
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 1

On-edge Multi-task Transfer Learning: Model
and Practice with Data-driven Task Allocation

Qiong Chen†, Zimu Zheng†, Chuang Hu, Dan Wang, Senior Member, IEEE,
and Fangming Liu∗, Senior Member, IEEE

Abstract—On edge devices, data scarcity occurs as a common problem where transfer learning serves as a widely-suggested
remedy. Nevertheless, transfer learning imposes heavy computation burden to the resource-constrained edge devices. Existing task
allocation works usually assume all submitted tasks are equally important, leading to inefficient resource allocation at a task level when
directly applied in Multi-task Transfer Learning (MTL). To address these issues, we first reveal that it is crucial to measure the impact of
tasks on overall decision performance improvement and quantify task importance. We then show that task allocation with task
importance for MTL (TATIM) is a variant of NP-complete Knapsack problem, where the complicated computation to solve this problem
needs to be conducted repeatedly under varying contexts. To solve TATIM with high computational efficiency, we propose a Data-driven
Cooperative Task Allocation (DCTA) approach. Finally, we evaluate the performance of DCTA by not only a trace-driven simulation, but
also a new comprehensive real-world AIOps case study which bridges model and practice via a new architecture and main
components design within AIOps system. Extensive experiments show that our DCTA reduces 3.24 times of processing time, and
saves 48.4% energy consumption compared with the state-of-the-art when solving TATIM.

Index Terms—Edge computing, transfer learning, data-driven task allocation, real-world application.

F

1 INTRODUCTION

Nowadays, computationally intensive machine-learning ap-
plications such as image recognition are becoming popular
on resource-constrained edge devices (e.g., intelligent cam-
era). While enjoying the merits of these applications, users
are also frustrated when striking the balance between execu-
tion time and resource consumption on the edge. To address
this problem, many task partitioning approaches have been
proposed. Generally, an edge application is partitioned into
a set of tasks which can be executed on the edge devices. For
example, the video analytics application usually consists of
several tasks (e.g., face detection and action classification),
and allocates these tasks to multiple edge nodes to execute.
Application partition and task allocation reduce the burden
of a single edge device and jointly improve the performance
of the application.

However, in major edge computing systems, we often
face challenges in learning under data scarcity, due to either
prohibitive cost (e.g., privacy concern, storage limitations,
and networking costs), or inherent difficulty in obtaining
required proper training samples with respect to the system
complexity and uncertainty on the edge. Recently, transfer
learning shows its effectiveness to tackle the data scarcity

• Q. Chen and F. Liu are with the National Engineering Research Center for
Big Data Technology and System, Key Laboratory of Services Computing
Technology and System, Ministry of Education, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan, China. E-mail: {qiongchen, fmliu}@hust.edu.cn.

• Z. Zheng, C. Hu and D. Wang are with the Department of Comput-
ing, Hong Kong Polytechnic University, Kowloon, Hong Kong. E-mail:
{cszzheng, cschu and csdwang}@comp.polyu.edu.hk.

• Z. Zheng is also with the Technical Innovation Department, Cloud BU,
Huawei Technologies Co.Ltd, Shenzhen, China.

† Authors contributed equally. ∗The corresponding author is Fangming Liu.

issue [1] and serves as a widely-suggested remedy for
different industrial applications with insufficient samples,
e.g., image recognition [2], speech analysis [3], disease diag-
nosis [4], medical informatics [5] and industrial operations
(e.g., AIOps) [6].

In this paper, we focus on the Multi-task Transfer Learn-
ing (MTL) on the edge, where a machine-learning-based
application can be divided into multiple machine-learning
tasks, and each task can obtain the knowledge of some other
tasks to improve its performance. It is well known that the
machine-learning-based application is highly computation-
intensive, while the computation resource of edge device is
limited. Many efforts have been devoted to designing task
allocation mechanisms to achieve various objectives, e.g.,
optimizing the makespan [7], throughput [8] or reliability [9]
of the application. However, these frameworks focus on
general parallel tasks in the centralized datacenter, where
the computation capacity is assumed to be infinite in terms
of constantly leasing of virtual machines.

In edge computing systems, it is sometimes hard to
obtain a satisfactory result within time and resource lim-
itations if we directly utilize existing frameworks for the
cloud. Admittedly, existing task allocation studies have con-
sidered that different tasks may require different resources
in edge computing systems in order to jointly improve the
performance of the application [10]–[12]. They are usually
designed for general machine learning and typically assume
that all tasks contribute identically to overall performance
improvement of the application. However, in MTL, tasks
belonging to the same machine-learning-based application
usually have different potential for improving the appli-
cation’s overall performance. Directly applying these tech-
niques leads to inefficient resource utilization at a task level
under MTL in edge computing systems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 2

To solve the above inefficiency issue for multiple-task al-
location in edge computing systems, the key is that more im-
portant tasks, which have the higher potential for improving
the application’s overall decision performance, should be
allocated to more powerful edge devices for priority execu-
tion under time limits. Recently, Geng et al. also considered
the priority of tasks by leveraging the dependency of tasks
in task allocation [13]. In that study, the task dependency
is predefined and remains fixed over time, e.g., installing
Hadoop before Spark. However, due to the complex nature
of machine-learning tasks, variables such as environmental
conditions and model configurations are likely to change
over time. The dependency of machine-learning tasks is
dynamic and usually not available before learning. Directly
applying the current allocation mechanism can easily result
in significant overall application performance degradation
for MTL on the edge.

Instead of assuming that all tasks contribute identically
to the application’s overall decision performance improve-
ment and conducting the time-dynamic task allocation on
the edge, our idea is to leverage machine learning tech-
niques to capture the correlated and collective potential
improvement of multiple tasks. Accordingly, we propose
a Data-driven Cooperative Task Allocation (DCTA) mech-
anism to maximize the application’s overall decision per-
formance among multiple tasks on the edge. We also con-
duct a new comprehensive case study under the real-world
industrial operation (e.g., AIOps) scenario, where MTL is
necessary due to the data scarcity on edge devices.

Challenges and solutions. In designing DCTA, we have
to overcome three following major technical challenges.

First, the metric of tasks impact on overall decision
performance improvement remains unknown in current
studies. To tackle the challenge, we propose a metric of
task importance, which is to measure the overall performance
degradation when the measured task is not conducted in
MTL. We also observe the long-tail property of task impor-
tance, i.e., only a few tasks are important, which serves as
a key metric to guide task allocation and facilitate resource
saving from less important tasks. We formally define the
TATIM problem of task allocation with task importance for
MTL on the edge.

Second, the TATIM problem is challenging due to not
only its computation complexity (i.e., NP-complete) but also
the varying contexts (i.e., dynamic task importance) on the
edge. We first prove that TATIM is a variant of Knapsack
problem and thus NP-complete. We then show that the
task importance is difficult to capture, due to varying en-
vironmental conditions and configurations. Therefore, the
complicated computation to solve this problem needs to be
conducted repeatedly under varying contexts on the edge.
To enhance the computational efficiency, we propose a data-
driven task allocation mechanism based on reinforcement
learning.

Third, applying the machine learning technique to solve
the TATIM problem introduces a trade-off between accuracy
and cost. On one hand, an accurate data-driven model re-
quires a huge amount of expensive local data on real-world
operations. On the other hand, merely using general data
from simulation helps to reduce the amount of local data
needed but leads to low accuracy. To tackle the challenge,

we propose a cooperative learning mechanism to reduce the
amount of data needed to generate a reliable data-driven
model, by leveraging both general simulated data and local
real-world data.

We implement DCTA as a task allocation approach
within a data-driven building management system. We also
evaluate various distinct task allocation approaches by not
only a trace-driven simulation, but also a new comprehen-
sive real-world AIOps case study which bridges model and
practice via a new architecture and main components design
within AIOps system. Extensive experiments show that our
DCTA reduces 3.24 times of processing time, and saves
48.4% energy consumption when solving TATIM compared
to the state-of-the-art.

The rest of the paper is organized as follows. In Sec.
2, differing from our preliminary work [14], we reorganize
all the notations and observations on task importance for
better understanding. In Sec. 3, we introduce the data-
driven approach for task allocation, by leveraging both
cluster reinforcement learning and support vector machine.
In Sec. 4, we conduct trace-driven simulations to evaluate
the performance of the proposed DCTA mechanism. In Sec.
5, we add a new comprehensive case study on AIOps for our
DCTA mechanism to bridge model and practice. Specifically,
we first elaborate the background of AIOps system for better
understanding, and exhaustively analyze the motivation of
applying DCTA mechanism to the AIOps system. We then
further analyze how to apply the DCTA mechanism by
proposing a new architecture and main components design
within AIOps system. Extensive experiments are comple-
mented to demonstrate the superiority of AIOps system
integrating our DCTA mechanism. Sec. 6 discusses related
work and Sec. 7 analyzes some future work and possible
improvements. At last, we conclude this paper in Sec. 8.

2 BACKGROUND AND PROBLEM DEFINITION OF
TASK ALLOCATION WITH TASK IMPORTANCE

In this section, we first introduce the background of Multi-
task Transfer Learning (MTL). We then give a formal def-
inition of task importance. We also observe the long-tail
property of task importance and the potential of leveraging
task importance for task allocation in MTL. With these
notations, we formally define the problem of task allocation
with task importance for MTL.

2.1 Background of Multi-task Transfer Learning (MTL)

In this paper, we study the issue of Multi-task Transfer
Learning (MTL) on the edge, where varying tasks together
can facilitate better decision performance. It basically reuses
parameters or training samples of source tasks to support
target tasks, e.g., which are lack of training data. The term
task is defined as a set of data, label and its corresponding
learning model for a predefined context. For example, for
a self-driving car on the road, the detection of each type
of object, e.g., neighboring-car, traffic-sign, or pedestrian
detection, can be modeled separately as a task. Another
example is to take the coefficient of performance (COP)
prediction of a chiller for one particular operation as a task
[15]. The process is shown in Fig. 1.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 3

(a) Traditional Learning

and Decision Making (b) Multi-task Transfer Learning and Decision Making

Traditional Learning Task

Data

Learning

Process

Task 1 Task 2

Source Tasks

Task N

Target Task

Transfer Learning Task N
Task 1

Decision Making

...
...

Decision Making

Task 2 Task N

Predicted Value

Predicted

 Value

Predicted

 Value

Predicted

 Value

Fig. 1: Decision making with (a) traditional learning and (b) transfer
learning.

The benefits of multiple tasks come in mainly two ways.
First, similar tasks can transfer their knowledge between
each other during the training process, which reduces the
negative effect of data scarcity, especially on the edge.
Second, in the real-world scenario, it is common to make
the final decision by aggregating the output of multiple
tasks. Maintaining the high performance of all these tasks
contribute to the final aggregated decision performance.
Again in the example of a self-driving car, the final driving
operation of the car is conducted based on the result of
multiple data-driven tasks, e.g., the neighboring-car, traffic-
sign, and pedestrian detection.

The Computation Challenge. However, the current
MTL systems are way too computationally complicated for
edge devices. The reason is twofold: 1) Each task needs to be
learned individually from scratch, where siloing tasks make
training a new task or a comprehensive perception system
a Sisyphean challenge; 2) To avoid data-driven task model
being out-of-date and leverage the latest accumulated data
as effectively as possible, MTL practitioners retrain their
models repeatedly to get the final model with the best
quality, including to explore feature representation [16]–
[18], adjust structures of task relationship [19]–[21] and tune
hyper-parameters [22]. For better understanding, a formal
formulation of MTL tasks on the edge is available in the
following Section 2.4.

2.2 Notations of Task Importance
Confronted with the computational challenge of MTL, we
aim to allocate tasks for more efficient MTL on the edge.
When allocating tasks, current studies usually assume that
all machine-learning tasks are equally important so that
resources should be allocated to ensure the accuracy of all
these tasks.

However, tasks are not always related to the current
context, and thus not equally important. At a specific pe-
riod of time, e.g., within one hour, the number of highly
important tasks are likely to be of a minor, compared with
the number of all possible tasks. For example, for a self-
driving car on the high way, neighboring car detection can
be much more related and important compared with most
tasks like pedestrian detection which are more important in
a downtown area. 1

In this part, before studying task importance, we first for-
mally define it and its related notations. The key notations
in this paper are also listed in Table 1 for ease of reference.
A further experiment on task importance is available after
the definition.

1. As a further demonstration, a real-world experiment and the cor-
responding observation are also available at the end of the subsection.

TABLE 1: List of Key Notations.

Notation Description

J Set of tasks where J = {j}
P Set of edge devices where P = {p}
Ij The importance of task j

H(·) The merit function indicates the ability to
provide credible decision performance

D(·) The decision-making function indicates
the best operation

D The ideal performance
uj,p Whether the task j is assigned to

processor p (=1) or not (=0)
tj The execution time of task j

vj The resource (e.g., battery) consumption of task j

T The maximum time limits to conduct the decision
Vp The maximum resource capacity of processor p
θj The model parameters of task j

Lj(·) The learning loss of task j

u The task-allocation matrix where u = [uj,p]

Definition 1. (Task Importance) Given a task set J = {j} which
consists of a series of tasks, the importance of task j is

Ij = H(J ;θ)−H(J\{j};θ\{θj}), (1)

where a learning task is denoted by j ∈ N+; θj denotes the model
parameters of task j and θ = {θj} denotes its vector; merit func-
tion H(·) outputs the final potential performance improvement;
J denotes the entire task set.

Thus, given model parameters θ, the task importance
Ij can be updated using the merit function H(·). Such a
function indicates the ability to provide credible decision
performance (e.g., energy saving) and outputs a value called
overall merit, which is formally defined as below.

Definition 2. (Overall Merit) Given the task set J and the ideal
performance of final decisions D, the overall merit is defined as
the similarity with the ideal performance, i.e.,

OM = H(J ;θ) = 1− |D −D(J ;θ)|
D

, (2)

where D(·) denotes a decision-making function given model pa-
rameters, and D denotes the ideal performance which can usually
be collected after final optimization, i.e., collected manually or
automatically by leveraging historical samples.

In general, the historical data records the descriptor
of contexts/ scenarios, requirement, historical operations,
and its results. Such information helps us to define D. For
example, in the case of a self-driving car, in order to ensure
the car arrive at the destination safely, it will conduct a series
of decision actions where the least time-consuming situation
can be regarded as the ideal performance.

Such a decision-making function D(·) is intrinsically
solving an optimization problem finding the best action
according to parameters, which can be set once given the
scenario. For example, in the case of a self-driving car,
a possible decision-making function is to find an action
which minimizes the probability of accident while ensures
the car should be able to arrive at the destination under

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 4

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Task Importance

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ta
sk

 P
ro

po
rti

on

Fig. 2: The non-uniform (i.e.,
long-tail) distribution of nor-
malized task importance in
MTL.

Pe
rf
or
m
an
ce

Fig. 3: The decision perfor-
mance (i.e., energy consump-
tion) with ACCURATE and
CURRENT schemes.

time limitations. For interested readers, a more concrete
implementation of D(·) is also available in Section 5.

2.3 Observations on Task Importance

We have introduced related concepts of task importance.
We next justify the motivation of using task importance by
further observations.

We first plot the distribution of task importance in Fig. 2,
based on a real-world MTL dataset released in [15]. In there
are totally 50 data-driven tasks for cooling operations run-
ning across four years in three buildings. We observe a long-
tail property of task importance, i.e., merely 12.72% of tasks
have a high contribution of over 80% to the overall merit.
We say that a task is unimportant when its task importance is
critically low compared with others, e.g., below 0.05%. We
therefore have such an observation.

Observation 1. In MTL, unimportant tasks exist; The impor-
tance of tasks obeys a long-tail distribution.

This observation reveals the non-uniform distribution
of task importance in the real-world environment which
motivates us to break the common assumption of modern
MTL. Results in a recent CVPR paper also confirm such an
observation [23]. The unimportant (e.g., redundant or noisy)
tasks can be the result of 1) insufficient training samples on
the edge, and 2) mismatch of context and submitted tasks in
practical scenarios. It also indicates the potential of speeding
up MTL from those unimportant tasks.

In the machine learning community, current MTL sys-
tems usually conduct tasks in the order of time stamps,
where these time-ordered tasks are of arbitrary importance.
Thus, the current execution sequence can be regarded as
random, e.g., normally distributed, in terms of task impor-
tance. When there are limitations on resource and execution
time for MTL tasks, the current approach can suffer from
lower overall merit.

We conduct experiment on the MTL dataset mentioned
above [15], where the decision objective of MTL is to control
the Chiller AIOps system to minimize the energy consump-
tion for cooling, which refers to the decision performance.
Fig. 3 shows the result by conducting MTL tasks in the order
of task importance (called ACCURATE scheme), compared
with the order of time with random task importance (called
CURRENT scheme) under execution time limitations. Such
an ACCURATE scheme can be obtained by computing task
importance using historical data (Section 2.2), and can be
regarded as ground truth. Base on the obtained accurate task
importance, we can find the best task allocation strategy. For
interested readers, a detailed optimization process is also
available in Section 5.2.

0 200 400 600 800 1000
Operation

1
2
3M

ac
hi

ne

0.0
0.2
0.4
0.6
0.8
1.0

(Im
po

rta
nc

e)

Fig. 4: Average task importance
for different types of machines
and operations.

0 200 400 600 800 1000
Operation

1
2
3M

ac
hi

ne

0.0
0.2
0.4
0.6
0.8
1.0

(Im
po

rta
nc

e)

Fig. 5: Task importance varia-
tion for the same types of ma-
chines and operations.

Stacked bars on the left indicate the performance with
the ACCURATE scheme, whereas the right show the CUR-
RENT scheme using random task allocation. We see that
the ACCURATE scheme considering task importance could
have resulted in an average of over 45.68% potential im-
provement in terms of the overall merit. These results
demonstrate that there is significant room to improve the
overall merit when using a more accurate and robust
scheme of task allocation. We summarize the observation
as below.

Observation 2. Overall merit with MTL can be improved by
task allocation according to task importance.

However, the task importance may not be always di-
rectly available for run-time usage. The above experiment is
based on historical data so that we are able to compute the
task importance after a task is executed. For run-time usage,
we often need to know the task importance in advance, i.e.,
before a task is conducted. A natural question is whether
the task importance is easy to predict, e.g., a fixed or stable
value. Based on the above MTL dataset, we also conduct two
experiments as more-detailed distribution studies showing
how the importance fluctuates over operations under differ-
ent industrial demands and conditions.

We first plot the average task importance as a function of
different operations in terms of different types of machines
in Fig. 4. We pick the first regular machine for example. It
can be seen that these machines often operate at a small por-
tion of operations, and the importance fluctuates somewhat
randomly. At the same time, for the same types of machines,
we plot in Fig. 5, the variation in their task importance
under different operations, and note that there is a large
fluctuation even for a given operation. This is because the
task importance in practice is highly dependent on a variety
of factors like environmental conditions and configurations.
Such factors are referred as the term context in this paper.
We therefore have such an observation.

Observation 3. Task importance fluctuates markedly over vary-
ing contexts with MTL in terms of average and variance.

This observation reveals that the time-dynamic task im-
portance changes in varying contexts [24], [25], e.g., with
different external factors (like environmental conditions and
dynamic industrial demands) and internal factors (like ma-
chine configurations and response). For example, in the case
of self-driving car, the context contains the following specific
factors such as visual observations, physical information,
weather, traffic conditions and etc. These factors are exceed-
ingly difficult to capture within an analytical model. Facing
such a high variance of task importance situation, natural
thinking of modeling task importance using synthetic mod-
els easily suffers from low accuracy.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 5

2.4 Problem of Task Allocation with Task Importance
for MTL

Based on the above notations and observations, the intuition
behind this paper is that we should allocate more important
tasks to more powerful edge devices (e.g., edge server) to
optimize the final decision. Here we say an edge device
is more powerful which refers to it’s processing speed or
frequency is faster. We aim to leverage task importance to
facilitate task allocation for MTL tasks on the edge, with an
emphasis of time limits.

We start by formally defining the conception of task allo-
cation and MTL tasks on the edge, where the former consists
of the task placement and resource allocation. Considering
machine-learning tasks are usually highly computation in-
tensive, resource-constrained edge devices can barely han-
dle multiple tasks in parallel. Therefore, we assume that, at
a certain time, a task occupies the whole CPU computing
resource under execution.

Definition 3. (Task Allocation) Given an edge device set P =
{p} which consists of a series of edge devices, the task allocation
over P is a binary variable uj,p, i.e.,

uj,p =

{
1, if task j is assigned to edge device p
0, otherwise,

where an edge device is denoted by p ∈ N+.

Since each task is indivisible and must be assigned to
exactly one edge device, we have the following constraint:∑

p∈P

uj,p = 1, ∀j ∈ J . (3)

Considering edge devices are usually resource-
constrained and discrete, we classify resources into two
categories, i.e., execution-related and basic requirements.
The former refers to CPU computing resources, whereas
the latter refers to battery or storage resources. Therefore,
the CPU execution time and basically resource requirements
of all tasks assigned to edge device p should satisfy the
following constraints:∑

j∈J

tj · uj,p ≤ T, ∀p ∈ P , (4)

∑
j∈J

vj · uj,p ≤ Vp, ∀p ∈ P , (5)

where tj denotes the execution time of task j; T denotes the
time limitations; vj denotes the resource required for task j;
Vp denotes the resource capacity of edge device p.

The objective of traditional MTL is to minimize the
collective loss of all tasks. We study the modeling and define
the MTL tasks specific to the edge computing scenario for
better understanding.

Definition 4. (MTL Tasks on the Edge) Given task importance
Ij , the execution time and resource limitations of Eq. (3) - (5), an
on-edge MTL tasks aims to obtain θ by

θ = argmin
∑
j∈J

∑
p∈P

Ij · Lj(θj) · uj,p, s.t. Eq.(3)− (5),

where Lj(θj) denotes the learning loss of task j, e.g., prediction

error and regularization terms.

Based on the above definitions, we formally define the
problem of task allocation with task importance for MTL on
the edge (TATIM Problem) as below.

Definition 5. (TATIM Problem) Given the execution time and
resource limitations, a TATIM problem is to obtain u by

max
u

∑
j∈J

∑
p∈P

Ij · uj,p, s.t. Eq. (3)− (5),

where u = [uj,p] denotes the task-allocation matrix; Ij can be
computed given θ from Definition 4 and J using Equation 1− 2.

We found that the TATIM problem under the execution
time and resource limitations is in fact a 0-1 Knapsack
problem, which is in general NP-complete.

Theorem 1. Task allocation problem with task importance is a
0-1 multiply-constrained multiple Knapsack problem.

For interested readers, the proof of Theorem 1 can be
found in our conference paper [14].

3 DATA-DRIVEN APPROACH FOR TASK ALLOCA-
TION

As shown in the previous section, when we introducing the
time-varying task importance I , task allocation becomes a
TATIM problem which is challenging as an NP-complete
problem twofold.

First, the complexity introduced by task importance is
the reason why we adopt a reinforcement learning (RL)
model. We leverage data-driven methods in order to reduce
the time needed to solve the origin NP-complete Knapsack
problem. Specifically, in the data-driven RL method, we
integrate task importance into the environment modeling
of RL.

Second, because the task importance is time-varying, an
RL model cannot simply be applied. In the first part, we
propose a clustered reinforcement learning (CRL) model
that makes decisions based on how observations of the
environment relate to those previously seen. In the second
part, because the CRL model can confront with quite a few
unseen environments, we further propose a Support Vector
Machine (SVM) model to predict the task importance and
dynamically adjust CRL model decisions based on real-time
data.

In a brief summary, the reason for using data-driven
technique for TATIM with task importance is because
it shows its effectiveness for complicated problems in
time-varying environments, including Intelligent logistics
[26], Autonomous Mobility-on-Demand system [27], and
Human-level game control [28]. Basically, data-driven tech-
niques are particularly helpful for solving complicated prob-
lems repeatedly with varying parameters, because they not
only help to model and reduce the environmental random-
ness in multi-task scenarios but also help to significantly en-
hance the computational efficiency due to the fast inference
phase when the solution is needed.2

2. Though the training phase may be long, it merely needs to be
conducted once in advance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 6

Formally, given a task set J and the corresponding his-
torical feature space X , we are to develop a data-driven task
allocation scheme with a loss function L(·) which maximize
the overall decision performance of the task allocation, i.e.,

u← F(J ,X).

3.1 The Clustered Reinforcement Learning (CRL)
Model
Next, we consider the proper approach to solving the
TATIM problem. First, in the previous section, we have
proved that the TATIM problem is in fact a Knapsack
problem and therefore NP-complete. RL is widely suggested
to efficiently solve such problems [27], [28]. Second, deci-
sions made by industrial systems can be highly repetitive,
thus generating an abundance of training data to support
complicated data-driven model. Based on the two reasons,
we applied the well-known RL to solve the TATIM problem.

In general, the RL works like this: at each decision
epoch, the agent will make a decision based on the current
state of the environment. Once the decision is made, a
reward would be provided to the agent and the state of
the environment would be updated for making future deci-
sions. The agent tries to maximize the cumulative rewards
over time. With RL, our TATIM problem is optimized in
a Markov Decision Process (MDP), which is a five-tuple:
< S,A,P, r, λ >, where S denotes the set of states; A de-
notes the set of actions; P denotes the transition probability
distribution; r denotes the reward function and λ ∈ [0, 1]
denotes the discount factor for future rewards. Note that dif-
ferent optimization problems have quite different objectives,
constraints, and variables. To adopt our TATIM problem, the
different components of RL needs to be specially designed.
The detailed design of these components in RL and MDP
will be discussed next.

Environment-dynamic Task Allocation. However, RL
should not be directly applied in our scenario, where the en-
vironment is diverse over time and existing RL approaches
usually assume a fixed environment.

1) Novel Problem of Environment-dynamic Knapsacks.
In TATIM, the task importance is critical for environment
modeling and thus also important for RL. As we known, the
knowledge learned by the decision of an agent is rewarded
according to the environment. Once the task importance and
the corresponding environment is not close to reality, the
decision made by the agent will lead to poor performance.

However, due to the varying scenarios in MTL, the
environment matrix of RL usually changes over time in
reality. Recall the previous example where a self-driving car
on the highway and pedestrians usually do not occur, the
task of pedestrians detection is less important compared to
other tasks. Nevertheless, when driving around the school,
pedestrians are particularly frequent which makes the task
of pedestrians detection more important. Therefore, we see
that the environment is clearly diverse in different scenarios,
especially when the task importance is encoded in the
environment of RL.3

3. Even in the same scenario, the environment can change over time,
due to the accumulating size of training data and the overwritten when
the storage is insufficient. Experiments in Section 2.3 also indicates the
fluctuation between historical and current task importance.

Current

Environment e

Environment Definition

Historical Environment Set ε

Day 1 Day 2

Day 3 Day 4

Data-driven Task Allocation

Resource

Constraint V

Today

Environment-dynamic Task Allocation

Allocated Results u

Fig. 6: The illustration of environment-dynamic task allocation.

In this regard, directly leveraging the RL model can eas-
ily mismatch the environment and submitted less important
tasks, which leads to poor decision performance [24], [29].
We also conduct an experiment to demonstrate the negative
impact. It shows a 46.28% reduction of performance when
the environment is not accurate using existing RL.

To this end, we realize that our TATIM problem can
be regarded as a novel variant of the Knapsack problem.
It is even more challenging than the Multiply-constrained
Multiple Knapsack Problem proved in the previous section.
This time, additionally, the item value (i.e., task importance)
can be changed randomly over time, instead of being fixed
in the traditional Knapsack problem.

2) Clustered Approach for Environment Definition.
Accordingly, to solve the TATIM problem, we are to learn
the current environment. Our idea is that the more similar
historical days, the more similar the environment is. Such
similarity can be measured by comparing the current sce-
narios and configuration settings, e.g., sensing data, of the
predicting day and the historical days.

The overall process is illustrated in Fig. 6, which con-
sists of two parts, i.e., environment definition and data-
driven task allocation. In the figure, different days rep-
resent different environments, and the darkness of each
color represents the different task importance. Through the
analysis of historical data, we establish an environment data
set, i.e., historical environment E . We define the historical
environment E as the collection of environment e, i.e.,

E = [e1, ej , · · · , eN ′], ∀j ∈ [1, 2, · · · , N ′],

where ej denotes the corresponding environment.
Through environment definition that we can find a simi-

lar environment e by clustering algorithms such as k Nearest
Neighbors (kNN), i.e.,

e = kNN(E , Z),

where Z denotes the sensing data. We then can make data-
driven task allocation based on the clustered environment
under the execution time and resource constraints.

Clustered Reinforcement Learning for Environment-
dynamic Task Allocation. Next, we propose key designs of
our approach, i.e., the environment modeling, state space,
action space, reward function, and optimization, which
should be specified based on our TATIM problem.

1) Environment. A key component in the RL model is
the environment, which is everything outside the agent, and
changes its state due to the action of the agent, and gives the
agent corresponding rewards. For an RL predictor, the envi-
ronment can be described as a matrix e which is a map of the
agent, e.g., Maze problem. More specifically, one dimension

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 7

represents the subject types (e.g., neighboring car detection,
traffic sign detection, and pedestrian detection), and the
other represents the available processors (CPU processor,
GPU processor, sensors). The elements of the matrix can be
viewed as a data-driven task. It is formulated as follows:

e = [Ij × Vp]N×M , ∀Ij , Vp ∈ R,

where Ij denotes the corresponding task importance and Vp

denotes the corresponding processor capacity.
2) State space. We represent the state, which is the

current task selection of the system. Specifically, the state
is defined by a matrix S and the element of each position
can be 0 or 1. Note that 1 represents the task is selected,
otherwise, it is not selected, which is formulated as follows:

S = [sij]N×M , ∀sij ∈ {0, 1}.

Such a fixed state representation indicates that it can be
conveniently applied as an input to a neural network.

3) Action space. At each point in time, the scheduler
may want to select any subset of the N × M tasks. But
this requires a large action space of size 2N×M leading
to unbearable computation to learn on the edge. We keep
the action space small using a trick: we allow the agent
to execute merely one action in each time step. The action
space is given by {1, 2, · · · ,M}, where a = j means to
conduct the jth task for the current processor in the current
time step. Hence, the action space is defined as follows:

A = {a|a ∈ {1, 2, · · · ,M}}.

In this way, we can greatly speed up our learning rate while
keeping the action space linear in M .

4) Reward Function. We craft the reward signal to
guide the agent towards desired solutions for our objective:
maximize overall task importance. Specifically, we set the
reward at each time step to

∑
j∈J Ij only if the agent reaches

the terminal state (i.e., all tasks in the current system are
assigned accordingly), where J is the set of tasks currently
in the system. Otherwise, the reward was set to 0. Hence,

r(t) =

{∑
j∈J Ij , if the agent reaches the terminal state

0, otherwise.

It is worth noting that the agent is set to not receive any
reward for intermediate decisions during a time step, which
is well-suited to apply to our real-world decision objectives.

5) Optimization. With the above key elements, we lever-
age Deep Q-learning Q(s, a; θ,J) [30], where θ denotes the
adjustable parameter vector of neural networks. It estimates
the value of executing an action a from a given state s.
Formally, given the feature space X which consist of the
environment e and the initial state s0, we have

u← F1(J ,X) = F1(J , (e, s0)) = Q(s, a; θ,J). (6)

Based on the above design, we propose the Clustered
Reinforcement Learning (CRL) approach, as shown in Algo-
rithm 1.

3.2 The Cooperative Learning Model based on CRL
However, the CRL model should not be directly applied.
In our scenario, the environment is diverse over time. Al-
though we can find similar environments in the historical

Algorithm 1 Clustered Reinforcement Learning (CRL)

Training Phase:
1: E ← historical environment s0 ← initial state Z ←

current scenarios and configuration settings.
2: e← EnvironmentDefinition(E ,Z) ▷ Find similar

environment.
3: while not yet reach the terminal state sN do
4: L(s, a|θ)← (r +max

a
Q(s′, a|θ)−Q(s, a|θ))2 ▷

Update DNN parameters θ.
5: end while
6: θ∗ ← argminL(s, a|θ) ▷ Obtain optimal parameter θ.
7: return e, s0, θ

∗

Prediction Phase:
8: (e, s0, θ

∗)← initialization using the return value of the
training phase.

9: u← F1((e, s0);θ
∗) ▷ Make task allocation prediction.

10: return u

CRL

Predictor

SVM

Predictor

C
o
o

p
era

tiv
e L

ea
rn

in
g

 General Process

 Local Process

Feature

Engineering

 Environment

Definition

Real-world

Data

Real-world

Data

Current

Environment

Current

Environment

Task Allocation

Result

Task Allocation

Result

Fig. 7: Framework of cooperative learning for task allocation.

environment through simple clustering methods, there is a
risk that the environment is still not closed to the real envi-
ronment. That is especially true for edge devices without too
much data, whereas the RL model can confront with quite a
few unseen environments and it requires much environment
observations to cover all possible situations.

In this regard, directly leveraging the CRL model can still
mismatch the environment and submitted less important
tasks, which leads to poor decision performance [24]. We
also conduct an experiment to demonstrate the negative
impact. Based on our CRL model, when the environment is
not accurate, it leads to a 28.84% reduction of performance.

A Cooperative Learning Approach. To tackle the chal-
lenge, our idea is to leverage runtime data to adjust the
decision of the CRL model.

Accordingly, we propose a cooperative learning ap-
proach as shown in Fig. 7, which is especially well-suited
to solve this problem. The proposed cooperative learning
approach contains two components: 1) a CRL predictor
with a huge environment definition data, and 2) an SVM
predictor with few real-world data. Formally, let C and R
be the feature spaces of the environment definition data,
i.e., C = {(e, s0)}, and real-world data, respectively. Let
F(·) denotes our cooperative learning model, which can be
represented more specifically as:

F(J ,X) = F(J , (C,R)) = w1F1(J , C) + w2F2(J ,R), (7)

where F1(·) and F2(·) denote the CRL predictor and SVM
predictor; w1 and w2 denote the weight of the corresponding
model results, respectively. In addition, the task-allocation
matrix u is outputted by our cooperative learning model
F(·), i.e., u← F(J , (C,R)).

As for the SVM predictor, we compare several state-
of-the-art models of SVM, AdaBoost, and Random Forest.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 8

We select SVM because of its highest accuracy. Formally,
given the target tasks feature values X , our objective is
to develop an SVM predictor F2(·) which infers the target
tasks allocation u. This can be formulated as follows:

u← F2(J ,X) = SVM(X ;w,J), (8)

where w denotes its parameter vector. 4

4 PERFORMANCE EVALUATION

In this section, we investigate the performance of DCTA
with extensive simulations over industrial operation (e.g.,
AIOps) scenarios using real-world data obtained from mul-
tiple data-driven building management systems.

4.1 Experiment Setup
For generating MTL tasks, we use a real-world building
operation dataset released in [15], which contains four-year
operation data for three high-rise commercial buildings in a
metropolitan, collected by a major building service provider.
The total data is more than 1 TB. Supported 50 MTL
tasks include independent multi-task learning, self-adapted
multi-task learning and clustered multi-task learning based
on SVM, AdaBoost and Random Forest.

Our simulation consists of nine Raspberry Pi (version
3) and one laptop computer as shown in Fig. 8, which are
all interconnected via WiFi under a star network topology
in an office building. This represents an edge computing
environment where the computational capabilities of edge
nodes are heterogeneous. The simulation parameters, e.g.,
the transmission and receiving energy consumption of the
Raspberry Pi are both 1.42×10−7 J/bit, the processing speed
and energy consumption are 4.75 × 10−7 s/bit and 3.25 ×
10−7 J/bit, which are based on the settings from [31].

4.2 Comparison Baselines and Metrics
Comparison Baselines. We employ the following state-of-
the-art task allocation methods as baselines. It is worth
noting that the first two are some of the non-data-driven
methods (e.g., synthetic method) that have been widely
suggested, and the last two are the data-driven methods
we proposed.

• Random Mapping (RM) where each task is pro-
cessed at different edge devices with equal probabil-
ity [31]. In other words, tasks are randomly assigned.

• Distributed Machine Learning (DML) distributes
tasks to multiple nodes, e.g., allocating the training
iteration either to edge devices or to the cloud [32].

• Clustered Reinforcement Learning (CRL) conducts
task allocation with our clustered reinforcement
learning model.

• Data-driven Cooperative Task Allocation (DCTA)
leverages an SVM model to adjust the decision of the
CRL model.

Evaluation Metrics. From the perspective of the follow-
ing metrics, we compare our proposed DCTA method with
the others above state-of-the-art.

4. For interested readers, the design of loss function and feature
engineering can be found in our conference paper [14].

Raspberry Pi ver.3

× 9

A+B+B B B+ BA+ A+B+

Laptop

Fig. 8: The network topology and hardware choice in the experiments,
where Raspberry Pi are with model types of A+, B, and B+.

1) Overall Merit (OM). Given an allocation method, the
ability to provide credible overall merit (e.g., energy saving)
is crucial to all stakeholders. For interested readers, a more
concrete definition of overall merit is available in previous
Section 2.2.

2) Processing Time (PT). Our decision should be con-
ducted before the deadline, the processing time we measure
is the time the main device needs to partition the application
and receive the output of the decision results. Formally,

PT = ts − tc,

where ts denotes the time instant when final decision is
made; tc denotes the time when each experiment start.

3) Energy Consumption (EC). Energy consumption is
significantly critical for edge devices because most edge
devices are energy-constrained. Formally, the energy con-
sumption is defined as follows:

EC =
∑
p∈P

Ep + Et,

where Ep and Et denote the processing and transmission
energy consumption of processor p, respectively.

4.3 Experiment Results
Result on Processing Time. Fig. 9 shows the processing time
as a function of processors. Consistent with our intuition, as
the number of processors increases, the processing time of
the above methods gradually decreases. We see that DCTA
can outperform RM, DML, and CRL by as much as 3.24, 2.32
and 2.01 times, respectively. On average, DCTA outperforms
RM, DML, and CRL by 2.70, 2.05, and 1.80 times. That is
because DCTA leverages data-driven techniques to capture
the dynamic task importance and reduces the number of
less important prediction tasks to perform.

Then, we compare the processing time of DCTA with
that of RM, DML, and CRL for different average input
data sizes. As we can see in Fig. 10, the processing time
of our DCTA is always outperformed other state-of-the-art
methods. For example, our DCTA has an improvement that
is 2.71, 1.83, and 1.68 times to that of RM, DML, and CRL at
the average input data size of 500 Mb. That is because our
DCTA obtains the importance of each task which is time-
dynamic changing, and then allocates to the most suitable
edge devices to execute.

Finally, Fig. 11 shows the processing time as a function
of network bandwidth. It is well known that network band-
width affects the time of data transmission, and transmis-
sion time is also the main component of processing time.
Thus, as the network bandwidth increases, the processing
time also gradually decreases. But it is worth noting that
our DCTA always outperforms RM, DML and CRL by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 9

2 4 6 8 10
Processors

20
40
60
80

100
Pr

oc
es

sin
g

Ti
m

e(
M

in
)

RM
DML
CRL
DCTA

Fig. 9: The processing time of task allocation
system with different number of processors.

0 200 400 600 800 1000
Average Input Data Size (Mb)

0
20
40
60
80

100
120

Pr
oc

es
sin

g
Ti

m
e(

M
in

)

RM
DML
CRL
DCTA

Fig. 10: The processing time of task allocation
system with different data input sizes.

0 1 2 3 4 5
Bandwidth (Mb)

0
20
40
60
80

100

Pr
oc

es
sin

g
Ti

m
e(

M
in

)

RM
DML
CRL
DCTA

Fig. 11: The processing time of task allocation
system with different bandwidth limits.

2.68, 1.94, and 1.71 times on average, respectively. That is
mainly because our DCTA leverages data-driven techniques
to capture the importance of each task and merely perform
the most important tasks.

5 CASE STUDY: CHILLER AIOPS ON THE EDGE

In this section, we focus on applying our DCTA approach to
the real-world edge-computing system. We first introduce
the background of one core industry AIOps system, i.e,
chiller AIOps system. We then present the overview of
DCTA in chiller AIOps system and briefly introduce the
system architecture and main components design within
our chiller AIOps system. Finally, through extensive real-
world experiments, we demonstrate the superiority of our
chiller AIOps system integrating the DCTA mechanism.

5.1 Background of Industry AIOps System

An important application of MTL on the edge is AIOps.
The term AIOps [33] is coined as a system that utilizes
big data, machine learning and other advanced analytics
to enhance IT operations, such as monitoring, automation,
and service desk, with proactive, customized and dynamic
insight. Data-driven analytics have been widely suggested
for IT Operations Management. According to Gartner Inc.,
by 2022, 40% of all large enterprises will adopt AIOps
systems [34].

The industry AIOps system usually consists of two
stages, i.e., Data-driven Multi-task Transfer Learning and
Final Optimization, and they work as follows. First, when an
industrial demand arrives, AIOps systems need to choose
a series of data-driven prediction tasks to conduct, e.g.,
by using Data-driven Multi-task Transfer Learning. Second,
it comes to Final Optimization. In this stage, the AIOps
systems receive all the results of previous prediction tasks
and conduct decisions until the decision performance, i.e.,
overall merit, is no longer improved.

Chiller AIOps System. As a case study, we focus on one
of the core industry AIOps system, namely, chiller AIOps
system, i.e., AIOps system conducting chiller sequencing, is
deployed for one week on May, 2019, in a high-rise office
building which serves more than three thousand people.
A chiller is a machine that generates cooling power in
commercial buildings and chiller sequencing is a signifi-
cantly important operation, which aims to select run-time
configurations of chillers at real-time so that the chiller
AIOps system serves the time-varying cooling demand. For
example, conducting chiller sequencing in a building with
two chillers [0.5, 0.7] implies that chiller 1 and chiller 2
are operating at 50% and 70% of their maximum rated

0 200 400 600 800 1000
Operation

1
2
3
4
5M

ac
hi

ne

0.0
0.2
0.4
0.6
0.8
1.0

(P
ro

ba
bi

lit
y)

Fig. 12: Probability of becoming best operation for different machines.

capacity, respectively. Thus, the chiller sequencing operation
is to allocate the cooling load at any given time to the
chillers in the most energy-efficient manner so that the
overall cooling demand of the building is satisfied while
at the same time the electricity consumed by the chillers
is kept at a minimum [35]. Chiller AIOps system has been
studied recently to significantly improve energy efficiency
in commercial buildings and this case study is conducted
based on a real-world chiller operation dataset [15].

5.2 Overview of DCTA in Chiller AIOps System
As mentioned before, the efficacy of chiller sequencing
control in chiller AIOps system relies heavily on the run-time
performance profile of the chillers, namely the COP under
different cooling load regimes. COP is a measure of the
energy-efficiency of a chiller and captures the cooling power
that it can output for a certain input power consumption
[36]. Formally,

COPi = Qi/Ei,

where Ei is the electrical power consumed by chiller i to
deliver the required amount of cooling load Qi.

The overall cooling load of the chiller AIOps system
serves at a given time is the sum of the cooling load Qi over
all chillers i, i.e., Q =

∑
i Qi, where Qi = ci × mi × ∆T i.

Here, ci is the thermal capacity of water (kJ/kg◦C), mi is
the chilled water mass flow rate (kg/s) and ∆T i is the
temperature difference between the returned and supplied
chilled water (◦C) [37]. All these quantities are logged by
our chiller AIOps system.

Reliable chiller sequencing depends on the COP across
all the loading conditions for chiller i. However, besides the
well-known fact that COP degrades over time [38], [39],
COP also fluctuates markedly over different cooling loads
and environmental conditions [15], which makes it exceed-
ingly difficult to capture within an analytical model. To this
end, data-driven techniques can thus play a crucial role in
accurate COP prediction for improved chiller sequencing in
chiller AIOps system. Specifically, a learning task is defined
as the coefficient of performance (COP) prediction of a
chiller for one particular operation and works have been
proposed for chiller AIOps [15], [40]–[42]. After COPs of
operations is predicted, chiller sequencing conducted by
selecting operation with the highest COP value to meet the
cooling demand with the lowest electricity consumption.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 10

A.2. Edge Node A.3. Controller A.1. Chiller Plant

B. Learning and Decision Making Component

A. Chiller AIOps System

Pump Chiller

Operation Node

Sensing Node

Fig. 13: Chiller AIOps system on the edge.

Motivation of DCTA in Chiller AIOps. The chiller se-
quencing process requires performance predicted across all
possible operations. There are too many controllable param-
eters in the industry and the number of parameter combina-
tions is usually huge for all possible operations. However,
the chiller sequencing process is typically accompanied by
time limits, e.g., two hours for chiller sequencing [43]. A
previous study indicates that blindly conducting all learning
tasks leads to considerable time consumption which easily
exceeds the time limits in chiller sequencing [15]. When
merely partial operations are conducted in random order
and these operations fail to meet the cooling demand, the
backup chiller plant would be launched and additionally
consumes a large amount of electricity [44]. Therefore, we
can conduct the proposed task allocation which assigns
more important tasks to more powerful edge devices for
priority execution under time limits.

Based on the above real-world chiller operation dataset,
while in principle all COP operations (i.e., learning tasks)
may be selected to conduct the chiller sequencing, in prac-
tice only a small subset of them are frequently selected in the
optimal sequencing operation. The historical best operations
can be computed with the sequencing optimization based
on the ground truth of COP of 1460 days from 2012 to 2015.
Then we can count the number of cases for each operation
to be selected as the best operation and thus obtain the
probability to become optimal. For example, if an operation
is selected in 120 days as the best operation over the total
1460 days, its probability to become optimal is computed
as 120 / 1460 = 8.22%. Fig. 12 shows that the probability
of becoming the best operation for different machines vary
greatly among the exponential optional operation space. It
can be seen that there merely a small portion of operations
are frequently selected. Results also confirm our previous
Observation 1 in Section 2.3.

Task Importance in Chiller AIOps. The key of the DCTA
lies in the computation of task importance. Next, in the
context of this AIOps case study, we formally present a
specified formulation of the task importance computation.

As discussed in previous Definition 1 in Section 2.2,
given model parameters θ, the task importance Ij can
be updated using the merit function H(·). For interested
readers, a more concrete definition of H(·) is also available
in Section 2.2, where involved two following important con-

cepts, i.e., the ideal electricity consumption D and decision-
making function D(·). Specifically, as for D, we first find
the best operation of each chiller (i.e., with the highest COP
value) in each day through the historical ground truth of
COP data, and then compute the electricity consumption of
conducting these operations as the ideal performance.

Next, the decision-making function D(·) is intrinsically
solving the chiller sequencing optimization problem finding
the best chiller operations combination which minimize the
total electricity consumption on one day, where all time
instances in one day are denoted by T and each operation
is conducted at time t ∈ T . Let Li denote the maximum
cooling capacity of chiller i < n and Si,t denote the partial
load ratio of chiller i at time t. Formally,

D(θ) = min
θ

T∑
t=1

n∑
i=1

Li · Si,t/COPi,t

s.t.
n∑

i=1

Qi > QD and TN ≤ TD,

where COPi,t denotes the data-driven prediction perfor-
mance of chiller i at time t; Qi and QD respectively de-
note the cooling load produced by chiller i and the total
cooling demand; TN and TD denote the total processing
time and the deadline, respectively. More specifically, the
deadline TD here means the total time length of one chiller
sequencing operation, including the computation time and
the mechanical switching time, computed considering both
the periodic interval tP and mechanical switching time tM ,
e.g., TD = min(tP , tM) [15].

5.3 Device Overview of Chiller AIOps System

According to above, we conduct the data-driven task al-
location based on the chiller AIOps system in the Pacific
Place, Hong Kong, where the network topology is shown in
Fig. 14. The equipment of chillers, pumps, air-handling unit,
and cooling tower differ greatly in operation, maintenance,
and services. The data of each equipment in the chiller
plant (Fig. 13 A.1) are captured and transmitted by 13 edge
nodes, including 3 operation nodes (from the vendor of
Trane, Fig. 13 A.2) conducting and recording operations, and
10 sensing nodes (from the vendor of Schneider Electric,
Fig. 13 A.2) collecting sensing data. To process data from
different types of equipment, we choose a centralized ap-
proach, where edge node transmits data to the controller
(from the vendor of Wago, Fig. 13 A.3), and controllers
are responsible for task allocation and decision making for
the edge nodes. Finally, 3 operation nodes conduct data-
driven COP prediction and send control sequences to de-
vices (Fig. 13 B). Other sensing nodes without computation
power are merely used to collect data.

Though hardware can be fully redeployed after introduc-
ing data-driven techniques [45], for the scalability purpose,
we choose an incremental deployment for the chiller AIOps
system, with minimal revision for the current HVAC system.
That is to say, we leverage only the current commercial
off-the-shelf components and avoid deploying any addi-
tional equipment within the HVAC system. However, we
may sacrifice the probability to obtain more sensing data
and have even better prediction performance, if we avoid

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 11

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O1 O2 O3

Sensing

Node

Operation

Node

Controller C

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

O1 O2 O3

Sensing

Node

Operation

Node

Controller C

Fig. 14: The network topology of chiller AIOps system on the edge.

0

1
Data Collecting Module

Traditional

Prediction

Module

Operation Node 1 Controller

Decision

Making

Module

Traditional Component

Data-driven

Cooperative Task

Allocation Module

Sensing Nodes ×10

Proposed Component
2 3

Operation Nodes ×3

Sensing Node 1
Data Collecting Module

1

Fig. 15: Architecture overview of chiller AIOps system on the edge.

deploying additional equipment inside the local system in
each building for the scalability purpose.

5.4 Components Design within Chiller AIOps System
To apply our DCTA approach to the chiller AIOps system,
we also introduce the architecture overview of our chiller
AIOps system, as shown in Fig. 15. The architecture con-
tains four main modules: (1) Data Collecting Module collects
the data from the surroundings for analysis. Not only the
current data but also the historical data are needed to be
collected. (2) Data-driven Cooperative Task Allocation (DCTA)
Module captures the time-dynamic task importance and
allocates tasks with data-driven techniques, which has been
introduced in detail in Section 3. (3) Traditional Prediction
Module executes the data-driven prediction tasks at the edge
nodes and outputs the prediction results. (4) Decision Making
Module receives the prediction results from the multiple
edge nodes and conducts the optimal decision which is to
maximize the overall system merit.

The DCTA module for task allocation lies in the Con-
troller and the design is elaborately introduced in previous
Section 3. In the following, we are to briefly introduce the
design of other components, i.e., data collecting module, tra-
ditional prediction module, and decision making module, within
our chiller AIOps system architecture.

Data Collecting Module. The module lies in the Sensing
Nodes, e,.g, the temperature sensor or humidity sensor,
which collects the data from the surroundings for analysis.
There exist a common data storage problem due to the stor-
age limitations on these edge nodes. To tackle this problem,
we keep uploading data to a more powerful edge node, e.g.,
gateway or server, and overwrite historical data on these
edge nodes when the storage is insufficient.

Traditional Prediction Module. The module lies in the
Operation Nodes, e.g., gateway or router, which executes
data-driven COP prediction tasks and outputs the predic-
tion results. To ensure the accuracy of each data-driven task
in the case of data scarcity on these edge nodes, we apply
clustered multi-task learning approach [46]. It learns with
training data not only from the target task, but also from
other tasks, e.g., cases with similar temporal, meteorological
and mechanical conditions.

Decision Making Module. The module lies in the Con-
troller or Operation Nodes, e.g., server or gateway, which
should work in an iterative optimization way. Under the
circumstance, the frequency of the decision update is then
critical to edge nodes network resource utilization and en-
ergy consumption. To tackle this problem, we propose an
efficient algorithm to determine the frequency of decision
update by analyzing the historical decision data. Specifi-
cally, we update the decision each time when an industrial
demand coming. In order to reduce damage to the system,

we ensure that the time interval between the two decisions
can meet the needs of the system to transition from one
steady state to another. As for the effects of varying this
frequency, it would be an interesting future work for us
to investigate the optimal frequency of decision update in
industrial scenarios.

5.5 Experiment Results
Result on Overall Merit. With the chiller AIOps system, we
first compare the overall merit of our DCTA with that of the
other state-of-the-art task allocation methods. Fig. 16 shows
that, on one hand, our DCTA approach and other state-
of-the-art methods can eventually achieve the same per-
formance; on the other hand, with the same performance,
our DCTA approach can greatly reduce the number of tasks
performed which means significant savings in time and
resources. That is because our DCTA approach is developed
combined with the runtime data in the real environment and
a huge amount of simulation data. In addition, it leverages
the ensemble technique to avoid overfitting in non-linear
modeling, which can successfully capture the system local
and dynamic performance.

Result on Processing Time. To show the potential of
saving time, We compare the processing time of the state-
of-the-art task allocation methods. In Fig. 17, we can see
that our DCTA outperforms RM, DML, and CRL by 50.2%,
38.6% and 30.2%, respectively. That is because DCTA uses
data-driven allocation to select the most important tasks for
prediction, unlike other non-data-driven methods.

Result on Energy Consumption. Fig. 18 compares our
DCTA approach with RM, DML and CRL method over
a different number of tasks, in terms of Average Energy
Consumption on edge devices. On average, our DCTA
outperforms RM, DML and CRL by 48.4%, 39.6% and 31.3%,
respectively. That is because not all predictions on all oper-
ations are necessary. Our DCTA captures the top important
operations and still maintains the superiority of data-driven
techniques.

6 RELATED WORK

Task Allocation has been intensively researched in cloud
computing systems [7]–[9]. Recent years have witnessed
great prospects exhibited down to the edge, e.g., from
OpenCL (2008) [47] to AWS IoT Greengrass (2017) [48] and
Microsoft Azure IoT Edge (2018) [49]. Under edge comput-
ing, existing works on task allocation either 1) partition the
machine-learning model and its input, or 2) are conducted
according to different objectives.

First, task allocation in many distributed machine learn-
ing systems [32], [50]–[52] have successfully demonstrated
their effectiveness to enable big-data applications deployed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 12

0 10 20 30 40 50
Tasks

0
20
40
60
80

100
Ov

er
al

l M
er

it
(%

)

RM
DML
CRL
DCTA

Fig. 16: The overall merit as a function of the
number of performed tasks.

0 10 20 30 40 50
Tasks

0
10
20
30
40
50
60

Pr
oc

es
sin

g
Ti

m
e(

M
in

)

RM
DML
CRL
DCTA

Fig. 17: The processing time of task allocation
system with different number of tasks.

0 10 20 30 40 50
Tasks

0
20
40
60
80

100

En
er

gy
 C

on
su

m
pt

io
n(

J)

RM
DML
CRL
DCTA

Fig. 18: The energy consumption of task allo-
cation system with different number of tasks.

on a large number of machines. For example, when allocat-
ing task for deep neural network (DNN), Neurosurgeon [53]
identifies a strategy in a fine-grained layer level between
edge and cloud. A similar approach presented in [54] pro-
poses a design guideline for DNN partitioning based on
the layer-wise trade-off study. These methods provide the
capability to accelerate the execution of a single data-driven
task on the edge.

Second, existing works also consider different objectives
for task allocation. Examples include reducing the energy
consumption of edge device while predefined delay con-
straint is satisfied [11], finding a proper trade-off between
the energy consumption and the execution delay [12], and
minimizing the overall application execution cost [10]. A
majority of these works are not designed for machine
learning tasks. Nevertheless, though these techniques may
consider a multi-task setting, they regard all submitted tasks
as equally important, which leads to inefficient resource
allocation at a task level when directly applied for MTL.

Different from these works, our study investigates
task allocation for multiple machine-learning tasks without
knowing task priority. We capture and leverage task impor-
tance to accelerate the overall learning process, which sheds
some new light on task allocation for MTL on the edge.

Machine learning for Complicated Optimization Prob-
lems has been successfully employed especially with time-
varying parameters and complicated solutions which are
repeatedly conducted [55], [56]. Examples include intelli-
gent logistics [26], code optimization [57]–[59], task schedul-
ing [60]–[62]. Our cooperative approach is closely related to
ensemble learning where multiple models are used to solve
an optimization problem. Ensemble learning is shown to
be useful when scheduling parallel tasks [63] and optimiz-
ing application memory usage [64]. This work is the first
attempt in applying ensemble techniques to optimize task
allocation of MTL with task importance on the edge.

Industry AIOps. Recent advances in machine learning
have been adopted in various business applications for both
individuals and enterprises, whereas the industry sector
receives relatively less attention mainly due to the com-
mon issue of data scarcity, especially in the past. However,
nowadays in the industry sector, the lowered cost of sensing,
computing, and communications has made the impractical
data-driven techniques in the late 1980s eminently practical,
e.g., industrial robots, driver-less cars, and recently, energy-
efficient buildings. It is time to deliver a punch and reduce
the cost using data-driven techniques on each of the indus-
try sector. E.g., in building management systems, since the
release of BLUED [65] on 2012, a dataset of electricity con-
sumption of buildings from the data analytics community
of SIGKDD, various works demonstrated the need for using

data analytics in building management systems. Then, in
SIGKDD 2016, a data-driven study on energy breakdown
in buildings reveals the huge electricity demand [66]. Nev-
ertheless, how machine learning can be deployed is still
vague in each of the industry sectors to guide mechanical
operations, especially on the edge.

7 DISCUSSION

Naturally, there is room for further work and possible
improvements. We discuss a few points here.

Data Scarcity on the Edge. For industrial edge-
computing applications, data scarcity often exists even
though cloud storage can still cooperate for big data. The
data scarcity is the result from 1) prohibitive cost or inherent
difficulty in obtaining required proper training samples, 2)
with respect to the application complexity and uncertainty.
First, when considering the privacy concern, storage limi-
tations, budget, and real-time requirements, partial or even
the whole data set is not possible to be stored, transmitted
and processed for the edge-computing applications, com-
pared with that of cloud-computing applications. Meantime,
due to the instability of the sensing devices, data loss also
occurs frequently in some environments. Worse still, an
industrial application can be complex or highly uncertain
which requires a larger amount of data. For example, many
robots for text production, such as search engines or transla-
tion programs, have difficulties in finding sufficient samples
for each context. The reason lies in the context of words
which can result in ambiguities and there exists a huge
amount of possible contexts. Thus, we believe moves should
be conducted for the data scarcity issue on the edge and we
provide an edge-based MTL.

Real-time Sensing Data. Real-time sensing data facili-
tate the learning process by incorporating the run-time ob-
servations on environmental dynamics. In order to capture
the run-time effect from real-time sensing data, we discuss
two learning modes, i.e. the offline and online modes. First,
the offline mode divides historical samples into multiple
clusters in advance, e.g., using K-means. When the real-
sensing data is coming, the system selects the most similar
clustered samples to train and predict. Its drawback lies
in the possibly low prediction accuracy due to the offline
clustering. Second, the online mode prepares the training
samples in a run-time manner by finding those which are
the most similar with the real-time data, e.g., using KNN.
This mode guarantees a high prediction accuracy but could
lead to extra time to choose the proper training data. In this
paper, we adopt the online mode to guarantee that our final
decision making can be more reliable. The additional time
overhead can be significantly reduced through our proposed
data-driven task allocation mechanism.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 13

Multi-task Assumption. In this study, our approach is
designed to tackle time-varying environments. We assume
that 1) there are multiple related and indivisible machine-
learning tasks, and 2) there is no strong pre- and post-
dependency, which is also a prerequisite for performing
multi-task transfer learning, and 3) there is not all tasks need
to be learned individually from scratch to make the final
decision. Thus, those cases 1) under single-task settings,
or 2) under multi-task settings but with the sequential
dependency between tasks, or 3) under multi-task settings
but all tasks must be finished to produce the final result, are
beyond the scope of this paper. It would be an interesting
future work to extend our approach to those scenarios.

8 CONCLUSION

In this paper, we study task allocation for MTL scenarios on
the edge, by introducing task importance and making the
following contributions. First, we reveal that it is important
to measure the impact of tasks on decision performance im-
provement and quantify task importance. We also observe
the long-tail property of task importance, which serves as a
key metric to guide task allocation, and facilitates resource
saving from less important tasks. Second, we show that
task allocation with task importance for MTL (TATIM) is
a variant of NP-complete Knapsack problem, where the
complicated computation to solve this problem needs to
be conducted repeatedly under varying contexts. To solve
TATIM with high computational efficiency, we propose a
Data-driven Cooperative Task Allocation (DCTA) approach.
Third, we conduct trace-driven simulations to evaluate the
performance of the proposed DCTA approach. Extensive
simulations show that our DCTA approach saves 3.24 times
of processing time compared to the state-of-the-art. Finally,
we add a new comprehensive real-world case study on
AIOps for our DCTA approach to bridge model and prac-
tice, by proposing a new architecture and main components
design within AIOps system. Extensive experiments are
complemented to demonstrate the superiority, i.e., 48.4%
energy saving, of AIOps system integrating our DCTA
approach. We believe that our DCTA approach offers an
effective and practical mechanism for reducing the required
resource associated with performing MTL on the edge.

ACKNOWLEDGEMENTS

The authors would like to thank Zihan Lin for his valuable
discussion and feedback. This work was supported in part
by the NSFC under Grant 61761136014 (and 392046569
of NSFC-DFG) and 61722206 and 61520106005, in part by
National Key Research & Development (R&D) Plan un-
der grant 2017YFB1001703, in part by the Fundamental
Research Funds for the Central Universities under Grant
2017KFKJXX009 and 3004210116, in part by the National
Program for Support of Top-notch Young Professionals in
National Program for Special Support of Eminent Profes-
sionals, in part by Hong Kong ITF UIM/363, and in part
by Technical Innovation Department, Cloud BU, Huawei
Technologies Co.Ltd. All opinions, findings, conclusions
and recommendations in this paper are those of the authors
and do not necessarily reflect the views of the funding
agencies.

REFERENCES

[1] M. L. Hutchinson, E. Antono, B. M. Gibbons, S. Paradiso, J. Ling,
and B. Meredig, “Overcoming data scarcity with transfer learn-
ing,” arXiv preprint arXiv:1711.05099, 2017.

[2] C. Yuan, W. Hu, G. Tian et al., “Multi-task sparse learning with
beta process prior for action recognition,” in IEEE CVPR, 2013.

[3] Z. Wu, C. Valentini-Botinhao, O. Watts et al., “Deep neural net-
works employing multi-task learning and stacked bottleneck fea-
tures for speech synthesis,” in IEEE ICASSP, 2015, pp. 4460–4464.

[4] S. Emrani, A. McGuirk et al., “Prognosis and diagnosis of parkin-
son’s disease using multi-task learning,” in ACM SIGKDD, 2017.

[5] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formula-
tion for predicting disease progression,” in ACM SIGKDD, 2011.

[6] T. Idé, D. T. Phan, and J. Kalagnanam, “Multi-task multi-modal
models for collective anomaly detection,” in IEEE ICDM, 2017,
pp. 177–186.

[7] T. Biswas, P. Kuila, and A. K. Ray, “Multi-level queue for task
scheduling in heterogeneous distributed computing system,” in
IEEE ICACCS, 2017, pp. 1–6.

[8] B. Hong and V. Prasanna, “Adaptive allocation of independent
tasks to maximize throughput,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 10, pp. 1420–1435, 2007.

[9] Y. Jiang, Y. Zhou, and Y. Li, “Reliable task allocation with load bal-
ancing in multiplex networks,” ACM Transactions on Autonomous
and Adaptive Systems (TAAS), vol. 10, no. 1, p. 3, 2015.

[10] S. Sundar et al., “Offloading dependent tasks with communication
delay and deadline constraint,” in IEEE INFOCOM, 2018.

[11] S. Cao, X. Tao et al., “An energy-optimal offloading algorithm of
mobile computing based on hetnets,” in IEEE ICCVE, 2015.

[12] Y. Mao, J. Zhang, S. Song et al., “Power-delay tradeoff in multi-user
mobile-edge computing systems,” in IEEE GLOBECOM, 2016.

[13] Y. Geng, Y. Yang et al., “Energy-efficient computation offloading
for multicore-based mobile devices,” in IEEE INFOCOM, 2018.

[14] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task
allocation for multi-task transfer learning on the edge,” in IEEE
ICDCS, 2019.

[15] Z. Zheng, Q. Chen, C. Fan, N. Guan, A. Vishwanath, D. Wang, and
F. Liu, “Data driven chiller sequencing for reducing hvac electric-
ity consumption in commercial buildings,” in ACM e-Energy, 2018.

[16] P. Yang and J. He, “Heterogeneous representation learning with
structured sparsity regularization,” in IEEE ICDM, 2016.

[17] K. Lin, J. Xu, I. M. Baytas, S. Ji, and J. Zhou, “Multi-task feature
interaction learning,” in ACM SIGKDD, 2016.

[18] P. Gong, J. Ye, and C. Zhang, “Robust multi-task feature learning,”
in ACM SIGKDD, 2012, pp. 895–903.

[19] Y. Zhang and Q. Yang, “Learning sparse task relations in multi-
task learning.” in AAAI, 2017, pp. 2914–2920.

[20] K. Lin and J. Zhou, “Interactive multi-task relationship learning,”
in IEEE ICDM, 2016, pp. 241–250.

[21] D. Oyen, T. Lane et al., “Leveraging domain knowledge in multi-
task bayesian network structure learning.” in AAAI, 2012.

[22] D. Isele, M. Rostami, and E. Eaton, “Using task features for zero-
shot knowledge transfer in lifelong learning.” in IJCAI, 2016.

[23] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in IEEE CVPR,
2018, pp. 3712–3722.

[24] H. Hu, L. Chen, B. Gong, and F. Sha, “Synthesize policies for trans-
fer and adaptation across tasks and environments,” in Advances in
Neural Information Processing Systems, 2018, pp. 1176–1185.

[25] A. Sax, B. Emi, A. R. Zamir, L. Guibas, S. Savarese, and
J. Malik, “Mid-level visual representations improve generalization
and sample efficiency for learning active tasks,” arXiv preprint
arXiv:1812.11971, 2018.

[26] X. Li, “Development of intelligent logistics in china,” in Contempo-
rary Logistics in China. Springer, 2018, pp. 181–204.

[27] R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec, and
M. Pavone, “Data-driven model predictive control of autonomous
mobility-on-demand systems,” in IEEE ICRA, 2018, pp. 1–7.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[29] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15), 2015, pp. 455–468.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 14

[30] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu et al., “A hierarchical
framework of cloud resource allocation and power management
using deep reinforcement learning,” in IEEE ICDCS, 2017.

[31] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision
and resource allocation for multi-user multi-task mobile cloud,”
in IEEE International Conference on Communications, 2016, pp. 1–6.

[32] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in
IEEE ICDCS, 2017.

[33] Lerner, Andrew. (2018) AIOps Platforms. https://blogs.gartner.
com/andrew-lerner/2017/08/09/aiops-platforms/.

[34] Cappelli, Will and others. (2018) Market Guide for AIOps Plat-
forms. https://goo.gl/CHkqyN.

[35] Z. Liu, H. Tan, D. Luo, G. Yu, J. Li, and Z. Li, “Optimal chiller
sequencing control in an office building considering the variation
of chiller maximum cooling capacity,” Energy and Buildings, vol.
140, pp. 430–442, 2017.

[36] Wikipedia. (2019) Coefficient of performance. https://en.
wikipedia.org/wiki/Coefficient of performance.

[37] Y. Liao, Y. Sun, and G. Huang, “Robustness analysis of chiller
sequencing control,” Energy Conversion and Management, vol. 103,
pp. 180–190, 2015.

[38] F. Yu and K. Chan, “Optimization of water-cooled chiller system
with load-based speed control,” Applied Energy, vol. 85, no. 10, pp.
931–950, 2008.

[39] N. Firdaus et al., “Chiller: Performance deterioration and mainte-
nance,” Energy Engineering, vol. 113, no. 4, pp. 55–80, 2016.

[40] A. Michopoulos et al., “Three-years operation experience of a
ground source heat pump system in northern greece,” Energy and
Buildings, vol. 39, no. 3, pp. 328–334, 2007.

[41] K. M. Powell, W. J. Cole et al., “Optimal chiller loading in a district
cooling system with thermal energy storage,” Energy, vol. 50, pp.
445–453, 2013.

[42] T. Hartman, “All-variable speed centrifugal chiller plants,”
ASHRAE Journal, vol. 56, no. 6, pp. 68–79, 2014.

[43] Y. Sun, S. Wang, and F. Xiao, “In situ performance comparison and
evaluation of three chiller sequencing control strategies in a super
high-rise building,” Energy and buildings, vol. 61, pp. 333–343, 2013.

[44] F. Yu and K. Chan, “Economic benefits of optimal control for
water-cooled chiller systems serving hotels in a subtropical cli-
mate,” Energy and Buildings, vol. 42, no. 2, pp. 203–209, 2010.

[45] P. K. Agyapong et al., “Design considerations for a 5g network
architecture,” IEEE Communications Magazine, vol. 52, no. 11, 2014.

[46] L. Jacob, J.-p. Vert, and F. R. Bach, “Clustered multi-task learning:
A convex formulation,” in NIPS, 2009.

[47] The Khronos OpenCL Working Group, ”OpenCL-The open stan-
dard for parallel programming of heterogeneous systems”. https:
//www.khronos.org/opencl/, January 2019.

[48] AWS, ”IoT Greengrass”. https://aws.amazon.com/cn/
greengrass/, 2019.

[49] Microsoft, ”Azure IoT Edge”. https://azure.microsoft.com/
zh-cn/services/iot-edge/, January 2019.

[50] K. Hsieh, A. Harlap, N. Vijaykumar et al., “Gaia: Geo-distributed
machine learning approaching lan speeds.” in NSDI, 2017.

[51] E. P. Xing, Q. Ho, W. Dai et al., “Petuum: A new platform for
distributed machine learning on big data,” in ACM SIGKDD, 2015.

[52] M. Li, D. G. Andersen et al., “Communication efficient distributed
machine learning with the parameter server,” in NIPS, 2014.

[53] Y. Kang, J. Hauswald, C. Gao, A. Rovinski et al., “Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge,”
ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615–629, 2017.

[54] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host par-
titioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms,” arXiv preprint
arXiv:1802.03835, 2018.

[55] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, “Daleel: Sim-
plifying cloud instance selection using machine learning,” arXiv
preprint arXiv:1602.02159, 2016.

[56] Z. Wang and M. O’Boyle, “Machine learning in compiler optimiza-
tion,” Proceedings of the IEEE, no. 99, pp. 1–23, 2018.

[57] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-
end deep learning of optimization heuristics,” in IEEE PACT, 2017.

[58] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather, “Mini-
mizing the cost of iterative compilation with active learning,” in
Proceedings of the 2017 International Symposium on Code Generation
and Optimization, 2017, pp. 245–256.

[59] B. Taylor, V. S. Marco, and Z. Wang, “Adaptive optimization for
opencl programs on embedded heterogeneous systems,” in ACM
SIGPLAN Notices, vol. 52, no. 5, 2017, pp. 11–20.

[60] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling
for opencl programs on cpu/gpu heterogeneous platforms,” in
2014 21st International Conference on High Performance Computing
(HiPC), 2014, pp. 1–10.

[61] J. Ren, L. Gao, H. Wang, and Z. Wang, “Optimise web browsing
on heterogeneous mobile platforms: a machine learning based
approach,” in IEEE INFOCOM, 2017, pp. 1–9.

[62] S. Chen, J. Fang, D. Chen, C. Xu, and Z. Wang, “Optimizing
sparse matrix-vector multiplication on emerging many-core archi-
tectures,” arXiv preprint arXiv:1805.11938, 2018.

[63] M. K. Emani and M. O’Boyle, “Celebrating diversity: a mixture
of experts approach for runtime mapping in dynamic environ-
ments,” in ACM SIGPLAN Notices, vol. 50, no. 6, 2015, pp. 499–508.

[64] V. S. Marco, B. Taylor, B. Porter et al., “Improving spark application
throughput via memory aware task co-location: A mixture of
experts approach,” in ACM Middleware, 2017, pp. 95–108.

[65] K. Anderson et al., “BLUED: a fully labeled public dataset
for Event-Based nilm research,” in ACM SIGKDD Workshop on
SustKDD, 2012.

[66] Batra et al., “Gemello: Creating a detailed energy breakdown from
just the monthly electricity bill,” in ACM SIGKDD, 2016.

Qiong Chen received his B.Eng. degree in
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, Wuhan, China. He is currently a M.Eng. stu-
dent in School of Computer Science and Tech-
nology, Huazhong University of Science and
Technology. His research interests include ap-
plied machine learning and edge computing. He
received the Best Paper Award of ACM Inter-
national Conference on Future Energy Systems
(ACM e-Energy) in 2018.

Zimu Zheng is currently a PhD student at the
department of computing, the Hong Kong Poly-
technic University. He received his B.Eng. de-
gree in South China University of Technology,
Guangzhou, China. His research interest lies
in applied machine learning, e.g., edge AI and
transfer learning, with an emphasis on IoT Data.
He received the Best Paper Award of ACM Inter-
national Conference on Future Energy Systems
(ACM e-Energy) in 2018 and the Best Paper
Award of ACM International Conference on Sys-

tems for Energy-Efficient Built Environments (ACM BuildSys) in 2018.

Chuang Hu received his B.Sc degree and M.Sc
degree from the Department of Computing Sci-
ence, Wuhan University, China, in 2013 and
2016, respectively. He is currently a Ph.D. stu-
dent in the Department of Computing, Hong
Kong Polytechnic University. His research inter-
ests include networking, wireless technologies,
IoT, cloud computing, and big data.

Dan Wang (S’05, M’07, SM’13) received his
B.Sc degree from Peking University, Beijing,
China, in 2000, his M.Sc degree from Case
Western Reserve University, Cleveland, Ohio, in
2004, and his Ph.D. degree from Simon Fraser
University, Burnaby, British Columbia, Canada,
in 2007, all in computer science. He is currently
an associate professor at the Department of
Computing, Hong Kong Polytechnic University.
His research interests include network architec-
ture and QoS, smart buildings and Industry 4.0.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019 15

Fangming Liu (S’08, M’11, SM’16) received the
B.Eng. degree from the Tsinghua University, Bei-
jing, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Hong
Kong. He is currently a Full Professor with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests in-
clude cloud computing and edge computing, dat-
acenter and green computing, SDN/NFV/5G and
applied ML/AI. He received the National Natu-
ral Science Fund (NSFC) for Excellent Young

Scholars, and the National Program Special Support for Top-Notch
Young Professionals. He is a recipient of the Best Paper Award of
IEEE/ACM IWQoS 2019, ACM e-Energy 2018 and IEEE GLOBECOM
2011, as well as the First Class Prize of Natural Science of Ministry of
Education in China.

