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Abstract—Based on network function virtualization (NFV) and
software defined network (SDN), network slicing is proposed as
a new paradigm for building service-customized 5G network. In
each network slice, service-required virtual network functions
(VNFs) can be flexibly deployed in an on-demand manner,
which will support a variety of 5G use cases. However, due
to the real-time network variations and diverse performance
requirements among different 5G scenarios, online adaptive
VNF deployment and migration are needed to dynamically
accommodate to service-specific requirements. In this paper,
we first propose a time-slot based 5G network slice model,
which jointly includes both edge cloud servers and core cloud
servers. Since VNF consolidation may cause severe performance
degradation, we adopt a demand-supply model to quantify the
VNF interference. To achieve our objective—maximizing the
total reward of accepted requests (i.e., the total throughput
minus the weighted total VNF migration cost), we propose an
Online Lazy-migration Adaptive Interference-aware Algorithm
(OLAIA) for real-time VNF deployment and cost-efficient VNF
migration in a 5G network slice, where an Adaptive Interference-
aware Algorithm (AIA) is proposed as OLAIA’s core function
for placing a given set of requests’ VNFs with maximized total
throughput. Through trace-driven evaluations on two typical 5G
network slices, we demonstrate that OLAIA can efficiently handle
the real-time network variations and the VNF interference when
deploying VNFs for real-time arriving requests. In particular,
OLAIA improves the total reward by 22.18% in the autonomous
driving scenario and by 51.10% in the 4K/8K HD video scenario,
as compared with other state-of-the-art solutions.

Index Terms—Network Function Virtualization, 5G Network
Slice, Performance Interference, Online Deployment and Migra-
tion.

I. INTRODUCTION

EXPECTED to meet the demands of ultra-high speed,
ultra-low latency, and high connection density, 5G net-

work is envisioned to be a multi-service network architecture
supporting a wide range of vertical use cases, such as mas-
sive Internet of things (IoT), remote machinery, autonomous
driving, and virtual reality (VR) [1]. However, the current
one-size-fits-all evolved packet core (EPC) network gradually
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Fig. 1: The 5G network slice infrastructure. In each 5G network slice,
it shows a possible VNF placement solution according to the service-
specific performance requirements.

becomes inefficient to handle diverse service requirements
and numerous device types [2]. This impels the progress
on updating the network architecture with the capabilities of
on-demand networking and flexible service deployment for
various scenarios.

Leveraging emerging technologies of network function vir-
tualization (NFV) [3] and software defined network (SDN) [4],
network slicing is proposed as a new paradigm for building
service-customized 5G network [1], [5]. Each network slice
is composed of virtual resources, independent topology, flow
of requests, and service-required network functions (NFs, also
known as middleboxes [6], e.g., firewalls, WAN optimizers
and load balancers). Thanks to NFV, NFs can be imple-
mented as software-defined virtual network function (VNF)
instances running on commercial-off-the-shelf (COTS) servers
[7], [8], supporting on-demand service provisioning in each
5G network slice. By transforming the one-size-fits-all service
manner to the one-size-per-service manner, each network slice
can perform as an end-to-end logical “dedicated network” over
the same underlying network, customized for a specific 5G
use case. Fig. 1 depicts an example of the 5G network slice
infrastructure, including three typical 5G use cases.

Nevertheless, as illustrated in Table I [9], different 5G
scenarios have a multiplicity of performance requirements
in terms of latency, bandwidth, security, etc. Since NFV
decouples the NFs from the dedicated underlying hardware,
NFs are no longer restricted with fixed locations [10]. Thus,
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TABLE I: 5G Scenarios & Performance Requirements.
Scenario Latency Bandwidth Reliability Connectivity Density Security Mobility

Autonomous Driving ≤ 1 ms 10 Mbps 99.999% - High 0 ∼ 500 km/h
Industrial Machinery ≤ 1 ms 50 kbps 99.999% - High 0 ∼ 10 km/h

Remote Surgery ≤ 1 ms 10 Mbps 99.999% - High 0 ∼ 100 km/h
4K/8K HD Video ≤ 100 ms ≥ 200 Mbps - 200 ∼ 2,500/km2 - 0 ∼ 100 km/h
Mass Gathering ≤ 10 ms ≥ 50 Mbps - 150,000/km2 - 0 ∼ 10 km/h

Office Automation ≤ 10 ms ≥ 1 Gbps 99.999% - High 0 ∼ 10 km/h

NFV provides an opportunity to determine how to flexibly
deploy the service-required VNFs and how to dynamically
migrate some VNFs in each 5G network slice, so that the
service-specific requirements can be satisfied and quality of
service (QoS) can be further enhanced.

However, deploying VNFs in end-to-end 5G network slice
is different from solely deploying VNFs in core network (e.g.,
core cloud or datacenters) or in edge network (e.g., edge
cloud, edge datacenters or cloudlet). Because in an end-to-
end 5G network slice, we have to consider placing VNFs in
both edge cloud servers (with limited resource capacity and
low latency) and core cloud servers (with relatively sufficient
resource capacity and high latency) so as to satisfy some
strict QoS requirements. For example, as depicted in Fig. 1,
autonomous driving network slice needs ultra-low latency and
high reliability, which requires to place more VNFs in edge
cloud servers. 4K/8K HD video network slice needs high speed
and throughput, which requires resource-sufficient core cloud
servers and bandwidth-sufficient links to deploy the required
VNFs. Even though there has been some progress tackling
the VNF placement problem in 5G [11]–[16], their solutions
usually focus on placing VNFs in either core cloud servers or
edge cloud servers, but not in both types of servers in end-
to-end 5G network slices. Besides, network traffic and state
typically exhibit great variations due to stochastic arrival of
requests [8]; thus, online VNF deployment and migration are
both needed to adapt to real-time network variations.

In fact, VNFs are sometimes consolidated on the same
server for power conservation, reduction on communication
latency, etc., which is called VNF consolidation [17]. For ex-
ample, in Fig. 1, VNF1 and VNF2 are consolidated on the first
edge cloud server in the autonomous driving network slice.
VNF consolidation can cause severe performance degradation
in terms of throughput and latency [18], [19], which is known
as VNF interference. The throughput even degrades from
12.36% to 50.30% as more VNFs are consolidated on the same
server [18]. However, as far as we know, none of the existing
works have captured the VNF interference when making VNF
deployment and migration decisions, especially for some QoS-
strict 5G network slices (e.g., latency-sensitive autonomous
driving and throughput-sensitive 4K/8K HD video).

Therefore, differing from previous works, we firstly propose
a time-slot based 5G network slice model, which includes
both edge cloud servers and core cloud servers. We define
the real-time server and link resource utilization (e.g., CPU
[20], memory, and bandwidth), real-time network state and
real-time arriving requests. Since a service request is typically
processed in a service function chain (SFC) [21], [22], which
is a set of VNFs that have to be orderly-executed based on a

VNF forwarding graph (VNF-FG) [11], we model the VNF-
FGs as one-ingress directed graphs to represent the general
cases. Next, we conduct a set of empirical evaluations to find
out the key factors that reflect the VNF interference, and then
we adopt a demand-supply model [23] to quantify the VNF
interference in terms of degraded throughput.

We formulate the joint VNF deployment and migration
problem in 5G network slice as an online optimization prob-
lem, which is proved NP-hard. To achieve our objective—
maximizing the total reward of accepted requests (i.e., the total
throughput minus the weighted total VNF migration cost),
we propose an Online Lazy-migration Adaptive Interference-
aware Algorithm (OLAIA) for real-time VNF deployment and
cost-efficient migration in a 5G network slice. We also design
an Adaptive Interference-aware Algorithm (AIA) as OLAIA’s
core function for placing a given set of requests’ VNFs with
maximized total throughput. In particular, OLAIA has four
major technical insights: (1) adaptive VNF placement in both
edge cloud servers and core cloud servers considering each
5G network slice’s QoS requirements; (2) quantification of
the VNF interference based on the demand-supply model,
and relieving the VNF interference by reducing the possibility
of VNF consolidation in the same server; (3) real-time VNF
deployment and update of network states to handle real-time
arriving requests and network variations; and (4) joint cost-
efficient VNF migration and redeployment of rejected requests
with minimized migration cost and service-customized migra-
tion frequency. We give theoretical analyses of both AIA and
OLAIA in terms of optimality, competitive ratio, and algorithm
complexity. Extensive evaluations on two typical 5G network
slices (i.e., autonomous driving and 4K/8K HD video) verify
OLAIA’s superior performance in maximizing the total reward
when deploying and migrating VNFs for real-time arriving
requests. The main contributions are as follows:

• We construct a time-slot based 5G network slice model
for online VNF deployment and migration, which in-
cludes both edge cloud servers and core cloud servers,
real-time network state, real-time server and link resource
utilization (e.g., CPU, memory, and bandwidth) and real-
time arriving requests with their complex VNF-FGs. In
particular, we adopt a demand-supply model to quantify
the VNF interference in terms of degraded throughput.

• To achieve our objective—maximizing the total reward
of accepted requests (i.e., the total throughput minus
the weighted total VNF migration cost), we propose
an Online Lazy-migration Adaptive Interference-aware
Algorithm (OLAIA) for real-time VNF deployment and
cost-efficient VNF migration in a 5G network slice,
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where the Adaptive Interference-aware Algorithm (AIA)
is proposed as OLAIA’s core function for placing a given
set of requests’ VNFs with maximized total throughput.
In particular, OLAIA orderly places VNFs in edge cloud
servers and core cloud servers with special considerations
on the VNF interference, real-time network variations and
QoS requirements, and jointly migrates VNFs and rede-
ploys previously rejected requests with minimized migra-
tion cost and service-customized migration frequency.

• Through trace-driven evaluations on two typical 5G
network slices, the experiment results show that AIA
can improve the total throughput of accepted requests
by 15.02% in the autonomous driving scenario and by
30.52% in the 4K/8K HD video scenario; and OLAIA
can efficiently maximize the long-term total reward with
a relatively low migration cost, i.e., improving 22.18%
and 51.10% total reward in these two 5G use cases, as
compared with other state-of-the-art schemes.

II. RELATED WORK

In this section, we first summarize the state-of-the-art VNF
placement solutions in core network and then focus on the
current efforts that have been paid on VNF placement in edge
network and 5G network.

A. VNF Placement in Core Network

Most existing works formulate the VNF placement as an
optimization problem with different objective(s), and thus a
variety of solutions are proposed, which are generally classi-
fied as either exact ones or heuristic ones [7]. It is known that
the exact algorithms offer optimal solutions which are largely
limited by the network scale, because their execution time
grows exponentially with the network size (e.g., [24], [25]);
on the contrary, the heuristic algorithms offer near-optimal
solutions with short execution time, which are typically not
limited by the network scale (e.g., [21], [26]–[28]).

In order to achieve some specific optimization objective(s)
(e.g., minimizing the number of used servers or end-to-end
latency, or maximizing the total throughput), mathematical
programming methods such as integer linear programming
(ILP) [29] and mixed ILP (MILP) [30] are generally used.
For instance, Moens et al. [25] formulate the VNF placement
problem as an ILP, which aims to minimize the number
of used servers. Li et al. [31] also use an ILP model to
provision resources for SFCs. They aim at maximizing the
total number of accepted requests, meanwhile providing real-
time guarantees. Addis et al. [27] devise an MILP formulation
for the SFC routing optimization problem, which aims at
jointly minimizing the maximum network link utilization and
the number of CPU cores used by the instantiated VNFs. Lin
et al. [30] present an MILP model and propose a game theory-
based VNF placement approach to reduce the NF deployment
cost. Zhang et al. [21] jointly optimize the NF chain placement
and request scheduling by modeling the NFV network as an
open Jackson network and proposing a two-stage heuristic
algorithm, which can simultaneously improve the resource
utilization efficiency and reduce the average response latency.

Some current works (e.g., [24], [32]–[34]) also utilize the
Markov decision process (MDP) model to capture the charac-
teristics of real-time arriving requests. For example, NFVdeep
[34] introduces an MDP model to capture the dynamic network
state transitions; then it proposes an online policy gradient-
based deep reinforcement learning approach to automatically
deploy SFCs, which can jointly minimize the operation cost of
NFV providers and maximize the total throughput of accepted
requests. However, these solutions mainly consider placing
VNFs in core network (e.g., centralized datacenters or core
cloud), which can not capture some key features of 5G
network slice (e.g., end-to-end real-time service provisioning,
5G-specific QoS requirements, and the performance-degraded
VNF interference).

B. VNF Placement in Edge Network and 5G Network

Along with the development of edge computing, fog com-
puting, and mobile edge computing (MEC), it is convenient
to use the edge network (e.g., edge cloud, edge datacenters
and/or cloudlet) to provide a wide range of services in a low-
latency and energy-efficient manner [35], [36]. For example,
Jin et al. [37] formulate the SFC deployment problem as
an MILP and propose a novel two-stage latency-aware VNF
deployment scheme to jointly optimize the resource utilization
of both edge servers and physical links. Finedge [36] is
proposed as a dynamic, fine-grained and cost-efficient edge
resource management framework for NFV network, which
can efficiently handle heterogeneous flows and improve the
resource utilization efficiency. Laghrissi et al. [38] tackle the
VNF placement in a dynamic edge cloud environment (i.e.,
edge slicing). Cziva et al. [39] also solve the dynamic, latency-
optimal VNF placement problem at the edge network.

In 5G network, Cao et al. [11] propose a two-step method
for solving the VNF-FG design and VNF placement for
5G mobile networks, aiming at minimizing the bandwidth
consumption. In order to minimize the resource consumption
when making delay-aware VNF placement and chaining deci-
sions in 5G, Alleg et al. [14] use a mixed integer quadratically
constrained programming (MIQCP) formulation and propose
a flexible resource allocation model. Alhussein et al. [16] also
study the joint traffic routing and VNF placement problem
in 5G core network by formulating it as an MILP, which
considers one-to-many and many-to-one VNF mapping.

In addition, Agarwal et al. [13] present a methodology to
make joint VNF placement and CPU allocation decisions in
5G and extend their work in [15] to support more vertical
5G services. Jemaa et al. [40] jointly optimize the VNF
placement and resource provisioning in edge-central carrier
cloud infrastructure with queuing and QoS models. However,
they have not integrally captured the complex VNF-FGs, 5G-
specific QoS requirements, real-time network variations, and
the VNF interference in solving the online VNF deployment
and migration problem for end-to-end 5G network slices.

In addition, Zhang et al. [41] investigate the offline VNF
placement problem in 5G network slices and propose a
throughput-maximizing heuristic algorithm. Differing from it
and other previous works, we deal with the joint optimization
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problem of online VNF deployment and cost-efficient migra-
tion for 5G network slice. We propose a time-slot model that
captures all important features in 5G network slice, including
real-time network state and resource utilization (e.g., CPU,
memory, and bandwidth), and real-time arriving requests with
their complex VNF-FGs. Our proposed online lazy-migration
adaptive interference-aware approach OLAIA can improve the
average total reward by at least 68% as compared with the
offline non-migration algorithm AIA in [41].

III. 5G NETWORK SLICE MODEL AND PROBLEM
FORMULATION

In this section, we first introduce the time-slot based 5G
network slice model. Next, we conduct a set of empirical
evaluations on consolidated VNFs, and then we adopt a
demand-supply model to capture the VNF interference in
terms of degraded VNF throughput. Finally, we propose the
mathematical formulation of the online VNF deployment and
migration problem in 5G network slice and prove its NP-
hardness. Key notations are listed in Table. II.

A. 5G Network Slice Model

Since a 5G network slice is an end-to-end, logically-isolated
network, customized for a specific 5G use case, we represent
each 5G network slice as an undirected graph G = (N,L),
where N is the set of servers (nodes) and L is the set of
links. Notably, we use Nc to represent the set of core cloud
servers, while Ne represents the set of edge cloud servers. We
assume that there are several levels of switches for ensuring
the connectivity of the servers. Each link l ∈ L corresponds
to a pair of nodes (n1, n2) where n1, n2 ∈ N,n1 6= n2.

To deal with the real-time network variations, we assume
that the NFV system executes in a time-slot manner [34],
where the set of time slots is T = {t1, t2, ..., t|T |}. At each
time slot t ∈ T , each server n ∈ N has an available resource
capacity cn,t = (ccpun,t , c

mem
n,t ), representing its quantity of

available resources in terms of CPU and memory. Note that
other types of resource, such as storage, can also be added
in cn,t if necessary. In a typical 5G network slice, core cloud
servers n ∈ Nc have relatively sufficient resource capability
but higher response latency than edge cloud servers n ∈ Ne,
which are closer to the end-users with relatively limited
resource capability but lower response latency. We denote the
link latency of l = (n1, n2) ∈ L by tlnkl , which includes
both the propagation delay and transmission delay; while bl,t
represents the available bandwidth resource on link l ∈ L at
time slot t ∈ T .

We use F = {f1, f2, ..., f|F |} to represent the set of service-
required VNFs in each 5G network slice. Each service instance
of VNF f ∈ F has a resource demand in terms of CPU and
memory, denoted by df = (dcpuf , dmemf ). If a service instance
of VNF f ∈ F is deployed, it can serve requests with a
positive service rate. We define the node latency for VNF
f ∈ F by tnf , representing the queuing delay and processing
delay on node n ∈ N .

In each service-customized 5G network slice, a request
r ∈ R needs to traverse a set of VNFs Fr = {f1, f2, ..., f|r|} ⊆

TABLE II: Key Notations.
Symbol Description

G = (N,L) The underlying network of a 5G network slice

N = Nc ∪Ne
The set of servers (nodes), where Nc is the set
of core cloud servers and Ne is the set of edge
cloud servers

L
The set of links between the servers, ∀l =

(n1, n2) ∈ L, n1, n2 ∈ N
T The set of time slots
F The set of required VNFs in a 5G network slice
R The set of requests in a 5G network slice

Pr

The set of VNF-FPs of request r ∈ R,
where Pr = {P 1

r , P
2
r , ...} and each P ir =

(pi1, p
i
2, ...)

Ar = (ar(i,j))|r|×|r|

The adjacent matrix that represents the VNF-
FG of request r ∈ R, where ar(i,j) ∈ Ar
refers to the throughput transferring from VNF
r(i) ∈ Fr to VNF r(j) ∈ Fr

cn,t = (ccpun,t , c
mem
n,t )

The available resource capacity of server n ∈
N at time slot t ∈ T in terms of CPU and
memory

df = (dcpuf , dmemf )
The resource demand of a VNF instance f ∈ F
in terms of CPU and memory

tnf
The node latency for handing VNF f ∈ F

placed on node n ∈ N
tlnkl The link latency on link l ∈ L

qij,r

The equivalent throughput between VNF
r(pij) ∈ Fr and r(pij+1) ∈ Fr in VNF-FP
P ir ∈ Pr

αn,f,t

The demand-supply ratio when VNF f ∈ F is
consolidated with other VNF(s) in server n ∈
N at time slot t ∈ T

bl,t
The available bandwidth resource on link l ∈ L
at time slot t ∈ T

λr The ingress throughput of request r ∈ R
τarir The arriving time of request r ∈ R
τserr The service time of request r ∈ R

τcstr
The time of constructing all VNF-FPs of re-
quest r ∈ R

τrspr The response latency of request r ∈ R

Tr
The response latency limitation for request r ∈
R

sr,t
The service state of request r ∈ R, 1 if r is in
service at time slot t ∈ T , 0 otherwise

x
r(i)
n,t

1 if VNF r(i) ∈ Fr of request r ∈ R is
placed on server n ∈ N at time slot t ∈ T , 0
otherwise

yr 1 if request r ∈ R is accepted, 0 otherwise

F , where r(i) = fi ∈ Fr. The traffic flow of a request
is transferred according to its VNF-FG with a non-negative
ingress throughput λr. The general VNF-FGs are one-ingress
directed graphs without loops, including linear chains, split-
and-merged graphs, and other complex one-ingress multi-
egress directed graphs. Fig. 2 shows an example of a complex
VNF-FG of request r ∈ R, |r| = 7, and Fr = {f1, f2, ..., f7}.
Note that not only splitting and merging (e.g., VNF4 and
VNF5) will change the throughput, some particular VNFs
(e.g., VNF2 and VNF3 for decompression and compression)
can also change the throughput. Besides, sometimes several
replicas of the same VNF are deployed for load balancing
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Fig. 2: An example of the VNF-FG of request r ∈ R with an ingress
point S, two egress points D1 and D2, and seven VNFs, where λ is
the ingress throughput.

[42], [43] or dynamic scaling [44], we regard each replica as
a separate VNF, which can equally divide the throughput.

Based on the VNF-FG of request r ∈ R, we define an |r|×
|r| adjacent matrix Ar to represent the flow direction between
every two VNFs, where ar(i,j) ∈ Ar refers to the throughput
of flow transferring from VNF r(i) ∈ Fr to VNF r(j) ∈ Fr.
Each request r ∈ R has an arriving time τarir and a service
time τserr , representing how long request r is expected to be
in service if all its VNFs can be placed; otherwise, τserr = 0.
Then we define the state of request r ∈ R by sr,t, representing
whether request r ∈ R is in service at time slot t ∈ T :

∀t ∈ T, r ∈ R : sr,t =

{
1, τarir ≤ t < (τarir + τserr ),

0, otherwise.
(1)

Besides, each request has a response latency, denoted by
τ rspr , which represents the latency for building a connection
between the sending end and receiving end of request r ∈ R.
This response latency limitation Tr of request r ∈ R indicates
that if the response latency τ rspr exceeds Tr, request r will be
rejected temporarily, and r needs to wait for some time slots
until the resource and latency constraints are both satisfied.

At the beginning of each time slot t ∈ T , the NFV system
will execute the following procedures: scanning all the servers
and links, removing timeout requests whose sr,t = 0, receiving
arriving requests, making VNF deployment and migration
decisions, and then updating the network states and accepted
requests with sr,t = 1.

Finally, we define a binary variable xr(i)n,t to indicate whether
VNF r(i) ∈ Fr of request r ∈ R is placed on server n ∈ N at
time slot t ∈ T . We also define a binary variable yr to indicate
whether request r ∈ R is accepted or not, whose mathematical
formulation will be introduced later in Sec. III-C.

B. Capturing VNF Interference

Inspired by the work [18], we learn that due to resource con-
tention, performance interference between co-located VNFs
is ubiquitous, which can degrade a VNF’s throughput by as
much as 50.30% as compared with it running in isolation. To
measure and quantify the VNF interference, we seek to answer
the following two questions: (1) What is the relationship
between the VNF interference and the number of consolidated
VNFs? (2) What are the key factors that reflect such VNF
interference and how to quantify it?

We address these questions by tentatively evaluating the
relationship between the VNF performance and the servers’
resource utilization (i.e., CPU and memory) as the number of
consolidated VNFs increases on the same server. Each server
in this empirical evaluation is configured with an eight-core
Intel Xeon E5-2620 v4 2.1 GHz CPU, a 64 GB memory,

(a) Pktstat (b) Snort

Fig. 3: The resource utilization of servers and the VNF’s normalized
throughput with different numbers of co-located VNFs.

and two Intel 82599ES 10-Gigabit network interface cards
(NICs). In an NFV server, each VNF instance runs on an
exclusive virtual machine (VM), and each VM instance is
equipped with 1 vCPU core, 2 GB memory and 10 GB
disk. We measure two simple VNFs, Pktstat1 and Snort2.
We deploy Pktstat and Snort on two co-located VMs
to perform listening and filtering functions, respectively. We
utilize another server to generate and send traffic to each VM.
We record the VNF throughput, CPU and memory utilization
per second in a minute and repeat each experiment five times.
Then we calculate the average values as measurement results.

As illustrated in Fig. 3, we observe that as we scale up the
number of consolidated VNFs, the server’s resource utilization
in terms of CPU and memory grows approximately linearly
and the normalized throughput decreases accordingly. In other
words, as more VNFs are consolidated on the same server, the
resource contention is severer, leading to severer performance
degradation in VNF’s throughput.

Since VNFs are generally deployed in VMs or containers
(e.g., Docker), inspired from the ubiquitous co-located VM
interference [45], the VNF interference can also be considered
as the mismatch between the resource “supply” provided by
the server and the resource “demand” of co-located VNFs de-
ployed in that server. Thus, we adopt a demand-supply model
[23] to quantify the VNF interference in terms of degraded
throughput. We devise a simple yet effective demand-supply
ratio αn,f,t to capture the VNF interference when VNF f ∈ F
is consolidated with other VNFs in server n ∈ N at time slot
t ∈ T , which can be represented as follows:

αn,f,t = k0 + k1 ·
Dcpu
n,f,t

ccpun,t
+ k2 ·

Dmem
n,f,t

cmemn,t

. (2)

where k0, k1 and k2 are the coefficients in our statistical linear
model, ccpun,t and cmemn,t are the available CPU and memory
resource “supplied” by the server n ∈ N at time slot t ∈ T ;
while Dcpu

n,f,t and Dmem
n,f,t are the aggregated CPU and memory

resource “demand” of all consolidated VNFs (including VNF
f ) placed in server n ∈ N at time slot t ∈ T , which can be
represented by:

∀n ∈ N, f ∈ F,Dcpu
n,f,t = dcpuf +

∑
r∈R

|r|∑
i=1

x
r(i)
n,t · d

cpu
r(i). (3)

∀n ∈ N, f ∈ F,Dmem
n,f,t = dmemf +

∑
r∈R

|r|∑
i=1

x
r(i)
n,t · dmemr(i) . (4)

1Pktstat: a flow monitor to display a real-time summary of packet
activity on an interface, https://linux.die.net/man/1/pktstat

2Snort: a network intrusion prevention system with real-time traffic
analysis, https://www.snort.org/
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This way, Dcpu
n,f,t/c

cpu
n,t and Dmem

n,f,t /c
mem
n,t represent the CPU

and memory resource utilization, while αn,f,t ∈ (0, 1] indi-
cates the ratio of degraded throughput of VNF f on server n
as compared with the throughput when f is exclusively placed
on a server. Thus, the egress throughput after executing VNF
f should be multiplied by αn,f,t. The coefficients k0, k1 and
k2 in Eq. (2) are derived from the measurement results in
[18], which are different in different NFV platforms (e.g., VM-
based or container-based platform). In our model, we firstly
use the results in [18] as an initial setup and then construct
experiments with different numbers of VNFs running on the
same server. We trace the VNF’s throughput together with the
resource utilization and keep updating and refining the model
coefficients for calibration. Eq. (2) can also be extended to
other dimensional resources, such as storage and bandwidth.

C. Problem Formulation

Now we formally propose the mathematical formulation of
the online VNF deployment and migration problem in 5G
network slice. We begin with the constraints.

First, at any time slot t ∈ T , any VNF r(i) ∈ F of a request
r ∈ R can only be either placed on one server or not placed
at all, while different service instances of the same VNF will
be regarded as different VNFs (VNF replicas) as we explained
previously. Thus, we have:

∀t ∈ T, r(i) ∈ F :
∑
n∈N

x
r(i)
n,t ≤ 1. (5)

∀t ∈ T, r(i) ∈ F, n ∈ N : x
r(i)
n,t ∈ {0, 1}. (6)

Next, at each time slot t ∈ T , the total resource demand
of consolidated VNFs on the same server cannot exceed its
resource capacity, which can be expressed as:

∀t ∈ T, n ∈ N :
∑
r∈R

|r|∑
i=1

x
r(i)
n,t · dr(i) ≤ cn,t. (7)

We also want to know whether the throughput of all requests
along a link l ∈ L exceeds its link bandwidth capacity bl,t. We
first find out all the VNF Forwarding Paths (VNF-FPs) of a
VNF-FG, which is a set of linear chains from the ingress point
to each of the egress points. Since each VNF-FG has only one
ingress point and a fixed number of egress points, the set of all
VNF-FPs in a VNF-FG is also fixed. Leveraging classic graph
searching algorithms such as depth-first search (DFS) [46], we
can easily construct the VNF-FP set of a VNF-FG. We define
the constructing time of request r ∈ R as τ cstr for constructing
all of its VNF-FPs by using DFS. Apparently, τ cstr depends
on the scale of a VNF-FG. Based on the survey of VNFs [47]
and SFCs [22], typically, there will be no more than 10 VNFs
in a VNF-FG, and thus by adopting DFS, τ cstr can be obtained
within a millisecond. We can easily get a set of all VNF-FPs of
request r ∈ R represented by Pr = {P 1

r , P
2
r , ...}, where each

P ir = (pi1, p
i
2, ...) stores the chain of VNFs ∀r(pij) ∈ Fr along

its VNF-FP, and pij refers to an integer index in request r ∈ R.
Assume that pij = kij ∈ {1, 2, ..., |Fr|}, then r(pij) = fkij ∈ Fr
and r(P ir) = r(pi1, p

i
2, ...) = (fki1 , fki2 , ...). For example,

as depicted in Fig. 2, there are three VNF-FPs, i.e., P 1
r ,

P 2
r , and P 3

r respectively, where P 1
r = (p11, p

1
2, p

1
3, p

1
4) =

(1, 2, 4, 6), P 2
r = (1, 2, 4, 5, 7), and P 3

r = (1, 3, 5, 7). Thus,
for instance, r(P 1

r ) = r(p11, p
1
2, p

1
3, p

1
4) = (f1, f2, f4, f6).

For each r ∈ R, we also define a list of Qr = {Q1
r, Q

2
r, ...},

where each Qir = (qi1,r, q
i
2,r, ...) represents the equivalent split

throughput of VNF-FP P ir ∈ Pr, i.e., the throughput between
each pair of VNFs (VNF r(pij) ∈ Fr and VNF r(pij+1) ∈
Fr) in P ir . Based on the assumptions made previously, the
throughput can be equally split among multiple VNF-FPs if
they share the same pair of VNFs, i.e., VNF r(pij) and VNF
r(pij+1). Thus, the definition of qij,r can be represented by:

∀r ∈ R, i ∈ [1, |Pr|], j ∈ [1, |P ir | − 1], qij,r ∈ Qir,

qij,r = ar(pij ,pij+1)
· 1∑|Pr|

v=1

∑|Pv
r |

u=1 [pvu(pij), p
v
u+1(pij+1)]+

.
(8)

where ar(pij ,pij+1)
is the actual throughput between VNF r(pij)

and VNF r(pij+1), which can be obtained from its adjacent
matrix; [pvu(pij), p

v
u+1(pij+1)]+ is a function to calculate how

many VNF-FPs share the same link between VNF r(pij) and
node r(pij+1), where if pvu = pij and pvu+1 = pij+1, then
[pvu(pij), p

v
u+1(pij+1)]+ = 1, otherwise it equals to 0. For

example, as plotted in Fig. 2, two VNF-FPs P 1
r and P 2

r share
the link between VNF1 and VNF2, thus q11,r = ar(p11,p12) ·
(1/

∑|Pr|
v=1

∑|Pv
r |

u=1 [pvu(p11), pvu+1(p12)]+) = ar(1,2) · (1/1 + 1) =
0.4 · (1/2) = 0.2 and q21,r = 0.2.

Based on Eq. (8), we can derive the equivalent through-
put along each VNF-FP in Fig. 2. For instance, Q1

r =
(q11,r, q

1
2,r, q

1
3,r) = (0.2, 0.4, 0.4), Q2

r = (0.2, 0.4, 0.4, 0.35)
and Q3

r = (0.6, 0.3, 0.35). As mentioned above, due to the
scale of VNF-FGs, typically, |Pr| ≤ 30 and |Qr| ≤ 30, while
|P ir | ≤ 10 and |Qir| ≤ 10.

Note that Eq. (8) does not include the VNF interference,
we revise it by qi∗j,r, where the VNF interference αn

r(pij),t
is

accumulated along each path. At time slot t ∈ T , we have:

qi∗j,r = qij,r ·

∏|P i
r |

j=1

∏
n∈N (αn

r(pij),t
)x

r(pij)

n,t

∏|P i
r |

j=1

∏
n∈N (αn

r(pij),t
)x

r(pi
j
)

n,t ·x
r(pi

j+1
)

n,t

. (9)

Since the throughput of all requests along link l ∈ L should
not exceed its bandwidth resource capacity bl,t at time slot
t ∈ T , we represent the link resource constraint as below:

∀t ∈ T, n1, n2 ∈ N, l = (n1, n2),∑
r∈R

|r|−1∑
i=1

x
r(i)
n1,t · x

r(i+1)
n2,t

|Pr|∑
v=1

|Pv
r |∑

u=1

(qv∗u,r|pvu = i, pvu+1 = i+ 1)

≤ bl,t,
(10)

where
∑
r∈R

∑|r|−1
i=1 x

r(i)
n1,t · x

r(i+1)
n2,t calculates all pairs of

VNFs placed on n1 ∈ N and n2 ∈ N for all r ∈ R, and∑|Pr|
v=1

∑|Pv
r |

u=1(qv∗u,r|pvu = i, pvu+1 = i + 1) represents the sum
of revised throughput from VNF r(i) to r(i + 1) in request
r considering the VNF interference. In Eq. (10), we assume
that two VNFs r(i) and r(i + 1) are deployed on nodes n1
and n2. If n1 and n2 are adjacent nodes, the traffic is directly
routed through its physical link l=(n1,n2) if it has enough
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bandwidth resource bl,t; otherwise, if bl,t is not enough, or
n1 and n2 are nonadjacent nodes, we calculate the aggregated
bandwidth of all links from n1 to n2 in bl,t (e.g., by using VL2
[48]) and check whether it is larger than the demand. This
assumption is also commonly used in some existing works,
such as [21], [25], [33], [37]. Besides, we mainly focus on how
to deploy and migrate VNFs in this paper, and there is a large
number of works focusing on traffic routing between VNFs,
such as [5], [8], [16], [27], [32]. Thus, we can also adapt
these advanced methods to make joint optimization on traffic
routing, and further design our own traffic routing method and
modify the constraint of Eq. (10) if needed.

To determine whether request r ∈ R is accepted or not, we
should check that if any VNF-FP’s response latency exceeds
its limitation Tr. For t ∈ T , the response latency of each
VNF-FP P ir ∈ Pr can be represented by:

τ rspP i
r

= τ cstr +

|P i
r |∑

j=1

∑
n∈N

tnr(pij)
· xr(p

i
j)

n,t +

|P i
r |−1∑
j=1

∑
n1,n2∈N

tlnkl=(n1,n2)
· xr(p

i
j)

n1,t · x
r(pij+1)

n2,t .

(11)

Then, when a request r ∈ R is accepted, the maximum
response latency of all its VNF-FPs should not exceed its
response latency limitation Tr. Thus, ∀t ∈ T , r ∈ R, yr can
be represented as below:

yr =


1,

|r|∑
i=1

∑
n∈N

x
r(i)
n,t = |r| and

|Pr|
max
i=1

τ rspP i
r
≤ Tr,

0,

|r|∑
i=1

∑
n∈N

x
r(i)
n,t < |r| or

|Pr|
max
i=1

τ rspP i
r
> Tr.

(12)
Now we introduce the costs of VNF deployment and

migration. First, once a request r ∈ R is placed, it will
keep consuming the demanded resources of both servers
and links for τserr time slots if it is not migrated. As the
network states and request states change, the available resource
capacity cn,t and bl,t will also be updated. Note that the VNF
interference ratio will also be re-calculated since the resource
supply and demand are both changed. To decide whether it
is worth migrating some resource-consuming VNFs to accept
more arriving requests, we introduce the VNF migration cost
M

r(i)
n1,n2,t to represent the total amount of bandwidth resource

(in Mbps or Gbps) it occupies to migrate VNF r(i) ∈ F
from node n1 to node n2 to continue processing request r’s
unprocessed packets. We have:

∀t ∈ T, r ∈ R, r(i) ∈ F, n1, n2 ∈ N,
M

r(i)
n1,n2,t = w(n1, n2) · xr(i)n1,t−1 · x

r(i)
n2,t · dr(i),

(13)

where w(n1, n2) represents how much bandwidth (in Mbps or
Gbps) it takes to migrate a unit amount of resource from node
n1 to node n2, which is a distance-related parameter.

Our objective is to maximize the total reward of accepted
requests (i.e., the total throughput minus the weighted total
VNF migration cost). Since we have derived the equivalent

throughput qi∗j,r along each VNF-FP P ir ∈ Pr, the egress
throughput of VNF-FP P ir can be expressed as qi∗|P i

r |−1,r
.

Thus, if request r ∈ R is accepted, we can represent its total
throughput by summing up all its VNF-FPs’ egress through-
puts, i.e.,

∑|Pr|
i=1 q

i∗
|P i

r |−1,r
. Finally, the Online Interference-

aware VNF Deployment and Migration (OIVDM) problem
in 5G network slice can be formulated as follows:

max
∑
t∈T

(
∑
r∈R

|Pr|∑
i=1

qi∗|P i
r |−1,r

· yr−

β
∑
r(i)∈F

∑
n1∈N

∑
n2∈N

M
r(i)
n1,n2,t),

s.t. (1), (2), (3), (4), (5), (6), (7), (8),
(9), (10), (11), (12), (13),

(14)

where β is a parameter for normalization.
To deal with the real-time VNF deployment and migration

problem, the NFV system needs to know the future informa-
tion (i.e., the future arriving requests, their required resources
and QoS requirements) so as to accept more requests with
minimized migration costs. However, it is usually difficult to
get the future information to make globally optimal solution
in a realistic NFV system. Thus, without considering VNF
migration across different time slots, we can divide the online
optimization problem Eq. (14) into T one-shot throughput-
maximizing problems, i.e., the One-shot Interference-aware
VNF Deployment (OIVD) problem, which can be formulated
as follows:

max
∑
r∈R

|Pr|∑
i=1

qi∗|P i
r |−1,r

· yr,

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12).

(15)

D. Problem Complexity

Theorem 1. The OIVD problem defined in Eq. (15) is NP-
hard.

Proof: See Appendix A in online Supplementary Material.

Theorem 2. The OIVDM problem defined in Eq. (14) is NP-
hard.

Proof: See Appendix B in online Supplementary Material.

IV. ALGORITHM DESIGN

To solve the OIVD problem, in this section, we first intro-
duce AIA, a one-shot adaptive interference-aware algorithm
for placing a given set of requests’ VNFs in a 5G network
slice with maximized total throughput. Then we propose an
Online Lazy-migration Adaptive Interference-aware Algorithm
(OLAIA) to solve the OIVDM problem, which can achieve
real-time VNF deployment and cost-efficient migration in a
5G network slice with maximized total reward. Afterward, we
provide theoretical analyses of AIA and OLAIA in terms of
optimality, competitive ratio and algorithm complexity.
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A. Adaptive Interference-aware Algorithm (AIA)

Due to the NP-hardness of Eq. (15), it is computational-
expensive to derive the optimal solution for a large-size
network. To this end, we propose AIA, a one-shot throughput-
maximizing heuristic algorithm, which is applicable to various
service-customized 5G network slices. The core concept of
AIA is based on the following four-step strategy, and the
procedure of AIA is listed in Algorithm 1.

Step 1: gain the throughput of “high-yield” requests. Since
there may be multiple requests arriving at a 5G network
slice simultaneously, to achieve Eq. (15), we can preferen-
tially deploy the “high-yield” request that produces the most
throughput while consuming the fewest resources. Thus we
denote the yield of each request r ∈ R by Ψr,

Ψr =

∑|Pr|
i=1 q

i
|P i

r |−1,r∑|r|
i=1 dr(i)

, (16)

where
∑|Pr|
i=1 q

i
|P i

r |−1,r
refers to the ideal total throughput of

a request (without considering the VNF interference) and∑|r|
i=1 dr(i) refers to the sum of resources it consumes. The

higher Ψr is, the more throughput that request r produces.
Thus, we sort all the requests r ∈ R by their Ψr in descending
order, and primarily place the one with the highest Ψr.

Step 2: satisfy the longest VNF-FP’s response latency. Since
a request r ∈ R is accepted only if all its VNF-FPs’ response
latency does not exceed the response latency limitation Tr.
Thus, for each request r ∈ R, it is suggested to primarily
check whether its longest VNF-FP max r(P ir) can be satisfied.
Besides, primarily placing the longest VNF-FP results in a
higher probability of reusing its VNFs by other VNF-FPs,
which can effectively reduce the number of unplaced VNFs
so as to improve the VNF deployment efficiency.

Step 3: adapt to various QoS requirements. Due to the
service-customized properties of 5G network slices, the re-
quests’ QoS requirements are usually at the same order of
magnitude, which actually makes it convenient for service
deployment. Considering the latency requirements, we first
weight the latency limitation of request r ∈ R by its logarithm
lg(Tr). Consequently, a request with a lower weight lg(Tr)
means it is more latency-sensitive, whose VNFs should be
preferentially placed in edge cloud servers and vice versa.
Assume that W denotes the latency bound, for request r ∈ R,
lg(Tr)/W represents the probability of placing VNFs in the
core cloud servers and (1− lg(Tr)/W ) represents the proba-
bility of placing VNFs in edge cloud servers. Note that we can
also add the weight of bandwidth requirement of each request
r ∈ R by its logarithm lg(λr) and choose the link based on
lg(λr)/W

′, where W ′ is the bandwidth bound for calculating
weights. In particular, we use four sets to distinguish between
the edge cloud servers (i.e., Ne1 , Ne2 ⊆ Ne) and the core
cloud servers (i.e., Nc1 , Nc2 ⊆ Nc) which have sufficient
remaining resource to place a VNF, and to further distinguish
whether they have placed any VNF (i.e., Ne1 and Nc1 ) or not
(i.e., Ne2 and Nc2 ) for considering the VNF interference. Then
AIA orderly places the VNF in these four sets of servers based
on the calculated weight lg(Tr)/W , as listed in Line 17, Line
19, and Line 24 of Algorithm 1.

Algorithm 1 Adaptive Interference-aware Algorithm (AIA)
Procedure
1: Input: G = (N,L), R, ∀t ∈ T
2: Output: xr(i)n,t , yr , ω (the total accepted throughput)
3: Begin: Initiate ∀n ∈ N , ω = 0;
4: Sort all r ∈ R by its Ψr in descending order;
5: while R 6= ∅ do
6: Get r with the maximal Ψr and sort all P ir ∈ Pr by its |P ir | in

descending order;
7: while Pr 6= ∅ do
8: Get P ir with the maximal |P ir |;
9: for j = 1 to |P ir | do

10: if
∑
n∈N x

r(pij)

n,t = 1 then
11: j = j + 1, continue;
12: else
13: r(j) = r(pij);
14: if Ne1 ∪Ne2 ∪Nc1 ∪Nc2=∅ then
15: yr = 0, R = R− {r}, deploy the next r ∈ R;
16: else if j ≤ d(|P ir |(1− lg(Tr)/W ))e then
17: Preferentially place fj at n ∈ Ne1 with the largest cn,t,

then orderly place in Nc1 , Ne2 and Nc2 ;
18: else
19: Preferentially place fj at n ∈ Nc1 with the largest cn,t,

then orderly place in Ne1 , Nc2 and Ne2 ;
20: end if
21: if Eq. (10) = 1 then
22: x

r(j)
n,t = 1, j = j + 1;

23: else
24: Place fj at other server n orderly in Ne1 , Nc1 , Ne2 and

Nc2 until Eq. (10)= 1, xr(j)n,t = 1, j = j + 1;
25: end if
26: if j = |P ir | then
27: while τrsp

P i
r
> Tr do

28: Consolidate VNFs with the largest qij,r , and get qi∗j,r ;
29: if τrsp

P i
r
≤ Tr then

30: ω = ω+ qi∗|P i
r |−1,r

,

31: Pr = Pr − {P ir}, deploy VNF-FP P i+1
r ;

32: end if
33: end while
34: yr = 1, R = R− {r}, and deploy the next r ∈ R;
35: end if
36: end if
37: end for
38: end while
39: end while

Step 4: handle the VNF interference. Last but not least,
note that VNF consolidation will cause severe throughput
degradation. Thus, to maximize the total accepted throughput,
we primarily consider not consolidating VNFs in the same
server. However, when doing this results in the violations
of constraint Eq. (7), Eq. (10) and/or Eq. (12), we consider
consolidating two VNFs (e.g., r(i) ∈ Fr and r(i + 1) ∈ Fr)
of request r ∈ R if the throughput between them is the largest
(i.e., the largest ar(i,i+1) ∈ Ar). This way, we reserve as many
bandwidth resources as possible for deploying other VNF-
FPs. Note that if consolidating two VNFs still violates the
constraints (e.g., Eq. (12)), we gradually increase the number
of consolidated VNFs until all the constraints are satisfied.

We use ω to represent the total accepted throughput as
defined in Eq. (15). Note that Step 1 (Line 4-6) and Step 2
(Line 7-9) are complementary to each other to improve the
total throughput of accepted requests. Line 12 judges whether
VNF r(pij) ∈ F has been placed in other VNF-FPs. Line 14-
15 means no server has sufficient resources for placing fj , then
request r is rejected, and AIA moves on to the next request.
Note that Line 17, Line 19, and Line 24 choose the server
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with the largest available resource cn,t. This way, on the one
hand, it increases the demand-supply ratio αn,f,t as defined
in Eq. (2); on the other hand, it reserves more resources for
deploying other VNFs. When VNFs are consolidated in Step
4 (Line 27-33), we revise the actual throughput along each
VNF-FP by Eq. (8).

B. Online Lazy-migration Adaptive Interference-aware Algo-
rithm (OLAIA)

In the procedure of AIA, if there are not enough remaining
resources or the QoS requirements can not be satisfied, some
arriving requests will be rejected. However, to further improve
the long-term total reward in a 5G network slice, one possible
solution is worth considering: can we migrate some deployed
VNFs to release resources and “make place” for more new
arriving requests to be accepted?

An aggressive solution is to migrate VNF(s) whenever an
arriving request’s VNFs can not be totally deployed. However,
the cost of frequent VNF migration will be much higher than
the revenue of accepting requests, which makes this solution
not practical. Nevertheless, if we never migrate some long-
term resource-consuming VNFs, more arriving requests might
be rejected due to the resource shortage. Thus, the essential
questions are to decide when to migrate a VNF, which VNF
should be migrated and migrated to which server?

We design an Online Lazy-migration Adaptive Interference-
aware Algorithm (OLAIA) for VNF deployment and mi-
gration, which is inspired by the work [49]. The key idea
is to tolerate as much non-migration cost as possible until
it significantly exceeds the migration cost, where the non-
migration Mnon

t at time slot t ∈ T is defined by the total
throughput of rejected requests as follows:

∀t ∈ T,Mnon
t =

∑
r∈Rt

(1− yr) · λr, (17)

where Rt = {r ∈ R|τarir = t} is the set of all arriving
requests at time slot t ∈ T . To decide when to migrate a VNF
f̂ ∈ F , we define a judgment condition to check whether
the accumulated non-migration cost is at least η times of the
migration cost, i.e., M f̂

n1,n2,t ≤
1
η

∑t
t∗=t̂M

non
t∗ , where t̂ is the

last time slot when a VNF is migrated. Note that η is used as
an indicator to control the VNF migration frequency. Thus, a
larger η means to tolerate more non-migration cost (i.e., more
lost throughput of rejected requests) in OLAIA. We can vary
the value of η for different 5G network slices to satisfy their
specific QoS requirements. We define a set Rrejt to include all
the rejected requests before time slot t ∈ T , and a set Rsert to
include all the requests in service at time slot t ∈ T .

Next, to decide which VNF f̂ ∈ F should be migrated,
we should also jointly consider its resource consumption df̂
and also its location in VNF-FG. For the first thing, df̂
should consume as few resources as possible to minimize the
migration cost; for the second thing, f̂ ∈ F should better be
the VNF which has the minimum effect on the whole VNF-FG.
Thus, migrating the last VNF in a VNF-FP which consumes
the fewest resources is a good choice in most cases. For
example, as plotted in Fig. 2, VNF6 is the targeted VNF for
migration if it consumes the fewest resources, since it only

Algorithm 2 Online Lazy-migration Adaptive Interference-
aware Algorithm (OLAIA) Procedure
1: Input: G = (N,L), R, T
2: Output: xr(i)n,t , yr , Ω (the total reward)
3: Begin: Initiate ∀n ∈ N , Ω = 0, t = 1, t̂ = 1, f̂ = 0, Rt = ∅,
Rrejt = ∅,Rsert = ∅;

4: while t < T do
5: for Rsert 6= ∅ and r ∈ Rsert do
6: if t > τarir + τserr then
7: sr,t = 0, Rsert = Rsert − r;
8: end if
9: end for

10: Rt = {r ∈ R|τarir = t};
11: Call AIA(G,Rt, t);
12: Update G, xr(i)n,t , yr , sr,t, and update Ω by Ω = Ω + ω;
13: Rrejt = Rrejt ∪ {r ∈ Rt|yr = 0}, Rsert = Rsert ∪ {r ∈ Rt|sr,t =

1};
14: f̂ = find(f), n2 = migr(f̂ , n1);
15: Compute Mnon

t and M f̂
n1,n2,t

by Eq. (17) and Eq, (13), and update
ε by calculating maxt∈[1,T ]M

non
t and mint∈[1,T ]M

non
t ;

16: if M f̂
n1,n2,t

≤ 1
η

∑t
t∗=t̂M

non
t∗ then

17: if n1 6= n2 then
18: Build a service instance of f̂ on node n2;
19: Steer the unprocessed packets of f̂ from n1 to n2;
20: Shut down the service instance of f̂ on node n1 and release its

occupied resources;
21: Update G, xr(i)n,t , and update Ω by Eq. (14);
22: Call AIA(G,Rrejt , t);
23: Update G, xr(i)n,t , yr , sr,t, and update Ω by Ω = Ω + ω;
24: Rsert = Rsert ∪ {r ∈ Rrejt |sr,t = 1}, Rrejt = Rrejt − {r ∈

Rrejt |yr = 1}, t̂ = t;
25: end if
26: end if
27: t = t+ 1, Rt = ∅;
28: end while

affects the first VNF-FP (i.e., P 1
r = (1, 2, 4, 6)). The second

choice is to migrate VNF7 if it consumes fewer resources
than VNF6, since it affects the other two VNF-FPs (i.e.,
P 2
r = (1, 2, 4, 5, 7) and P 3

r = (1, 3, 5, 7)). Note that we take
the resource consumption as the primary factor to determine
the target VNF for migration, since it directly affects the
migration cost as defined in Eq. (13). In particular, we use a
function f̂ = find(Rsert ) to determine a target VNF f̂ ∈ F for
migration, whose input is the set of requests in service Rsert .
find(Rsert ) first finds the last VNF in each VNF-FP of Rsert ,
then it compares their resource consumption and preferentially
outputs the target VNF f̂ that consumes the fewest resources.

Finally, we decide where the target VNF f̂ ∈ F should
be migrated to. When a request r ∈ R is rejected, mostly
it is due to the resource shortage on edge cloud servers for
placing its required VNFs, while placing them on core cloud
servers will exceed its response latency limitation. Thus, in
order to accept new arriving requests, our idea is to migrate
the target VNF f̂ from an edge cloud server n1 ∈ Ne that
satisfies xf̂n1,t = 1, to a close core cloud server n2 ∈ Nc that
has enough resources for placing f̂ (i.e., cn2,t ≥ df̂ ) with
minimized w(n1, n2). The new response latency of VNF f̂ ’s
request r̂ ∈ R should still not exceed its response latency
limitation Tr̂ after migration, while the service time τserr̂ of
r̂ has not terminated. As illustrated, we also define a function
n2 = migr(f̂ , n1), whose input n1 ∈ Ne satisfies xf̂n1,t = 1

at time slot t ∈ T . In particular, migr(f̂ , n1) first finds a set
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N∗ = {n ∈ Nc|cn,t ≥ df̂} and outputs n2 ∈ N∗ whose
w(n1, n2) is minimal, which means n2 is the closest node to
n1 for migrating f̂ with the least migration cost. Note that if
N∗ = ∅, then redefine N∗ = {n ∈ Ne|cn,t ≥ df̂}. Otherwise,
n2 = 0, which means there is no available node in both core
cloud servers and edge cloud servers for migrating f̂ , thus
M f̂
n1,n2,t = +∞. Note that migrating f̂ from n1 ∈ Ne to

n2 ∈ Ne, from n1 ∈ Nc to n2 ∈ Nc and even from n1 ∈ Nc
to n2 ∈ Ne are also acceptable if the total reward can be
further improved.

The whole procedure of OLAIA is listed in Algorithm 2.
In a time slot t ∈ T , OLAIA first updates the states of all
requests in Rsert and updates Rsert (Line 5-9). Then OLAIA
tries to place all the arriving requests in Rt by calling AIA
(Line 10-11). Next, OLAIA updates the network state, the
request state, the total reward Ω, Rrejt , Rsert , etc., (Line
12-13). Then, OLAIA finds the target VNF for migration
with its target server, calculates Mnon

t and M f̂
n1,n2,t, and

updates ε, defined by ε = maxt∈[1,T ]
maxt∈[1,T ]M

non
t

mint∈[1,T ]M
non
t

(Line
14-15). OLAIA checks whether the judgment condition of
VNF migration is satisfied (Line 16). If so, OLAIA migrates f̂
from n1 to n2 to process its unprocessed packets, releases its
previously occupied resources, and updates Ω by subtracting
the weighted migration cost as defined in Eq. (14) (Line 17-
21). Then OLAIA calls AIA again and tries to place the
previously rejected requests in Rrejt (Line 22). Then all the
states, sets and variables are updated (Line 23-24). Finally, the
time slot t moves on and Rt is reset (Line 27).

C. Theoretical Analysis

We first give a brief optimality analysis of AIA.

Theorem 3. The worst-case performance bound of AIA
is Z · lg(Tmax)/W , where Tmax = max

r∈R
Tr and Z =

min
r∈R,n∈N

b(|r|−1)/2c∏
i=1

αn,r(i),t ∈ (0, 1].

Proof: See Appendix C in online Supplementary Material.
Note that this worst-case performance bound indicates the

largest performance gap between AIA and the optimal one-
shot throughput-maximizing solution in achieving the total
accepted throughput for the same set of requests as input.

Then we derive the competitive ratio of OLAIA.

Lemma 1. The overall migration cost in [1, T ] is at most
1/η of the overall non-migration cost in this period, i.e.,∑T
t=1M

f̂
n1,n2,t ≤

1
η

∑T
t=1M

non
t .

Proof: Let t̂i be the time slot for the i-th occurrence of
a VNF migration. Within the period [t̂i, t̂i+1 − 1], only one
migration occurs at t̂i when the judge condition is satisfied.
Thus, ∀i ∈ N, t̂i+1 − 1 < T , we can conclude that the non-
migration cost is at least is η times of the migration cost in
[t̂i, t̂i+1 − 1]. Thus, we have:

T∑
t=1

M f̂
n1,n2,t ≤

1

η

T−1∑
t=1

Mnon
t ≤ 1

η

T∑
t=1

Mnon
t . (18)

Lemma 2. The overall non-migration cost in [1, T ] is at most
ε times of the total offline-optimal cost, i.e.,

∑T
t=1M

non
t ≤

ε
∑T
t=1M

∗
t , where

∑T
t=1M

∗
t is the optimal cost of the

total cost, i.e.,
∑T
t=1Mt =

∑T
t=1(M f̂

n1,n2,t + Mnon
t ) and

ε = maxt∈[1,T ]
maxt∈[1,T ]M

non
t

mint∈[1,T ]M
non
t

.

Proof: Let Mnon∗

t be the optimal non-migration cost at
time slot t ∈ T , and mint∈[1,T ]M

non
t , maxt∈[1,T ]M

non
t ,

mint∈[1,T ]M
non∗

t and maxt∈[1,T ]M
non∗

t is the minimal-
actual, maximal-actual, minimal-optimal and maximal-optimal
non-migration cost in time slots [1, T ], respectively. Thus
we have mint∈[1,T ]M

non
t ≤ Mnon

t ≤ maxt∈[1,T ]M
non
t and

mint∈[1,T ]M
non∗

t ≤ Mnon∗

t ≤ maxt∈[1,T ]M
non∗

t . By defin-
ing ε, which is the maximum ratio of the maximum/minimum
non-migration cost incurred in time slot [1, T ], we have
Mnon
t ≤ Mnon

t · Mnon∗
t

mint∈[1,T ]M
non∗
t

≤ maxt∈[1,T ]M
non
t ·

Mnon∗
t

mint∈[1,T ]M
non
t
≤ εMnon∗

t . We have:

T∑
t=1

Mnon
t ≤ ε

T∑
t=1

Mnon∗

t

≤ ε
T∑
t=1

(Mnon∗

t +M f̂∗

n1,n2,t) ≤ ε
T∑
t=1

M∗t .

(19)

Theorem 4. OLAIA has a competitive ratio of ε(1 + 1
η )

compared to the offline optimum.

Proof: By applying Lemma 1 and Lemma 2 to the overall
cost, we have:

T∑
t=1

Mt =

T∑
t=1

(M f̂
n1,n2,t +Mnon

t )

≤
T∑
t=1

((
1

η
+ 1)Mnon

t ) ≤ ε(1 +
1

η
)

T∑
t=1

M∗t .

(20)

Therefore, we prove that the OLAIA can gain a competitive
ratio of ε(1 + 1

η ) compared to the offline optimum, which can
represent the worst-case performance bound of the algorithm.
And the value of ε is mainly affected by the resource demand
of requests, which varies in different 5G network slices.

The competitive ratio reveals the least gained total reward
over the global offline optimum with appropriate VNF migra-
tion and redeployment of previously rejected requests. In our
experiments, to achieve the maximal total reward, η is set up
to 1.3 and ε is given by 1.6, and the competitive ratio is as
low as 2.83. Evaluation results in Sec. VI reveals the superior
performance of OLAIA in practice.

D. Complexity Analysis

First, for AIA, sorting R (Line 4) requires O(|R| log2 |R|)
computation and sorting Pr (Line 6) requires O(|Pr| log2 |Pr|)
computation. Next, the first while-loop (Line 5) terminates
in R = |R| iterations and the second while-loop (Line 7)
terminates in L = |Pr| iterations. The for-loop (Line 9)
terminates in M = maxi=1 |P ir | iterations and the last while-
loop (Line 27) also terminates in M iterations. Thus, the
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computation complexity of AIA is O(R log2 R+R(L log2 L+
LM2)) = O(R(log2 R + L log2 L + LM2)).

For OLAIA, there is one while-loop (Line 4), and within
it, OLAIA calls AIA twice and has a for-loop (Line 5), which
can be done in O(R) iterations. Note that function find(f)
can be done by sorting all the placed VNFs in O(RLM)
iterations and function migr(f̂ , n1) requires O(N2) com-
putations, where N = |Ne| + |Nc|. Thus, the computation
complexity of OLAIA is O(T(R+O(AIA)+RLM+N2) =
O(T(R log2 R + RL log2 L + RLM2 + N2)).

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of AIA and OLAIA, we
simulate two typical 5G network slices, i.e., CASE I: an
autonomous driving network slice and CASE II: a 4K/8K
HD video network slice. We first introduce the evaluation
setup and then discuss the performance evaluation results.

A. Evaluation Setup

5G network slice topology. We use the GT-ITM3 tool to
generate the 5G network slice topology. In each 5G network
slice, we divide the edge/core cloud servers by their distances
from the end-users as discussed in [39], and we scale the
number of edge cloud servers from 5 to 300 and double
the number of core cloud servers scaling from 10 to 600.
According to [28], we configure the edge cloud servers with
10∼40 units of CPU resource and 1∼16 units of memory
resource, while core cloud servers with 20∼200 and 16∼64
units. The CPU and memory resources required by each VNF
are randomly distributed in 1∼20 units and 1∼4 units.

Parameter of 5G use cases. As listed in Table. III, we set
the values of parameters based on [9], [38], [50]. The VNF-
FGs are generated in the same way as stated in [26], including
linear chains, split-and-merged graphs, and other complex one-
ingress multi-egress directed graphs. In both 5G use cases, the
number of requests we simulate ranges from 5 to 1,000 for
AIA. To evaluate the real-time performance of OLAIA, we
use the real-world traces from Alibaba [51], which includes
a sum of 30,000 requests arriving in 6,000 time slots with
request arriving time, service time, network traffic, CPU and
memory utilization, etc. We set the length of a time slot by
10 ms for the autonomous driving case and 500 ms for the
4K/8K HD video case.

B. Performance Evaluation Results of AIA

To evaluate the performance of AIA, we compare it with
the following two state-of-the-art heuristic algorithms [52]:
• Shortest Path Heuristic (SPH): it processes the requests

based on a first-come-first-served basis and deploys each
VNF-FP of a request along the shortest path between the
ingress point and the egress point(s).

• Greedy on Used Server (GUS): it aims to minimize the
number of occupied servers so as to reduce the OPEX and
energy consumption, which preferentially places VNFs in
the used servers to avoid occupying extra unused servers.

3GT-ITM: https://www.cc.gatech.edu/projects/gtitm/

TABLE III: Key Parameters & Values.

Parameter CASE I:
Autonomous Driving

CASE II:
4K/8K HD Video

Number of VNFs 1∼4 1∼7
Service-required
VNFs∗

NAT, FW, TM,
ADNF, etc.

NAT, FW, TM, VOC,
IDCS, CNF, DNF, etc.

|Pr| 1∼3 1∼6
tnf 0.1 ms 1 ms
tlnkl 0.01∼0.5 ms 1∼5 ms
bl,t 100 Mbps∼1 Gbps 1 Gbps∼20 Gbps
λr 1∼10 Mbps 0.2∼4 Gbps
Tr 1 ms 100 ms

∗NAT: Network Address Translation, FW: Firewall, TM: Traffic Monitor, ADNF:
Autonomous Driving required Network Function, VOC: Video Optimization Controller,
CNF: Compression Network Function, DNF: Decompression Network Function

Execution time. Since AIA’s computation complexity is
positively correlated with the number of servers and requests,
we scale the number of servers from 15 to 900 and requests
from 5 to 1,000 to demonstrate the efficiency of AIA. Fig. 4
depicts the execution time of AIA with the increasing number
of total servers. As plotted, it takes less than 100 milliseconds
to get a solution for a small-scale network with less than 150
servers. When the number of servers increases, the execution
time of AIA also increases, but it is still acceptable (e.g., 0.89
seconds for a network with 300 servers). Fig. 5 shows that AIA
can converge in 1 second for handling less than 200 requests.
In short, AIA can efficiently get a feasible solution even with
large amounts of requests in a 1,000-host network.

Total throughput of accepted requests. This is the pri-
mary performance metric as defined in Eq. (15). Fig. 6 and
Fig. 7 plot the average throughput in CASE I and CASE II,
respectively, as the number of requests scales from 5 to
1,000. As plotted, AIA achieves averagely 10.01% and 15.02%
more throughput of accepted requests than SPH and GUS
in CASE I, and correspondingly 25.99% and 30.52% more
throughput in CASE II. Notably, AIA improves the average
throughput by 22.67% and 43.54% when dealing with 1,000
latency-sensitive requests in CASE I as compared with SPH
and GUS. This benefits from the four-step strategy of AIA,
especially from Step 1 and Step 4, where AIA reduces the VNF
interference to improve the achieved throughput by decreasing
the probability of VNF consolidation.

Request acceptance ratio. Next, we compare the request
acceptance ratio in both cases, which are plotted in Fig. 8
and Fig. 9. In CASE I, the request acceptance ratio decreases
notably as the number of requests increases, i.e., from 100%
to 53.94%. When the number of requests reaches 200, more
than 30% of requests can not be deployed, mostly due to
the violations on response latency constraint. However, in
CASE II, the request acceptance ratio decreases slightly as
the number of requests increases, i.e., from 100% to 94.04%.
This is because the response latency requirement is not as
strict as CASE I. The average request acceptance ratio of
AIA, SPH, GUS is 79.02%, 81.50%, 76.90% in CASE I
and 96.07%, 97.83%, 95.12% in CASE II. Note that even
though SPH’s request acceptance ratio is about 2% higher
than AIA, its total throughput is averagely 18% less than
AIA. This is because SPH prefers consolidating as many VNFs
as possible in edge cloud servers to reduce response latency
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throughput in CASE I.
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latency in CASE II.

while ignores the VNF interference and causes degradation
in the total throughput. Besides, unlike Step 1 in AIA, SPH
merely processes requests based on a first-come-first-served
basis, thus SPH may lose some “high-yield” (as defined in
Eq. (16)) requests and achieves lower throughput.

Average response latency. Finally, we also compare the
average response latency of accepted requests. As plotted in
Fig. 10 and Fig. 11, the average response latency fluctuates
around 0.4∼0.6 ms in the autonomous driving case and around
30∼50 ms in the 4K/8K HD video case. Note that SPH shows
a good advantage in reducing the response latency because
SPH consolidates as many VNFs as possible in the edge
cloud servers to reduce end-to-end response latency. However,
this can inevitably cause throughput degradation, as shown in
Fig. 6 and Fig. 7. Besides, AIA can also meet the latency
requirements in both 5G use cases.

C. Performance Evaluation Results of OLAIA

To further evaluate OLAIA, we first adjust the frequency
of VNF migration η to see how OLAIA performs. Then, we
compare OLAIA with the following four schemes:
• Online Non-migration with AIA (ON+A): it merely

places VNFs in each time slot by AIA without migration,
which can be a baseline for comparison.

• Online Throughput-maximizing with AIA (OT+A): it
optimally maximizes the total throughput of all arriving
requests without considering the migration cost, which
usually results in frequent migration of VNFs.

• Online Lazy-migration with Greedy on core cloud
server (OL+G): it combines the online lazy-migration
strategy with the greedy-based VNF placement approach,
which preferentially places VNFs in the core cloud
servers to reserve resources of edge cloud servers and
also reduce migration cost.

• Online Lazy-migration with Shortest path heuristic
(OL+S): it combines the online lazy-migration strategy
with SPH [52], which deploys each VNF-FP of a request
along the shortest path.

Effect of the migration frequency. As defined previously,
we use η to control the frequency of VNF migration. Fig. 12
and Fig. 13 plot the results of migration time and total reward

in 100 time slots in CASE I with different values of η, i.e.,
η = 0.3, 1.0, 1.7, and 10.0. Consequently, with larger η,
the migration time reduces dramatically since OLAIA can
tolerate more non-migration cost. Note that when η reaches
10.0, the migration time is reduced to 0. This is because the
migration cost is much higher than the weighted accumulated
non-migration cost in 100 time slots. In other words, the
judgment condition is always false with η = 10.0 and t moves
to 100 time slots, and thus no VNF is migrated. However,
the total reward first increases and then drops after reaching
a certain value. Thus, there must exist an optimal value of
η to maximize the total reward. For CASE I, the requests
are more sensitive to latency, where a smaller η is better for
improving the total reward; for CASE II, the migration cost is
much higher due to the large amount of data to transmit, thus
reducing the migration frequency with a larger η is better.

Average total reward. The average total reward refers to
the total throughput of accepted requests minus the total cost,
which is the primary performance metric defined in Eq. (14).
Fig. 14 and Fig. 15 show the results of the average total
reward in every 1,000 time slots for CASE I and CASE II,
respectively. As plotted, OLAIA can always maximize the
total reward, with η = 1.0 and η = 1.3 for the two evaluated
scenarios. The average total reward is 39.61, 34.45, 32.42,
33.03, and 11.19 Mbps for OLAIA, OT+A, OL+G, OL+S,
and ON+A in CASE I, and 7.54, 4.99, 6.72, 6.01, and 4.48
Gbps for the corresponding five schemes in CASE II. Notably,
OLAIA achieves about 3.54× and 1.68× total reward than the
baseline ON+A algorithm, which verifies the benefits of VNF
migration with an appropriate migration frequency.

Average total throughput. We also show the average total
throughput of accepted requests in every 1,000 time slots in
Fig. 16 and Fig. 17 for CASE I and CASE II, respectively.
As we can see, OT+A achieves the highest throughput with
frequent VNF migrations; the following are OLAIA, OL+S,
OL+G, and the baseline ON+A achieves the lowest through-
put. The average throughput is 59.84, 65.36, 45.98, 52.01, and
11.21 Mbps for OLAIA, OT+A, OL+G, OL+S, and ON+A
in CASE I, and 12.75, 14.03, 10.77, 10.92, and 4.55 Gbps
for the corresponding five schemes in CASE II. Even though
OT+A achieves about 9.22% to 10.04% more throughput than
OLAIA, its migration cost is nearly two times of OLAIA.
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Fig. 15: The average total reward
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Fig. 16: The average throughput
in CASE I.
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Fig. 17: The average throughput
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Fig. 19: The migration cost in
CASE II.

Migration cost. Finally, we give a cost-analysis to highlight
the superiority of OLAIA. We show the results of the migra-
tion cost in every 1,000 time slots in Fig. 18 and Fig. 19 for
CASE I and CASE II, respectively. As plotted, since ON+A
never migrates VNFs, the migration cost is always 0. The
average migration cost is 18.25, 28.07, 14.16, and 17.89 Mbps
for OLAIA, OT+A, OL+G, and OL+S in CASE I, and 4.65,
8.34, 3.86, and 4.88 Gbps for these four schemes in CASE II.
Note that the migration cost of OT+A is about 1.54× and
1.79× of OLAIA in the two 5G use cases, but OT+A only
improves the accepted throughput by 9.16% and 10.64% as
compared by OLAIA. In conclusion, OLAIA can maximize
the total reward with a relatively low migration cost.

VI. CONCLUSION AND FUTURE WORK

This paper presents the study on online VNF deployment
and migration for 5G network slice. We propose a time-
slot based 5G network slice model, which includes both
edge cloud servers and core cloud servers, real-time network
state, resource utilization and arriving requests, and we use a
demand-supply model to quantify the ubiquitous VNF inter-
ference. Due to the NP-hardness of the formulated problem,
we propose an Online Lazy-migration Adaptive Interference-
aware Algorithm (OLAIA) for real-time VNF deployment and
cost-efficient VNF migration to maximize the total reward in
a 5G network slice, where the Adaptive Interference-aware
Algorithm (AIA) is proposed as OLAIA’s core function for
placing a given set of requests’ VNFs with maximized total
throughput. We give theoretical analyses of both AIA and
OLAIA in terms of optimality, competitive ratio, and algorithm
complexity. Through trace-driven evaluations on two simulated
5G network slices, we demonstrate that AIA can improve
the average throughput of accepted requests by 15.02% and
30.52% in the autonomous driving scenario and the 4K/8K HD
video scenario; while OLAIA can achieve 3.54× and 1.68×
the total reward than the offline non-migration algorithm AIA,
and improve it by 22.18% and 51.10% in these two 5G use
cases as compared with other state-of-the-art schemes.

Future work includes joint optimization on minimizing the
end-to-end latency, considering the performance degradation

on both latency and throughput caused by the VNF interfer-
ence, design of an online fault-tolerant VNF deployment and
recovery scheme, and evaluations on more 5G use cases.
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APPENDIX A

Theorem 1. The One-shot Interference-aware VNF Deploy-
ment (OIVD) problem defined in Eq. (15) is NP-hard.

Proof: We construct a polynomial-time reduction of
Eq. (15) (with only constraints Eq. (5), Eq. (6) and Eq. (7)),
and map it to a well-known NP-hard problem, the Multi
Knapsack Problem (MKP) [1]:

max

m∑
i=1

n∑
j=1

ci · xi,j , (21)

s.t.

m∑
i=1

xi,j ≤ 1,∀j = 1, ..., n, (22)

n∑
j=1

ai · xi,j ≤ bi,∀i = 1, ...,m, (23)

xi,j ∈ {0, 1},∀i = 1, ...,m, j = 1, ..., n. (24)

Given an instance I = (m,n, ci, ai, bi) of the MKP, we map
it to an instance of the OIVD problem by mapping Eq. (21),
(22), (23) and (24) to Eq. (15), (5), (7) and (6), and relaxing
other constraints, where we get an instance of I ′ = (|N | =
m, |R| = n, qi∗|P i

r |−1
= ci, dr(i) = ai, cn,t′ = bi). We have:

max
∑
r∈R

|Pr|∑
i=1

qi∗|P i
r |−1,r

· b
|r|∑
i=1

∑
n∈N

x
r(i)
n,t /|r|c, (25)

s.t.
∑
n∈N

x
r(i)
n,t ≤ 1,∀t ∈ T, r(i) ∈ F, (26)

∑
r∈R

|r|∑
i=1

dr(i) · x
r(i)
n,t ≤ cn,t,∀t ∈ T, n ∈ N, (27)

x
r(i)
n,t ∈ {0, 1},∀t ∈ T, r(i) ∈ F, n ∈ N. (28)

Note that we rewrite Eq. (15) by replacing yr with x
r(i)
n,t as

defined in Eq. (12) and relaxing the response latency con-
straint, where yr = 1 equates to b

∑|r|
i=1

∑
n∈N x

r(i)
n,t /|r|c = 1,

otherwise yr = b
∑|r|

i=1

∑
n∈N x

r(i)
n,t /|r|c = 0. Clearly, these

operations can be performed in polynomial time. Therefore, if
we can solve the instance I of the MKP, we will also get a
solution for the instance I ′ of the OIVD problem. Since MKP
is NP-hard, we can conclude that the OIVD problem defined
in Eq. (15) is NP-hard as well.

APPENDIX B
Theorem 2. The Online Interference-aware VNF Deployment
and Migration (OIVDM) problem defined in Eq. (14) is NP-
hard.

Proof: The proof process is similar to Theorem 1. Firstly,
we reduce the OIVDM problem by relaxing the migration cost
M

r(i)
n1,n2,t to 0, and we have:

max
∑
t∈T

∑
r∈R

|Pr|∑
i=1

qi∗|P i
r |−1,r

· yr

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12).
(29)

Clearly, the relaxation can be done in polynomial time. Then,
under this circumstance, since no VNF is migrated across
different time slots, the total throughput of accepted requests
is accumulated by summing up the throughput achieved in all
time slots, where VNF deployment decisions are made in each
time slot independently. Thus, the relaxation from Eq. (29) to
Eq. (15) can be finished in polynomial time, and as we have
proved, the relaxation from Eq. (15) to Eq. (21) can also be
finished in polynomial time. Thus, we can conclude that the
OIVDM problem defined in Eq. (14) is also NP-hard.

APPENDIX C
Theorem 3. The worst-case performance bound of AIA
is Z · lg(Tmax)/W , where Tmax = max

r∈R
Tr and Z =

min
r∈R,n∈N

b(|r|−1)/2c∏
i=1

αn,r(i),t ∈ (0, 1].

Proof: Assume that Θ(AIA) represents the total through-
put of accepted requests that AIA achieves, as defined in
Eq. (10), while Θ(OPT) represents the optimal total throughput
of accepted requests. Then, at any time slot t ∈ T , assume
that in the worst case, OPT can optimally provide a non-
consolidated VNF placement solution; while AIA tries to place
no less than b|P i

r |(lg(Tr)/W )c VNFs in core cloud servers,
which explains the first scaling step, i.e., Inequality (31).
Next, since ∀r ∈ R, Tmax = maxr∈R Tr ≥ Tr, we have
Inequality (32). Then we rewrite qi∗|pi

r|−1,r
with the definition of

z(r, n) = qi∗j,r/q
i
j,r, and we have Inequality (33). Considering

the worst case, the remaining resource of each server is not
sufficient for consolidating more than two VNFs, then AIA
distributes the VNFs into b(|r| − 1)/2c servers and the egress
throughput of each server can not be lower than the minimized
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degraded throughput (i.e., degraded by Z = min
r∈R,n∈N

z(r, n))

due to the VNF interference, and we have Inequality (34).
Finally, we simplify Inequality (34) and conclude Inequal-
ity (35). As explained, ∀t ∈ T , we have:

Θ(AIA)
Θ(OPT)

=

∑
r∈R

∑|Pr|
i=1 q

i∗
|pi

r|−1,r
· yr∑

r∈R
∑|Pr|

i=1 q
i∗
|pi

r|−1,r
· y∗r

(30)

≥
∑

r∈R
∑|Pr|

i=1 q
i∗
|pi

r|−1,r
· lg(Tr)/W∑

r∈R
∑|Pr|

i=1 q
i
|pi

r|−1,r
· 1

(31)

≥
lg(Tmax)/W ·

∑|Pr|
i=1 q

i∗
|pi

r|−1,r∑|Pr|
i=1 q

i
|pi

r|−1,r

(32)

≥
lg(Tmax)/W ·

∑|Pr|
i=1 (q

i
|pi

r|−1,r
· z(r, n))∑|Pr|

i=1 q
i
|pi

r|−1,r

(33)

≥
lg(Tmax)/W ·

∑|Pr|
i=1 q

i
|pi

r|−1,r
· Z∑|Pr|

i=1 q
i
|pi

r|−1,r

(34)

≥ Z · lg(Tmax)/W (35)

where y∗r is the optimal solution of OPT, z(r, n) = qi∗j,r/q
i
j,r.

Z = min
r∈R,n∈N

z(r, n) = min
r∈R,n∈N

b(|r|−1)/2c∏
i=1

αn,r(i),t.

This worst-case performance bound indicates the largest
performance gap between AIA and the optimal one-shot
throughput-maximizing solution in achieving the total ac-
cepted throughput for the same set of requests as input. In
practice, as evaluated in Sec. V-B of the paper, evaluation
results show that AIA can improve the total throughput of
accepted requests by 15.02% and 30.52% in the autonomous
driving scenario and the 4K/8K HD video scenario, as com-
pared with other state-of-the-art schemes.
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