t to
denote the number of each type of non-sleeping components
h ∈ H including in either the active or the idle state in each
time slot t ∈ T , and Mh to denote the number of hardware
components of type h ∈ H in each rack, where bh,t must be
a multiple of Mh.

For each user request ui ∈ U , there are starting time gi,
finishing time fi, and latency requirement qi of a single DNN
inference execution. The arrival rate of request ui ∈ U can
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TABLE I
NOTATIONS

Symbol Description

U
The set of user requests, where ui ∈ U is the i-th
incoming request

T
The total time span of all the user requests U , t ∈ T
and |T | = max{fi} − 1

H

The set of heterogeneous IT hardware type, h ∈ H
where |H| is an even number. An odd and even h
refers to hardware in the warm water and cold water
cooling zones, respectively. For example, h = 1, 2, 3,
and 4 refer to CPU-W, CPU-C, GPU-W, and GPU-C,
respectively, when |H| = 4

Mh # of hardware components of type h ∈ H in a rack
gi The starting time of the task ui ∈ U

fi The finishing time of the task ui ∈ U

ci,h

The inference latency of a single DNN inference execu-
tion when the task ui ∈ U is placed on the component
of type h ∈ H

ei,h

The energy consumption of a single DNN inference
execution when the task ui ∈ U is placed on the
component of type h ∈ H

qi The latency requirement of the task ui ∈ U

xi,h
x = 1 if the task ui ∈ U is placed on the component
of type h ∈ H , x = 0 otherwise

bh,t
The number of each type of non-sleeping components
h ∈ H in each time slot t ∈ T

pidleh The idle power of the component of type h ∈ H

ηh The cooling coefficient of the component of type h ∈ H

be expressed by 1/qi in general, and the total number of
DNN inference executions from this request can be calculated
as ⌊(fi − gi)/qi⌋, where ⌊·⌋ is the floor operation. We use
ci,h and ei,h to indicate the inference latency and energy
consumption of one inference execution on the component of
type h ∈ H . To avoid latency violations, ci,h should be no
more than qi when ui ∈ U is placed on the component of
type h ∈ H . Then, we use xi,h to represent whether ui ∈ U
is placed on the component of type h ∈ H , and bh,t should be
larger than the number of all allocated tasks

∑
i:gi≤t<fi

xi,h

in each time slot t ∈ T . To dissipate all the heat generated
by the component, different proportions of cooling energy to
IT hardware energy will be consumed, which is expressed by
the cooling coefficient ηh = Cooling Energy

IT Hardware Energy = pPUE−13

for the component of type h ∈ H , and η1 = η3 and η2 = η4.
We use pidleh to represent the idle power of CPUs and GPUs,
where pidle1 = pidle2 and pidle3 = pidle4 . The notations are listed
in Table I.

The optimization objective is to minimize the overall energy
consumption of both IT hardware and cooling equipment with
latency guarantees. Note that the IT hardware components
in the active state and idle state all consume energy. We
use EITactive

, EITidle
, and ECooling to denote the energy

consumption of IT hardware in active states, IT hardware in
idle states, and cooling equipment, respectively, all of which
are highly related to the sequence of the user requests U

3The partial Power Usage Effectiveness (pPUE) is defined as (IT Energy
+ Cooling Energy) / IT Energy [12].

and their placement xi,h. To calculate EITidle
(xi,h), we have

to quantify the running tasks on each type of heterogeneous
hardware h ∈ H in each time slot t ∈ T . In other words,
the values of both gi and fi of each request ui are used to
compute EITidle

(xi,h). Here, we apply timing series analysis
to calculate EITidle

(xi,h). On the contrary, EITactive
(xi,h) is

only related to the service time (fi − gi) of each request ui

instead of the specific values of gi and fi. The derivation
procedure is presented as follows:

EIT + ECooling

=EITactive
(xi,h) + EITidle

(xi,h) + ECooling(xi,h)

=(EITactive
(xi,h) + EITidle

(xi,h))(1 + ηh)

=

n∑
i=1

|H|∑
h=1

xi,h

(
(ei,h + pidleh (qi − ci,h))⌊(fi − gi)/qi⌋

+ pidleh (fi − gi − qi⌊(fi − gi)/qi⌋)
)
(1 + ηh)

+

|T |∑
t=0

∑
i:gi≤t<fi

|H|∑
h=1

pidleh (bh,t − xi,h)(1 + ηh). (1)

Thus, the DNN inference scheduling problem can be for-
mulated as follows:

min EIT + ECooling (2)
s.t. xi,h(qi − ci,h) ≥ 0,∀i = 1, ..., n, h = 1, ..., |H|, (3)

bh,t = max
h′=2j−h mod 2

{⌈
∑

i:gi≤t<fi

xi,h′/Mh′⌉Mh′},

∀t = 0, ..., |T |, h = 1, ..., |H|, j = 1, ..., |H|/2,
(4)

|H|∑
h=1

xi,h = 1,∀i = 1, ..., n, (5)

xi,h ∈ {0, 1},∀i = 1, ..., n, h = 1, ..., |H|. (6)

Equation (3) means that the real inference latency should be
lower than the latency requirement. Equation (4) indicates
the number of each type of non-sleeping components in each
server rack in t ∈ T . Equations (5) and (6) together guarantee
that one and only one hardware component executes each of
the tasks.

Because of unknown future user requests and their mutual
influence caused by activating all the components in the same
rack, it would be impossible to search for an optimal solution
at run time. One possible solution may be the greedy heuristic
algorithm that is executed each time a new request arrives.
However, if we just handle each user request one by one in a
sequence greedily, the impact of the current decision on future
decisions is neglected, bringing high idle energy and cooling
energy consumption. In addition, the inference energy cannot
be accurately accessed in advance by the greedy algorithm
when making a scheduling decision, because of the closed-
source GPU drivers and excessively low prediction accuracy
if we just consider available layer parameters. As a result, it
is vital for the scheduler to make each decision in real time
with regard to its influence on future decisions and learn the
true energy consumption without manual effort.
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IV. LEARNING-BASED SCHEDULING SCHEME

In this section, we design a learning-based agent as the
scheduler. We first explain the rationale for preferring the
learning-based scheme, and then introduce its five key con-
cepts. In the end, we present the design details.

A. Motivation for Deep Reinforcement Learning

The scheduler is responsible for deciding the most efficient
hardware component for each incoming inference request in
real-time. Firstly, since it is almost impossible to estimate the
inference energy accurately according to our trials, the sched-
uler needs to extrapolate the potential inference energy on
each hardware type based on the input model’s configuration
information. Secondly, given the additional energy consumed
by idle components when activating a rack, the scheduler
needs to evaluate the impacts of current scheduling decisions
on the future by learning from historical workload patterns.
However, it is generally impractical to accurately know future
requests at run time to make a global optimization indicated by
Equations (2) to (6). Thirdly, conventional rule-based schemes
basically rely on expert domain knowledge, which raises heavy
manual efforts and may even be problematic if making many
inaccurate assumptions [46]–[48], leading to inefficiency for
diverse edge datacenters and mission-critical edge workloads.

As a learning-based scheme, reinforcement learning (RL)
is promising in addressing the above challenges. It leverages
an agent to learn and make decisions through trial and error.
Deep RL (DRL) is a combination of RL and deep learning
and uses a DNN for the decision-making process. The agent
observes the state and then takes one of the actions with the
highest Q value. The Q value comprises the reward R, and
the possible maximum Q value of the next state s′ and action
a′, i.e., Q = R + γmaxa′ Q(s′, a′), where γ is the discount
factor.

As one of the commonly used RL algorithms, Q-learning
has been adopted widely for decision-making [49]. However,
it can only handle discrete state space since it requires a table
to store Q values of each state-action pair. In Hyco, to satisfy
the latency requirement, estimation results of inference latency
should be regarded as states. However, this continuous value
would make Q-learning infeasible. In contrast, by replacing
the table with the DNN, DRL is able to handle various
unstructured inputs. As a representative, the deep Q-network
(DQN) can handle continuous values of the state easily by
adopting a DNN to process the state [50]. In this work, we
leverage the double DQN (DDQN), a variant of the DQN, for
the scheduling problem to accelerate the training process and
avoid overfitting [51]. In the following, we map the scheduling
problem in Section III-C into the DDQN algorithm to realize
a lightweight while efficient agent.

B. Key Concepts

In DRL, there are five key concepts: agent, environment,
state, action, and reward. Based on the system architecture
introduced in Section III-A and the scheduling process by
the scheduler presented in Section III-C, their implications are
presented as follows:

TABLE II
CONSIDERED STATES OF THE DRL AGENT

State Description

DNN-related
state sd

TCPU−W
Estimated inference latency on
CPU-W

TCPU−C
Estimated inference latency on
CPU-C

TGPU−W
Estimated inference latency on
GPU-W

TGPU−C
Estimated inference latency on
GPU-C

NCONV # of convolutional layers
NPOOL # of pooling layers
NFC # of fully-connected layers

NNORM # of normalization layers
NAC # of activation layers
NRC # of recurrent layers

User-related
state su

q
The latency requirement imposed
by the user

Hardware-
related
state sh

NCPU−W # of remaining idle CPU-W
NCPU−C # of remaining idle CPU-C
NGPU−W # of remaining idle GPU-W
NGPU−C # of remaining idle GPU-C

Agent. The agent is a decision-maker on the best-suitable
hardware component for each user request.

Environment. The environment here refers to an edge
datacenter providing DNN-based services, where there are
a series of server racks containing heterogeneous computing
hardware.

State (S). The state s includes DNN-related state sd, user-
related state su, and hardware-related state sh. All the details
are listed in Table II.

Action (A). The action a indicates where to process the user
request, i.e., h ∈ H .

Reward (R). The reward r comprises the energy consump-
tion (E) and whether the latency requirement q is satisfied (Q).
Note that the energy consumption comes from not only the IT
hardware Eself−IT and cooling equipment Eself−cooling for
running the task itself, but also the IT hardware Eother−IT

and cooling equipment Eother−cooling from the rest of servers
within the same rack due to the need to switch on the whole
server rack when there are no available candidate components.
Thus, when ui is placed on the hardware of type h ∈ H , i.e.,
xi,h = 1, their expressions are given as follows:

EselfIT =(ei,h + pidleh (qi − ci,h))⌊(fi − gi)/qi⌋
+ pidleh (fi − gi − qi⌊(fi − gi)/qi⌋), (7)

Eselfcooling
=ηhEselfIT , (8)

EotherIT =
∑

h′: |h′−h|mod 2=0

pidleh (M ′
h − xi,h′)

·max{0, (fi −max
j

{fj})}, (9)

Eothercooling
=ηhEotherIT , (10)

Q = ln(1 + exp(100(ci,h − qi)/qi))

· ci,h⌊(fi − gi)/qi⌋, (11)
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Algorithm 1 Training the DDQN algorithm for Hyco
1: Initialize: the training Q-network Q(S, a; θ) randomly with

weight θ, target Q-network Q̂ (S, a; θ′) with θ′ = θ, learning rate
λ, discounting factor γ, exploration probability ϵ, replay butter
D, and minibatch size B.

2: for episode in 1, 2, . . . , E do
3: Initialize: extract user requests U from a training dataset and

set sh,0 = 0;
4: for t = 0, 1, . . . , |T | do
5: For all tasks finishing at t, update sh,t and Kl,m,t;
6: while a user request arrives at t do
7: Update sd,t and su,t;
8: With probability ϵ, select at from A randomly, otherwise

select at = maxa Q (st, a; θ);
9: Execute at, update Kl,m,t, calculate rt via (12), and

observe st+1;
10: Store transition (st, at, rt, st+1) into D;
11: Sample a random minibatch of B transitions

{sj , aj , rj , sj+1}, 1 ⩽ j ⩽ |D|;

12: Set yj =


rj , for terminal j + 1,

rj+γQ̂

(
sj+1, argmax

aj+1

Q (sj+1, aj+1; θ) ; θ
′

)
,

otherwise;
13: Compute the stochastic gradient ∇θL

θ
t (θ) on Lθ

t (θ) =
(yj −Q (sj , aj ; θ))

2;
14: Every C steps update Q̂ = Q;
15: Update st = st+1;
16: end while
17: Update st+1;
18: end for
19: end for

where j denotes all the tasks uj running in the same server
rack. If j ∈ ∅, maxj{fj} = gi. Note that in the ex-
pression of Q, we apply a “softplus” operation instead of
max{0, 100(ci,h − qi)/qi}, since it is differentiable and more
effective for the training. Thus, the reward r for each schedul-
ing decision of a user request ui can be written as follows:

R = ln
(
1/(α(EselfIT + Eselfcooling

+ EotherIT

+ Eothercooling
) + βQ)

)
, (12)

where α is the energy consumption weight and β is the latency
violation weight. Their values depend on the importance of
saving energy and satisfying latency requirements. To compute
the reward, we also need to record all servers’ states (active,
idle, or sleeping) within each rack at each time slot t ∈ T ,
which is denoted as Kl,m,t, where l is the rack number, and
m is the server number in the rack l.

C. Design Details with the DRL agent

There are three kinds of events that change the state s:
request arriving, request scheduled, and request finishing.
Algorithm 1 shows the training phase of the DDQN algorithm.
At each time slot t, it firstly checks whether any tasks finish
and updates the hardware-related state sh,t (Line 5). Then,
for each arriving user request, it updates the DNN-related
state sd,t and user-related state su,t based on the DNN model
structure, estimated inference latency, and latency requirement
(Lines 6-7). Next, it makes the decision of at with the epsilon-
greedy policy [52] (Line 8), calculates the reward rt with

Start

Update sh,t and 

Kl,m,t

This rack is idle

Y

Switch off this rack 

and tune the valve

Estimate inference latency ci,h

N
The DRL agent takes action at

No remaining 

idle hardware

Y

Switch on a 

new rack and 

tune the valve

Execute the 

inference task

N

Update sh,t

t = t + 1
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A request ui 
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YN
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Update sd,t and su,t

Parse the model architecture Parser

Estimator

Scheduler

Executor

Fig. 8. Execution flow at run time.

Equation (12) and observe the next state st+1 (Line 9), and
stores the transition (st, at, rt, st+1) for experience replay [53]
(Line 10). For sampled transitions, it calculates the target
denoted by yj and performs a gradient descent operation that
updates the training network (Lines 11-13). It then updates the
target network every C steps (Line 14). Finally, the state st is
updated to st+1(Line 15), and if no more requests arrive at t,
st+1 is updated instead (Line 17).

Figure 8 shows the execution flow in the running phase.
At each time slot t, Hyco handles all finishing tasks first,
including updating the states and other system parameters
and switching off racks if all internal servers become idle.
After that, Hyco handles each request on arrival by parsing
the model architecture, estimating the inference latency, and
updating the related states. Next, the DRL agent takes an
action of the best-suitable component. Note that there is only
the trained target network in the running phase. Finally, Hyco
dispatches the task to the candidate component, and switch on
or off racks and tune the valve if necessary.

V. EVALUATION

In this section, we conduct extensive simulations to evaluate
Hyco with real-world traces. We first introduce the evaluation
setup and then present the evaluation results compared to five
baselines. Finally, we discuss the flexible trade-off provided
by Hyco and quantify the scheduling and training overhead.

A. Evaluation Setup

IT hardware system. There are four types of heterogeneous
hardware (i.e., |H| = 4), including CPU-W, CPU-C, GPU-
W, and GPU-C. We consider that there are two Intel Xeon
E5-2697 v4 CPUs and two Nvidia Titan Xp GPUs in each
server and ten servers in total in each rack. Each inference
task will be placed on either two CPUs or one GPU within
the same server, thus M1, M2, M3, M4 = 10, 10, 20, 20,
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respectively. The TDPs of the CPU and GPU are 145 W and
250 W, respectively. We set pidle1 and pidle2 for the two CPUs
as 26 W, and pidle3 and pidle4 for the GPU as 10 W based on
our measurements.

Cooling system. The cooling efficiency η2 and η4 for the
cold water cooling are set as 0.26 [35] by using the chiller,
and η1 and η3 for the warm water cooling are set as an
excessively low value of 0.01 [36] when operating with only
the cooling tower. The cold and warm water temperatures
are set as 20°C and 45°C, respectively [12]. Raising the
water temperature can reduce cooling energy consumption,
but it also necessitates imposing stricter power limits on the
hardware to prevent overheating and ensure safety. Therefore,
the TDPs of the CPU and GPU under warm water cooling
are limited to 40 W and 125 W (i.e., the sweet points),
respectively, based on our measurement results from real
hardware [12], [19].

Control system and deep learning models. The four
hyperparameters of DRL, α, β, λ, and γ, are set as 1.0e−5,
1.0e−5, 1.0e−5, and 0.9, respectively, based on a previous
study on workload scheduling with DRL [29] and fine-tuning
through small incremental trials to ensure rapid convergence.
To achieve a better balance between exploration and exploita-
tion during the DRL agent’s learning process, the exploration
probability ϵ is initialized at 0.3, and decreased by 1.07e−6

each time after choosing an action, which we find improves
the convergence of the training process. The DRL agent
employs a lightweight DNN model with two fully-connected
layers to take an action for a state input. Considering the
relatively small number of states and actions in our setup, the
number of neurons in the first and second layers are configured
as small values of 128 and 32, respectively [29], to avoid
overfitting and minimize system overhead. We select seven
representative DNN models for the inference tasks covering
image classification (including ResNetV1-50, EfficientNet-B1,
and EfficientNet-B3), semantic segmentation (including Unet),
object detection (including YOLOv3-spp and YOLOv3-tiny),
and named entity recognition (including BiLSTM). We use
the measured values and estimated values of the inference
latency for the DRL training and testing (i.e., running) phases,
respectively.

Workload. We use deep learning traces collected from
Alibaba Platform for Artificial Intelligence [54] to generate
user requests. The trace contains information like the job
name, starting time, ending time, and instance number of each
deep learning task on over 6,500 GPUs from July to August in
2020. We randomly select 20 training datasets and 5 testing
datasets each of which contains 4% of the data items (i.e.,
36459 items each). We take the instance number per task
as the batch size and scale it to 1∼10. We set the latency
requirement q based on the Gaussian distribution in the range
of 1.1·min{ci,h} to 1.5·max{ci,h}, ∀h = 1, ..., |H|, to ensure
that at least one hardware component can process the request
with QoS guarantee.

Baselines. To evaluate Hyco in terms of both the zone-based
water cooling architecture and the DRL-based scheduler, we
choose five baselines as follows:

• Conventional cold water cooling system (Cold): In a

TABLE III
INFERENCE LATENCY ESTIMATION ERRORS OF SEVEN MODELS

Model # of layers Error on CPU and GPU
ResNetV1-50 172 8.8%, -13.4%
EfficientNet-B1 433 0.7%, 9.0%
EfficientNet-B3 490 8.3%, -8.4%
UNet 60 -13.0%, 9.6%
YOLOv3-spp 258 -5.1%, 4.8%
YOLOv3-tiny 43 -0.7%, 12.8%
BiLSTM 4 1.0%, 0.0%

conventional coarse-grained cold water cooling system,
all servers are directly cooled by cold water uniformly.
The scheduler only chooses the hardware type with the
least IT hardware energy while ensuring the latency
requirement.

• Fine-grained warm water cooling system proposed
in [19] (CoolEdge): This solution targets heterogeneous
edge datacenters, and adopts fine-grained warm water
cooling that customizes the water temperature for each
hardware component by mixing certain amounts of hot
and cold water. We use the average power demand of
an inference process to decide the best cooling water
temperature.

• Greedy algorithm (Greedy): We implement the greedy
heuristic algorithm to evaluate the DRL agent. The sched-
uler always prioritizes QoS satisfaction and chooses the
hardware type with the least overall energy consumption.
For a fair comparison, it only knows the average energy
consumption on the four types of hardware, as the accu-
rate energy consumption cannot be accessed in advance.

• Partially-ideal oracle algorithm (Oracle): On top of the
greedy algorithm, the scheduler has full knowledge of the
real inference latency on four types of hardware.

• Fully-ideal oracle algorithm (Oracle+): On top of the
greedy algorithm, the scheduler has full knowledge of
both the real inference latency and inference energy on
four types of hardware.

B. Overall Performance

We first present the inference latency estimation results of
the estimator and then make a comparison with baselines in
the aspect of energy consumption, QoS satisfaction, carbon
footprints, and cost savings.

Inference latency estimation. Table III summarizes the
relative error of the inference latency estimation (i.e.,
Estimated Value−Measured Value

Measured Value × 100%). The average estimation
error is only around 6.8%, exerting a negligible influence on
subsequent task scheduling. Moreover, thanks to the learning
capability of the DRL agent that can mitigate the effects of
the estimation errors, the latency violation rate of Hyco is
much lower than other methods, as evidenced by the following
results on QoS satisfaction.

Energy consumption. Figure 9 plots the energy consump-
tion and pPUE. As compared with the Cold, CoolEdge, and
Greedy baselines, Hyco reduces the overall energy consump-
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tion by 44.5%, 33.6%, and 19.0%, respectively. Owing to the
mix of cold water and warm water, the CoolEdge baseline
reduces the cooling energy by 4.83× than the Cold baseline,
but Hyco further lowers the energy by 7.20× than CoolEdge
(i.e., 34.74× than Cold) thanks to the more use of warm
water cooling. The reduced IT hardware energy of the Greedy
baseline can be attributed to the smart selection between
CPU and GPU that leads to different energy efficiency for
each DNN model, as well as the power capping policy that
leads to higher energy efficiency. By comparison, Hyco further
reduces the IT hardware energy since the DRL agent can
speculate future requests on arrival and their energy consump-
tion information to some extent, and dares to make more
aggressive visionary decisions such as switching on a new
rack even if there are available alternative components. That
is why Hyco still lowers the overall energy consumption by
14.8% and 5.3%, respectively, as compared with the Oracle
and Oracle+ baselines. Figure 12 shows the request arrival
rate and the number of running tasks every 30 minutes, and
Figure 13 plots the energy consumption patterns from one of
the testing datasets. As shown, the deep learning workload
fluctuates severely in a periodic and bursty manner, and both
the IT hardware and cooling energy consumption fluctuate
synchronously in general. By comparison, Hyco fluctuates
only slightly, especially for the cooling energy, which po-
tentially helps save the capital expenditures of the cooling
equipment [19].

QoS satisfaction. To show the effectiveness of Hyco in sat-
isfying latency requirements, we calculate the actual inference
latency of each user request to its latency requirement from
one aforementioned testing dataset and plot the cumulative dis-
tribution function (CDF) in Figure 10. As we can see, although
Hyco targets minimizing the energy consumption by tuning
down the power limit of a number of components, the latency

violation rate is as low as 0.67% thanks to the DRL agent
that learns to reduce the estimation error of inference latency
adaptively and does not count on high estimation accuracy.
In contrast, the Cold, CoolEdge, and Greedy baselines behave
poorly in satisfying the latency requirements whose latency
violation rates are 2.33%, 2.33%, and 3.41%, respectively.
Although the Oracle and Oracle+ baselines can keep the
latency violation rate as low as zero, they are impractical for
real-world deployment. These baselines rely on the assumption
of having prior knowledge of the real inference latency for all
DNN models, which cannot be accurately predicted, as demon-
strated by our trials and prior studies [40]. On the contrary,
Hyco relies mainly on the model architecture information, such
as the percentage of each type of layer, which can be easily
obtained at run time.

Carbon footprints. To estimate the carbon emissions from
the IT and cooling equipment of Hyco, as well as the Cold
and CoolEdge baselines, we refer to the simulated energy
consumption data presented in Figure 9 and global carbon
intensity data from reputable sources [55]. Specifically, the
results in Figure 9 indicate that the energy consumption of
Cold, CoolEdge, and Hyco is about 4.616 MWh, 3.861 MWh,
and 2.562 MWh, respectively, over a 68.5-day period for a
single edge datacenter. Given that the average global carbon
intensity in 2022 is about 0.22 kg/kWh [55], the correspond-
ing carbon emissions are estimated to be 1015.52 kg CO2,
849.42 kg CO2, and 563.64 kg CO2. Consequently, for 2,000
small-scale edge datacenters located within a city, Hyco can
cut down carbon footprints by about 4.8 kt CO2 and 3.0 kt CO2

every year, as compared to the conventional Cold baseline and
the state-of-the-art CoolEdge baseline, respectively.

Cost savings. The benefits of Hyco arise from reduced
energy consumption in both IT and cooling systems, while
the primary cost involves installing additional control valves
on each server rack. Specifically, for operational cost savings
related to energy usage, the results in Figure 9 indicate that the
energy consumption of Cold and Hyco is about 4.616 MWh
and 2.562 MWh, respectively, over a 68.5-day period for a
single edge datacenter with 50 servers. With the EU average
electricity price for non-household consumers being around
22.5 cents/kWh in 2023 [56], the associated operational costs
are 110.68 $/(server×year) for Cold and 61.43 $/(server×year)
for Hyco, leading to savings of 49.25 $/(server×year). The
additional capital cost is estimated at 0.51 $/(server×year)
over a 10-year operation, considering that each well-developed
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Fig. 13. Energy consumption patterns of the IT hardware, the cooling equipment, and the entire infrastructure.
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three-way ball valve costs $51 with a lifespan of 100,000
cycles [57]. Finally, the net cost savings with Hyco are
estimated as 48.74 $/(server×year). For 2,000 small-scale edge
datacenters (each equipped with 50 servers) within a city,
Hyco is projected to save $4,874,000 annually, highlighting
its significant potential for widespread adoption.

In summary, by combining the flexible zone-based water
cooling architecture with the intelligent DRL agent, Hyco
achieves significant energy and cost savings as well as carbon
reductions in edge datacenters, particularly for the cooling
equipment, while maintaining a low QoS violation rate.

C. Flexibility and Practicability for Datacenter Economy

We first discuss the flexible trade-offs achieved by Hyco and
its variants and then present its small training and runtime
scheduling overhead, both of which make Hyco practical in
the production environment.

Flexible trade-offs through choosing different configu-
rations. Figure 11 shows the trade-off between extra capital
expenditures (CapEx) and energy consumption under different
sizes of the power and cooling control unit, i.e., the number
of server racks that share a common valve and the same
power and cooling strategy. The values are normalized to the
default setting of size 1, and the value of 0.1 means that
every server is individually controlled. A smaller size achieves
more fine-grained control and thus less IT hardware and
cooling energy. However, the extra CapEx increases sharply
because of more valves and pipes installed as well as other
supports. We conclude that it is key to select an appropriate
size of the control unit for each edge datacenter considering
the location, the services, electricity costs, carbon intensity

and allowances, maintainability, and so on. For instance, to
support sustained compute-intensive edge workloads, saving
the operational expenditures (OpEx) for electricity may play
a major consideration, while the CapEx may become the
first priority if the edge datacenter has abundant access to
renewable energy. Hyco supports such flexibility to achieve
minimum costs (relevant to CapEx plus OpEx) for datacenter
operators. Figure 14 shows the trade-off between energy
consumption and the latency violation rate by setting different
hyperparameters α/β. Compared to baselines, Hyco and its
variants form a Pareto frontier [58] with different trade-offs,
where we cannot improve energy efficiency (QoS satisfaction)
further without sacrificing QoS satisfaction (energy efficiency).
Hyco supports such flexibility to achieve maximum profits
(relevant to revenue minus costs that are influenced by QoS
satisfaction and energy efficiency respectively) for service
providers. Moreover, a top-level scheduler can be further
incorporated into Hyco to choose between these variants at
run time according to real-time requirements.

Runtime scheduling and training overhead. As Hyco
only considers 15 states in total (e.g., just the numbers of
remaining idle components as hardware-related states), the
DRL-based scheduler is lightweight and consumes only 0.14
ms on average to take an action and update the state with one
CPU core. In addition, it takes less than 3 ms to estimate the
inference latency of each DNN model by batching the estima-
tion process of the same layers together. Such computational
overhead would be negligible for end-users, as a DNN infer-
ence execution usually takes tens to hundreds of milliseconds.
As for training, it takes no more than 2 hours with 10 cores
of the Intel Core i9-10940X CPU. For an edge datacenter, the
DRL model only needs to be trained once at the start of the
datacenter’s operation, and the trained model remains effective
throughout the operational period unless significant changes
occur in hardware types, workload patterns, or the ambient
environment. In such cases, the DRL model can be retrained
in a fast manner through transfer learning [59]. To avoid high
latency violation rates and poor service quality, the DRL agent
does not make scheduling decisions during the training phase.
Instead, all requests are scheduled to the cold water cooling
zone directly (i.e., following the Cold baseline). While this
approach may result in some energy inefficiency, we consider
it acceptable since the training time is negligible compared to
the typical service period of an edge datacenter, which can
span months or even years.
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VI. RELATED WORK

Energy management in datacenters. It is widely recog-
nized that datacenters consume substantial amounts of en-
ergy and generate significant carbon emissions with the fast
growing of cloud computing and edge computing [60]. Many
works have concentrated on reducing the energy consumption
of either IT hardware [61], [62] or cooling equipment [12],
[19], [25], [63]–[66] or both [26], [29], [30], [67]–[69].
Wang et al. [61] propose a workload scheduling solution to
reduce IT hardware energy while satisfying QoS requirements.
Instead, Liu et al. [67] and Ji et al. [69] notice that saving
computing energy alone may increase cooling energy usage
and thus they develop a holistic approach separately. Jiang
et al. [12] focus on a workload-agnostic cooling solution to
deal with the power-cooling mismatch issue in datacenters
and advance a TEC-based fine-grained cooling architecture.
Rather than conventional cloud datacenters, Pei et al. [19]
focus on power-cooling mismatches in edge datacenters and
propose a component-level cooling control solution CoolEdge.
It achieves high cooling efficiency by customizing water tem-
peratures but incurs relatively high CapEx and increases com-
plexity. On the other hand, compared to our work, CoolEdge
cannot handle temporal cooling mismatches as it makes cool-
ing decisions based on only one power value over a period,
while the common inference workload shows significant power
fluctuations. Motivated by the “sweet point” phenomenon, we
propose a hardware-software co-design to address this issue
both spatially and temporally in a cost-effective way.

Deep learning deployment. Generally, there are three
common ways to execute a DNN inference: locally [70]–[73],
cloud/edge-only [45], [74], [75], and collaboratively [40], [41],
[76], [77]. Wang et al. [70] notice the inefficiency in deploying
inference tasks on modern asymmetric multiprocessors and
propose an asymmetry-aware scheduling scheme combined
with model partition and hardware frequency setting. How-
ever, local execution could be restricted on many resource-
limited and energy-constrained mobile devices. Therefore,
cloud or edge datacenters equipped with abundant heteroge-
neous hardware are promising to support compute-intensive
deep-learning-based applications. Le et al. [74] propose a
scheduling algorithm to allocate heterogeneous hardware re-
sources to users in a fair manner. Due to the long transmission
latency and fluctuating network connection, some literature
considers executing the inference tasks in a collaborative
way. Kang et al. [41] notice that the output size of some
intermediate layers is comparatively smaller, which can help
reduce both transmission latency and device energy for send-
ing data. Therefore, they advance a layer-level computation
partitioning strategy enabling collaborative execution between
mobile devices and the cloud. By contrast, our work focuses
on the cooling aspect of edge datacenters that deploy these
deep-learning-based applications whose power consumption
fluctuates severely.

Workload scheduling with RL. There are many state-of-
the-art works using the RL technique for workload schedul-
ing [46], [47], [49], [78], [79]. Mao et al. [47] propose
an RL-based scheduling algorithm that achieves automatic

adaptation to specific workloads. Zou et al. [78] notice the
device heterogeneity and task complexity at the edge, and
propose a DRL-based algorithm to offload tasks from mobile
devices to different edge servers. Similarly, Kim et al. [49]
develop an RL-based method to select the best candidate of
mobile devices or nearby servers to execute inference tasks
by considering DNN models’ characteristics and the stochastic
nature. Different from them, this work studies the relationship
between inference performance and cooling efficiency, and
proposes the concept of “working smarter not harder” to
achieve overall benefits.

VII. CONCLUSION

In this paper, we propose Hyco, a hybrid water cooling sys-
tem to optimize the cooling efficiency of edge datacenters. We
analyze three characteristics of edge datacenters and the ineffi-
ciency in cooling to deal with power-cooling mismatches from
deep learning workloads. Motivated by the “sweet point” phe-
nomenon, we design a zone-based water cooling architecture
and a learning-based scheduling scheme with performance-
aware power capping under the concept of “working smarter
not harder”. The trace-driven simulation results demonstrate
the effectiveness of Hyco which reduces the cooling energy
by up to 34.74× as compared with conventional and state-of-
the-art baselines. Our estimation for 2,000 small-scale edge
datacenters suggests that Hyco can reduce carbon footprints
by approximately 4.8 kt CO2 and cut monetary costs by about
$4,874,000 every year. The substantial decrease in carbon
footprints shows its potential to significantly mitigate the
environmental impact of datacenters. As we currently evaluate
Hyco through datacenter-level simulations with thermal data
collected from a water-cooled testbed, we are also interested
in studying the performance of Hyco in real-world scenarios
in future work.
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T. Başar, and R. K. Iyer, “SIMPPO: a scalable and incremental online
learning framework for serverless resource management,” in Proceedings
of the 13th Symposium on Cloud Computing, 2022, pp. 306–322.

[49] Y. G. Kim and C.-J. Wu, “Autoscale: Energy efficiency optimization for
stochastic edge inference using reinforcement learning,” in 53rd Annual
IEEE/ACM International Symposium on Microarchitecture, 2020, pp.
1082–1096.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[51] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. X, AUGUST 2024 15

[52] E. Even-Dar, S. Mannor, Y. Mansour, and S. Mahadevan, “Action
elimination and stopping conditions for the multi-armed bandit and rein-
forcement learning problems.” Journal of Machine Learning Research,
vol. 7, no. 6, 2006.

[53] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3-4, pp. 293–
321, 1992.

[54] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 945–960.

[55] Global Carbon Budget (2023); U.S. Energy Information Administration
(2023); Energy Institute - Statistical Review of World Energy (2023)
– with major processing by Our World in Data, “Carbon intensity of
energy production – GCB,” https://ourworldindata.org/grapher/co2-per-
unit-energy[Online Accessed, 12-April-2024], 2023.

[56] Eurostat, “Electricity prices for non-household consumers - bi-annual
data (from 2007 onwards),” https://ec.europa.eu/eurostat/databrowser/
view/nrg pc 205/default/table?lang=en[Online Accessed, 15-Aug-
2024], 2024.

[57] Alibaba, “Price of the 3-way motorized control ball valve,”
https://www.alibaba.com/product-detail/3-way-DC12V-AC110-230V-
1 60442576676.html[Online Accessed, 15-Aug-2024], 2024.

[58] Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41–59, 1977.

[59] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey,” arXiv preprint arXiv:2009.07888, 2020.

[60] N. Bashir, D. Irwin, P. Shenoy, and A. Souza, “Sustainable computing
- without the hot air,” ACM SIGENERGY Energy Informatics Review,
vol. 3, no. 3, pp. 47–52, 2023.

[61] S. Wang, Y. Liang, and W. Zhang, “Poly: Efficient heterogeneous system
and application management for interactive applications,” in 25th IEEE
International Symposium on High Performance Computer Architecture,
2019.

[62] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 49th Annual IEEE/ACM International Symposium on
Microarchitecture, 2016, pp. 1–13.

[63] L. Ramos and R. Bianchini, “C-Oracle: Predictive thermal management
for data centers,” in Proceedings of the 14th International Symposium
on High Performance Computer Architecture, 2008.

[64] T. D. Nguyen and R. Bianchini, “CoolAir: Temperature- and variation-
aware management for free-cooled datacenters,” in Proceedings of the
20th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2015.
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