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Deep Learning with SLO Guarantees via DNN
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Abstract—Deep neural networks (DNNs) have been widely adopted for various mobile inference tasks, yet their ever-increasing
computational demands are hindering their deployment on resource-constrained mobile devices. Hybrid deep learning partitions a
DNN into two parts and deploys them across the mobile device and a server, aiming to reduce inference latency or prolong battery life
of mobile devices. However, such partitioning produces (non-uniform) DNN fragments which are hard to serve efficiently on the server.
This paper presents Graft—an efficient inference serving system for hybrid deep learning with latency service-level objective (SLO)
guarantees. Our main insight is to mitigate the non-uniformity by a core concept called DNN re-alignment, allowing multiple
heterogeneous DNN fragments to be restructured to share layers. To fully exploit the potential of DNN re-alignment, Graft employs
fine-grained GPU resource sharing. Based on that, we propose efficient algorithms for merging, grouping, and re-aligning DNN
fragments to maximize request batching opportunities, minimizing resource consumption while guaranteeing the inference latency
SLO. We implement a Graft prototype and perform extensive experiments with five types of widely used DNNs and real-world network
traces. Our results show that Graft improves resource efficiency by up to 70% compared with the state-of-the-art inference serving
systems.

Index Terms—Deep Learning Systems, Edge Computing, Hybrid Deep Learning, GPU Sharing.
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1 INTRODUCTION

With the rapid development of deep learning (DL), we have
seen a variety of DL-based mobile applications such as
augmented reality [1], [2], [3] and intelligent personal as-
sistant [4]. These applications typically employ pre-trained
deep neural networks (DNNs) to perform inference tasks
such as object detection and natural language understand-
ing. While achieving unprecedentedly high accuracy, mod-
ern DNNs are bloated in size and impose excessive com-
putational demands [5], [6]. Meanwhile, mobile inference
requires low latency, typically specified with a service-level
objective (SLO), to ensure good user experience [7], [8],
[9], [10], [11]. Recent advances in mobile accelerators and
DNN optimizations mitigate this mismatch issue, but bring
concerns over battery life or incur extra costs from model
retraining [12], [13], [14], [15].
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Fig. 1: Hybrid deep learning across the mobile device and
the edge server, resulting in misaligned DNN fragments on
the edge server, which are hard to serve efficiently.

Hybrid DL tackles this challenge by extending the mo-
bile device with servers typically in an edge cloud [9], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25]. Specifically,
hybrid DL partitions a DNN into two parts (referred to as
fragments) and executes them on the mobile device and the
server, respectively, as depicted in Figure 1. Unlike server-
only solutions where the DNN is offloaded completely to
a server, hybrid DL is still able to exploit the comput-
ing resources available on the mobile device for partial
DNN execution and can accommodate network dynamics
through adaptive DNN partitioning [23]. Hybrid DL has
been widely explored in both academia [9], [23], [26], [27]
and industry [16], [18] for minimizing the inference latency
or maximizing the battery life of mobile device. It has been
shown that hybrid DL can reduce the inference latency of
popular DNNs by up to 1.69× [28]. In addition, hybrid DLs
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offer enhanced privacy protection since they only exchange
intermediate data, which blurs a significant level of personal
information due to local inferences [11], [29], [30].

Despite the vast successes, efficiently serving the gener-
ated DNN fragments on the server side remains a critical
challenge, which has been overlooked so far. In particular,
different mobile devices running the same DNN may pro-
duce varying partition decisions due to their different yet
changing network conditions. Consequently, the server will
need to handle a large number and variety of misaligned
DNN fragments with relatively small inference request rates
from individual mobile devices, as depicted in Figure 1.
Although these DNN fragments share layers partially, the
lack of uniformity due to the misalignment largely limits
the opportunity of applying request batching—an essential
technique for improving resource efficiency in virtually all
inference serving systems [10]. Existing inference serving
systems are either agnostic to such partial sharing and
would simply treat these DNN fragments separately, or
blindly merge architecture-identical fragments without fur-
ther considering other individual requirements (e.g., time
budget) for servers, leading to poor resource efficiency that
is detrimental to edge clouds.

This paper addresses this timely challenge by introduc-
ing the concept of DNN re-alignment for hybrid DL. The key
idea is to re-partition, i.e., apply to another partitioning,
non-uniform DNN fragments such that we can generate
aligned DNN fragments that consist of the same DNN
layers. These aligned DNN fragments can then be served
by shared DNN instances where request batching can be
applied as in existing DL inference serving systems. By
deciding the re-partition point carefully, we can leverage re-
quest batching to its full potential, thus improving the server
resource efficiency in hybrid DL. The entire optimizations
on non-uniform fragments for higher resource efficiency
refer to re-alignment.

We propose Graft—a first-of-its-kind inference serving
system adopting DNN re-alignment for hybrid DL. The
goal of Graft is to achieve resource efficiency while guaran-
teeing latency SLO. To this end, Graft re-aligns the DNN
fragments on the server to enable request batching across
inference requests received from different mobile devices.
Graft features efficient strategies for merging and grouping
DNN fragments by converting the grouping problem into
a variant of the balanced graph partitioning problem. Graft
also incorporates a fine-grained resource allocation policy
based on spatial GPU sharing enabled by CUDA MPS
(Multi-Process Service) of NVIDIA GPUs. Specifically, Graft
formulates joint re-alignment and resource allocation as an
optimization problem and produces near-optimal decisions
on the re-partition point, batch size, GPU allocation per
instance, and the number of instances for all fragments on
the server. Ultimately, Graft minimizes the GPU resource
consumption on the server while ensuring that the end-to-
end latency for each inference request is bounded by the
SLO.

Overall, the paper makes the following contributions:
after identifying the challenges of provisioning misaligned
DNN fragments in hybrid DL (§2), we

• introduce a new concept called DNN re-alignment

and present the design of Graft—a first-of-its-kind
inference serving system tailored for hybrid DL
with latency SLO guarantees, employing DNN re-
alignment (§3).

• present efficient algorithms for DNN re-alignment,
featuring greedy DNN fragment merging, graph-
partitioning based fragment grouping, and fragment
re-partitioning and resource allocation, with near-
optimal resource efficiency (§4).

• implement Graft and perform extensive experiments
with five different DNNs to evaluate Graft based on a
system prototype (§5). Experiment results show that
Graft is able to achieve resource savings by up to 70%
when compared with the state-of-the-art inference
serving systems, while guaranteeing latency SLOs.

§7 discusses related work and §8 draws the conclusions.

2 BACKGROUND AND MOTIVATION

We present the background and discuss the challenges and
insights to motivate our work in this section.

2.1 Deep Learning Deployment
Deep learning (DL) has become the de facto approach for
inference tasks in domains like computer vision and natural
language processing [4], [23], [31]. To improve accuracy,
sophisticated DNNs with a large number of parameters
have been explored [32], requiring substantial computing
resources to execute. For example, the computing demand
(GFLOPS) of image classification DNNs has increased by
up to 595.6× since 2016 [33] and the memory require-
ment of DNNs for high-resolution image transformations
has reached 6-8GB [14]. This poses critical challenges for
DL deployment, especially on resource-constrained mobile
devices [23], [34], [35].

One solution is to fit the DNN execution on mobile de-
vices via DNN optimizations including pruning and quan-
tization [36], [37], [38], [39], [40], [41], [42], [43]. Without
optimizations, a DNN for image segmentation can drain the
4000mAh battery of a mobile device by 95.9% in just one
hour when running on mobile CPUs [12]. DNN optimiza-
tions reduce the computational demands but suffer from
an accuracy gap and lack practical deployment support.
For example, empirical studies show that only 10.3% of the
DNN-based apps from the Google Play store employ DNN
optimizations [12]. Developers tend to build customized
DNNs for their apps with lower resource consumption but
at the cost of lower accuracy [44]. The associated costs
for optimizing and customizing a DNN for diverse mobile
devices are considerable [36], [45]. Meanwhile, over 50% of
the existing mobile devices still use processors that are at
least six years old [46], which clearly falls short of meeting
the resource requirements of modern DNNs in entirety.

Another solution is to offload the DNN execution com-
pletely to a powerful server equipped with accelerators
like GPUs, typically at the network edge over a wireless
network [47], [48], [49]. This approach avoids the needs
for DNN optimizations thanks to the high capability of
the server, but it brings two other issues (as illustrated in
Figure 2 (top)): (1) Leaving the resources on mobile devices
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Fig. 2: Changing resource consumption (top) and DNN
partition points (middle) of Inception-v3 in hybrid DL under
a snippet (50s) of a real-world 5G network trace [55].

unused leads to excessive resource consumption on the
server. (2) The inference latency suffers from uncertainty
due to the network variability, leading to potentially high
SLO violations.

2.2 Hybrid Deep Learning
To overcome these limitations, hybrid DL aims to leverage
computing resources on both the mobile device and the edge
server for DL inference, without sacrificing on accuracy.
Considering the layered structure of DNNs, the key idea is
to partition the DNN into two fragments at an intermediate
layer, with each fragment mapped to the mobile device and
to the server, respectively [9], [23], [50], [51], [52]. Hybrid DL
has been widely explored by the academic (e.g., Neurosur-
geon [23] and SPINN [9]) and the industry (e.g., Taobao [16],
[17] and Huawei Cloud [18], [53]), with different partition-
ing strategies proposed to minimize the inference latency or
maximize the battery life of the mobile device. Recently, it
has been shown that hybrid DL can achieve a speedup of
1.69× and reduce mobile energy consumption by 22.5% on
average [28], [54].

Since the network bandwidth is likely to be dynamic,
DNN partitioning thus needs to be adapted continuously.
Figure 2 (middle) shows the partition point variation under
a real-world 5G network bandwidth trace (Figure 2(bot-
tom)) [55] when applying hybrid DL. We can see from
Figure 2(top) that hybrid DL accommodates the variabil-
ity of network bandwidth; meanwhile, by exploiting the
resources on mobile devices, hybrid DL can reduce the
server resource consumption by up to 3× and avoids SLO
violations via dynamic DNN partitioning. So far, the focus
of existing work has been on the partitioning strategy and
little attention has been paid to the efficient serving of the
DNN fragments on the edge server.

2.3 DL Inference Serving for Hybrid DL
The proliferation of DL-based applications renders the crit-
ical importance of DL inference serving. There exist a large
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Fig. 3: DNN re-alignment via re-partitioning.

variety of DL inference serving systems, such as Tensor-
Flow Serving [56], Clipper [7], Nexus [8], Clockwork [10],
ALERT [57], and INFaaS [6], etc., that concern scheduling
DL inference requests to appropriate resources (e.g., GPUs),
meeting SLOs on inference latency with the least amount of
resources.

Despite all these efforts, virtually all inference serving
systems suffer efficiency issues when applied to hybrid DL
due to the following reasons: (1) Dynamic DNN partitioning
in hybrid DL produces non-uniform DNN fragments that
cannot be served with shared DNN instances on servers.
Therefore, a separate DNN instance may need to be pro-
visioned for each individual mobile client with a small
request rate, leading to limited request batching oppor-
tunities critical for resource efficiency. Also, these DNN
fragments change continuously due to network dynamics
of the mobile clients. (2) Existing systems mostly employ
coarse-grained GPU allocation [7], [10], where DNNs are
encapsulated in containers that occupy GPUs exclusively in
a time-sharing manner [58]. This leads to considerable GPU
under-utilization [8], [58]. Figure ?? depicts the throughput
achievable by the allocated resources versus the actual de-
mand from two mobile clients each issuing 30 requests per
second (RPS). With Clipper the allocated GPU resources can
support more than an order of magnitude higher request
rates, even with opportunistic sharing (a single instance is
used when the two mobile clients have the same network
condition and thus the same partition point) enabled be-
tween the two mobile clients.

2.4 DNN Re-alignment and Challenges

To address the non-uniformity issue, we observe that a
simple technique called DNN re-alignment could help. The
key idea is to re-partition DNN fragments to generate
aligned DNN fragments shared by multiple mobile clients,
as depicted in Figure 3. This works since DNN fragments
in hybrid DL, despite being misaligned, share their last
layers. This sharing behavior can even be observed across
different DNNs due to the widespread adoption of pre-
trained foundation models and transfer learning (for fine-
tuning the final layers) [12], [58]. Re-alignment leverages
such sharing to increase the request batching opportunity,
aiming to achieve better resource efficiency.

However, DNN re-alignment amplifies DNN fragmen-
tation, which, when combined with coarse-grained GPU
allocation, leads to poor GPU utilization. Fortunately, the
state-of-the-art CUDA MPS (Multi-Process Service) allows
for sharing a GPU spatially across multiple processes to
improve utilization. Based on MPS, recent work like GSLICE
with fine-grained GPU allocation demonstrates significant
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Fig. 4: Discreteness in resource consumption of Inception-
v3: (a) required GPU share to meet different inference time
budgets with throughput of 200RPS, (b) required GPU share
to achieve different inference throughput while maintaining
inference latency of 25ms.

resource savings for inference serving [59]. Therefore, we
adopt MPS and use GPU share (%) to represent the amount
of GPU resources.

Efficiently applying DNN re-alignment for inference
serving in hybrid DL is non-trivial. In particular, we identify
the following three major challenges.

How to merge DNN fragments? There may exist DNN
fragments that are uniform in structure, but serve requests
with different time budgets and/or different request rates.
Merging the requests for these fragments and using one
instance to serve them could potentially increase the batch-
ing opportunity, but the time budget of all requests will
need to follow the smallest one among all merged requests.
This hurts resource efficiency since some more relaxed time
budget will be wasted. Interestingly, we observe that smaller
time budgets and higher throughput do not always translate
into higher resource consumption, as shown in Figure 4.
This is caused by the discreteness of the batch size and the
resource unit. This property can be leveraged to merge DNN
fragments to improve resource efficiency.

How to group DNN fragments for re-alignment? Given
a set of non-uniform DNN fragments, deciding the subset
of the DNN fragments to be grouped for re-alignment is
critical. DNN fragments can be heterogeneous with respect
to multiple factors: the partition point, the time budget, and
the request rate. There are two decisions to make for frag-
ment grouping, namely, how many DNN fragments to put
in one group and which DNN fragments to put together?
Intuitively, a larger group size provides more opportunities
for optimization, but comes with exponentially higher time
complexity for making grouping decisions. The grouping
decision should be made based on the compound influence
of the heterogeneity factors on resource efficiency, which
needs to be explored carefully.

How to select the re-partition point? After grouping, we
need to perform re-alignment by selecting a layer to re-
partition the DNN fragments in the same group. This re-
partition point can be at any layer between the partition
point of the largest fragment and the last layer. Hence, de-
ciding the re-partition point consuming minimum resources
requires to explore all the possible layers efficiently.

Edge 
server

Executor

Partition %GPU #Instance
A’
B’
C’

Layer 2
Layer 4
Layer 6

45%
20%
75%

2
1
2 La

te
nc

y
Th

ro
ug

hp
ut

Batch %GPU

%GPUBatchHR
80ms
97ms

16 25%
40%24

Online Offline
Scheduler Profiler

A’

B’
C’

…

M
ob

ile
 d

ev
ic

es

Fig. 5: System architecture of Graft.

3 GRAFT SYSTEM DESIGN

We present Graft—a new system for serving DNNs frag-
ments in hybrid DL. The goal of Graft is to minimize the
overall server resource consumption while guaranteeing
latency SLOs for mobile applications.
Overview. The system architecture of Graft is depicted in
Figure 5. Graft consists of three core components: profiler,
scheduler, and executor, all running on the edge server. The
profiler runs offline while the scheduler and the executor
run online at runtime. We assume each mobile client ap-
plies hybrid DL by partitioning the DNN with any existing
strategies and we focus on serving the DNN fragments with
GPUs on the server side. The general workflow of Graft is
as follows: First, the profiler collects performance profiles of
DNNs with respect to both latency and throughput in batch
size and GPU share across all available GPUs in servers. This
ensures Graft is adaptable to heterogeneous GPU setups.
Then, the scheduler takes the performance profiles and
generates a resource-efficient execution plan. The execution
plan consists of the DNN fragment groups, the re-partition
point for each fragment in each group, the GPU share for
each fragment, and the number of instances to spawn for
each fragment. Finally, the executor takes the execution plan
and deploys the DNN fragment instances with specified
GPU shares accordingly. Here, the requests for each DNN
fragment are evenly distributed to all its instances with a
load balancer. Additionally, the requests that fail to meet
SLOs are dropped by load balancer for resource saving.

Due to effective optimizations (detailed in § 4.3), Graft
maintains high time-efficiency in its decision-making. This
offers the opportunity to repeatedly invoke the scheduler
when any mobile device changes its partition point due
to significant network bandwidth changes. This trigger-
based approach adjusts its resource allocation timely based
on real-time network conditions, significantly boosting the
inference serving performance.
Scheduler. The scheduler provides the intelligence of the
system by generating the execution plan, taking as input the
offloaded DNN fragments, the request rate of each mobile
client, and the performance profiles for the concerned DNNs
from the profiler. The goal of scheduling is to minimize
the overall resource consumption for the given mobile
clients, while guaranteeing their latency SLOs. To this end,
the scheduler first applies an efficient algorithm to merge
fragments (§4.1), and then organizes DNN fragments into
groups (§4.2). Finally, it performs a fine-grained resource al-
location algorithm with pruning-based optimizations (§4.3)
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to determine the most resource-efficient execution plan,
which is then deployed by the executor to serve the mobile
clients.

4 SCHEDULING FOR DNN RE-ALIGNMENT

We now discuss the three steps the scheduler takes to
generate the most resource-efficient execution plan, namely
fragments merging, grouping, and re-partitioning.

4.1 DNN Fragments Merging
Resource allocation for serving DNNs involves decision-
making for multiple discrete variables including the number
of DNN instances, unit of GPU share, and batch size. Such
discreteness can lead to significant resource over-allocation
when provisioning a large number of DNN fragments, i.e.,
a DNN instance can serve more requests without requiring
more resources. We quantify resource over-allocation with a
metric called resource margin defined as (qa − qd)/qd, which
captures the gap between the demanded throughput qd and
the actual achievable throughput qa under given resources.

Reducing resource over-allocation is equivalent to mini-
mizing the resource margin. To this end, we propose to merge
incrementally uniform fragments that have the same partition
point and time budget, until the resource margin decreases to
a predefined threshold called the merging threshold. Merging
with such a threshold leaves more space for optimization
in fragments grouping and re-partitioning, which turns out
to be preferable for Graft over the strategy where we merge
as much as possible. We will analyze the impact of the merg-
ing threshold in §5.5. Merging not only improves resource
efficiency, but also reduces the number of fragments to deal
with in the next steps of grouping and re-partitioning.

4.2 DNN Fragments Grouping
The second step concerns the grouping of DNN fragments
on the server into fragment subsets such that the total
resource consumption by the DNN fragments is minimized.
Obtaining the optimal grouping of fragments is hard, due
to the combinatorial explosion. One insight we can leverage
is that it is beneficial to group fragments with similar properties
(i.e., partition point, time budget, and request rate). Applying
this insight, we show that the grouping problem can be con-
verted into a variant of the classic balanced graph partitioning
problem [60],which aims to divide the vertices of a graph
into K equal-sized and disjoint subsets while minimiz-
ing/maximizing the total edge costs across different subsets.
Intuitively, we can construct a complete graph with all DNN
fragments as nodes and for the edges between node pairs,
we assign weights based on the similarity of the fragments
represented by the nodes on each edge. Now, the grouping
problem becomes dividing the nodes into K equal-sized
and disjoint subsets on the constructed graph. The goal is
to maximize the total edge weights in all subsets, equivalent
to minimizing the total edge weights across subsets.

Solving the balanced graph partition problem is still
non-trivial [60]. Existing work typically applies heuristics
that either maximize internal edge costs within subsets or
minimize external edge costs. Fennel et al. propose a frame-
work that combines heuristics in both directions [61]. We

follow a similar approach and define an objective function
integrating the variance of the edge weights in each subset
and the total edge weights across subsets, formulated as

min

K∑
k=1

∑
e∈Ek

(we − w̄k)2

|Ek|
+

K∑
k=1

∑
e∈E′

k

we, (1)

where we represents the weight on edge e, w̄k is the average
edge weight in subset k, Ek and E′k are the sets of internal
and external edges for subset k, respectively. We assign the
edge weight using the weighted Euclidean distance between
the property vectors (consisting of partition point p, time
budget t, and inference throughput q) of the fragments on
each edge, i.e., |~vi, ~vj | where ~v = 〈p, t, q〉.

To strike the trade-off between resource efficiency and
time complexity, we design a greedy algorithm following
the approach in [61] with the above objective function: (a)
Randomly select K fragments to initiate the groups. Here,
K is the number of expected groups and is dictated by the
group size. Note that the group size does not constrain the
batch size, which is decided in resource allocation during re-
partitioning. (b) Iterate over the remaining fragments and
assign each of them to the group with the least increase
of cost given by Formula (1). We will explore the impact
of group size and factor weights in the Euclidean distance
calculation in §5.6.

4.3 DNN Fragments Re-partitioning

We now focus on deciding the re-partition point and re-
source allocation for the fragments in each group, aiming
to minimize the overall resource consumption with latency
SLO guarantees. Re-partitioning breaks down the fragment
execution into two stages (see Figure 3): the alignment stage
where fragments have their own parts to execute concurrently,
and the shared execution stage where the same instances are used
for all fragments. Given a re-partition point, deciding the resource
allocation is equivalent to allocating appropriate time budget to
each of the two stages, since the time budget dictates the required
resources in each stage.

The re-alignment algorithm is listed in Algorithm 1.
Given a group FG of fragments, we loop through all pos-
sible re-partition points (line 5) between min{p1, . . . , pM}
and pE , where pi, i ∈ [1,M ] denotes the partition point of
fragment fi in the group and pE denotes the last layer of the
DNN. Under each re-partition point p, we can further divide
the fragments into two parts: FA that will be re-partitioned
and FB that will not be affected (line 7). For FA we apply
the re-partitioning at layer p and obtain all possible time
budget allocation schemes denoted by D, where each allo-
cation scheme is given by d = 〈d1, ..., d|FA|+1〉 and di is the
time allocated to fragment fi. Here, d|FA|+1 represents the
time allocated for the common fragment shared among all
fragments in FA generated by the re-partitioning. A valid
time budget allocation scheme has to ensure that the total
time spent by a request is lower than the available time
budget of that request. Considering the worst-case queueing
delay which equals the execution time [8], the total execution
time of each fragment after re-partitioning has to be no larger
than half of the total available time budget (line 8). Meanwhile,
batch sizes (denoted as b) are self-adapted with respect
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Algorithm 1: Fragments re-partitioning algorithm

Input: FG = {〈p, t, q〉}: a group of fragments
Output: 〈pOPT , XOPT 〉: min-resource re-partition

point and corresponding execution plan
1 Function realign(F):
2 if |F| = 0 then
3 return ∅
4 W← ∅
5 foreach p ∈ [min{p1, . . . , pM}, pE ] do
6 rmin ←∞, X ← ∅
7 FA ← {fi | fi ∈ F ∧ pi < p}, FB ← F \ FA

8 D← {〈d1, . . . , d|FA|+1〉 | di + d|FA|+1 ≤
min{tj | fj ∈ FA}/2 ∧ i ∈ [1, |FA|]}

9 foreach d ∈ D do
10 〈r,b, c〉 ← min_resource(p,d)
11 if

∑
r ≤ rmin then

12 rmin ←
∑

r ◦ c, X ← 〈r,b, c〉

13 w← {〈p,X〉 ∪ realign(FB)}
14 return W ∪ {w}

15 S← realign(FG)
16 〈pOPT , XOPT 〉 ← arg minw∈S

∑
r ◦ c

17 return 〈pOPT , XOPT 〉

to re-partition points and time budgets, rather than fixed
settings. For each legitimate scheme d ∈ D, we calculate the
minimum required resources and find out the scheme with
the smallest resource consumption (lines 9-12). The above
procedure will be recursively applied to the fragment set
FB until no fragment is left (line 13). The final step is to find
the re-partition point and the corresponding min-resource
execution plan that leads to the lowest overall resource
consumption (line 16).

The time complexity of re-alignment algorithm can be
analyzed as follows. The merging step uses “mergesort” to
sort the fragments in O(n log n) time where n is the total
number of fragments. The grouping step is transformed
into a variant of balanced graph partitioning, which is
solved by our proposed greedy method in O(n2) time.
The re-partitioning step loops through O(n/M) groups,
and in each group the re-partitioning problem (concerning
M fragments) can be solved by the Simplex algorithm in
polynomial time [62]. We will explore the time complexity
of Graft empirically in §5.9.

Graft applies several important optimizations to reduce
its time overhead: (1) DNN fragments merging (§4.1) to
reduce the number of fragments, (2) graph building based
on a simple metric and heuristics to group fragments with
an adjustable group size (§4.2), and (3) pruning search space
by reserving only the most “efficient” solutions (e.g., the
blue dots in Figure 4a) and parallelism for re-partitioning
for different groups.

5 EVALUATION

We have implemented a prototype of Graft and conducted
extensive experiments to validate its performance.

TABLE 1: Specifications of mobile devices.
Device GPU AI perf. Mem. Mode

Nano 128-core Maxwell 472 GFLOPS 4G MAXN [63]
TX2 256-core Pascal 1.33 TFLOPS 8G MAXQ [64]

5.1 Setup and Implementation

We assess the effectiveness of Graft across three different ex-
perimental scales, namely, small-, large- and massive scales,
which are categorized based on the number of involved
mobile devices. In small-scale experiments, four NVIDIA
Jetson Nano Developer Kits and two NVIDIA Jetson TX2
Developer Kits are used as mobile devices to evaluate
Graft’s performance under homogeneous/heterogeneous
mobile scenarios. The specifications of mobile devices are
given in Table 1. Following existing work [9], [26], we choose
Jetson boards since they have comparable specifications to
real-world low- and high-end mobile devices, but are much
simpler to program and control. In large-scale experiments,
we follow the widely adopted approach where we use two
additional servers (in total 20 CPU cores) to emulate 20
mobile devices [9], [59]. Additionally, we also use simulation
to evaluate Graft under massive mobile devices (e.g., at
the level of thousands). All servers and Jetson boards are
connected to the same switch with 10GbE and 1GbE links,
respectively.

The data path of the system is implemented as follows.
Each DNN fragment is materialized as multiple DNN in-
stances, each of which works as an independent process,
by DNN runtime Pytorch v1.9.0. The DNN is partitioned
across the mobile device and the edge server based on Neu-
rosurgeon [23] for its simplicity; other partitioning strategies
can be used as well (explained in §9). As Figure 5 shows, a
request, once completes on-device processing, is first sent,
via a network socket, to the server and then buffered as
a tensor in a queue for the corresponding fragment. This
queue is shared by all the instances for each DNN fragment,
which process requests in batch from the queue. At server-
sides, Graft utilizes the Unix domain socket to transfer inter-
mediate result (tensors) among DNN fragments. Moreover,
we set up a thread pool with a capacity of five for each DNN
instance to efficiently pipeline their transferring.

The control path implements the scheduling algorithms
in Python. For implementing the merging and grouping al-
gorithms, we leverage packages numpy and networkx. For
calculating the optimal re-partition point and resource allo-
cation, i.e., execution plan, we use cvxpy with the GUROBI
solver, which takes the profiles of DNN fragments with
respect to both latency and throughput in batch size and
GPU share. Based on the plan, Graft starts DNN instances
accordingly while terminating the outdated instances in an
asynchronous manner. The network bandwidth between the
mobile device and the server is shaped by replaying real-
world 5G bandwidth traces [55] (trace snippet shown in
Figure 2), using the Linux tc utility (detailed in §9).

We use five representative DNNs from TorchVision
v0.10.0: four image classification models namely Inception-
v3 (Inc), ResNet-101 (Res), VGG11 (VGG), and Vision
Transformer-B16 (ViT), and a semantic image segmentation
model called DeepLabV3 MobileNetv3-Large (Mob) [31].
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TABLE 2: Parameters and inference latency of used models
when executing on mobile GPUs with batch size as one and
executing on server GPUs with GPU share as thirty and
batch sizes as one.
Model Inc Res VGG Mob ViT

Number of layers 17 16 6 18 15
Mobile latency [Nano] (ms) 165 226 147 84 816
Mobile latency [TX2] (ms) 94 114 77 67 603
Server latency (ms) 29 30 6 19 58

The input size for the DNNs is around 588KB [59]. DNNs,
except for ViT, have request rates of 30RPS from each mobile
device. Due to its high mobile latency (column 6 in Table 2),
ViT has a lower request rate of 1RPS to prevent excessive
frames blocking on mobile sides, which could deteriorate
user experience. Table 2 lists the parameters and inference
latency of these models. The latency SLO for the consid-
ered models is typically lower than their mobile inference
latency; otherwise, there is no need to offload to a server.
We set the SLO of each model to 95% of the model’s mobile
inference latency. Later, we will explore the performance of
Graft under varying SLOs in §5.10.

The focus of Graft is on inference serving on the edge
server. Therefore, we use the state-of-the-art inference serv-
ing system GSLICE [59] and its enhanced version GSLICE+,
the optimal allocation (denoted as “Optimal”), and the static
allocation (Static) and its enhanced version (Static+) as our
baselines. Note that Static and Static+ depend on the aver-
age bandwidth of each mobile device to decide its resource
allocation. Neither GSLICE/GSLICE+ nor Static/Static+

conducts DNN re-alignment.
We evaluate two performance metrics namely the total

resource consumption and the end-to-end latency (i.e., SLO
guarantees). Meanwhile, for a fair comparison, the baselines
follow the same hybrid DL setup as Graft. Specifically,
requests’ statistics, namely initial partition points and time
budgets, over the small- and the large-scale scenarios, are
depicted in Figure 6a and Figure 6b, respectively. Note that
Res, Mob, and ViT exhibit relatively polarised partitioning,
with fragments displaying high similarities in initial parti-
tion points. This is attributed to their unique architectures,
which enables significant reductions in transmission loads
at specific layers. Taking Mob as an instance, layer one
achieves reductions by 71.1% compared with raw input.
Consequently, Neurosurgeon makes its polarised decisions
to reap lower latency.

The experiments involving the Optimal, namely §5.2,
§5.3, §5.6, §5.9 and §5.10, are repeated by 10 times consider-
ing their considerable time cost; meanwhile, the remaining
experiments are conducted by 50 times, unless specified
otherwise. The resource allocation for each fragment on
GPU is enforced via MPS with the resource unit of 1%
GPU share. To reduce the interference among concurrent
instances, we empirically cap the allocated GPU shares of
each GPU to be lower than 100% [59].

5.2 Performance in Small-Scale Scenarios

Homogeneous cases. We compare the resource consumption
of Graft, GSLICE, Optimal, and Static when serving the

TABLE 3: Overall resource reduction by Graft compared
with GSLICE and GSLICE+ under small- and large-scale,
respectively.

Model Inc Res VGG Mob ViT

Small-scale Homo. (%) 35.8 24.2 19.1 25 70.0
Heter. (%) 24.2 16.3 31 26.4 63.1

Large-scale Homo. (%) 30.5 5.8* 16.5 29.2 11.6*
Heter. (%) 20.4 16.1 30.3 41.1 59.6

* Case where GPU memory is the bottleneck.

models. Here, we use four Jetson Nanos as mobile devices.
Table 3 (row 1) shows the average resource reduction of
Graft when compared with GSLICE and Figure 7a depicts
the detailed comparison. We can see that Graft outperforms
GSLICE and Static significantly and performs close to Optimal.
This improvement is attributed to DNN re-alignment, which
allows for a larger batch size for each fragment, thus improving
the resource efficiency.

Figure 8 shows the end-to-end latency distribution. We
observe that both Static and GSLICE outperform Graft with
Inc, Res, VGG, and ViT, due to its resource over-allocation.
Notably, Graft achieves lower latency with Mob. This is
because Mob has relatively low heterogeneity in both par-
tition points and time budgets in the small-scale scenario
(depicted in Figure 6a and Figure 6b), allowing Graft to re-
align the four fragments simultaneously. Moreover, consid-
ering SLO guaranteeing, Graft depends on the lowest time
budget of the fragments to make its decision, which speeds
up the execution of some fragments than they demand, thus
achieving lower latency.
Heterogeneous cases. We now compare the resource con-
sumption of Graft, GSLICE, Optimal, and Static under the
heterogeneous scenarios, with four Jetson Nanos and two
Jetson TX2s as mobile clients. Table 3 (row 2) shows the
average resource reduction of Graft when compared with
GSLICE; details are given in Figure 7b. Meanwhile, Graft
achieves resource reduction by 13.9%, 21%, 33.9%, 28.8%,
and 63.1% for Inc, Res, VGG, Mob, and ViT, respectively
when compared with Static. We can observe from Figure 6b
that Jetson TX2 generates fragments with significantly lower
time budgets than those from Jetson Nanos; meanwhile,
the difference in partitioning points of DNN fragments also
magnifies as illustrated in Figure 6a. Facing this heteroge-
neous scenario, Graft tends to re-align the fragments sepa-
rately based on their mobile devices, for maintaining high
resource efficiency without violating SLOs. This prevents
Graft from building large batches across heterogeneous
devices, especially for DNNs with limited resource margins
(e.g., Res), thus affecting its effectiveness. On the contrary,
large gains are observed with VGG. This is attributed to its
high resource margins, which accommodate variations in
time budgets and allow for larger batches that span across
heterogeneous devices.

We depict the end-to-end latency distribution of models
deployed on Nano and TX2 in Figure 9a and Figure 9b,
respectively. We observe that Graft meets latency SLOs
in most cases, except the case with VGG on Jetson TX2.
The reason is that VGG re-aligns the fragments from the
heterogeneous mobile devices, thus forming large batches.
While improving the resource efficiency, the increased batch
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Fig. 8: End-to-end latency distribution comparison in small-scale scenarios with four Nano boards. (The vertical dashed
line marks the latency SLO).

size leads to the variation in queueing delay and incurs
long-tail latency, especially for TX2 which has tight SLOs.

5.3 Performance in Large-Scale Scenarios

Homogeneous cases. We compare the resource consumption
of Graft, GSLICE, Optimal, and Static under 20 mobile
devices (emulated by 20 CPU cores). The increased number
of mobile devices introduces uniform fragments that share
the same initial partition point and time budget. For a fair
comparison, we enable the best merging strategy (i.e., merge
all uniform fragments) for GSLICE and Static and denote
the enhanced version as GSLICE+ and Static+. To prevent
GPU memory overflow, we set an upper bound for the
number of instances to five for each fragment based on
empirical observations. This bound is removed in large-
scale simulations in §5.8.

Table 3 (row 3) presents the average resource reduction
of Graft when compared with GSLICE+; details are in
Figure 7c. We can see that Graft consumes significantly fewer
resources than GSLICE+, and the gap between Graft and Optimal
is within 4%. Notably, the constraints in the number of
instances for each fragment narrow down the optimization
space, degrading the performance of Graft. In particular, Res
and ViT are bottlenecked by their significant requirements in
GPU memory, beyond our testbed’s capacity, and get dimin-
ished improvements in resource efficiency. This constraint
also leads to resource over-allocation for Res as 63% and
37.1% of Graft than GSLICE and Static+, respectively. Over-
all, Graft reduces the resource consumption by 36.1%, 20.8%,
46.9%, and 74.7% for Inc, VGG, Mob, and ViT, respectively,
when compared with GSLICE. The reduction is 32.9%, 9.1%,
25.7%, and 11.6% as compared with Static+.

Figure 10 depicts the end-to-end latency distribution
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where Graft provides SLO guaranteeing for the five DNNs.
Note that GSLICE+ provides lower end-to-end latency due
to its considerable resource over-allocation when compared
with Graft and Optimal.
Heterogeneous cases. We also evaluate Graft in large-scale
heterogeneous scenarios, where we emulate 15 Nano and 5
TX2 boards as mobile devices. Applying the algorithms of
Graft, we calculate the resource consumption and compare
it with that of GSLICE+. As shown in Table 3 (row 4),
even when provisioning DNNs with polarised partitioning,
namely Res, Mob, and ViT (explained in §5.1), which are
particularly suitable for GSLICE+ to merge and batch due
to their similar initial partition points, Graft still achieves
lower resource consumption by 16.1%, 41.1%, and 59.6%, re-
spectively. This is attributed to Graft’s comprehensive explo-
ration in re-partition points and fine-grained re-allocation of
time budgets (detailed in §4.3), which constructs substantial
optimization spaces for improving resource efficiency.

We were not able to obtain the end-to-end latency dis-
tribution due to the lack of GPU memory to support that
number of DNN fragments under strict SLOs.

5.4 Effectiveness of Re-partitioning
We now evaluate the resource consumption with and with-
out re-partitioning when provisioning five random frag-
ments, irrespective of the impact of merging and grouping.
Here, each fragment has the same frame rate as in §5.2 and
replays a random bandwidth from the real-world network
trace. Figure 11 shows that re-alignment reduces the resource
consumption by up to 32%, 10%, 15.6%, 26.7% and 60% for
Inc, Res, VGG, Mob, and ViT, respectively. The improvement
for Res is smaller due to its relatively lower resource margin.
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Fig. 11: Resource consumption with re-partitioning, normal-
ized by the case without re-partitioning.

We also analyze how well re-partitioning performs un-
der different network bandwidths and request rates. To this
end, we evaluate the re-partition point and the required
GPU share while keeping four fragments unchanged and
varying the configuration for the fifth fragment. Taking
Inc as an example, we observe from Figure 12a that the
resource consumption decreases marginally with the increase of
the network bandwidth. The reason can be seen in Algorithm 1
that re-alignment is dictated by the lowest time budget of
fragments in the same group. With the increase of network
bandwidth, the partition point of the fragments is fixed at
layer three. However, their time budget difference keeps
increasing until the time budget of the static fragments
becomes the bottleneck for re-alignment, resulting in a
marginal decrease in resource consumption. Additionally,
we observe in Figure 12b that high request rates lead to
higher resource consumption. As for the re-partition point, it is
influenced by the DNN type, partition point, time budget, and
request rate, simultaneously.

5.5 Effectiveness of Merging
We evaluate the resource consumption of Graft when em-
ploying three different merging strategies: No-merging,
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Fig. 12: Re-partition point and GPU share of Inc under
varying (a) network bandwidth and (b) request rate.

Uniform merging (i.e., merging all uniform fragments), and
Uniform+ merging (i.e., merging until reaching the merging
threshold), respectively. We generate 50 fragments and set
the merging threshold as 0.2. Figure 13 shows that, com-
pared with Uniform+ merging, Uniform merging suffers resource
over-allocation when applied to Res. This occurs because Res
fragments exhibit relatively low heterogeneity as shown in
Figure 6a, which leads to a number of fragments with high
throughput when conducting Uniform merging. Moreover,
Rec has constrained resource margins due to its high com-
putation intensity. The conflict, between high throughput
and low resource margin, often leads to the independent
execution of DNN fragments with no further realignment,
which hurts the resource efficiency consequently. In com-
parison, Uniform+ merging limits the number of fragments
involved in merging and controls the fragments throughout. This
creates reasonable space for realignment across fragments, thus
achieving higher resource efficiency. Furthermore, this improve-
ment grows with the increase of fragment numbers as shown in
Figure 14(top).
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Fig. 13: Resource consumption with different merging
strategies (50 fragments with merging threshold 0.2).

It is worth noting that insufficient merging, e.g., adopting
No merging or setting Uniform+ with high merging threshold,
also hurts resource efficiency. This is because it results in
limited available batch sizes for realignment. On the other
hand, Uniform+ merging greatly decreases the problem sizes
for the following grouping and re-partitioning. We can see
from Figure 14(bottom) that Uniform+ merging reduces the
number of DNN fragments by up to 42.6%, 42.3%, 50.7%,
76.1%, and 38.9% on average for Inc, Res, VGG, Mob, and
ViT respectively, as compared with No-merging.

We analyze the sensitivity of Uniform+ merging to dif-
ferent merging thresholds under varying fragment num-
bers. As illustrated in Figure 15a, most DNNs except Res are
insensitive to the variation of merging thresholds. This is thanks
to the interaction between merging and the subsequent
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Fig. 14: Resource consumption (top) and time cost (bottom)
of Res normalized by no merging under different numbers
of DNN fragments with merging threshold of 0.2.

grouping and re-partitioning. Specifically, when the merg-
ing threshold increases, the number of fragments involved
in merging decreases, limiting the fragments throughput
consequently. This enables grouping and re-partitioning to
unlock the potential of re-alignment, i.e., grouping more
fragments and building larger batches. Otherwise, as the
threshold decreases, the generated fragments are facilitated
with larger batch sizes as well as higher resource efficiency,
which, however, constrains the performance of grouping
and re-partitioning due to SLO requirements.

Notably, based on our empirical experience, setting merg-
ing thresholds less than DNNs’ resource margin helps Graft main-
tain the trade-off between time efficiency and resource efficiency.
The reason is that this lower value compels Graft to suffi-
ciently merge uniform fragments while retaining reasonable
optimization space for grouping and re-partitioning. This is
in contrast to Uniform, which neglects preservation. Take
Res, which has a resource margin of 0.3, an instance. As
shown in Figure 15a, Uniform+ facilitates Graft with re-
source reduction by 2.9× when its merging threshold de-
creases from 0.4 to 0.2. Meanwhile, it decreases the number
of fragments by 14.5% on average for the subsequent two
steps. However, as depicted in Figure 15b, an excessive
decrease in the threshold may incur considerable time costs
during merging due to its incremental exploration (detailed
in §4.1). Empirically, we set the merging threshold at 0.2 by
default considering its satisfactory performance in striking
the aforementioned trade-off.

5.6 Effectiveness of Grouping

We compare the resource consumption of Graft when adopt-
ing the proposed similarity-based grouping and the opti-
mal grouping, respectively, to provision 25 fragments. The
proposed grouping utilizes the Euclidean distance as the
edge weight to build the graph, instead of the exact amount
of resources required by Optimal. The result shows that
the similarity-based grouping achieves comparable performance
as more than 0.7% compared with Optimal. Additionally, the
similarity-based grouping ensures low overhead for Graft
as detailed in §5.9.

We also analyze the impact of the group size and fac-
tor weights (namely for partition point, time budget, and
throughput as detailed in §4.2). Taking Inc as an example,
we observe from Figure 16a that increased group sizes make a
marginal improvement in resource consumption (top), but bring
higher time cost (bottom). Empirically, a group size of five is
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Fig. 15: (a) Resource consumption under varying merging thresholds and varying numbers of DNN fragments, normalized
by that under merging threshold of 0.1. (The vertical dashed line is the resource margin, which for VGG and ViT is 0.58
and 3, respectively.) (b) Time costs of Uniform+ merging when operating 25 fragments of Res under varying thresholds.
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Fig. 16: (a) Resource consumption and time cost of Graft
provisioning Inc under varying group sizes; (b) Resource
consumption adopting equal grouping weight normalized
by the optimal weight.

a good trade-off point between time complexity and resource
savings.

Figure 16b compares the resource consumption of Graft
under equal factor weights and optimal factor weights. We
can see that the gap is no more than 4.1% on average. This
means the optimization space for factor weights is quite limited.
Based on our empirical experience, slightly increasing the
weight for time budget for models with limited resource
margins such as Res leads to higher resource efficiency, due
to the smaller diversity of the fragments within each group.

5.7 Achievable Throughput
We compare the maximum achievable throughput of Graft,
GSLICE, GSLICE+, and Static under restricted resource
offerings. In this experiment, we gradually increase the
number of fragments until their required resources exceed
an upper bound. Figure 17 shows that Graft achieves higher
throughput as 1.45×, 1.18×, 1.29×, 1.65×, and 2.38× on aver-
age for Inc, Res, VGG, Mob, and ViT respectively when compared
with GSLICE+. This is because GSLICE+ only conducts op-
timization (batching) among uniform DNN fragments, and
ignores that across heterogeneous fragments, thus receiving
limited improvement. On the other hand, Graft achieves
higher throughput as 1.57×, 1.29×, 1.4×, 1.76×, and 3.3×
on average for Inc, Res, VGG, Mob, and ViT, respectively than
GSLICE. The improvement is as 1.57×, 1.29×, 1.09×, 1.79×,
and 3.32×, respectively, as compared with Static.

5.8 Massive-Scale Simulations
We further evaluate the resource consumption of Graft,
GSLICE, GSLICE+, and Static with simulations. We focus
on large-scale scenarios with thousands of fragments, which

cannot be handled by our testbed. For high time efficiency,
we set the merging threshold as 0.01 for Graft. Figure 18
shows that Graft outperforms the baselines. Specifically,
GSLICE and Static have approximate resource consumption,
which 1.8×, 1.44×, 1.76×, 2×, and 4× on average for Inc, Res,
VGG, Mob, and ViT, when compared with Graft. Meanwhile,
Graft reduces the resource consumption by 18.1%, 10.6%, 13.6%,
34.1%, and 16.1% on average, compared with GSLICE+, for the
five models, respectively. This means that Graft still outperforms
the pure-batching based allocation (GSLICE+) at scale. Note
that the low merging threshold incurs excessive merging
for DNNs of low resource margins or of low heterogeneity
(e.g., Res and ViT), compromising Graft’s resource efficiency
(discussed in §5.5).

5.9 System Overhead
We evaluate the time cost and memory footprint of Graft
and Optimal respectively when re-aligning fragments rang-
ing from ten to fifty. Due to limited space, we only illustrate
the time costs of Graft. The time cost of Graft achieves an
average reduction by up to 99.6% across all five models, in
comparison with Optimal. The reason is that Optimal enu-
merates all the feasible groupings (e.g., 252 for Inc with ten
fragments) to figure out the minimum resource consump-
tion, incurring significant overheads. In contrast, Graft only
explores one grouping heuristically and thus guarantees
time efficiency while achieving close-to-optimum resource
efficiency.

On the other hand, as shown in Figure 19a, the time cost
of Graft increases as the number of fragments grows. This is be-
cause under given group sizes, a higher number of fragment
yields more groups. While each grouped fragment can be re-
aligned independently, more groups inevitably incur higher
time costs. In particular, ViT experiences significant high
time costs. This is attributed to its highly heterogeneous
time budgets, which hinder the effectiveness of merging and
result in more groups. To fix this issue, we can introduce a
process pool to realign the grouped fragments concurrently.
Figure 19b illustrates the time costs when realigning fifty
fragments of ViT, which generate six groups after merging.
We can see that the time costs decrease by 1.9× as the
pool size increases from one to two. Notably, the increase
in the pool size has diminishing returns. To guarantee time
efficiency, we set the pool size as two by default.

In addition, we also evaluate the memory footprint of
Graft during the above process. The average memory consump-
tion is negligible as 35.69MB, 32.14MB, 29.9MB, 34.4MB, and
25.3MB for Inc, Res, VGG, Mob, and ViT respectively. Moreover,
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Fig. 17: Achievable throughput of Graft, GSLICE, GSLICE+, and Static under varying amounts of resources.
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Fig. 18: Resource consumption of Graft, GSLICE, GSLICE+, and Static under large numbers of DNN fragments.
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Fig. 19: (a) Time cost of Graft when realigning fragments
ranging from ten to fifty; (b) Time costs of Graft when
realigning fifty fragments of ViT with pool sizes ranging
from one to six.

this footprint increases no more than 0.63MB with the number of
fragments increasing from 10 to 100.

5.10 Impact of SLOs
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Fig. 20: Resource consumption of Graft, normalized by
Optimal, under varying SLO ratios

We evaluate the impact of SLOs on the performance of
Graft. In our work, SLOs express DNN models’ require-
ments in end-to-end latency. For ease of exposition, the
SLO for each model is specified as a ratio to its individual
mobile inference latency and we call this ratio as SLO ratio,
which can span from 0.5 to 0.9. Moreover, the more strict
performance requirements DNNs have in latency, the lower
SLO ratios they should be set. We take an e-commerce ap-
plication as an example. This application integrates multiple
DNN models, each with specific performance requirements.
It is worth noting that these requirements vary depending on the

business domains [65]. Specifically, for tasks deemed mission-
critical, such as facial recognition for payment purposes,
it is imperative to configure the corresponding DNN with
relatively lower SLO ratios, to meet its stringent latency
requirements. In comparison, tasks related to facial beautifi-
cation, which exhibit a greater degree of tolerance to latency,
can be set with higher SLO ratios.

Here, for the generality, we completely evaluate the
impacts of SLO ratio over a broad spectrum, spanning from
0.5 to 0.9. Note that hybrid DL (i.e., Neurosurgeon) may fail
to find a feasible partition point when the SLO ratio is too
small, e.g., less than 0.7 for Inc. Figure 20 shows that Graft
is insensitive to the change of SLO (ratio), constantly achieving
performance approximately as good as Optimal.

5.11 Performance in energy
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Fig. 21: Energy consumption of Graft, GSLICE, GSLICE+,
Static, and Static+ when realigning (a) four fragments and
(b) twenty fragments.

We evaluate the energy consumption of Graft, GSLICE,
GSLICE+, Static, and Static+ under homogeneous small-
scale and large-scale scenarios (with the same settings as
in Section 5.2 and Section 5.3), respectively. As depicted
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in Figure 21a, thanks to its higher resource efficiency, Graft
achieves energy reduction by up to 70.1% when compared with
GSLICE and Static in the small-scale case. This improvement
becomes more significant in the large-scale scenario due
to the incorporation of a greater number of fragments
in realignment. Note that GSLICE+ exhibits lower energy
consumption than Graft by 42.7%, 32.2%, and 30.1% on
average for Inc, VGG, and ViT, respectively. This is because
of its sufficient merging enabled by Uniform (detailed in
§5.5), which enables GSLICE+ with the opportunity to build
larger batch sizes and thus reaps higher energy efficiency.

6 LIMITATION AND FUTURE WORK

Realignment disruption. Notably, there may exist cases
where the realignment is disrupted by the DNN fragments
that undergo frequent variations. As a solution, we could
introduce a shadow instances-based alternative as done in
GSLICE in the future. Specifically, this strategy sets up
shadow instances for the latest arrived DNN fragments
when the scheduler is busy with re-aligning existing frag-
ments. Upon completion, the scheduler identifies “similar”
fragments, which share the same partition points and ap-
proximate time budgets with the recently arrived ones, and
then reuses their realignment on the latter. This approach
is motivated by the fact that smaller time budgets and
higher throughput do not always dictate higher resource
consumption due to the discreteness (e.g., batch size) in
resource provisioning. Meanwhile, partition points usually
occur at several specific layers (illustrated in Figure 6a),
presenting a high potential for realignment reuse. The above
improvement could allow Graft to effectively handle the
frequent variations of DNN fragments.
Intermediate representations with diverse precision. In
most cases, Graft does not require specific improvements to
deal with intermediate representations’ differences in preci-
sion. This is because while intermediate representations may
employ low bit-widths for lower transmission latency, most
of them can be converted to full precision upon reaching
servers [11], thus having no impacts on the subsequent
realignment. On the other hand, in cases where the con-
version fails to proceed as expected, we can implement the
following approach. That is to separate DNN fragments
based on their precision while restricting the realignment
among the fragments with the same precision.
Availability to other models. Recently early-exiting mod-
els are proposed to realize the trade-off between inference
accuracy and inference latency [9], [66], [67]. These models
incorporate multiple exits, allowing requests to terminate at
different stages of processing. Moreover, prior to execution,
requests lack precise information about their exact exiting
layer. In particular, when requests exit before reaching the
re-partitioning point, the re-aligned DNN fragment will fail
to construct predefined batch sizes and thus incur resource
over-allocation. To address this issue, we can monitor the
achievable throughput (e.g., requests per second) of the
exiting layers that are located after the re-partitioning point.
Then, Graft adjusts batch sizes accordingly to reap higher
resource efficiency.

BERT, LSTM, RNN, and Transformer are designed to
analyze sequential data. Compared with CNN, these models

have higher data dependency due to their specific require-
ments of “memory”. This consequently needs to facilitate
Graft with an adequate data compression technique to
control data exchanging overheads. Notably, to the best of
our knowledge, BERT, LSTM, RNN, and Transformer are
rarely used alone but rather serve as basic building blocks
to construct more complex architectures. Moreover, for the
sake of higher accuracy, modern models tend to integrate
considerable numbers of blocks, for example, ViT consists
of twelve Transformer based blocks. This offers the opportu-
nity to focus on the realignment of inter-blocks, rather than
intra-blocks, so as to strike the trade-off between resource
efficiency and time complexity. As shown in Table 3, Graft
reaps resource reduction by up to 70% for ViT as compared
with GSLICE/GSLICE+, which only uses batching without
realignment.
Heterogeneous models. At present, the realignment is ex-
clusively applied to fragments that originate from the same
DNN or, at most, only have slight difference in final layers
due to transfer learning. We leave more fine-grained per-
layer re-alignment as future work. To support complex
scenarios that involves multiple different DNNs, we can in-
troduce a straightforward separation strategy for fragments
depending on their DNN types, and then apply Graft.
Split training. Graft demonstrates its effectiveness in pro-
visioning inference tasks on the server side. To support
split training, which incorporates both clients and servers
to train models collaboratively [30], several considerations
must be addressed due to their distinct characteristics com-
pared with inference tasks: (1) Looser time budgets, (2)
Higher GPU memory requirements [68], [69], and (3) Larger
transmission loads, which encompass batched intermediate
data and generated gradients across clients and servers [70].
As a result, Graft needs to adjust its objective. Instead of
focusing on minimizing GPU computing resources with-
out violating SLOs, Graft should now prioritize minimiz-
ing GPU memory consumption while shortening training
duration as much as possible. To achieve this goal, the
profiler should collect the profiling data with respect to
training throughput and latency in batch sizes and memory
consumption. Simultaneously, it is necessary to integrate a
series of transmission/storage-targeted optimizations, such
as quantization and compression [9], [71], for reaping lower
data transmission latency.
Compatible with other hardware. Graft effectively enables
fine-grained resource allocation on hardware that supports
spatial sharing, e.g., CPUs and GPUs. To seamlessly support
temporal-sharing accelerators, Graft requires upgrading its
executor, ensuring that re-aligned DNN fragments are exe-
cuted in order.
Distributed edge setups. Graft exploits DNN fragments re-
alignment within one edge node. To extend to distributed
edge setups, it needs to facilitate a straightforward deploy-
ment strategy–first bin-packing-based deployment, which is
widely adopted by commercial platforms like AWS Lambda
and Alibaba Compute Function [72], [73]. Specifically, this
strategy selects the first available server that can accom-
modate the requirements of both the separate and the
re-aligned fragments (shown in Figure 4) appropriately.
Consequently, it effectively minimizes time-consuming data
transmission across servers while mitigating the risk of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX XXXX 14

overwhelming server resources.

7 RELATED WORK

We summarize related work in hybrid DL, DL inference
serving, and GPU utilization improvement in this section.
Hybrid DL. Recently, much research has been done on hy-
brid DL by both academia and industry. Neurosurgeon [23]
first introduces DNN partitioning to decrease the end-to-
end latency by exploiting the computation capability of a
mobile device and cloud servers under dynamic network
bandwidth. JointDNN [26] extends the idea to multiple-part
partitioning and explores the properties of partition points
for different DNN types. Neurosurgeon and JointDNN both
focus on DNNs with linear architectures (e.g., AlexNet [74]
and VGG [75]). DADS [51] explores partitioning for DNNs
based on directed acyclic graph (DAG) (e.g., GoogleNet [76])
and proposes two DNN partitioning strategies for light
and heavy network conditions, respectively. There are also
studies on specific problems involving hybrid DL such
as deploying DNNs at the edge [77], [78], [79], mobile
handover [50], and privacy protection [29]. Early-exit has
also been merged into DNN partitioning recently for fur-
ther decreasing the inference latency and resource con-
sumption [9], [66], [67]. Auto-split has been deployed in a
commercial cloud to enable edge-cloud collaborative DNN
inference [18].
DL inference serving. A large amount of work has been
done to improve DL inference serving, aiming at resource
efficiency and latency SLO guarantee. The industry devel-
ops systems, such as TensorFlow Serving [56] and Torch-
Serve [80]. Meanwhile, the academic proposes a variety
of inference serving systems like Clipper [7], Nexus [8],
AsyFunc [81], iGniter [82], Opara [83], etc. Clockwork ex-
ploits performance predictability and proposes a principled
bottom-up approach to achieve low tail latency for infer-
ence serving [10]. Systems like ALERT [57] and INFaaS [6]
employ model adaptation to balance performance, accuracy,
and energy efficiency at runtime. Apart from single models,
more complex model graphs have been considered [4],
[48], [84]. Different from the above coarse-grain allocation
frameworks working at the whole GPU level, GSLICE [59]
spatially shares GPUs among located DNNs and hence
reaps high throughput with latency guarantee. Besides sin-
gle DNN inference, there are also some studies on the
inference serving “chains” or “graphs” that coordinate mul-
tiple DNNs, including GrandSLAM [48] and InferLine [4].
Powerchief [85] focuses on mitigating the latency of multi-
stage applications on power-constrained CMP by means of
identifying and accelerating the bottleneck service while
considering the power budget.
GPU utilization improvement. Numerous spatial sharing
based approaches have been proposed to improve GPU
utilization. Prophet [86] depends on interference models
with respect to shared resources, to realize the “safe” co-
location for latency-sensitive applications without violating
SLO. Yeung et al. [87] propose a prediction engine to foresee
the GPU utilization of heterogeneous DL workloads, to
increase resource utilization while reducing performance in-
terference between workloads. FGPUs [88] introduces both
compute and memory bandwidth isolation mechanisms to

promise the predictability of the concurrent applications on
GPUs. Slate [89] conducts a workload-aware scheduling for
the concurrent kernels to improve the GPU utilization while
minimizing resource contention. Maestro [90] explores the
GPU resource partitioning at the granularity of both the
streaming multi-process (SM) and the simultaneous multi-
kernel to improve the system performance. Apart from spa-
tial sharing, temporal sharing and spatial-temporal sharing
are also explored to improve GPU utilization [68], [91], [92],
[93].

In summary, current work in hybrid DL, such as Neu-
rosurgeon and JointDNN, focuses on partitioning a single
DNN to optimize latency or power across one mobile device
and one (edge) server, without considering the efficient
serving of non-uniform DNN fragments on the server.
Meanwhile, existing DL inference serving systems only
pay attention to full-size DNNs in the cloud, ignoring the
resource efficiency issue in hybrid DL where DNNs are
fragmented. In contrast, Graft is optimized for hybrid DL
and addresses the inefficiency in provisioning non-uniform
fragments, based on a new concept called re-alignment.
Graft is orthogonal to GPU spatial- and temporal-sharing
improvements, which can be further leveraged to improve
the performance of Graft.

8 CONCLUSION

In this paper, we identified the DNN fragment misalign-
ment problem in inference serving for hybrid DL and
proposed a new concept called re-alignment to address it
by promoting request batching and sharing. We proposed
Graft—a first-of-its-kind inference serving system for hybrid
DL adopting re-alignment. We identified the challenges in
building Graft and proposed efficient algorithms for fine-
grained resource allocation for Graft. Experiments based
on a system prototype show that Graft achieves significant
resource savings while providing latency SLO guarantee.

9 APPENDIX

Bandwidth trace replay. We use the Linux tc utility to
replay real-world 5G bandwidth trace between mobile de-
vices and the server. Specifically, tc offers various queueing
disciplines, abbr. qdisc, on clients’ network interfaces to
shape their traffic. We select Hierarchy Token Bucket-based
queueing discipline, i.e., HTB qdisc, considering its reliable
capacity to ensure specific upper limits on bandwidth [94].
To replay varying 5G network conditions, we encapsulate
the control in a script, and execute it periodically (each
minute by default as [95]) on each mobile device, which
regulates the bandwidth of devices’ network interface to
predefined values.
Other DNN partition strategies. Due to simplicity, we
leverage Neurosurgeon to construct the hybrid DLs context.
Specifically, Neurosurgeon concentrates on fundamental
factors, namely network conditions, SLO requirements, and
mobile device computing capacity, to decide one particular
partition point. Other influential factors, such as perfor-
mance interference across simultaneous workloads [96] and
DVFS settings [97] on mobile devices are also investigated.
On the other hand, there are works that enable multiple
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partition points [26], [98]. This offers the potential to achieve
lower end-to-end latency but at the cost of higher resource
consumption on the server-side [11]. The reason is that
multiple partition points dictate extra transmission latency,
which compresses the time budgets for inference tasks
on the server side. As compensation, more resources are
required for SLO guarantees. This contradicts the goal of
Graft, i.e., resource-efficient serving on server sides. Con-
sequently, we focus on one partition point-based hybrid
DL. Additionally, finer-grained partitioning for DNNs with
complex structures, such as parallel branches, has also been
explored [51], [99]. Yet, considering the trade-off between
time complexity and resource efficiency, we treat parallel
branches as a unit without further partitioning.
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