
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 1

Joint Optimization of Parallelism and Resource
Configuration for Serverless Function Steps

Zhaojie Wen, Qiong Chen, Yipei Niu, Zhen Song, Quanfeng Deng, Fangming Liu∗, Senior Member, IEEE

Abstract—Function-as-a-Service (FaaS) offers a fine-grained resource provision model, enabling developers to build highly elastic
cloud applications. User requests are handled by a series of serverless functions step by step, which forms a multi-step workflow. The
developers are required to set proper configurations for functions to meet service level objectives (SLOs) and save costs. However,
developing the configuration strategy is challenging. This is mainly because the execution of serverless functions often suffers from
cold starts and performance fluctuation, which requires a dynamic configuration strategy to guarantee the SLOs. In this paper, we
present StepConf, a framework that automates the configuration as the workflow runs. StepConf optimizes memory size for each
function step in the workflow and takes inter and intra-function parallelism into consideration, which has been overlooked by existing
work. StepConf intelligently predicts the potential configurations for subsequent function steps, and proactively prewarms function
instances in a configuration-aware manner to reduce the cold start overheads. We evaluate StepConf on AWS and Knative. Compared
to existing work, StepConf improves performance by up to 5.6× under the same cost budget and achieves up to a 40% cost reduction
while maintaining the same level of performance.

Index Terms—Serverless Computing, Resource Management, Resource Configuration, Function Workflow.

✦

1 INTRODUCTION

Function-as-a-Service (FaaS) is a new paradigm for server-
less computing that allows developers to run code in the
cloud without having to maintain and operate cloud re-
sources [1], [2]. Developers need only submit function code
to FaaS platforms, where compute resources are provisioned
and functions are executed seamlessly. Therefore, develop-
ers only need to focus on business logic, which accelerates
application development progress and saves operational
costs. With FaaS platforms like AWS Lambda [3], developers
can rapidly leverage hundreds of CPU cores by invoking
massive functions simultaneously.

Benefiting from the fine-grained, high elasticity of FaaS,
many applications have been developed based on serverless
functions, including video processing [4], [5], [6], machine
learning [7], [8], [9], [10], code compilation [11], big-data
analytic [12], [13], [14], [15], [16], etc. To migrate applications
to FaaS platforms, developers need to decouple monolithic
applications into multiple functions, resulting in complex
multi-step serverless workflows. However, developers face

• This work was supported in part by the National Key Research &
Development (R&D) Plan under grant 2022YFB4501703, and in part
by The Major Key Project of PCL (PCL2022A05). (Corresponding author:
Fangming Liu)

• Z. Wen, Y. Niu, Z. Song, and Q. Deng are with the National Engineering
Research Center for Big Data Technology and System, Services Computing
Technology and System Lab, Cluster and Grid Computing Lab in the
School of Computer Science and Technology, Huazhong University of
Science and Technology, 1037 Luoyu Road, Wuhan 430074, China. E-
mail: wenzhaojie@foxmail.com

• Q. Chen is with the Hangzhou Research Centre, Central Software In-
stitute, Distributed LAB, YuanRong Team, Huawei, Hangzhou, China.
E-mail: chenqiong13@huawei.com

• F. Liu is with Peng Cheng Laboratory, and Huazhong University of
Science and Technology, China. E-mail: fangminghk@gmail.com

Manuscript received xxxx xx, 2023; revised xxxx xx, 2023.

challenges in setting proper configurations for workflows to
optimize the cost and ensure performance. We summarize
these challenges as follows:

Vague Impact of Resource Configurations: The cost
and performance of functions in FaaS depend heavily on
user-configured resource parameters. However, due to the
unique resource allocation and pricing mechanisms of FaaS
platforms, understanding the impact of resource configura-
tion can be challenging. Therefore, it is difficult to determine
the appropriate resource parameters to achieve high perfor-
mance and low cost. As a result, developers often struggle
to determine the optimal resource configuration for their
workflows [17], [18], [19].

Performance Fluctuations in Workflows: FaaS fre-
quently depend on external storage services to enable ex-
tensive data exchange in workflows [20], [21]. Nevertheless,
these external services demonstrate considerable variations
in data transmission delay, ranging from a few hundred mil-
liseconds to a couple of seconds. Additionally, function cold
starts prevent concurrent mapping invocations from starting
simultaneously, leading to different mapping delays. These
factors introduce fluctuations in the performance of function
steps, rendering it difficult to ensure end-to-end SLOs for
workflows concerning configuration optimization.

Exponential Growth of Configuration Space: FaaS app
developers are required to configure several parameters for
each function. As the number of functions in the workflow
grows, the decision space for parameters grows exponen-
tially, making it difficult to find the optimal configuration.
Adjusting the configuration according to different SLOs
further complicates the resource configuration problem.

Challenge in Optimizing Parallelism of Function Step:
The stateless nature of FaaS functions combined with their
robust scalability simplifies and enhances parallel execution.
FaaS workflows are particularly suitable for both inter-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 2

λ1 λ2 λ3 ...

Previous	Function	Step
Inter-function
Parallelism

Function	Step

Next	Function	Step

Lambda
Function

...

Threads

Intra-function
Parallelism

Memory	Size

Fig. 1: Resource configuration parameters in a function step.
The yellow blocks represent concurrently running function
instances, where each function instance consists of multiple
processes to achieve intra-function parallelism.

function and intra-function parallelism. A function step can
not only implement inter-function parallelism via concur-
rent instances, but it can also execute intra-function par-
allelism using multiple processes within a single function
instance. Therefore, besides the function memory size, it
is equally critical to optimize the parallelism within each
function step in the workflow, which is overlooked by
existing works [22], [23], [24].

To better solve these challenges, in this paper, we present
the design, implementation, and evaluation of StepConf,
an SLO-aware dynamic cost optimization framework for
multi-step serverless workflows. Our approach is an online
solution that dynamically determines the configuration for
each function step before its execution, jointly optimizing
inter-function parallelism, intra-function parallelism, and
function memory size, as shown in Figure 1.

In this way, we can not only improve resource effi-
ciency through optimized parallelism, but also optimize the
configuration step-by-step in real time to correct workflow
progress, mitigate the impact of function performance vari-
ations, and ensure workflow SLOs while reducing costs. We
also developed a function prewarming mechanism to miti-
gate function cold start to reduce performance fluctuations.

First, we perform extensive measurements on AWS Step
Functions to analyze the underlying service mechanism of
serverless workflows. Our discussion indicates that perfor-
mance fluctuations are primarily driven by the data trans-
mission of external storage services and the cold start of
functions. To tackle this challenge, we have developed a
model in performance estimator that leverages historical
data, applying piece-wise fitting for both single-core and
multi-core scenarios. Meanwhile, we use statistical quantile
regression models to estimate the mapping delays and data
transmission delays of functions. These approaches resolve
the vague impact of resource configuration on performance
and provide accurate estimates of performance and cost for
online dynamic configuration optimization.

Second, we formally model the workflow resource con-
figuration optimization problem and show that it is NP-
hard. To this end, we transform the problem into a deci-
sion problem for each function step and utilize a heuristic
optimization algorithm based on the critical path to satisfy
real-time requirements at low costs. It is an online method
that dynamically optimizes the configuration of the en-
tire workflow step by step. We employ the Configuration

Optimizer to execute this algorithm. It achieves optimal
resource utilization by dynamically optimizing each step of
the workflow in real-time while meeting SLO requirements.

Third, we integrate an advanced workflow engine into
StepConf. This engine efficiently coordinates various func-
tions according to user-defined workflows and closely inte-
grates with the Configuration Optimizer, enabling dynamic
configuration optimization throughout the execution of the
workflow. Additionally, we incorporate a Configuration-
Aware function prewarming mechanism into the workflow
engine. It utilizes the dependency within the workflow
to proactively prewarm function instances. By accurately
predicting the configuration needs for the next step and
prewarming the requisite number and size of function in-
stances in advance, this mechanism significantly reduces
the likelihood of cold starts in the following function steps.
Moreover, we design a highly scalable Function Manager,
which not only facilitates efficient parallel processing of
function steps but also enhances the flexibility and scal-
ability of StepConf, enabling it to support a wide range
of FaaS platforms, including open-source and commercial
platforms.

Finally, extensive experimental results show that Step-
Conf improves performance by up to 5.6× under the same
cost budget and achieves up to a 40% cost reduction while
maintaining the same level of performance compared with
baselines.

Considering that this work is an extension based on our
previous work [25], we highlight the key improvements as
follows.

• We enhance the accuracy of our performance esti-
mation model by integrating a quantile regression
model, which effectively predicts mapping and data
transmission delays, thus significantly improving the
overall precision of our performance estimation.

• We design a new Configuration-Aware function pre-
warming mechanism to StepConf, which leverages
the workflow dependencies and performance mod-
els to initialize the required function instances in
advance for the next function step, reducing the
mapping delay caused by cold starts.

• We reconstruct the architecture of StepConf to sup-
port open-source FaaS platforms. We design and im-
plement a workflow engine and adapt it to different
platforms by adding the Function Manager.

• We expand the experimental evaluation by introduc-
ing a machine learning workflow and comparing it
with additional baselines and evaluation metrics to
better demonstrate the advantages of StepConf.

The rest of this paper is organized as follows: The
background and motivation are introduced in Section 2;
Section 3 describes how StepConf establishes its perfor-
mance estimation model; Section 4 details the definition of
the configuration optimization problem and the design of
heuristic algorithms for its resolution; Section 5 presents the
function prewarming mechanism; Section 6 discusses the
design and implementation details of StepConf’s system
components; Section 7 shows the experimental evaluation
of StepConf. The related work is reviewed in Section 8, with
the conclusion of this study presented in Section 9.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 3

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of func-
tion workflows. Then, we summarize the shortcomings of
existing work and discover two key factors they overlook.
Finally, we discuss the design motivation behind workflow
configuration optimization.

2.1 Configuration for Multi-step Serverless Workflows

Many real-world serverless applications are implemented
as multi-step function workflows, where incoming user
requests invoke a set of serverless function steps, and each
function step performs a specific task while coordinating
with other function steps to complete the entire workflow.
These function steps can be executed either serially or in
parallel to improve processing performance.

However, optimizing the resource configuration of func-
tions within serverless workflows presents a major chal-
lenge for developers, as previously discussed. There has
been some previous work conducted in this area. For in-
stance, AWS Lambda Power Tuning Tools [18] provides a
tool to help developers optimize serverless function config-
urations, reducing costs while achieving performance goals.
However, this tool is only suitable for optimizing the con-
figuration of a single node and does not apply to serverless
workflows. COSE [22] models and optimizes resource con-
figuration for chain-based workflows. It intelligently collects
samples using Bayesian statistical methods and predicts
the cost and execution time of serverless functions under
different configurations. It also uses integer linear program-
ming to solve the optimization problem, meeting the SLO
of the user’s workflow. However, this work does not con-
sider complex DAG workflows. ORION [23] establishes a
performance model for DAG-style function workflows and
proposes a method for co-locating multiple parallel function
calls within a single Virtual Machine (VM). It optimizes
function resource configuration to meet the E2E latency
requirements of the workflow.

However, these works have shortcomings. They all over-
look the importance of jointly optimizing parallelism and
resource allocation in the function steps (Section 2.2), and
the need to dynamically configure optimized workflows
may lead to difficulties in guaranteeing SLO (Section 2.3).
This gives us the motivation for our research.

2.2 Jointly Optimize Parallelism in Function Steps

In the FaaS environment, choosing the appropriate memory
size for functions is crucial. However, beyond the configu-
ration dimension of resource specifications, the parallelism
of function steps is also a very important dimension.

Firstly, we can utilize the parallelism between concurrent
function instances (inter-function parallelism). For example,
in a video processing workflow, we can simultaneously
invoke different functions to perform various tasks for
processing video images, as shown in Figure 14. Although
each function has limited computational capability, we can
achieve exceptional performance through high parallelism
among function instances.

However, higher parallelism between functions does not
always mean benefits. We evaluated the performance of

Instance	2

Instance	1

Instance	3

Instance	4

Instance	5

Instance	6Mapping	Delay

Function	Step	Duration	Time

Cold	Start	Time

Execution	Time

Fig. 2: The working process of a function step. In a function
step, concurrent instances start running one by one, with
each instance having a different mapping delay.

Step Function workflows on AWS by decomposing the total
computational delay of a function step into two parts: map-
ping delay and execution time. Figure 2 shows the process
of AWS Step Function executing a function step where
different concurrent instances in a function step are not
started simultaneously. Thus, they have different mapping
delays. The time from the start of the function step to the
start of the last invoked function instance is referred to as the
mapping delay. Mapping delay is caused by the overhead of
function cold starts and is related to the elastic capabilities
of the FaaS platform.

We created function steps with different function exe-
cution time and invoked them with different inter-function
parallelism on the AWS Step Function. As shown in Fig-
ure 3, the mapping delay of the function steps is relatively
small when the parallelism between functions is less than
30. However, the mapping delay increases rapidly when it
exceeds 40. As shown in Figure 4, continuously increasing
the inter-function parallelism does not further speed up the
computation. The reason is that the mapping delay becomes
a bottleneck. Therefore, we need to optimize the selection
of function memory size and inter-function parallelism be-
tween functions to achieve cost efficiency.

Besides parallelism between function instances, there is
also intra-function parallelism, as illustrated in Figure 1.
Tasks within a function instance can be parallelized in a
multi-process manner to achieve parallelism. Therefore, ap-
plying intra-function parallelism strategies can undoubtedly
improve the resource utilization and computational effi-
ciency of functions, especially for programs not optimized
for multi-core processing. To demonstrate this, we prepared
a program that can only utilize single-core capabilities and
observed its performance under different levels of intra-
function parallelism. As can be seen in Figure 5, AWS
allocates different numbers of available vCPUs for functions
with various memory sizes. Increasing intra-function paral-
lelism in situations with multiple CPU resources available
allows functions to utilize more CPU resources to enhance
performance. According to the AWS Lambda official doc-
umentation [3], functions have only single-core CPU re-
sources when memory is less than 1769MB, and multi-core
CPU resources are available only when exceeding 1769MB.

To delve deeper into how increasing memory size affects
the performance of functions with varying degrees of multi-
core friendliness, we deploy a benchmark function on AWS
Lambda that assesses whether each large number in a list

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 4

0 20 40 60 80 100 120
Inter-function Parallelism

0
20
40
60
80

100
120
140

M
ap

pi
ng

 D
el

ay
 (s

) Duration Time (s)
1
4

16
64

Fig. 3: Mapping delay of a
function step with different
function duration time and
inter-function parallelism.

0 20 40 60 80 100 120
Inter-function Parallelism

0
25
50
75

100
125
150
175
200

Du
ra

tio
n

Ti
m

e
(s

) Memory Size (MB)
512
2048

4096
10240

Fig. 4: Duration time of a
function step with differ-
ent memory size and inter-
function parallelism.

2000 4000 6000 800010000
Memory Size (MB)

5

10

15

20

25

Du
ra

tio
n

Ti
m

e
(s

) Intra-function Parallelism
1
2

4
8

Fig. 5: Duration time of a
function step with differ-
ent memory size and intra-
function parallelism.

2000 4000 6000 800010000
Memory Size (MB)

2

4

6

8

Du
ra

tio
n

Ti
m

e
(s

) Multi-core Ratio
0.2
0.4

0.6
0.8

Fig. 6: Duration time of
a function with different
memory size and multi-core
ratio.

is a prime number. We develop both single-threaded and
multi-core optimized versions of this program. The multi-
core ratio is set as a task ratio to fully exploit multi-core
resources. The higher this ratio, the more the program
is optimized for multi-core processing. We measure the
function’s performance across various multi-core ratios and
memory sizes. The results, as shown in Figure 6, indicate
that the performance of single-thread optimized programs
ceases to improve beyond a certain memory threshold. In
contrast, the duration of the multi-core optimized programs
proportionally decreases as memory increases. This obser-
vation leads us to the conclusion that it is essential to
distinguish between single-core and multi-core scenarios.

As a result, in addition to inter-function parallelism,
choosing the appropriate level of intra-function parallelism
is also key to improving workflow performance and reduc-
ing costs. Jointly optimizing parallelism while optimizing
the resource configuration of function steps is also very
important.

2.3 Performance Fluctuations in Function Steps

Performance fluctuations in function steps during execu-
tion pose a challenge to ensuring end-to-end SLOs for
workflows. Through our analysis, we find that the primary
causes of performance fluctuation are the variability in data
exchange overhead and the unpredictable mapping delay
caused by function cold starts.

As shown in Figure 2, due to the possibility of cold
starts in different function instances within the function
step, the mapping delay exhibits its own variability. Addi-
tionally, in the FaaS architecture, the separation of storage
and computation necessitates the use of remote storage
services to facilitate data exchange between functions [20],
[21]. Unfortunately, this dependency often leads to signif-
icant latency, varying from several hundred milliseconds
to a few seconds. We also notice significant variations in
the performance of these third-party storage services. To
address this issue, we conduct a series of tests to evaluate
the performance of AWS S3 storage within the AWS Lambda
environment.

We use Python lambda functions and the AWS Boto3
SDK to download objects of different sizes from S3 buckets.
We measure the total data transmission delay while varying
the number of objects and their size. The results show
different distribution patterns, as illustrated in Figure 7.

We observe that the IO performance of S3 exhibits charac-
teristics of a long-tail distribution. The variation between
the fastest and slowest cases can often be several times.
This phenomenon increases the complexity of optimizing
workflow performance.

Therefore, it is necessary to dynamically adjust the con-
figuration of function steps within the workflow in real-
time, promptly correct deviations in workflow progress.

2.4 Design Principles

Based on the above analyses and insights, we formulate the
following core design principles for the system:

• Joint Optimization of Memory and Parallelism
Configurations for Function Steps: To achieve the
best cost-performance ratio, it is crucial to simultane-
ously consider and optimize the memory configura-
tion and parallelism settings of function steps.

• Developing a Performance Estimation Model: De-
veloping a model capable of accurately predicting
performance under different configurations is essen-
tial. This will provide solid data support for config-
uration choices in a serverless environment, helping
to resolve the ambiguity in configuration awareness.

• Dynamic Online Configuration: Given the variabil-
ity in performance across different steps of a work-
flow, online dynamic configuration optimization is
vital. This strategy involves dynamically adjusting
configuration choices before the execution of each
function step to ensure the achievement of workflow
performance goals.

• Minimizing Function Cold Starts: Implementing
strategies to minimize or avoid cold starts of function
instances is necessary to enhance the execution effi-
ciency of workflows. This not only reduces latency
but also improves resource utilization efficiency.

3 ESTIMATING PERFORMANCE AND COST UNDER
DIFFERENT CONFIGURATIONS

In this section, we introduce how to establish a performance
estimation model to estimate the duration time and cost of
a function step under different configurations (parallelism
and resource configuration).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 5

0.25 0.50 0.75 1.00
Transmission Time (s)

0

0.2

0.5

0.8

1.0
CD

F # of obj
10
20
30
40

(a) Obj size of 0.1 MB.

0.25 0.50 0.75 1.00
Transmission Time (s)

0

0.2

0.5

0.8

1.0

CD
F # of obj

10
20
30
40

(b) Obj size of 0.5 MB.

0.50 1.00 1.50 2.00
Transmission Time (s)

0

0.2

0.5

0.8

1.0

CD
F # of obj

10
20
30
40

(c) Obj size of 1 MB.

1.50 3.00 4.50 6.00
Transmission Time (s)

0

0.2

0.5

0.8

1.0

CD
F # of obj

10
20
30
40

(d) Obj size of 10 MB.

Fig. 7: CDF plots of data transmission time with different object sizes.

ComputeDownload Upload
Mapping	
Delay

Function	Step	Duration	Time

Last	Invoked	Function	Instance

Fig. 8: Decomposition of function step duration time. When
the last invoked function instance completes its execution,
the process of the function step ends.

3.1 The Importance of Performance Estimation

To optimize the configuration of the function step, we need
to obtain the performance and cost of the function step
under different configurations. One direct method is to con-
duct comprehensive profiling tests. However, performing
profiling tests on all possible configuration combinations
in advance is both time-consuming and costly. We hope
to estimate the relationship between different configuration
parameters, performance, and cost using a smaller sample
of profiling tests.

3.2 Decomposition of Function Step Duration Time

To accurately estimate the performance of function steps, we
decompose the duration time of function steps. The execu-
tion process of a function step corresponds to the completion
of all tasks in that function step during the execution of a
workflow. As we consider inter-function and intra-function
parallelism within each function step, the entire process of
a function step is equivalent to the execution of multiple
concurrent instances of a function, where each instance
utilizes multiprocessing for parallel computation.

Through our tests, we find that concurrently invoked
function instances are not started at the same time, and
these concurrent instances experience different mapping
delays. The mapping delay of a function instance is the
waiting time from the start of the function step until the
function instance begins to execute. The mapping delays
of different concurrent function instances within the same
function step form a stair-like distribution, as shown in
Figure 2. This phenomenon is caused by the cold start time
required for the elastic scaling of function instances, where
function instances are created one by one rather than all at
once. In addition, the creation of function sandboxes and
initialization of function code, which also contribute to the
mapping delay.

Since the tasks of concurrent instances within a function
step are evenly distributed, the execution times are similar.
To this end, we can define the mapping delay of a function
step as the mapping delay of the latest invoked function
instance. Therefore, the duration time of a function step
can be divided into the mapping delay plus the function
execution time.

As shown in Figure 8, the total time for a function
step consists of the mapping delay of the last invoked
function and the execution time of its function instance. The
execution time of each function instance in the function step
mainly includes three parts: data download, task computa-
tion, and data upload. Let’s denote a certain function step
as vi, its end-to-end total delay as ti, the mapping delay as
tmi , the total delay for data download and upload as tdi and
tui respectively, and the computation delay of the function
instance as tci , and we have: ti = tmi + tdi + tci + tui .

Among these three parts, the time for downloading and
uploading data is usually determined by the function’s net-
work bandwidth and is independent of the function’s com-
putational complexity. The computation time depends on
the function’s computational complexity and the resources
used.

Based on previous analysis, data transmission delay and
mapping delay have significant fluctuations. On the other
hand, the fluctuation of computation latency is relatively
small. Therefore, we need to employ different estimation
methods for these components.

3.3 Piece-wise Fitting Model for Computation Latency
To accurately predict the computation latency of functions,
we propose a piece-wise fitting model. Since the duration of
function computation is usually influenced by the number
of tasks in function instances and the memory size, we
consider these two key factors in the model. Let γi represent
the total number of tasks in a function step. Then, based on
the inter-function parallelism pi, we define γi = γi

pi
, which

represents the number of tasks allocated to each function
instance.

Based on the experimental data shown in Figure 6,
we find that the execution time of functions is inversely
proportional to the memory size. Since performance is the
reciprocal of time, this indicates that the multi-core perfor-
mance of function instances is nearly linearly related to the
memory size. At the same time, the performance of func-
tions is also influenced by the internal parallel optimization
of function code. We use ms to represent the memory size of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 6

single-core resources allocated by the cloud service provider
(where s denotes single-core), and δs represents the relative
performance. We define min (mi

ms
, qi), where qi represents

the index of internal parallelism in the function. Here, mi

ms

represents the multiple of resources allocated to the function
compared to the maximum multiple achievable by a single
core, and qi represents the multiple of performance im-
provement achievable by using internal function parallelism
compared to a single thread. Taking the smaller value of
these two factors represents the upper limit of the multi-
core acceleration ratio for a single-thread optimized function
with internal parallelism.

It is worth noting that if the program has already im-
plemented multi-core optimization, the impact of internal
function parallelism will be weakened. In this case, the
inverse relationship between execution time and memory
size will change. Therefore, we use an exponential function
to improve prediction accuracy.

Thus, we design a piece-wise fitting approach. For pro-
grams applicable to multi-core scenarios (i.e., case 1), we use
an exponential function for fitting; while for programs that
can only utilize single-thread performance or have memory
sizes lower than ms (i.e., case 2), we use an inverse function
for fitting:

tci =

(ai,1 · γi+ bi,1)e
−ai,2·min (

mi
ms

,qi) + ϕi,1, case 1
ai,2·γi

δs·min (
mi
ms

,qi)+bi,2
+ ϕi,2, case 2

(1)

In this formula, ai,1, ai,2, bi,1, bi,2, ϕi,1, ϕi,2 are model
parameters obtained through data training.

3.4 Quantile Regression Model for Varying Delays
Considering the inherent variability in data transmission
and mapping delays, making precise predictions poses a
significant challenge. To address this issue, we adopt a
quantile regression model for prediction. This model is par-
ticularly suitable for predicting response variables like data
transmission delay and mapping delay at specific quantiles.
Imagine we have a dataset containing numerous variables
observed under various parameters. Here, Y represents the
response variable, while X = [X1, X2, . . . , Xn] represents a
set of explanatory variables.

To more accurately capture the potential nonlinear rela-
tionships between X and Y , our quantile regression model
considers not only the effect of each individual Xi on Y , but
also includes the square terms of these variables and their
possible interactions. The model can be expressed as:

QY |X(ω) = β0(ω) +
n∑

i=1

βi(ω)Xi+

n∑
i=1

γi(ω)X
2
i +

∑
i<j

δij(ω)XiXj

(2)

Where ω is quantile, β0(ω) is the intercept term, and
βi(ω), γi(ω), and δij(ω) respectively represent the coeffi-
cients for the linear terms, square terms, and interaction
terms. This model structure allows us to capture and predict
the distribution of the response variable Y at the quantile
level, while considering the nonlinear relationships and
interaction effects among the explanatory variables.

These coefficients are estimated by minimizing the quan-
tile loss function, which focuses on absolute deviations and
assigns different weights to errors above and below the
ω quantile. The estimated parameters are used to predict
data transmission time and mapping delay at the specific
quantile ω. We use the number of objects and its size as
parameters for predicting data transmission delay, and the
number of functions with a cold start for predicting map-
ping delay. Although the quantile regression model does
not directly estimate the complete probability distribution,
it does provide significant insights into the conditional
distribution of delays at the chosen quantile level.

3.5 Cost Model of Function Step

Let ci denote the cost of the function step vi in the workflow.
Different cloud vendors have similar pricing models for
function workflow. In the following, we take the pricing
model of AWS as a representation [17]. We denote the
price for per GB-second of function as µ0, and the price
for function requests and orchestration as µ1, where µ0

and µ1 are constants. For a function step, given a intra-
function parallelism pi, then we have the cost of function
step ci = pi · (ti ·mi · µ0 + µ1).

4 DYNAMIC OPTIMIZATION OF FUNCTION STEP
CONFIGURATION

In this section, we introduce how to dynamically determine
the configuration for each function step.

4.1 Problem Formulation

A function workflow consists of a series of different func-
tion steps executed in sequence. We represent a serverless
workflow using a directed acyclic graph (DAG) G = (V,E).
The vertices V = v1, v2, ..., vn represent the n function steps
within the workflow. Vertices with an in-degree of 0 repre-
sent the starting point of the workflow, which corresponds
to the first function step to be executed. Vertices with an out-
degree of 0 represent the endpoint of the workflow, which
corresponds to the last function step to be executed. The
edges E = v̂ivj | 1 ≤ i ̸= j ≤ N represent dependencies be-
tween function steps, where v̂ivj denotes the edge vi → vj ,
meaning that the operation of function step vj depends on
vi.

For function step vi, it will only begin execution once
all its dependencies are completed. Let L ∈ L represent the
set of vertices from the start to the endpoint. We define the
execution time of function step vi as ti and the completion
time of the function workflow as T . It is easy to see that
the completion time T depends on the longest running path
and can be expressed as T = maxL∈L

∑
vi∈L ti.

Furthermore, we define the cost of function step vi as
ci, and the total cost of processing the workflow can be
calculated using C =

∑
vi∈V ci.

The memory size of all parallel functions in each func-
tion step is the same as the memory configuration of the
function step. Let M represent the set of memory config-
urations provided by the cloud platform, and P represent
the set of optional inter-function parallelism. We use Q to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 7

represent the set of available optimal intra-function paral-
lelism. We represent the configuration of function step vi as
θi = (mi, pi, qi). We can define the configuration settings of
function step vi as:

Θi = (mi, pi, qi) | mi ∈M, pi ∈ P, qi ∈ Q. (3)

We use binary variable xi(θ) to indicate whether function
step vi is configured as θ:

xi(θ) =

{
0, function step vi is not configured as θ
1, function step vi is configured as θ

. (4)

Since each function can only use one configuration, we have:∑
θ∈Θi

xi(θ) = 1,∀vi ∈ V. (5)

Our goal is to optimize the end-to-end performance
of the workflow and minimize cost while satisfying the
workflow’s Service Level Objective (SLO). Let S represent
the SLO of the workflow request. We have the following
SLO constraint:

T = max
L∈L

∑
vi∈L

∑
θ∈Θi

ti(θ) · xi(θ) < S. (6)

Our Function Workflow Configuration Problem (FWCP) can
be formulated as:

minC =min
∑
vi∈V

∑
θ∈Θi

ci(θ) · xi(θ) (7)

subject to: (3)(4)(5)(6).

In summary, the FWCP aims to find the optimal configu-
ration for each function step in the workflow to minimize
the total cost while ensuring that the end-to-end perfor-
mance meets the given SLO constraint. The problem is
formulated using a series of equations and constraints that
take into account the execution time, cost, and configuration
of each function step, as well as the dependencies between
function steps in the workflow. Main notations are listed in
Table 1.

4.2 Computation Complexity
Theorem 1 shows that the problem (7) is NP-hard, which
makes it impractical to find the optimal configuration.

Theorem 1. Problem FWCP (7) is NP-hard.

Proof. We construct a polynomial-time reduction to (7) from
the multiple-choices knapsack problem (8)(9), a classic opti-
mization problem which is known to be NP-hard.

max
m∑
i=1

∑
j∈Ni

µijxij (8)

subject to :

∑m

i=1

∑
j∈Ni

wijxij ≤ C

xij ∈ {0, 1}, 1 ≤ i ≤ m, j ∈ Ni∑
j∈Ni

xij = 1, 1 ≤ i ≤ m

. (9)

Given an instance A = (m,µij , wij , C, xij) of the knap-
sack problem, we map it to an instance of the (7) with
A

′
= (n ← m,−ci(θ) ← µij , ti(θ) ← wij ,S ← C, xi(θ) ←

xij). Clearly, the above mapping problem can be solved

TABLE 1: Main Notations

Notation Definition
G Function workflow DAG
vi ith function step in the workflow
Lcritical Critical path of a graph
T Total duration time of the function workflow
C Total cost of the function workflow
L Set of all possible path in a graph
Gi Sub DAG starting from function step vi

ti,j
Duration time of jth function instance
with inter-function parallelism in the function step vi

mi Memory size configuration of function step
pi Degree of inter-function parallelism of function step vi
qi Degree of intra-function parallelism of function step vi
ti Total duration time of function step vi
ci Total cost of function step vi
Θi All configuration combinations of function step vi
γi Number of jobs of function step vi

xi(θ)
A binary variable which indicates whether
vi is configured to θ

ti(θ) Total duration time of vi configured to θ
ci(θ) Total cost of vi configured to θ
S End to end SLO of function workflow
si Sub-SLO of function step vi
Ti Latest finish timestamp of Gi

τk Latest finish timestamp of vk

in polynomial time. Then, if there exists an algorithm that
solves problem A

′
, it solves the corresponding knapsack

problem as well. As a result, the multiple-choices knapsack
problem can be treated as a special case of (7). Given the
NP-hardness of the multiple-choices knapsack problem, (7)
must be NP-hard as well.

4.3 Problem Relaxation and Global-cached Most Cost-
effective Critical Path Algorithm
As shown above, we need to reduce the computation com-
plexity and propose a practical algorithm to configure each
function step efficiently.

Note that (6) restricts the maximum duration of all paths
L in the graph G by the request SLO. Therefore, we can set
a sub-SLO si for each function step, where

∀L ∈ L,
∑
vi∈L

si ≤ S. (10)

By doing this, we relax the constraint (6) by:

ti =
∑
θ∈Θi

ti(θ) · xi(θ) < si. (11)

Then we can reduce the problem (7) of optimizing a
DAG to optimize the configuration of each function step vi
with sub-SLO constraints, which is formulated as follows:

min ci =min
∑
θ∈Θi

ci(θ) · xi(θ) (12)

subject to: (4)(11).

In the following discussion, we will demonstrate how
to allocate sub-SLOs to each function step. Based on the
critical path method [26], our approach identifies the longest
path in the workflow as the critical path. The execution
time of each node on this critical path is considered its
corresponding weight. These weights then serve as the basis
for fairly distributing the SLO among the nodes (function

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 8

A1

A2 A4A3

A5 A6 A7

A8

A9 A10 A11

A12 A13

A14

Critical	Path

Sub	Graph Sub	Graph

A4

A9 A10 A11

A13

Sub	Graph Sub	Graph

Current	Step

Critical	Path

Current	Step

Recursive	Sub	Graph

Fig. 9: Algorithm description diagram.

steps). This allocation mechanism is visually represented
in Figure 9, where the critical path is assumed to be the
red path in the diagram (A1-A3-A8-A14). We can easily
allocate sub-SLOs to all nodes on the critical path and
find the optimal configuration for the current node (A1).
Subsequently, we identify two sub-graphs connected to the
critical path (yellow and green). As the workflow progresses
and encounters the starting nodes of the sub-graphs (A4),
we can recursively apply our method. With the workflow’s
execution, the size of the sub-graphs decreases (A9 and
A11), finally achieving online dynamic resource allocation
optimization for each node in the workflow.

However, in our online problem, we are unable to
know the configuration choices and their runtime for future
functional steps, making it challenging to determine the
weights to find the critical path. Based on our insights,
each functional step has a most cost-effective configuration,
defined by the ratio of performance to cost. We rank con-
figurations according to their cost-effectiveness and observe
that configurations close to the most cost-effective one also
demonstrate relatively high cost-effectiveness. Building on
this, we utilize performance estimation model to identify
the most cost-effective configuration for each node, using its
duration to set weights. This approach allows us to approx-
imate the sub-SLO for each function step closer to the most
cost-effective configuration choice, even when we cannot
pre-determine the best weight distribution. This strategy
helps in enhancing the overall computational efficiency of
the workflow and reducing costs.

In our problem, the performance is evaluated by the
multiplicative inverse of the duration time, i.e., t−1, and
hence the cost-effective ratio is c

t−1 . The best cost-effective
configuration θ∗ can be obtained by:

θ∗ = argmax
θ

ci(θ)

t−1
i (θ)

. (13)

We further denote ti(θ
∗) as the duration time of its function

step with the configuration of the most cost-effective ratio.
And the sub-SLO for current function step vi is given by:

si =
ti(θ

∗)∑
vi∈Lcritical

ti(θ∗)
· S. (14)

Algorithm 1: Global-cached Most Cost-effective
Critical Path Algorithm

Input: Current function step vi
Output: Configuration θi for vi

1 Initialize current timestamp τi;
2 Get sub-graph Gi starting at vi and its latest finish

timestamp Ti from global cache;
3 SLO for sub-graph Gi: Si ← Ti − τi;
4 foreach function step vm ∈ Vi do
5 Determine θ∗ by (13);
6 Set weight tm(θ∗) for vm;

7 Identify critical path Li of Gi with weights;
8 foreach function step vm ∈ Li do
9 Calculate sub-SLO sm for vm using (14);

10 Determine θi for vi by solving (12);
11 foreach pair vj , vk, in Li do
12 if exist sub-graph G

′
= (V

′
, E

′
) between vj , vk

where V
′ ∩ Li = ∅ then

13 τk ← Ti −
∑|Li|

n>k sn;
14 G

′
= G

′ ∪ vk;
15 T ′ ← τk − sk;
16 Store pair (G

′
, T ′

) in global cache;

17 Set G
′ ← Li \ {vi};

18 T ′ ← Ti;
19 Store pair (G

′
, T ′

) in global cache;
20 return θi;

As our online strategy is essentially a distributed de-
cision progress. There is no need for each configurator of
function step to obtain the global information of the graph.
As a result, we establish a shared global cache for them
to access the necessary data, which can also reduce the
amount of local computation. Based on this, we propose
Global-cached Most Cost-effective Critical Path Algorithm
in Algorithm 1.

To implement the Algorithm 1, we define a timestamp
called the latest completion time τi for each function step
vi according to their SLOs. The latest completion time
indicates the deadline of the function step to finish. It can be
calculated by adding the timestamp of entering the current
function step with its SLO.

Before the first node of the workflow is executed, we
first put the entire workflow G and the corresponding latest
completion timestamp T for G into the global cache. For
each subsequent function step that is executed, before enter-
ing the execution of the function step, we run Algorithm 1 to
optimize the resource configuration choice for that function
step. The algorithm first obtains the current function step vi
and the current timestamp τi (Line 1). Then, it retrieves the
sub-graph starting from the current node and the planned
latest completion time from the global cache (Line 2). Next,
we can calculate the SLO for the current sub-graph (Line 3).
After that, we determine the weight of each function step in
the sub-graph according to the best cost-effectiveness strat-
egy and identify the critical path (Line 4-7). Subsequently,
we can divide the sub-SLO for each function step on the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 9

Previous	Step

Init

Init

Init

Warm	Start

Warm	Start

Warm	Start

Prewarm	Timing	

Current	Step

Function	
Instances

Fig. 10: Diagram of Configuration-Aware function prewarm.

critical path based on their weights (Line 8-9). The optimal
configuration choice for the current step is derived from the
sub-SLO and the formula (12) (Line 10).

Next, we will identify all sub-graphs connected to the
critical path and calculate the latest completion time for
each sub-graph (Line 11-15). We store each sub-graph and
its latest completion time as a pair in the global cache
(Line 16). Finally, we save the remaining critical path as
a sub-graph, along with its latest completion time, in the
global cache (Line 17-19). In this way, as each function step
of the workflow is executed, the scale of the optimization
algorithm’s optimization is continuously reduced. In the
final process, a single node acts as a sub-graph, as nodes
(A9,A11) shown in Figure 9.

Theorem 2. The time complexity of Algorithm 1 is O(|V |+|E|+
|Θ|), where |E| is the number of edges in the current sub-graph,
|V | is the number of function steps in the current sub-graph, |Θ|
is the number of configuration combination choices.

Proof. For Lines 1-3, the time complexity is at most O(1).
For Lines 4-6, the time complexity is at most O(|V |). For
Lines 7, the time complexity of getting the critical path and
setting weights of a DAG is O(|V | + |E|). For Line 10, the
time complexity of solving (12) is at most O(|Θ|). And for
Lines 11-18, the time complexity of getting the sub-graph
and latest finish timestamp is at most O(|V |+ |E|).

Theorem 2 shows the time complexity of our solution. It
shows our solution can be solved in polynomial time. Some
may argue that searching for the best configuration with (12)
is hard when the configuration space is large. To deal with it,
we can maintain a local record of optimal configuration and
replace the sub-optimal configuration when there is a con-
figuration choice with better performance at the same cost
or less cost with the same performance. Once established,
we do not have to traverse all configuration choices every
time, which can improve the efficiency of our algorithm.

5 CONFIGURATION-AWARE FUNCTION PREWARM

In this section, we introduce a solution to solve the cold start
problem of the workflow functions with dynamic configu-
ration.

In essence, by leveraging dependencies between dif-
ferent function steps in the workflow, we can prewarm
function instances as needed based on the real-time progress
of the workflow for future executions, as shown in Figure 10.
However, the key to this process lies in the accurate pre-
diction of the function execution process. If the estimation
of the workflow’s progress is inaccurate, it may lead to
incorrect timing for function prewarming, thus failing to
effectively mitigate the cold start problem.

In the previous Section 3, we have already introduced
a method for performance estimation that can predict the
execution times of different function steps under different
configurations, including the mapping delay of function in-
stances, in the form of percentiles. Therefore, we can choose
the appropriate percentile of performance prediction data
based on specific prewarming requirements to accurately
determine the optimal timing for function prewarming. If
we wish to prewarm functions more conservatively and
minimize the occurrence of function cold starts, we can
choose larger percentiles, such as p90. Conversely, we can
select smaller percentiles, if we want a less conservative
approach. With performance estimation in place, we can
identify the suitable timing to prewarm functions.

For a function step vi, its prewarming timing τpi can be
determined based on the mapping delay tmi of function step
vi under configuration θ, its latest completion time τi, and
its SLO si, by τpi = τi − tmi − si.

Furthermore, another significant challenge we face in the
process of dynamic configuration optimization is the diffi-
culty in accurately predicting the specific instance specifica-
tions and their concurrency required for the next function
step. To address this issue, we adopt a Configuration-Aware
strategy. We first assume that the current function step can
be completed as scheduled. Based on this assumption, we
subsequently implement Algorithm 1 for the next function
step that depends on it, optimize its configuration in ad-
vance.

By predicting the resource and parallelism configura-
tions likely to be used in the next function step, we have
achieved Configuration-Aware function prewarming. Even
if deviations in workflow performance may lead to vari-
ations in the final configuration selection, employing this
strategy always prewarms some function instances. This
prewarmed configuration holds a greater possibility during
the optimization of the next function step, as it reduces the
mapping delay.

We achieve prewarming of function instances by using
a method known as “dummy function invoke” [27]. We
assign a special invocation endpoint for each function.
When invoked, it triggers the initialization process of the
function instance without actually executing the real task
processing. Leveraging the cloud platform’s function keep-
alive policies, concurrent invocations of a certain number of
dummy functions can effectively accomplish the prewarm-
ing of different numbers of function instances.

6 SYSTEM IMPLEMENTATION

In this section, we delve into the implementation details of
the entire system, known as StepConf.

6.1 StepConf Overview

To address a range of issues and challenges in optimiz-
ing resource configuration for serverless workflow, this
paper introduces StepConf. StepConf combines dynamic
optimization of function step parallelism with resource con-
figuration, achieving minimal resource consumption while
meeting the SLOs of multi-step serverless workflows. Dur-
ing workflow execution, developers only need to specify

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 10

Developer Workflow

Function Packager

Function
 Image

Dependencies

Functions

Function
Wrapper
Function
Code

User

Request

Offline Phase

Online Phase
SLO

Input

Performance
 Estimator

A
PI

 G
at

ew
ay

Workflow Engine

 Function
Prewarmer

Executor

Performance
 Models

Configuration
 Optimizer

Deploy

In
vo

ke

SLO

Function Manager

Function
 NameStep Input Function

Configuration

Fig. 11: System architecture overview of StepConf.

the desired SLOs, and StepConf dynamically and in real-
time makes decisions to optimize resource allocation be-
fore each functional step. Moreover, the Workflow Engine
within StepConf employs a Configuration-Aware proactive
function prewarm mechanism, significantly reducing the
additional overhead caused by cold starts. The system ar-
chitecture of StepConf, as shown in Figure 11, encompasses
both offline and online phases.

During the offline phase, developers need to prepare
the workflow definition, which contains the source code of
the functions and the dependencies between the function
steps. The Function Packager compiles and packages the
user-supplied source code along with the Function Wrapper
code into function images, which are then deployed. At
the same time, the Performance Estimator performs per-
formance profiling of the functions, collecting profile data
during function execution and creating performance models
for each function.

During the online phase, developers send requests
through the API gateway containing the workflow’s input
and the desired SLO to invoke the workflow. The Workflow
Engine, which serves as the core component of StepConf,
executes each function step by step based on the depen-
dencies defined in the workflow. The executor tracks the
execution status of each function step and initiates execution
when the dependencies for the next step are satisfied. Within
the Workflow Engine, the Configuration Optimizer plays a
central role in StepConf, dynamically optimizing resource
allocation based on real-time runtime constraints and func-
tion performance models to ensure optimal execution of
each function step within the workflow.

In addition, StepConf’s workflow engine includes a
Function Prewarmer that addresses the challenge of cold
starts. By leveraging performance models, it predicts the
expected completion time for each function step and warms
up the subsequent step accordingly. It also uses the Configu-
ration Optimizer to determine the most likely configuration
for the next step and prewarms functions based on that
configuration. In the StepConf framework, the Function
Manager serves as an intermediary for function execution.
It manages the entire function step lifecycle and invokes the
functions deployed on the FaaS cluster based on the step
input, function name, and function configuration provided

def handler(input_obj):
Perform computation
output_obj = obj_detection(input_obj)
Finish computation
return output_obj

Fig. 12: User code example of object detection function step.

by the Workflow Engine.
These components work together to ensure StepConf

effectively uses resources and meets SLOs for serverless
workflows while minimizing operational costs. The follow-
ing sections explain each of these components in more
detail.

6.2 Workflow Engine

The workflow engine is used to schedule and sequentially
execute each function step based on the dependencies de-
fined in the workflow. Many commercial FaaS platforms
have introduced corresponding workflow engines, such
as AWS Step Functions [28], Azure Logic Apps [29], etc.
However, these workflow engines do not support dynamic
resource configuration for workflows, which means they
cannot perform real-time resource configuration optimiza-
tion for each workflow request.

To solve this problem, we implement a workflow engine
that focuses on dynamic resource configuration based on
Luigi [30]. It not only implements on-demand invocation of
function steps according to workflow dependencies but also
integrates the Performance Estimator (Section 3) and the
Configuration Optimizer (Section 4). These two components
are used for the dynamic resource configuration of the
workflow.

6.3 Function Packager

Another important component of StepConf is the function
packager. It is a program for helping developers to deploy
workflows. It is a Python package that provides a con-
venient API, allowing users to conveniently package their
application workflow code into function images and deploy
them to the FaaS platform. The function packager only
requires the user’s application workflow function’s handler
code and a dependency description file. It then creates the
corresponding function Docker image and deploys it to the
corresponding cloud platform. The user’s provided handler
code only needs to follow the template shown in Figure 12,
and the function packager will incorporate the Function
Wrapper class we designed to override the user’s entry
function.

6.4 Function Wrapper

The Function Wrapper is a Python class responsible for
invoking the user-provided handler function within the
function instance using multiprocessing, thereby enabling
intra-function parallelism. Before executing each function
step, the Configuration Optimizer optimizes the configu-
ration selection for the current step by considering both
inter-function parallelism and intra-function parallelism.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 11

Train	1

Input Train	2

Merge	1

Merge	2 Output

Train	3 Merge	3

Preprocess	1

Preprocess	2

Preprocess	3

Fig. 13: Machine learning workflow.

Obj	
Detection

Put	
Watermark

Input

Put	Text

Super	
Resolution

Color	
Filtering

Frame
Interpolation OutputPull	

Frame
Merge
Frame

Fig. 14: Video processing workflow.

The workflow engine concurrently invokes the specified
number of function instance based on inter-function paral-
lelism. Within each function instance, the Function Wrapper
takes over the entire process of data downloading, compu-
tation, and data uploading. It invokes the given number of
processes based on intra-function parallelism. The Function
Wrapper is responsible for splitting the data and mapping it
to each process and then waits for all processes to complete
before merging the outputs. Additionally, we have rewritten
the SDK for accessing storage media in the Function Wrap-
per using multithreading, enabling parallel data uploading
and downloading to improve data transfer efficiency.

In particular, since the current FaaS platform does not
support dynamically adjusting the configuration of func-
tion resources, how can we dynamically invoke functions
with corresponding memory sizes on demand? To address
this, we deploy duplicate functions with different memory
sizes. We use different versions of the same function to
be configured with different memory sizes, using tags like
“helloworld:1024MB”. In this way, we can select the desired
function memory by invoking the function with different
URL tags.

6.5 Function Manager
Within the StepConf, the Function Manager plays a central
role as middleware and assumes comprehensive control
over the execution of function steps. It manages the entire
lifecycle of function steps and facilitates parallel processing
between functions by invoking a certain number of function
instances simultaneously. After the workflow engine pro-
vides the step input, function name, and function configu-
ration information, the function manager starts working.

To achieve this, we designed the Function Manager as an
internal proxy service within the cluster. During its opera-
tion, the Function Manager, guided by the Workflow Engine
directives, invokes specific functions that were previously
provisioned in the FaaS cluster. Importantly, by using Func-
tion Manager, we ensured compatibility not only with AWS
Lambda, but also with other platforms, including various
open-source and commercial platforms.

7 EXPERIMENTAL EVALUATION

In this section, we demonstrate the advantages of the
components of StepConf through a series of experiments.
Our experimental evaluation aims to answer the following
research questions (RQs):

A1 A3

A4

A2

A5

A7

A6

A13

A12

A11

A10

A9

A8

A14

A15

A16 EndStart

3010 50

Degree	of	Difficulty

100

Fig. 15: The synthesized DAG workflow.

• RQ1: Can StepConf accurately estimate the perfor-
mance and cost under different configurations?

• RQ2: Can StepConf dynamic resource allocation
scheme guarantee the SLOs of workflows?

• RQ3: Can StepConf resource allocation optimization
algorithm reduce the cost of workflows?

• RQ4: Does considering parallelism in StepConf op-
timization improve the performance and reduce the
cost of workflows?

• RQ5: Can the StepConf heuristic algorithm approach
the theoretical optimum with a small overhead?

• RQ6: Can the StepConf function prewarmer reduce
the cold start overheads in workflows?

7.1 Experimental Setup
Cluster and Software Information: We build a highly
available Kubernetes cluster and installed Knative Serv-
ing as the serverless platform, where HAproxy [31] and
Keepalived [32] are installed. The cluster comprises 3 master
nodes and 6 worker nodes. Each worker node was allocated
16 cores and 32GB of memory, while each master node
was allocated 8 cores and 16GB of memory. For data ex-
change between functions, we utilized an AWS S3 storage
bucket located in the nearest region to our experimental
environment, ensuring ample public network bandwidth
over 1Gbps and low storage access latency to replicate the
resource conditions of mainstream cloud applications [33],
[34]. Table 2 provides detailed information on the hardware
facilities and software versions used in our experiments.

TABLE 2: Experimental environment configurations.

Name Configuration

CPU Dual AMD EPYC 7R12 Processor
with 96 cores 192 threads (@2.5GHz)

Memory 256GB DDR4 2133 MHz with 16 channels
Disk Intel P4501 4TB

Network External network bandwidth over 1Gbps
OS Ubuntu 20.04 LTS with kernel 5.13.0-51-generic

Kubernetes v1.27.1
Containerd v1.6.18

Knative knative-serving v1.7
S3 Bucket Region ap-east-1 (Hong Kong)

Workflow Applications: We select three different work-
flows implemented in Python 3.8 to evaluate the perfor-
mance of StepConf as follows:

• Machine Learning Workflow (ML): Machine learn-
ing is a typical use case of serverless workflow.
We adopt the ML workflow introduced in [23]. It
primarily consists of three function steps, including
Preprocess (dimensionality reduction of raw data),

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 12

Train (training decision trees), and Merge (merge the
results). Our workflow includes three independent
ML pipelines, forming the workflow as shown in
Figure 13.

• Video Processing Workflow (VP): Video processing
requires a significant amount of computational re-
sources and is well-suited for leveraging the paral-
lelism of serverless functions to accelerate the pro-
cessing. Inspired by [4], we establish a complex
video workflow. It includes 8 different function steps:
pull frame, object detection, watermarking, super-
resolution, color filtering, text addition, frame in-
terpolation, and merge frame. The pull frame step
decodes the video input into a set of frames, and
then each subsequent function step processes this set
of frames. The final function step is merge frame to
encode the video, as shown in Figure 14.

• DAG Workflow (DAG): To thoroughly evaluate the
performance of StepConf in a complex workflow en-
vironment, we design a complex synthetic workflow
application consisting of 16 steps, following [24].
As shown in Figure 15, we select CPU compute-
intensive benchmark applications (is-prime) with
four different computational complexities, covering
a range of upload and download data transmission
volumes. Different colors in the figure represent
function of varying difficulty. In these 16 steps, we
randomly assign tasks of different difficulties. Al-
though this workflow does not have a specific prac-
tical use, this method allows us to simulate complex
situations that may be encountered in the real world,
even though these situations are difficult to fully
replicate in a single experiment.

We refer to [17] to define the cost expenses of the Knative
FaaS platform. For every single function, we configure dif-
ferent specifications based on the ratio of 1 vCPU to 2048MB
of memory.

Baselines: Based on our analysis of recent works out-
lined in Section 2, we select the following baselines for
comparison with StepConf:

• Vanilla [26]: Static workflow configuration opti-
mization without considering inter-function or intra-
function parallelism, which is based on critical path
method.

• Oracle: Employs an brute-force algorithm to find the
optimal solution for static workflow configuration
optimization, jointly optimizing memory size and
both inter-function and intra-function parallelism,
the same as StepConf.

• Orion [23]: Static workflow configuration without
considering inter-function parallelism.

• COSE [22]: Dynamic workflow configuration with-
out considering inter-function or intra-function par-
allelism.

We aim to find out the influence of considering both inter
and intra-function parallelism and we design baselines as
follows:

• StepConf-Inter: StepConf’s dynamic workflow con-
figuration without considering intra-function paral-
lelism but consider inter-function parallelism.

• StepConf-Intra: StepConf’s dynamic workflow con-
figuration without considering inter-function paral-
lelism but considering intra-function parallelism.

Table 3 describes the characteristics of each baseline.

TABLE 3: Comparison of StepConf with Baselines

Baselines Strategy Inter Intra
Vanilla Static (Offline) × ×
Oracle Static (Offline)

√ √

Orion Static (Offline) ×
√

COSE Dynamic × ×
StepConf Dynamic

√ √

StepConf-Inter Dynamic
√

×
StepConf-Intra Dynamic ×

√

7.2 Performance Prediction Accuracy
In this section, we evaluate the performance estimator of
StepConf through experiments to answer RQ1 (performance
estimation). We aim to examine whether our models can
accurately fit the performance of different functions under
different memory sizes. We select two benchmark functions
from Section 2, representing functions optimized for a single
core only and functions optimized for multiple cores. By
performing performance profiling tests on the function steps
and collecting the computational delays for different task
numbers, memory sizes, and parallelization strategies, we
then use StepConf’s performance estimator to fit the test
data.

For each function, we conduct profiling for different
numbers of jobs using five memory points (512MB, 1024MB,
2048MB, 4192MB, 10240MB). Regarding the varying map-
ping delay and data transmission, we initially collect actual
performance data from a total of 100 recent invocations
across different workflows on the cloud platform, to initial-
ize the quantile regression model. As more data is collected
by the cloud platform, the quantile model will be able to
more accurately reflect the actual performance characteris-
tics and fluctuation trends. The quantile is set as P90 and we
repeat the experiment 10 times for average.

Figure 16a describes a function that is optimized for a
single thread and does not have intra-function parallelism
configured. Therefore, even though the function instances
have access to multiple CPU cores, the function cannot
utilize them once the memory size exceeds 1769MB. This
results in a nearly horizontal line shape in the figures.

However, when we configure intra-function parallelism
for the single-thread optimized function, the function can
utilize the multiple core resources, as shown in Figure 16b.
Compared to the previous case, enabling intra-function
parallelism allows the function to make better use of the
allocated resources of function instances, thereby improving
performance, given the same memory specifications.

Figure 16c describes a function that is already optimized
for multiple cores. From the goodness of fit of the curve in
the graph, we can see that the piece-wise fitting model of the
performance estimator can accurately fit the performance of
the function under different configuration parameters.

Figure 17 shows the prediction errors for the average
end-to-end performance of three different function steps.
From the color depth in the graph, it can be observed that,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 13

2000 4000 6000 8000 10000
Memory Size (MB)

20

40

60

80

100
D

ur
at

io
n

Ti
m

e
(s

)

Memory Size = 1769 MB

 Real Predict
Jobs=1
Jobs=2
Jobs=5
Jobs=10

Jobs=1
Jobs=2
Jobs=5
Jobs=10

(a) Single core friendly w/o intra-function
parallelism.

2000 4000 6000 8000 10000
Memory Size (MB)

0

20

40

60

80

100

D
ur

at
io

n
Ti

m
e

(s
)

Memory Size = 1769 MB

 Real Predict
Jobs=1
Jobs=2
Jobs=5
Jobs=10

Jobs=1
Jobs=2
Jobs=5
Jobs=10

(b) Single core friendly with intra-function
parallelism.

2000 4000 6000 8000 10000
Memory Size (MB)

0

20

40

60

80

100

D
ur

at
io

n
Ti

m
e

(s
)

Memory Size = 1769 MB

 Real Predict
Jobs=1
Jobs=2
Jobs=5
Jobs=10

Jobs=1
Jobs=2
Jobs=5
Jobs=10

(c) Multi-core friendly with intra-function
parallelism.

Fig. 16: Comparison of fitting results for functions in different types.

10
24

15
36

17
69

20
48

40
96

61
44

81
92
10

24
0

Memory Size (MB)

1

2

5

10

Jo
bs

0.00

0.02

0.04

0.06

R
el

at
iv

e
E

rr
or

(a) Single core friendly w/o intra-function
parallelism.

10
24

15
36

17
69

20
48

40
96

61
44

81
92
10

24
0

Memory Size (MB)

1

2

5

10

Jo
bs

0.00

0.02

0.04

R
el

at
iv

e
E

rr
or

(b) Single core friendly with intra-function
parallelism.

10
24

15
36

20
48

40
96

61
44

81
92

10
24

0

Memory Size (MB)

1

2

5

10

Jo
bs

0.000

0.025

0.050

0.075

R
el

at
iv

e
E

rr
or

(c) Multi-core friendly with intra-function
parallelism.

Fig. 17: Comparison of relative prediction error for different functions in different types.

for different memory sizes and different numbers of tasks,
the prediction errors for the functions are mostly within 4%,
with the largest error being less than 8%. This accuracy is
achieved with relatively low profiling costs, owing to our
combined use of piece-wise and quantile models, providing
accurate performance estimations.

7.3 Performance Guarantee and Cost Saving

To answer RQ2 (SLO) and RQ3 (Cost Saving), we present
experimental results of our workflow executions.

First, we select four different SLOs for each workflow
and ran the workflows multiple times, measuring the end-
to-end completion time. We collect the performance of the
workflow repeated 20 times to see how the SLO fluctuated.
As shown in Figure 18, the x-axis represents different SLOs
for workflow configurations, and the y-axis represents the
normalized workflow end-to-end runtime, which is the ac-
tual workflow execution time divided by the SLO. Values
closer to 1 indicate that the actual duration time of the
workflow is closer to the expected SLO. We can observe that
compared to the baseline, StepConf’s workflow duration
has lower fluctuations and mostly remains below 1. This in-
dicates that StepConf, with its real-time dynamic workflow
configuration, better meets the SLOs. It’s worth noting that
although we can dynamically adjust the workflow configu-
ration in real-time to correct the workflow’s execution, the
performance fluctuations caused by the last function step

cannot be completely eliminated, which is why StepConf
cannot completely eliminate performance fluctuations.

Next, we compare the cost of running the workflows un-
der different SLOs. We use Vanilla’s performance and cost as
the baseline and compare the performance and cost of other
solutions. As shown in Figure 19, StepConf can achieve cost
savings of up to 40% while improving performance by up
to 5.6× compared to the vanilla approach. In comparison
to other baselines, StepConf can save costs by 5% to 22.3%
while enhancing performance by 1.91× to 3.3×.

7.4 Impact of Optimizing Parallelism
To answer RQ4 (Parallelism), we investigate the impact of
optimizing parallelism in the function steps of workflows
and conducted experiments comparing StepConf with par-
tial parallelism optimization.

Figure 20 shows that individually optimizing intra-
function parallelism or inter-function parallelism has less
impact compared to optimizing both simultaneously. The
key point of StepConf is to fully utilize both intra-function
and inter-function parallelism, resulting in higher resource
utilization efficiency and better performance under the same
cost.

7.5 Algorithm Effectiveness and Overhead
To answer RQ5 (Heuristic), we compare our algorithm with
the theoretical optimal configuration namely Oracle. Since
online algorithms cannot guide the real-time execution of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 14

10 20 30 40
SLO (s)

0.90

1.00

1.10

1.20

1.30

1.40
No

rm
al

ize
d

Ti
m

e
(%

)
Orion
StepConf

(a) Machine Learning.

30 40 50 60
SLO (s)

0.90

1.00

1.10

1.20

1.30

1.40

No
rm

al
ize

d
Ti

m
e

(%
)

Orion
StepConf

(b) Video Processing.

40 60 80 100
SLO (s)

0.90

1.00

1.10

1.20

1.30

1.40

No
rm

al
ize

d
Ti

m
e

(%
)

Orion
StepConf

(c) DAG Workflow.

Fig. 18: End to End duration time under different SLOs.

COSE Orion VanillaStepConf
Method

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d

Time
Cost

(a) Machine Learning.

COSE Orion VanillaStepConf
Method

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Time
Cost

(b) Video Processing.

COSE Orion VanillaStepConf
Method

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d

Time
Cost

(c) DAG Workflow.

Fig. 19: Performance and cost compared with different baselines (Lower is the better).

actual workflows, the theoretical optimal solution exists
only in offline algorithms. Therefore, we adopt the offline
version of the StepConf algorithm, ignoring performance
fluctuations in workflow function steps, to make a fair com-
parison with the oracle algorithm. The oracle algorithm uses
a traversal method to find the optimal solution. As shown
in Figure 21, our algorithm consistently demonstrates out-
standing performance across three workflows, with costs
slightly higher than the theoretical optimal solution by less
than 5%, respectively 4.1%, 3.5%, and 2.6%.

To demonstrate the efficiency of our scheduling algo-
rithm, we analyzed the delay decomposition in the critical
path of the workflow. Figure 22 shows that the delay in
configuration decisions accounts for a low percentage, not
exceeding 1% of the workflow. In summary, our algorithm
performs well in terms of effectiveness and overhead, and
it is efficient and feasible in practical applications. For the
majority of workflow tasks, the configuration optimization
overheads can be considered negligible.

7.6 Function Cold Start Overhead

To answer RQ6 (Cold Start), we conduct experiments to
evaluate our function prewarming mechanism. According
to the definition and description in Section 2, the cold start
time of functions falls into the category of mapping delay.
Therefore, we compare the proportion of mapping delay
in the workflow before and after enabling the function
prewarming mechanism, in relation to the overall end-to-
end runtime of the workflow.

Figure 23 shows a significant reduction in the average
proportion of mapping delay in the workflow. This indicates
that the StepConf workflow engine, by incorporating the
function prewarming mechanism, reduces cold start over-
head, further improving workflow performance and cost
savings.

8 RELATED WORK

SLO-Aware Resource Scheduling. There are some exist-
ing works that study SLO guarantees [35], [36], [37], [38].
Zhang et al. [36] develop an online, QoS-aware, data-driven
cluster manager tailored for interactive cloud microservices.
Mao et al. [37] leverage deep reinforcement learning to
optimize the scheduling of data processing jobs on dis-
tributed compute clusters. Li et al. [38] propose a dynamic
VM scaling approach for cost-efficient MapReduce work-
load management. Romero et al. [39] create an automated,
model-agnostic system for distributed inference serving,
allowing developers to specify performance and accuracy
requirements without choosing specific model variants for
each query.

In the serverless domain, Caerus [12] is a task scheduler
for serverless analytics, featuring an advanced algorithm
that optimizes both execution costs and job completion
time. Wukong [13] is a FaaS computing framework for
DAG workflows, enhancing data locality and emphasizing
decentralized scheduling’s benefits in serverless parallel
computations, like resource elasticity and cost efficiency.
FaaSFlow [14] tackle the inefficiency of central schedulers

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 15

10 20 30 40
SLO (s)

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Co
st

 (U
SD

)
StepConf
StepConf-Inter
StepConf-Intra

(a) Machine Learning.

30 40 50 60
SLO (s)

0

2.0

4.0

6.0

8.0

Co
st

 (U
SD

)

StepConf
StepConf-Inter
StepConf-Intra

(b) Video Processing.

40 60 80 100
SLO (s)

0
0.5
1.0
1.5
2.0
2.5

Co
st

 (U
SD

)

StepConf
StepConf-Inter
StepConf-Intra

(c) DAG Workflow.

Fig. 20: Cost of workflows under different SLOs.

ML Video DAG
Workflow

0
20
40
60
80

100
120
140

No
rm

al
ize

d
Co

st
 % Oracle

StepConf

Fig. 21: Avg cost of workflows com-
pared with oracle.

ML VP DAG
Workflow

0

20

40

60

80

100

D
ur

at
io

n
Ti

m
e

R
at

io
 (%

)

Execution
Mapping
Configuration

Fig. 22: Breakdown of end-to-end la-
tency with different workflows.

ML VP DAG
Workflow

0
5

10
15
20
25
30

M
ap

pi
ng

 D
el

ay
 (%

) Prewarm
w/o Prewarm

Fig. 23: Reduction of average map-
ping delay with function prewarmer.

by implementing a worker node-based scheduling strategy,
coupled with an adaptive storage repository for faster data
transfers between co-located functions. Lastly, Atoll [40]
introduce a serverless platform ensuring enhanced latency
performance through deadline-aware scheduling, proactive
sandbox allocation, and load balancing.

Optimization of Configuration. Optimizing configura-
tions in cloud computing is crucial. Systems like CherryPick
[41] and Ernest [42] enhance performance and reduce cost
by accurately predicting VM configuration impacts. In the
serverless context, this translates to predicting function per-
formance and costs for optimal configuration. Eismann et al.
[43] employ mixture density models for predicting function
execution times, while Akhtar et al. [22] use statistical learn-
ing to optimize function chain configurations. Elgamal et al.
[44] investigate cost-effective strategies for function place-
ment and sizing. In addition to previous work [18], [22], [23]
discussed in Section 2, Kijak et al. [45] propose a deadline-
aware resource scheduling approach for scientific work-
flows, focusing on cost-efficiency. Lin et al. [24] describes
function workflows as non-DAG models, including loops
and self-loops. They propose a probabilistic refinement of
the critical path algorithm to address the problem of finding
the optimal cost under performance constraints and the
optimal performance within budget constraints. StepConf
addresses this issue through an online approach, jointly
optimizing parallelism to significantly save cost while en-
suring SLOs.

Function Cold Start. The cold start overhead of server-
less functions presents a significant challenge, as high-
lighted in [2], [46], [47]. Some researchers focus on accel-

erating the startup time of sandboxes [48], [49], [50], [51],
[52], [53], while others aim to reduce the frequency of cold
starts [54], [55], [56], [57]. Defuse [58] utilizes historical
invocation data to analyze function relationships, prewarm-
ing functions to avoid cold starts. Xanadu [59] has also
designed a prewarming mechanism for cascading function
work chains. Unlike these approaches, StepConf introduces
a Configuration-Aware function prewarming mechanism,
considering the memory configurations and determining
the number of prewarmed container instances based on
parallelism, thereby reducing cold start overhead more ef-
fectively.

9 CONCLUSION

We propose StepConf, an SLO-aware dynamic resource con-
figuration framework for serverless function workflows. We
develop a heuristic algorithm to dynamically configure each
function step, ensuring end-to-end SLOs for the workflow.
Furthermore, StepConf utilizes piece-wise fitting models
and quantile regression models to accurately estimate the
performance of function steps under different configuration
parameters. In addition, we design a workflow engine and
Function Manager that support various FaaS platforms and
reduce cold start overhead through Configuration-Aware
function prewarming. Compared to existing strategies, Step-
Conf can improve performance by up to 5.6 × under the
same cost budget and achieve up to a 40% cost reduction
while maintaining the same level of performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 16

REFERENCES

[1] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Server-
less computing: Current trends and open problems,” Research
advances in cloud computing, pp. 1–20, 2017.

[2] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The
serverless computing survey: A technical primer for design ar-
chitecture,” ACM Computing Surveys (CSUR), vol. 54, no. 10s, pp.
1–34, 2022.

[3] “Amazon aws lambda,” https://aws.amazon.com/lambda/.
[4] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama:

A heterogeneous & serverless framework for auto-tuning video
analytics pipelines,” in Proc. of ACM SoCC, 2021, pp. 1–17.

[5] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proc. of ACM SoCC,
2018, pp. 263–274.

[6] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in Proc. of USENIX NSDI, 2017, pp.
363–376.

[7] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“Cirrus: A serverless framework for end-to-end ml workflows,”
in Proc. of ACM SoCC, 2019, pp. 13–24.

[8] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “lambda dnn:
Achieving predictable distributed dnn training with serverless
architectures,” IEEE Transactions on Computers, 2021.

[9] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim et al., “Dorylus: Affordable, scalable, and
accurate gnn training with distributed cpu servers and serverless
threads,” in Proc. of USENIX OSDI, 2021, pp. 495–514.

[10] V. Sreekanti, H. Subbaraj, C. Wu, J. E. Gonzalez, and J. M. Heller-
stein, “Optimizing prediction serving on low-latency serverless
dataflow,” arXiv preprint arXiv:2007.05832, 2020.

[11] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional containers,”
in Proc. of USENIX ATC, 2019, pp. 475–488.

[12] H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica, “Caerus:
Nimble task scheduling for serverless analytics.” in Proc. of
USENIX NSDI, 2021, pp. 653–669.

[13] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for server-
less parallel computing,” in Proc. of ACM SoCC, 2020, pp. 1–15.

[14] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo,
“Faasflow: Enable efficient workflow execution for function-as-a-
service,” in Proc. of ACM ASPLOS, 2022, pp. 782–796.

[15] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proc. of ACM
SoCC, 2017, pp. 445–451.

[16] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,
B. Recht, and J. Ragan-Kelley, “Numpywren: Serverless linear
algebra,” arXiv preprint arXiv:1810.09679, 2018.

[17] “Aws lambda power tuning,” https://aws.amazon.com/lambda/
pricing, 2021.

[18] A. Casalboni, “Aws lambda power tuning,” https://github.com/
alexcasalboni/aws-lambda-power-tuning, 2020.

[19] F. Liu and Y. Niu, “Demystifying the cost of serverless comput-
ing: Towards a win-win deal,” IEEE Transactions on Parallel and
Distributed Systems, 2023.

[20] “Databases on aws,” https://aws.amazon.com/products/
databases.

[21] “Amazon s3: Object storage built to retrieve any amount of data
from anywhere,” https://aws.amazon.com/s3.

[22] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose: Configuring
serverless functions using statistical learning,” in Proc. of IEEE
INFOCOM, 2020, pp. 129–138.

[23] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “{ORION} and the three rights: Sizing, bundling, and
prewarming for serverless {DAGs},” in Proc. of USENIX OSDI,
2022, pp. 303–320.

[24] C. Lin and H. Khazaei, “Modeling and optimization of perfor-
mance and cost of serverless applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 3, pp. 615–632, 2020.

[25] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic re-
source configuration for serverless function workflows,” in Proc.
of IEEE INFOCOM 2022. IEEE, 2022, pp. 1868–1877.

[26] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 5,
pp. 506–521, 1996.

[27] “Serverless warmup plugin,” https://github.com/juanjoDiaz/
serverless-plugin-warmup, 2022.

[28] “Aws step functions: Visual workflows for modern applications,”
https://aws.amazon.com/step-functions.

[29] “Azure logic apps,” https://learn.microsoft.com/zh-cn/azure/
logic-apps/logic-apps-overview.

[30] E. Bernhardsson, E. Freider, A. Rouhani et al., “Luigi,” https://
github.com/spotify/luigi, Spotify, 2022.

[31] “Haproxy load balancer,” https://github.com/haproxy/haproxy,
2023.

[32] “keepalived: Loadbalancing and high-availability,” https://
github.com/acassen/keepalived, 2023.

[33] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al.,
“Cloud programming simplified: A berkeley view on serverless
computing,” arXiv preprint arXiv:1902.03383, 2019.

[34] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a
survey,” The Journal of Supercomputing, vol. 71, no. 9, pp. 3373–
3418, 2015.

[35] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and
L. Tang, “Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks,” in Proc. of ACM EuroSys, 2019, pp. 1–16.

[36] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou,
“Sinan: Ml-based and qos-aware resource management for cloud
microservices,” in Proc. of ACM ASPLOS, 2021, pp. 167–181.

[37] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. of ACM SIGCOMM, 2019, pp. 270–288.

[38] Y. Li, F. Liu, Q. Chen, Y. Sheng, M. Zhao, and J. Wang, “Mar-
velscaler: A multi-view learning based auto-scaling system for
mapreduce,” IEEE Transactions on Cloud Computing, pp. 1–1, 2019.

[39] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}:
Automated model-less inference serving,” in Proc. of USENIX ATC,
2021, pp. 397–411.

[40] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency
serverless platform,” in Proc. of ACM SoCC, 2021, pp. 138–152.

[41] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in Proc. of USENIX NSDI,
2017, pp. 469–482.

[42] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for {Large-Scale} ad-
vanced analytics,” in Proc. of USENIX NSDI, 2016, pp. 363–378.

[43] S. Eismann, J. Grohmann, E. Van Eyk, N. Herbst, and S. Kounev,
“Predicting the costs of serverless workflows,” in Proc. of
ACM/SPEC ICPE, 2020, pp. 265–276.

[44] T. Elgamal, “Costless: Optimizing cost of serverless computing
through function fusion and placement,” in Proc. of IEEE Sympo-
sium on Edge Computing, 2018, pp. 300–312.

[45] J. Kijak, P. Martyna, M. Pawlik, B. Balis, and M. Malawski, “Chal-
lenges for scheduling scientific workflows on cloud functions,” in
Proc. of IEEE CLOUD, 2018, pp. 460–467.

[46] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” arXiv preprint arXiv:1812.03651,
2018, 123.

[47] Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “Asyfunc: A high-
performance and resource-efficient serverless inference system via
asymmetric functions,” in Proc. of ACM SoCC, 2023, pp. 324–340.

[48] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-millisecond startup for serverless computing with
initialization-less booting,” in Proc. of ACM ASPLOS, 2020, pp.
467–481.

[49] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau, “{SOCK}: Rapid task provi-
sioning with serverless-optimized containers,” in Proc. of USENIX
ATC, 2018, pp. 57–70.

[50] Z. Li, J. Cheng, Q. Chen, E. Guan, Z. Bian, Y. Tao, B. Zha,
Q. Wang, W. Han, and M. Guo, “{RunD}: A lightweight se-
cure container runtime for high-density deployment and high-
concurrency startup in serverless computing,” in Proc. of USENIX
ATC, 2022, pp. 53–68.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 17

[51] A. Mohan, H. S. Sane, K. Doshi, S. Edupuganti, N. Nayak, and
V. Sukhomlinov, “Agile cold starts for scalable serverless.” Hot-
Cloud, vol. 2019, no. 10.5555, pp. 3 357 034–3 357 060, 2019.

[52] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualiza-
tion for serverless applications.” in Proc. of USENIX NSDI, vol. 20,
2020, pp. 419–434.

[53] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Ap-
pavoo, “Seuss: skip redundant paths to make serverless fast,” in
Proc. of ACM Eurosys, 2020, pp. 1–15.

[54] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the wild: Characterizing and optimizing the server-
less workload at a large cloud provider,” in Proc. of USENIX ATC,
2020, pp. 205–218.

[55] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless
functions better with heterogeneity,” in Proc. of ACM ASPLOS,
2022, pp. 753–767.

[56] A. Fuerst and P. Sharma, “Faascache: keeping serverless comput-
ing alive with greedy-dual caching,” in Proc. of ACM ASPLOS,
2021, pp. 386–400.

[57] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container
caching for serverless edge computing,” in Proc. of IEEE INFO-
COM. IEEE, 2022, pp. 1069–1078.

[58] J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu, “Defuse: A
dependency-guided function scheduler to mitigate cold starts on
faas platforms,” in Proc. of ICDCS. IEEE, 2021, pp. 194–204.

[59] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading
cold starts in serverless function chain deployments,” in Proc. of
Middleware, 2020, pp. 356–370.

Zhaojie Wen is currently a Ph.D. student in
the School of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, China. His research interests include
serverless computing, resource allocation, and
task scheduling.

Qiong Chen received his B.Eng. degree and
M.Eng. degree in the School of Computer Sci-
ence and Technology, Huazhong University of
Science and Technology, Wuhan, China. He is
currently a research staff at the Central Soft-
ware Institute of Huawei. His research interests
include applied machine learning and serverless
computing. He received the Best Paper Award of
ACM International Conference on Future Energy
Systems (ACM e-Energy) in 2018.

Yipei Niu received his B.Eng. degree from
Henan University, and Ph.D. degree from
Huazhong University of Science and Technol-
ogy. His research interests include cloud com-
puting, serverless computing, container net-
working, and FPGA acceleration.

Zhen Song is currently a Master student in
the School of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, China. His research interests include
serverless computing and WebAssembly.

Quanfeng Deng is currently a Ph.D. student in
the School of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, China. His research interests include
serverless computing and cloud-native network-
ing.

Fangming Liu (S’08, M’11, SM’16) received
the B.Eng. degree from the Tsinghua Univer-
sity, Beijing, and the Ph.D. degree from the
Hong Kong University of Science and Technol-
ogy, Hong Kong. He is currently a Full Profes-
sor at the Huazhong University of Science and
Technology, Wuhan, China. His research inter-
ests include cloud computing and edge com-
puting, data center and green computing, SD-
N/NFV/5G, and applied ML/AI. He received the
National Natural Science Fund (NSFC) for Ex-

cellent Young Scholars and the National Program Special Support for
Top-Notch Young Professionals. He is a recipient of the Best Paper
Award of IEEE/ACM IWQoS 2019, ACM e-Energy 2018 and IEEE
GLOBECOM 2011, the First Class Prize of Natural Science of the
Ministry of Education in China, as well as the Second Class Prize of
National Natural Science Award in China.

