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Abstract—Long-running containerized workloads (e.g., machine learning), which typically show time-varying patterns, are increasingly
prevailing in shared production clusters. To improve workload performance, current schedulers mainly focus on optimizing short-term
benefits of cluster load balancing or initial container placement on servers. However, this would inevitably bring many invalid migrations
(i.e., containers are migrated back and forth among servers over a short time window), leading to significant service level objective
(SLO) violations. This paper introduces Tetris, a model predictive control (MPC)-based container scheduling strategy to proactively
migrate long-running workloads for cluster load balancing. Specifically, we first build a discrete-time dynamic model for long-term
optimization of container scheduling. To solve such an optimization problem, Tetris then employs two main components: (1) a container
resource predictor, which leverages time-series analysis approaches to accurately predict the container resource consumption; (2) an
MPC-based container scheduler that jointly optimizes the cluster load balancing and container migration cost over a certain sliding time
window. We implement and open source a prototype of Tetris based on K8s. Extensive prototype experiments and trace-driven
simulations demonstrate that Tetris can improve the cluster load balancing degree by up to 77.8% without incurring any SLO violations,
compared to the state-of-the-art container scheduling strategies.

Index Terms—Long-running containerized workloads, load balancing, migration cost, container scheduling
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1 INTRODUCTION

LARGE production clusters are commonly hosting var-
ious long-running containerized workloads, ranging

from online Web services to machine learning applica-
tions [1]. Unlike traditional batched jobs that are typically
executed within seconds to minutes, these long-running
workloads generally last for hours to months [2]. They
are often stateful and have stringent service level objectives
(SLOs) [3]. However, the time-varying request loads of such
long-running workloads [4] can cause severe contention
of shared cluster resources among containers, leading to
cluster load imbalance and thus many potential SLO vi-
olations [5]. Therefore, the mainstream cluster schedulers
such as Borg [6] and Kubernetes (K8s) [7] enable container
scheduling to achieve load balancing [8] in shared produc-
tion clusters.

Though the existing container scheduling policies such
as Sandpiper [8] and Medea [2] perform well in achieving
cluster load balancing, there still exist a noticeable number
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of invalid migrations (i.e., containers are migrated back and
forth among servers over a short time window) in shared
production clusters. As evidenced by our motivational anal-
ysis (in Sec. 2.2) on both Alibaba cluster traces v2018 and
v2022 [9], more than half of container migrations are invalid
migrations as the time window size is set as 3 hours. Such
invalid migrations are likely to make the workloads hosted
on the migrated containers suffer from serious SLO viola-
tions, leading to unexpected performance interference to the
containers that are co-located on servers (i.e., migration cost).
Meanwhile, our motivation experiments in Sec. 2.2 reveal
that invalid migrations can significantly reduce the number
of requests processed by an Apache Tomcat Web server
hosted on a migrated container by up to 99.8%. Accordingly,
it is essential for the cluster scheduler to circumvent invalid
migrations, especially for long-running workloads.

Unfortunately, many research efforts have been devoted
to making short-term scheduling decisions based on the
current cluster status for workload consolidation [10] or
load balancing [11]. Though such scheduling policies can
acquire short-term (e.g., the current or upcoming timeslot)
benefits, they are oblivious to the time-varying resource con-
sumption of long-running workloads, which is actually the
root cause of invalid migrations as discussed in Sec. 2.2. There
have also been recent works on the long-term optimization
of container scheduling, which are reinforcement learning
(RL)-based [5], [12] or control-based [13], [14] scheduling
policies, to partially tackle the issue of invalid migrations.
Nevertheless, these techniques solely focus on optimizing
the initial placement or resource auto-scaling of containerized
workloads (i.e., where to schedule) over the entire time period
(i.e., infinite future). The containers to be scheduled (i.e., which
container to schedule) and the migration cost of containers
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Fig. 1: Overview of Tetris. It comprises two pieces of modules including a
Container Resource Predictor and an MPC-based Container Scheduler.
By jointly optimizing the cluster load balancing degree and container mi-
gration cost, Tetris decides the appropriate container scheduling plans
over a time window [t1, tW ], which are performed by the Container
Migration Module of K8s in the containerized cluster.

have surprisingly received little attention. Such long-term
optimization techniques can still cause unexpected SLO vi-
olations, as evidenced in Sec. 2.3. As a result, scant research
attention has been paid to developing container scheduling
policies to fully deal with the invalid migrations of long-
running workloads in production containerized clusters.

To fill this gap, we propose Tetris shown in Fig. 1, a model
predictive control [15] (MPC)-based container scheduling
strategy to proactively make scheduling decisions for long-
running containerized workloads. Tetris simply optimizes
container scheduling over a certain sliding time window rather
than the infinite future (as in RL-based method [3]) for two
reasons: First, the prediction accuracy of container resource
consumption dramatically decreases as the prediction win-
dow size increases. Our prediction results using time-series
techniques (in Sec. 5.2) indicate that the prediction error can
exceed 20% as the prediction window size reaches 6. Second,
blindly increasing the time window size can significantly
increase the number of samples of Tetris, which requires no-
ticeable computation overhead to obtain container schedul-
ing plans. To the best of our knowledge, Tetris is the first
attempt to achieve the long-term optimization of container
scheduling to circumvent as many as possible invalid migra-
tions, by jointly optimizing the cluster load balancing and
container migration cost over a certain sliding time window.
Our main contributions are summarized as follows.

▷ First, we build a discrete-time dynamic model for
shared containerized clusters to capture the time-varying
resource consumption of containers and the corresponding
mapping of containers on servers (Sec. 3). Based on such
a model, we further devise a cost function of container
scheduling over a time window and formulate our long-term
workload scheduling optimization problem based on MPC,
by jointly considering the cluster load imbalance degree and
migration cost of containers.

▷ Second, we design Tetris to achieve long-term schedul-
ing optimization for cluster load balancing (Sec. 4). Specifi-
cally, the Container Resource Predictor in Tetris first accurately
predicts the container resource consumption (Sec. 4.1). The
MPC-based Container Scheduler then leverages the Monte
Carlo method [16] to judiciously identify the container
scheduling decisions for each timeslot, by minimizing our
formulated cost function of container scheduling (Sec. 4.2).
To particularly reduce the complexity of Tetris container

Fig. 2: Container uptime in Alibaba cluster traces v2018 and v2022 [9].
More than 80% of containers last for over 175 hours in the v2018 trace,
while around 60% of containers run over 312 hours in the v2022 trace.

scheduling strategy, we calculate the thresholds of server
load imbalance degree to classify the migration source and
destination servers in Tetris.

▷ Finally, we implement a prototype of Tetris (https://
github.com/icloud-ecnu/Tetris) based on K8s. We evaluate
the effectiveness and runtime overhead of Tetris with pro-
totype experiments on 10 EC2 instances (i.e., 60 containers)
and large-scale simulations driven by Alibaba cluster trace
v2018 (Sec. 5). Compared with the conventional scheduling
strategy (i.e., Sandpiper [8]) and the state-of-the-art RL-
based method (i.e., Metis+, a modified version of Metis [3]),
Tetris is able to improve the cluster load balancing degree by
up to 77.8% while cutting down the migration cost by up to
79.5%, yet with acceptable runtime overhead.

2 BACKGROUND AND MOTIVATION

2.1 Long-running Containerized Workloads
Large-scale shared production clusters often host many
long-running containers in response to latency-critical user
requests [17]. Taking Alibaba as an example, its online ser-
vices are mainly long-running and stateful containerized ap-
plications, such as online shopping, database, and machine
learning [18]. As shown in Fig. 2, more than half of the con-
tainers are executed over 175 hours in the Alibaba produc-
tion clusters. Additionally, the stateful (including partially
stateful) workloads account for over 50% in the latest mea-
surement study in Microsoft production clusters [19]. Due
to the unpredictability of user requests, such long-running
workloads place diverse demands on multi-dimensional
container resources including CPU, GPU, memory, network
and disk I/O, which are characterized by dynamic vari-
ability and uncertainty in the resource consumption [20].
Accordingly, the co-location of containerized workloads can
lead to contention for shared resources, which can easily
cause performance interference and resource wastage in the
shared clusters.

Based on the above, enabling adequate (re)scheduling
of long-running containerized workloads is essential to
cluster load balancing. In shared production clusters, K8s
achieves load balancing among servers by carrying out
container rescheduling1 (i.e., container migrations [21]). Cur-
rently, CRIU (Checkpoint/Restore In Userspace)2 supports
the pre-copy-based live migration of containers [22]. To sim-
plify the container migration process, we simulate it with the

1. Descheduler for Kubernetes: https://github.com/kubernetes-
sigs/descheduler

2. CRIU: https://criu.org/Main Page

2
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Fig. 3: Illustration of invalid migration. Containers c2 and c5 are migrated
back and forth among servers s1, s2, and s3.
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Fig. 4: Number of invalid migrations within a time window size varying
from 1 to 6 hours for 67, 437 containers in Alibaba cluster trace v2018
and 676, 938 containers in Alibaba cluster trace v2022.

following three steps: i.e., stopping containerized services on
the source server first, then iteratively replicating the mem-
ory dirty pages to restore services, and finally restarting
the services on the destination server. In general, the con-
tainer scheduling inevitably brings a noticeable amount of
migration cost, which requires to be considered during the
scheduling of containers, especially for stateful workloads.

2.2 Invalid Migrations of Long-Running Workloads
While many existing scheduling policies (e.g., Sandpiper [8])
perform well in load balancing in shared containerized
clusters, they usually focus on the short-term benefits of
container scheduling. Such a short-term optimization of con-
tainer scheduling policy can easily make invalid migration
decisions for containers, resulting in unpredictable migra-
tion cost and potential SLO violations.

Specifically, we take a cluster of three servers hosting five
containers illustrated in Fig. 3 as an example. The cluster
scheduler (e.g., the default K8s scheduler) first migrates
container c2 and c5 from server s1 and s3, respectively,
to server s2, in order to obtain a temporary benefits of
load balancing at time t. Unfortunately, server s2 becomes
overloaded as the resource consumption of three containers
(i.e., c3, c2, c5) dramatically increases, which triggers two
container migrations (i.e., container c2, c5) from server s2
to s1 and s3, respectively. In such a case, naive scheduling
policies are likely to make long-running containers migrated
back and forth among servers, thereby causing heavy and
unnecessary migration cost to containers. Accordingly, we
formally define invalid migrations as in Definition 1.

Definition 1. If a container is migrated back and forth among
servers over a time window [t, t + w], we define such container
migrations as invalid migrations within a time window size w.

Moreover, we validate the prevalence of invalid migra-
tions with Sandpiper using both Alibaba cluster traces v2018
(i.e., an 8-day period) and v2022 (i.e., a 13-day period) [9]. As
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Fig. 5: An illustrative example of MPC-based container scheduling (our
proposed Tetris in scenario A), as compared with RL-based container
scheduling (Metis+ [3] in scenario B).

shown in Fig. 4, the number of invalid migrations increases
as the scheduling time window increases. Specifically, the
cumulative number of invalid migrations exceeds 1, 200
and 30, 000 for the v2018 and v2022 traces, respectively,
as w is set as 3 hours. The number reaches over 50, 000,
accounting for over 75% of container migrations for the
v2022 trace when w increases to 6 hours. To further illustrate
the performance impact of invalid migrations, we conduct
experiments on a cluster of 10 servers (i.e., 60 containers)
deployed with Apache Tomcat Web server (partially stateful
workloads). Our experiment results reveal that 61.7% of the
containers are affected by invalid migrations. The number of
requests processed by a migrated container can be reduced
by up to 99.8% (74.0% on average), severely degrading
the quality of long-running Web service. Therefore, it is
essential to design a long-term container scheduling strategy
to alleviate invalid migrations by explicitly considering the
future resource consumption of containers.

2.3 An Illustrative Example

To avoid invalid migrations, we design Tetris in Sec. 4, a
simple yet effective container scheduling strategy that lever-
ages the MPC approach to proactively migrate long-running
workloads for achieving the cluster load balancing. In par-
ticular, MPC adopts a compromise strategy that allows the
current timeslot to be optimized while taking finite future
timeslots into account [23]. To illustrate how Tetris works,
we show a motivation example in Fig. 5 by comparing
Tetris with an RL-based scheduling method (i.e., Metis+, a
modified version of Metis [3] which will be introduced in
Sec. 5.1). Though Metis+ greedily achieves the optimal load
balancing degree and minimizes the migration cost over the
entire time period of [t, t + 2], it can still overload server
s2 at time t + 2 and trigger the migration of container c3
from server s2 to s1. In contrast, our MPC approach (i.e.,
Tetris, with the window size set as 2) jointly optimizes the
load balancing degree and migration cost for two sliding
timeslots (i.e., [t, t + 1], and [t + 1, t + 2]) and guarantees
SLOs of all containerized workloads. Accordingly, the RL-
based method can optimize the scheduling objective over
the entire time period at the cost of overloading a certain
number of containers, while Tetris achieves the long-term
optimization for container scheduling within a certain sliding
time window. In addition, the RL-based method has the
following problems such as requiring repeated training on
a large amount of high-quality data samples and lacking

3
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TABLE 1: Key notations in our discrete-time dynamic model at time t.

Notation Definition

M, N Sets of servers and containers

W Time window size

Cb(t) Load imbalance degree of the cluster

Cm(t) Container migration cost of the cluster

cpuk(t) CPU consumption of a container k

memk(t) Memory consumption of a container k

CPU(t) Average CPU consumption of a server

MEM(t) Average memory consumption of a server

α
Normalized model coefficient of migration
cost to load imbalance degree

β
Normalized model coefficient of memory
resources to CPU resources

γ, δ
Linear model coefficients of container mi-
gration cost in terms of the memory size

xk
i (t) Indicator if a container k is on a server i

mk(t) Indicator whether a container k is migrated

interpretability as well as poor scalability [3], which will be
further validated in Sec. 5.4.

Summary. Avoiding invalid migrations is critical to con-
tainer scheduling, and such invalid migrations are mainly
caused by the short-term (e.g., the current or upcoming
timeslot) optimization of container scheduling. Moreover,
greedily optimizing container scheduling over the entire
time period (i.e., infinite future) is likely to cause unexpected
SLO violations. Accordingly, there is a compelling need to
design a long-term container scheduling strategy, by jointly
optimizing the cluster load balancing and migration cost of
containers within a certain sliding time window.

3 MODEL AND PROBLEM FORMULATION

In this section, we first build a discrete-time dynamic model
to capture the load imbalance degree of clusters and the
migration cost of containers. Next, we formulate a container
scheduling optimization problem based on our dynamic
model. The key model notations are summarized in Table 1.

3.1 Discrete-Time Dynamic Model
We consider a containerized cluster with a set of servers
M hosting a set of containers N . We assume the time t is
discrete and slotted, where t = {t0, t1, ..., tW } and W is the
time window size. For each container k ∈ N , its CPU and
memory resource consumption at each time t is recorded as
cpuk(t) and memk(t), respectively. For each server i ∈ M,
CPUi(t) and MEMi(t) represent its total CPU and total
memory resource consumption at time t, respectively.

Cluster load imbalance degree. We use the variance
of resource consumption of all cluster servers to represent
the load imbalance degree of the cluster. A larger degree
value indicates a severer load imbalance situation. By taking
CPU and memory resources as an example, the cluster load

imbalance degree is represented by calculating the weighted
sum of the load imbalance degrees of each resource of
servers, which is given by

Cb(t) =
1

|M| − 1

∑
i∈M

(( ∑
k∈N

xk
i (t) · cpuk(t)− CPU(t)

)2
+β ·

( ∑
k∈N

xk
i (t) ·memk(t)−MEM(t)

)2)
, (1)

where β ∈ [0, 1] denotes the normalized parameter of
memory resources to CPU resources. In practice, β can be
empirically determined as the square of the ratio of CPU to
memory resource consumption of workloads. xk

i (t) denotes
whether the container k is hosted on the server i.

xk
i (t) =

{
1, if a container k runs on a server i,
0, otherwise.

Then, we proceed to denote the average CPU resource con-
sumption CPU(t) = 1

|M|
∑

k∈N cpuk(t) and average mem-
ory resource consumption MEM(t) = 1

|M|
∑

k∈N memk(t)
of a server in the cluster.

Container migration cost. We use the sum of unit cost
of the migrated containers Ck

mig(t) to denote the migration
cost Cm(t), which is formulated as

Cm(t) =
∑
k∈N

Ck
mig(t) ·mk(t), (2)

where mk(t) =
∑

i∈M xk
i (t) ·

(
1 − xk

i (t − 1)
)

indicates
whether a container k is migrated from a source server
i at time t. As elaborated in Sec. 2.1, the migration cost
of containers is roughly linear to their memory footprint
memk(t) [24]. Accordingly, Ck

mig(t) can be given by

Ck
mig(t) = δ + γ ·memk(t), (3)

where γ and δ are linear model coefficients, which are em-
pirical and constant values. We elaborate the configuration
process of model coefficients in Appendix C.

To sum up, we further formulate the cost function C(t) of
container scheduling at each timeslot, by combining the cluster
load imbalance degree Cb(t) and the migration cost Cm(t)
as below,

C(t) = Cb(t) + α · Cm(t), (4)

where α ∈ [0, 1] denotes the normalized parameter of
migration cost Cm(t) to cluster load imbalance degree Cb(t),
which can practically be obtained by the trace analysis.
By incorporating CPU(t) and MEM(t) into Eq. (1), and
Eq. (3) and mk(t) into Eq. (2), we yield Cb(t) and Cm(t),
respectively, which are formulated as

Cb(t) =
2

|M| − 1

∑
i∈M

∑
k,l∈N

xk
i (t)x

l
i(t) ·

(
cpuk(t)cpul(t)

+β ·memk(t)meml(t)
)
+ C1,

(5)

Cm(t) = C2 −
∑
k∈N

∑
i∈M

(
δ + γ ·memk(t)

)
· xk

i (t)x
k
i (t− 1). (6)

Given a containerized cluster and workloads at time t, C1 =

−
|M|·

(
CPU(t)

2
+β·MEM(t)

2
)

|M|−1 −
∑

k∈N (cpuk(t)2+β·memk(t)2)
|M|−1

and C2 = δ · |N | + γ ·
∑

k∈N memk(t) are both constant

4
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values. The mathematical derivations can be found
in Appendix A. By analyzing the formulations above,
Eq. (5) indicates that the cluster load imbalance degree
is determined by the sum of the pairwise multiplications
between the resource consumption of containers hosted on
each server. Eq. (6) implies that the migration cost across the
cluster can be determined by the negative sum of migration
costs of the migrated containers.

3.2 Workload Scheduling Optimization Problem over a
Time Window

Based on our discrete-time dynamic model above, we pro-
ceed to formulate the long-term optimization problem of
container scheduling based on MPC. At each time t, MPC
leverages the predicted container resource consumption
(i.e., cpuk(t), memk(t)) to make scheduling decisions (i.e.,
judiciously deciding xk

i (t)) to minimize the cost function
C(t) over the time window (as in Eq. (7)). We assume the
scheduling within the time window t ∈ [t1, tW ], and our
optimization problem can be formulated as

min
xk
i (t)

tW∑
t=t1

C(t) (7)

s.t.
∑
i∈M

xk
i (t) = 1, ∀k ∈ N (8)∑

k∈N
xk
i (t) · cpuk(t) ≤ CPU cap

i (t), ∀i ∈M (9)∑
k∈N

xk
i (t) ·memk(t) ≤MEM cap

i (t),∀i ∈M (10)

where the hard constraints in our optimization problem are
as follows. Constraint (8) limits each container to be hosted
only on one server per time to avoid scheduling conflicts.
Constraints (9)-(10) ensure the total CPU and memory re-
source consumption on each server cannot exceed the server
resource capacity (i.e., CPU cap

i (t) and MEM cap
i (t)).

Problem analysis. For each timeslot, the problem de-
fined in Eq. (7) can be easily reduced to a multiprocessor
scheduling problem (MSP) [25]. MSP is considered as finding a
schedule for multiple tasks to be executed on a multiproces-
sor system at different timeslots, with the aim of minimizing
the completion time. Such a scheduling problem is known
to be NP-hard [26]. Moreover, Eq. (7) is a multi-objective
optimization problem that jointly considers minimizing the
migration cost and the cluster load imbalance degree, which
makes it hard to solve. As a result, our optimization problem
turns out to be harder than MSP. In the upcoming section,
we turn to leveraging the Monte Carlo method [16] to solve
our long-term workload scheduling optimization problem.

4 Tetris DESIGN

Based on our discrete-time dynamic model defined in Sec. 3,
this section designs Tetris, including a container resource
predictor (Sec. 4.1) and an MPC-based container scheduler
(Sec. 4.2), with the aim of jointly optimizing the cluster load
balancing degree and container migration cost over a certain
time window.

0 100 200 300
Time (hours)

5

10

15

20

25

R
es

ou
rc

e 
co

ns
um

pt
io

n 
(%

)

CPU
Memory

(a)

0 100 200 300
Time (hours)

20
30
40
50
60
70

R
es

ou
rc

e 
co

ns
um

pt
io

n 
(%

)

CPU
Memory

(b)

Fig. 6: Resource consumption of containers with respect to the physical
machine resources over time: (a) a periodic container (id = 404), and
(b) an aperiodic container (id = 22) in Alibaba cluster trace v2022.

4.1 Predicting Container Resource Consumption
We first classify workloads as periodic and aperiodic con-
tainers shown in Fig. 6, as most containerized workloads
show a diurnal pattern [27]. Specifically, we first obtain
the frequency of container resource consumption values and
calculate its corresponding periodicity. With such a value,
we then slice the container resource consumption into sev-
eral segments. We finally calculate the Pearson correlation
coefficients between every two consecutive segments and
decide whether such coefficients exceed a given periodicity
threshold thrperiod (e.g., 0.85). If the correlation coefficients
exceed thrperiod, we consider such a container as periodic.
Otherwise, we consider the container as aperiodic.

Next, we proceed to predict the resource consumption
for such two types of containers separately. Specifically, we
adopt ARIMA [28] to predict the resource consumption of
periodic containers. We mainly obtain three key parameters
(i.e., the autoregressive process of order p, the moving
average process of order q, and the difference order d)
of the ARIMA model. In addition, we leverage a sim-
ple yet effective LSTM [29] model to predict the resource
consumption of aperiodic containers, rather than a more
sophisticated attention-based model [30]. We adopt a 4-layer
stacked LSTM model with 50 neurons per layer and add
a Dropout layer between every two LSTM layers to reduce
overfitting. To alleviate the impact of error propagation, we
directly conduct the multistep-ahead predictions and set the
number of prediction steps as W . In particular, we use the
historical container resource consumption to train the shared
ARIMA and LSTM models for newly-launched containers.
To improve the prediction accuracy, we further leverage
incremental learning [31] to update a personalized model for
each container periodically.

4.2 MPC-based Container Scheduling
We design Tetris in Alg. 1 by leveraging the MPC approach
to make container scheduling decisions over the time win-
dow W . Specifically, we use a |M|× |N | matrix Xt of xk

i (t)
(i ∈ M, k ∈ N ) to denote the mapping of containers to
servers at time t ∈ [t0, tW ]. According to MPC, we first
solve the scheduling optimization problem in Sec. 3.2 to
obtain Xt,∀t ∈ [t1, tW ], at the current time t0. Then, we
proactively perform the container scheduling decision Xt1

for the first timeslot t1. After the containers are scheduled
to migration destination servers at the “current” time t1,
we continue solving the scheduling optimization problem
and then perform the container scheduling decisions for the
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Algorithm 1: Tetris: Proactive MPC-based container
scheduling algorithm for long-term load balancing.

Input: Current mapping Xt0 of container set N to
server setM, time window size W , number
of samples Z , number of trials K .

1 for all z ∈ [1, Z] do
2 for all t ∈ [t1, tW ] do

// Phase I: server classification

3 Initialize: the load threshold of migration
source servers loadsrc(t)← Eq. (12) and that
of destination servers loaddest(t)← Eq. (13),
the set of migration source/destination
serversMsrc ← ϕ,Mdest ← ϕ;

4 for each server i ∈M do
5 Calculate loadi(t)← Eq. (11);
6 if loadi(t) > loadsrc(t) then
7 Put server i in the setMsrc;

8 if loadi(t) < loaddest(t) then
9 Put server i in the setMdest;

// Phase II: container scheduling

10 for all k ∈ [1,K] do
11 Obtain the set of migrated containers

Nmig ← sampling containers fromMsrc;
12 for each container c ∈ Nmig do
13 for each server i ∈Mdest do
14 Calculate the container scheduling

cost C(t)← Eq. (4), if container c
is migrated to server i;

15 Update Xt by migrating container c to
the server i with the smallest C(t);

16 if Xt satisfies the Constraints (8) – (10) then
17 break;

18 Update Xt ← Xt−1; // Xt cannot

satisfy scheduling constraints

19 Calculate the overall container scheduling cost
over the time window W as costz ← Eq. (7)
with Xt for each sample z;

20 Obtain Xmin
t ← Xt with the minimum costz among

all Z samples;
21 return: Container scheduling decisions for the first

timeslot (i.e., Xmin
t1 ).

“first” timeslot t2. Accordingly, Tetris can be periodically (e.g.,
for several minutes or hours) executed at each timeslot to
maintain the load balancing of the containerized cluster.

In more detail, we solve the scheduling optimization
problem using the Monte Carlo method [16] as discussed in
Sec. 3.2. We take Z sample solutions in total, and each sample
solution includes a set of container scheduling decisions Xt

over the time window t ∈ [t1, tW ] (lines 1 to 2). To obtain
the container scheduling decisions for each timeslot t, we
design two phases in Alg. 1 including server classification
(lines 3 to 9) and container scheduling (lines 10 to 18), which
are elaborated as follows.

Phase I: server classification. We classify the cluster
servers into three categories, i.e., migration source servers

and destination servers as well as the remaining servers
(lines 3 to 9). Based on the cluster load imbalance degree (i.e.,
Eq. (5)) defined in our dynamic model, we can obtain the
simplified load imbalance degree (i.e., loadi(t)) for each server i
given by

loadi(t) =
∑

k,l∈N
xk
i (t)x

l
i(t) ·

(
cpuk(t)cpul(t)

+ β ·memk(t)meml(t)
)
.

(11)

Obviously, the CPU and memory resource consumption of
each server are CPU(t) and MEM(t), respectively, when
the cluster reaches the “ideal” load-balanced state. As the
load imbalance degree loadi(t) of each server i can vary
with the hosted containers and their resource consumption,
we obtain the load threshold of migration source servers
loadsrc(t) and that of destination servers loaddest(t) as in
Theorem 1. In particular, Tetris can tolerate moderate predic-
tion errors of container resource consumption for classifying
migration source and destination servers.

Theorem 1. Given a server hosting a set of containers with the
average CPU and memory resource consumption (i.e., CPU(t)
and MEM(t) at time t, we formulate the two load thresholds
loadsrc(t) and loaddest(t) as

loadsrc(t) =
|N | − 1

2|N |
·
(
CPU(t)

2
+ β ·MEM(t)

2
)
, (12)

loaddest(t) =
1

2

(
CPU(t)

2
+ β ·MEM(t)

2

−
n(t)∑
k=1

(
cpuk(t)2 + β ·memk(t)2

))
. (13)

By sorting containers in descending order with the CPU and
memory resource consumption, cpuk(t) and memk(t) repre-
sent the CPU and memory consumption of the k-th container
at time t, respectively. n(t) denotes the minimum number
of containers which satisfies

∑n(t)
k=1 cpu

k(t) ≤ CPU(t) and∑n(t)
k=1 memk(t) ≤MEM(t).

Proof. The proof can be found in Appendix B. ⊓⊔

Phase II: container scheduling. To make Alg. 1 prac-
tical, we sample a set of containers to be migrated Nmig

from the set of migration source servers Msrc. To achieve
extensive coverage of possibilities with a small number of
samples, we adopt Latin Hypercube Sampling (LHS) with
a sampling rate of v per migration source server (line 11).
For each container to be migrated, we further select the
migration destination server in Mdest with the smallest
container scheduling cost and then update Xt (lines 12 to
15). Considering the randomness of sampling, the obtained
container scheduling decisions Xt can violate constraints
(8) – (10). If no violations occur, Xt is valid and we continue
the container scheduling process for the next timeslot t+ 1.
Otherwise, we require re-samplingNmig and obtain another
Xt, until K trials are finished (line 10) or the scheduling
constraints are satisfied (lines 16 to 17).

Finally, we iteratively calculate the overall container
scheduling cost over the time window W for each sample z.
We choose the container scheduling decisions Xmin

t with the
minimized scheduling cost among Z samples. According to
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MPC, we only perform the container scheduling decisions
Xmin

t1 for the first timeslot t1 (lines 19 to 21).
Determining parameters in Tetris. We obtain three key

parameters (i.e., v, W , Z) in Alg. 1 as below. First, we set the
sampling rate v for migration containers as the minimum of
two ratios (i.e., one is the ratio of migration source servers
with the CPU resource consumption exceeding CPU(t),
and the other is the server ratio with the memory resource
consumption exceeding MEM(t)). Second, we configure the
time window size W as the minimum of two values (i.e., W1,
W2). W1 is the maximum time window with the prediction
error of container resource consumption below a threshold
(e.g., 20%). W2 is the window size with the fastest growing
number of invalid migrations (in Fig. 4). Third is to set
the number of samples Z . To uniformly sample different
types of containers, we perform k-means clustering on the
CPU and memory resource consumption of containers. We
simply set the cluster number k as the lower bound of Z .

Time complexity analysis. According to Alg. 1, the time
complexity of Tetris is in the order of O(ZWK · |N ||M|).
As the number of containers |N | and the number of servers
|M| are both far larger than the time window size W and
the number of trials K , the complexity can be reduced to
O(Z · |N | · |M|). Accordingly, given a containerized cluster
and workloads, the computation overhead of Tetris can be
practically acceptable, which will be validated in Sec. 5.4.

Prototype implementation. We implement a prototype
of Tetris based on K8s, with over 1, 000 lines of Python and
Linux Shell codes which are publicly available on GitHub3.
In particular, we implement the container migration module
of Tetris by converting container scheduling decisions into a
series of K8s pod operations (i.e., pod deletion and creation
commands executed on migration source and destination
servers). We plan to integrate the container live migration of
CRIU into Tetris as our future work.

5 PERFORMANCE EVALUATION

In this section, we evaluate Tetris by conducting prototype
experiments based on a 60-container K8s cluster in Ama-
zon EC2 and complementary large-scale simulations driven
by real-world Alibaba production cluster traces v2018 and
v2022. We focus on answering the questions listed below.

• Accuracy: Can Tetris accurately predict the resource
consumption of long-running containers? (Sec. 5.2)

• Effectiveness: Can our Tetris scheduling strategy
jointly optimize the cluster load balancing degree
and migration cost for long-running containers with-
out incurring SLO violations? (Sec. 5.3)

• Overhead: How much runtime overhead does Tetris
practically bring? (Sec. 5.4)

5.1 Experimental Setup
Cluster configurations and workloads. We carry out proto-
type experiments upon 10 m6a.large EC2 instances. Each
instance is equipped with 2 vCPUs and 8 GB memory
and initially hosting 6 containers. We select three represen-
tative containerized workloads including Apache Tomcat

3. https://github.com/icloud-ecnu/Tetris
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Fig. 7: (a) Sum of the squared errors (SSE) of k-means clustering on
CPU and memory resource consumption of containers with different k
values, and (b) the optimization objective value decreasing slowly from
20 samples in the Monte Carlo method.

server4, Redis5, and ResNet50 [32] training. We use Apache-
benchmark6 and redis-benchmark7 as the time-varying user
requests for Tomcat Web server and Redis, respectively.
We adopt CIFAR-108 as the dataset for ResNet50. We ran-
domly deploy the three workloads on the 60 containers in
our cluster. To obtain complementary insights, we build a
trace-driven simulator based on a discrete-event simulation
framework [33]. We adopt Alibaba cluster traces v2018 and
v2022 [9] for the prediction of container resource consump-
tion and large-scale simulations.

Tetris parameters and model coefficients. We first con-
figure four Tetris parameters. The number of samples Z is
set as 20, as the container resource consumption can be clus-
tered with 20 types and the optimization value converges at
20 samples shown in Fig. 7. The time window size W is set
as 2 based on the prediction accuracy of container resource
consumption. The number of trials K and the sampling
ratio v of migration containers are empirically set as 10 and
40%, respectively. Second, we empirically set four model
coefficients including α, β, γ, and δ as 0.004, 0.0025, 1, and
10, respectively. The detailed configuration process can be
found in Appendix C.

Baselines and metrics. We evaluate Tetris against the
conventional Sandpiper [8] and the state-of-the-art Metis+

(i.e., a modified version of Metis [3]) scheduling algorithms.
To achieve load balancing, Sandpiper performs a greedy
worst-fit algorithm to schedule containers according to the
container index volume calculated by the multi-dimensional
resource consumption [8]. Metis+ uses the method in Tetris
to select migration source servers and migrated containers
and leverages the negative value of Eq. (4) as the reward
of RL to make container scheduling (i.e., where to schedule)
decisions. In particular, we use the mean absolute percentage
error (MAPE) [34] to evaluate the efficacy of the predictor
module of Tetris. Meanwhile, we adopt the load imbalance
degree defined in Eq. (1) and the migration cost defined in
Eq. (2) as well as the number of SLO violations to evaluate
the efficacy of the scheduler module of Tetris. Due to the
randomness of sampling in the Monte Carlo method and
workload placement on containers, we illustrate the con-
tainer scheduling performance with error bars of standard
deviation by repeating experiments three times.

4. https://tomcat.apache.org/
5. https://redis.io/
6. https://httpd.apache.org/docs/2.4/programs/ab.html
7. https://redis.io/topics/benchmarks
8. https://www.cs.toronto.edu/∼kriz/cifar.html
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(c) ARIMA (trace v2022)
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Fig. 8: Average prediction accuracy of CPU and memory resource consumption of 67, 437 containers and 676, 938 containers in Alibaba cluster
traces v2018 and v2022, respectively, by varying the prediction window size from 1 to 6.

TABLE 2: Number of containers with periodic or aperiodic CPU/memory
resource consumption in Alibaba cluster trace v2018 and v2022.

Container type CPU Memory

v2
01

8 #periodic containers 49, 962 40, 501

#aperiodic containers 17, 475 26, 936

v2
02

2 #periodic containers 416, 905 151, 147

#aperiodic containers 260, 033 525, 791

5.2 Validating Container Resource Predictor in Tetris

We first classify the resource consumption of containers
as periodic or aperiodic using the method elaborated in
Sec. 4.1. As shown in Table 2, the periodic CPU and memory
resource consumption accounts for 61.6% − 74.1% and
22.3%−60.1% of containers, respectively, while the propor-
tion of aperiodic CPU and memory resource consumption
are only 25.9%−38.4% and 39.9%−77.7%, respectively, for
both Alibaba cluster traces v2018 and v2022.

We next examine the prediction accuracy of container
resource consumption. We use 70% of the trace data to train
the ARIMA and LSTM models in Tetris. As shown in Fig. 8,
we first observe that ARIMA is more accurate than LSTM in
predicting the resource consumption of periodic containers.
This is because the moving average and autoregression in
ARIMA accurately captures the periodic resource consump-
tion of containers, with a small prediction error (i.e., less
than 15%). Second, LSTM achieves a more accurate predic-
tion error (i.e., 0.9% – 13.9%) for the resource consumption
of aperiodic containers compared with ARIMA. This is
mainly because ARIMA can easily be affected by abnormal
spikes in aperiodic resource consumption, while LSTM can
learn such large resource fluctuations through model train-
ing. Interestingly, LSTM achieves around 10.4% − 23.9%
of prediction error for periodic containers as depicted in
Fig. 8(b) and Fig. 8(d), simply because LSTM contains
nonlinear activation functions and thus overfits the periodic
data [35]. Third, the prediction error of container resource
consumption can significantly increase from 0.9% to 23.9%
with the time window size ranging from 1 to 6. That is the
reason why Tetris controls the time window size W within 3
to maintain an acceptable prediction error (i.e., within 20%)
of container resource consumption.

We finally examine the prediction overhead of Tetris.
Specifically, the average prediction time of ARIMA and
LSTM are 0.25 seconds and 0.36 seconds, respectively, for
each container. Though Tetris requires a shared model for all
containers and a personalized model for each container, the
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Fig. 9: Performance comparison of Tetris with Sandpiper and Metis+
strategies under K8s-based prototype experiments, in terms of the
cumulative values of (a) cluster load imbalance degree and (b) migration
cost of containers over time (i.e., 5 timeslots with 5 minutes each).

average storage footprint of an ARIMA model and an LSTM
model are just 556 KB and 908 KB, respectively. Such time
and space overhead above for the prediction of container
resource consumption is practically acceptable.

5.3 Effectiveness of Tetris
Prototype experiments on Amazon EC2. We first evaluate
the effectiveness of Tetris in a 60-container K8s cluster by
setting the timeslot9 as 5 minutes. As shown in Fig. 9, Tetris
achieves a lower load imbalance degree by 74.4% – 77.8%
and 53.0% – 59.6% compared with Sandpiper and Metis+,
respectively. Moreover, the migration cost with Tetris is 7.8%
– 79.5% and 10.3% – 77.0% lower than that with Sandpiper
and Metis+, respectively. This is because (1) Tetris jointly
optimizes the load imbalance degree and migration cost,
while Sandpiper greedily migrates containers to alleviate
the server hotspot without considering the negative impact
of migration cost, which causes 37 invalid migrations in
total. (2) Though Metis+ leverages the RL method to explic-
itly consider the migration cost, it sacrifices the container
performance for a certain number of timeslots to optimize
container scheduling over the entire time period (i.e., infinite
future), bringing 12 invalid migrations for 5 timeslots. In
contrast, Tetris continuously optimizes each timeslot (i.e., 5
minutes) using a certain sliding time window.

To illustrate the effectiveness of Tetris, we further take a
close look at the scheduling decisions made by the three
strategies. As shown in Fig. 10, we observe that Tetris
achieves the most load balancing than the other two strate-
gies at both time 0 and time 1, by proactively migrating out
four small containers (i.e., c3 – c6) at time 0. In comparison,
Sandpiper causes an invalid migration of container c1. As
server s1 is overloaded at time 0 by setting the overload

9. The timeslot can be determined by the cluster administrator ac-
cording to the cluster requirements.
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Fig. 10: Comparison of container scheduling decisions on server s1 of
the 60-container K8s cluster in the timeslot [0, 1] under Tetris, Sandpiper,
and Metis+ strategies.

TABLE 3: Cumulative number of SLO violations over time in our proto-
type experiments on a 60-container K8s cluster.

Duration (timeslots) 0 1 2 3 4 5

Sandpiper 0 0 14 22 26 61

Metis+ 0 0 0 8 8 20

Tetris 0 0 0 0 0 0

threshold as 85%, Sandpiper chooses to migrate container
c1 (i.e., the container with the maximum volume) to server
s2. It then migrates container c1 back to server s1 as server
s2 is overloaded at time 1, resulting in poor load balancing
and large migration cost. As for Metis+, it migrates out
containers (i.e., c2 – c4) and container c6 at time 0 and
time 1, respectively, because it adopts online training of the
RL model, which has not been trained well enough over
the initial time [0, 1]. In addition, Metis+ mainly considers
the optimization over the infinite future, which is likely to
increase the load imbalance degree or migration cost over a
certain time period (e.g., time [0, 1]).

We proceed to examine whether Tetris can guarantee the
SLO of workloads. For simplicity, we consider the containers
hosted on the overloaded servers as SLO violations. As shown
in Table 3, Tetris causes zero SLO violations, while Sandpiper
and Metis+ can cause up to 35 and 12 SLO violations,
respectively, within one timeslot (i.e., at time 5). The reason
is that Tetris explicitly considers the hard constraints (i.e.,
Constraints (9)–(10)) on the CPU and memory resource
capacities of servers, guaranteeing the workload SLO for
each timeslot. However, Sandpiper greedily migrates the
container with the largest volume to the server with the light-
est load. It does not check whether the server load exceeds
the capacity on the migration destination server, causing
unexpected SLO violations to containers. The RL method
in Metis+ is not designed to guarantee the scheduling con-
straints, so that it allows the occurrence of SLO violations
over a certain time period to optimize container scheduling
(i.e., maximize the action reward) over the infinite future.

Large-scale simulations driven by Alibaba cluster
trace. We next evaluate the effectiveness of Tetris with real-
world trace-driven simulations, by setting the timeslot as
1 hour. As shown in Fig. 11, Tetris can reduce the load
imbalance degree of the cluster by 9.7% – 28.6% compared
with Sandpiper and Metis+. Additionally, Tetris achieves
the lowest migration cost, which is reduced by 27.4% –
74.1% than the other two strategies. Such results above
are consistent with our prototype experiments. This is be-
cause Tetris co-optimizes the load balancing and migration
cost to alleviate invalid migrations. In contrast, Sandpiper

1 3 5 8
Time (days)

0.0

0.8

1.6

2.4

Lo
ad

 im
ba

la
nc

e 
de

gr
ee

1e7
Sandpiper
Metis +

Tetris

(a)

1 3 5 8
Time (days)

0

2

4

6

8

M
ig

ra
tio

n 
co

st

1e3
Sandpiper
Metis +

Tetris

(b)

Fig. 11: Performance comparison of Tetris with Sandpiper and Metis+
strategies under simulations on Alibaba cluster trace v2018, in terms
of the cumulative values of (a) cluster load imbalance degree and (b)
migration cost of containers over 8 days (the timeslot is 1 hour).
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Fig. 12: Cumulative number of invalid migrations of Tetris compared with
that of Sandpiper and Metis+ strategies under simulations on a 24-hour
Alibaba cluster trace v2018.

greedily alleviates the heavy server load using the worst-
fit algorithm, resulting in many invalid migrations and a
high growth rate of migration cost as depicted in Fig. 11(b).
Though Metis+ can optimize the load imbalance degree and
migration cost over the infinite future, it achieves a worse
load balancing degree in the early stage (i.e., the first 5
days) and a better load degree in the late stage (i.e., day 8)
compared with Tetris as shown in Fig. 11(a). This is because
it requires continuous online training until the RL model
converges (after day 5), which is likely to cause a moderate
number of invalid migrations in the early stages.

We further examine whether Tetris can alleviate invalid
migrations. As shown in Fig. 12, Tetris reduces the num-
ber of invalid migrations by 59.4% – 81.3% and 32.4% –
78.9% as compared with Sandpiper and Metis+, respec-
tively. Tetris and Metis+ can reduce the number of invalid
migrations, simply because they both consider long-term co-
optimization of load balancing and migration cost for con-
tainer scheduling. In comparison, Sandpiper only considers
short-term optimization of container scheduling, resulting
in a significant number of invalid migrations. As Metis+

achieves long-term container scheduling over the infinite
future, which can cause more invalid migrations than Tetris
over a certain number of timeslots. In particular, Sandpiper
invokes a significant number of invalid migrations at time
20, because the resource consumption of containers varies
greatly which overloads a number of servers at time 20.

Similar to our prototype experiments, we proceed to
examine whether Tetris can guarantee the SLO of workloads
in large-scale simulations. As shown in Table 4, we observe
that Tetris does not cause any SLO violations for 8 days,
while both Sandpiper and Metis+ can cause up to 14, 403
and 918 SLO violations, respectively, which account for
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TABLE 4: Cumulative number of SLO violations over time in a simulated
67, 437-container cluster driven by Alibaba cluster trace v2018.

Duration (days) 1 3 5 8

Sandpiper 881 3, 512 12, 248 14, 403

Metis+ 0 220 220 918

Tetris 0 0 0 0

TABLE 5: Performance comparison of Tetris with various parameter
configurations (i.e., [W , Z]) on a 24-hour Alibaba cluster trace v2018, by
jointly considering cluster load imbalance degree (Cb(t)) and migration
cost of containers (Cm(t)). [2, 20] particularly denotes the default Tetris.

[W , Z] [2, 20] [4, 20] [6, 20] [2, 10] [2, 30]

Cb(t) 59.8 60.8 63.1 62.4 60.4

Cm(t) 1.6 2.0 3.5 2.8 1.7

21.4% and 1.4% of the total number of containers. Our
simulation results above are consistent with the prototype
experiments, demonstrating the effectiveness of Tetris in
guaranteeing workload SLOs.

We finally conduct a sensitivity analysis of two key Tetris
parameters (i.e., the window size W and the number of
samples Z) in Alg. 1. As shown in Table 5, the default
Tetris achieves the lowest container scheduling performance
among various parameter configurations. Specifically, the
performance metrics (i.e., Cb(t) and Cm(t)) both increase
moderately as W varies from 2 to 6, simply because the pre-
diction error of container resource consumption increases as
shown in Fig. 8. Additionally, the performance of container
scheduling first decreases and then stabilizes as Z increases
from 10 to 30, which is consistent with our configuration
analysis of Z in Fig. 7.

5.4 Runtime Overhead of Tetris

As shown in Fig. 13(a), we observe that the runtime over-
head of the three strategies increases quadratically with the
cluster scale, while Sandpiper and Tetris achieve much lower
overhead than Metis+. The rationale is that the search
space of Metis+ contains all possible mappings of contain-
ers to servers, while Sandpiper and Tetris only consider
the overloaded servers (containers) and the containers on
the migration source and destination servers, respectively.
Though the time complexity of Tetris is in the order of
O(|N | · |M|) (as discussed in Sec. 4.2), the quadratic term
ratio (obtained using polynomial regression) of Tetris is only
1.9e − 07, which is much smaller than that of Metis+ (i.e.,
2.4e − 05) and Sandpiper (i.e., 5.5e − 07). Similarly, Tetris
consumes a much smaller amount of memory than Metis+

and Sandpiper as shown in Fig. 13(b). This is because
Metis+ stores the policy of RL which involves all states and
actions as well as the large parameters of neural networks.
Sandpiper requires storing the volumes of all containers
and servers. In comparison, Tetris only needs to calculate
the load imbalance degree of all servers and the migration
cost of a subset of containers (i.e., containers to be migrated).

In addition, we illustrate the computation overhead of
three strategies over various time scales (i.e., from 1 to 8
days) in Table 6. The computation time of Tetris is slightly
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Fig. 13: Runtime overhead of Tetris compared with that of Sandpiper and
Metis+ strategies for each timeslot (i.e., 1 hour) on a 24-hour Alibaba
cluster trace v2018, by varying the number of servers from 100 to 3, 989
with each hosting 17 containers.

TABLE 6: Cumulative computation overhead (in minutes) of Tetris, Sand-
piper and Metis+ scheduling algorithms executed on a 8-day Aliababa
cluster trace v2018.

Duration (days) 1 3 5 8

Sandpiper 4.5 17.6 28.5 46.7

Metis+ 86.1 333.6 503.2 827.1

Tetris 6.5 19.8 29.2 51.5

longer than that of Sandpiper (i.e., 0.7 – 4.8 minutes), while
much shorter than that of Metis+ (i.e., 79.6 – 775.6 min-
utes) as the time scale increases. This is because Sandpiper
triggers the fewest algorithm executions only when the
resource hotspot occurs. Metis+ greedily selects the largest
reward action across all state spaces in each timeslot. Also, it
requires online training to update the RL model. In contrast,
Tetris periodically triggers the execution of Alg. 1 in each
timeslot. Such time overhead is much smaller than Metis+

per timeslot as depicted in Fig. 13(a). As a result, the runtime
overhead of Tetris is practically acceptable.

6 RELATED WORK

Short-term optimization of workload scheduling. There
have been many works devoted to scheduling VMs or
containers by considering the short-term (e.g., the current
or upcoming timeslot) benefits. To predict the resource
consumption of workloads, Dabbagh et al. [36] leverage the
Wiener filter method for achieving VM consolidations [37],
while Madu [30] designs a more complicated attention-
based machine learning model to reduce workload latency.
Bayesian optimization [38] and prediction-based vertical
auto-scaling [39] have been proposed to improve cluster
utilization and workload performance. Medea [2] further
considers several constraints like affinity and cardinality of
containers. To particularly optimize the initial placement of
containers, Lv et al. [24] propose a communication-aware
worst-fit decreasing algorithm and select the best server for
satisfying the network SLO in K8s [40]. To achieve cluster
load balancing, Sandpiper [8] performs the worst fitting
algorithm using the server load index based on cluster
resources. ATCM [41] schedules containers among the cloud
servers to minimize the migration cost while maintaining
the degree of load balance in a short time scale. Neverthe-
less, such short-term optimizations of workload scheduling
above can inevitably cause invalid migrations as illustrated
in Sec. 2.2. In contrast, Tetris leverages the MPC approach to
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achieve the long-term optimization of container scheduling
and jointly optimize load balancing and migration cost for
long-running workloads.

RL-based workload scheduling. Two recent works (i.e.,
Metis [3], George [5]) design RL algorithms to obtain ef-
ficient initial placement plans for long-running containers,
by modeling the reward as an indicator of container per-
formance and constraint violations. To improve cluster uti-
lization Mondal et al. [4] schedule time-varying workloads
to servers using deep reinforcement learning (DRL). To
consider the long-term optimization of workload schedul-
ing, Megh [42] leverages an online RL-based VM migra-
tion method to minimize energy consumption and avoid
SLO violations. A-SARSA [43] adopts an RL-based con-
tainer horizontal scaling approach to adjust the number
of actions corresponding to each state to avoid repeated
scheduling. However, RL-based scheduling methods can
cause unexpected SLO violations by considering the long-
term optimization over the infinite future, as evidenced
by Sec. 2.3 and Sec. 5.3. Additionally, RL methods have
high time complexity and memory consumption even after
the dimensionality reduction, which requires efforts to be
deployed in large-scale clusters as shown in Sec. 5.4. To
reduce the computation complexity to minutes, Tetris lever-
ages the MPC approach to obtain a sub-optimal solution
over a certain and sliding time window, which is sufficient
for our requirements of long-term container scheduling in
production clusters.

7 CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of Tetris,
a proactive MPC-based container scheduling strategy for
achieving long-term load balancing of clusters. By devis-
ing a discrete-time dynamic model of shared containerized
clusters, Tetris judiciously identifies the container schedul-
ing decisions (i.e., which container to schedule and where to
schedule) for each timeslot using the Monte Carlo method,
with the aim of jointly optimizing cluster load balancing and
migration cost of containers. We implement a prototype of
Tetris and conduct prototype experiments on Amazon EC2
and large-scale simulations driven by Alibaba cluster traces
v2018 and v2022. Our experiment results demonstrate that
Tetris can improve the cluster load balancing degree by up
to 77.8%, while reducing the migration cost by up to 79.5%
with acceptable runtime overhead, compared with the state-
of-the-art container scheduling strategies.

As our future work, we plan to extend our discrete-
time dynamic model by incorporating more types of server
resources such as GPU, network and disk I/O resources.
We also plan to incorporate CRIU into Tetris to support
container live migrations and examine the effectiveness and
scalability of Tetris in large-scale production clusters.
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