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Abstract—Edge-assisted video analytics frameworks, which
offload vision-based tasks to edge servers, offer a promising ap-
proach to enhance accuracy while minimizing network resource
overhead. However, these frameworks often overlook depth
estimation, a critical task for applications like augmented reality
and intelligent surveillance. Depth estimation, which calculates
the distance between objects and the camera, generates depth
images with unique characteristics, making existing approaches
impractical or inefficient for video analytics in this context.

In this work, we present DeVA, an edge-assisted video analytics
framework for depth estimation that ensures accuracy with
minimal network resource overhead. We examine the impact
of various video analytics configurations, including resolution
and quantization parameter (QP), on accuracy. Additionally, we
analyze the region of interest (RoI) for depth estimation and pro-
pose methods for tracking RoI areas locally on the device. DeVA
features an adaptive video encoding mechanism that dynamically
adjusts the resolution for offloaded video and optimizes QPs for
RoI and non-RoI areas. We implement DeVA and evaluate its
performance using public video datasets. The results show that
DeVA reduces 57.12% of the bandwidth overhead while keeping
depth estimation errors within acceptable limits, demonstrating
a great balance between accuracy and network resource usage.

Index Terms—edge-assisted video analytics, depth estimation,
region of interest, video encoding

I. INTRODUCTION

RECENT years have witnessed the rise of video analytics,
which forms the foundation of augmented reality (AR),

intelligent surveillance, and other advanced applications. Due
to the substantial computational resources required for video
analytics, it is common to offload these tasks to an edge
server for the accuracy guarantee [1], [2]. However, existing
approaches primarily focus on tasks like object detection and
pose estimation, which provide discrete measures by identify-
ing objects or locating keypoints of target objects. These meth-
ods often overlook another important video analytics task—
depth estimation. Depth estimation provides a continuous
measure (i.e., depth value) for each pixel, which is crucial for
understanding the spatial arrangement of a scene. For example,
AR applications rely on accurate depth estimation to enable
realistic interactions between virtual objects and the real
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world [3]. Similarly, intelligent surveillance leverages depth
information for improving the accuracy of human detection
and anomaly detection [4], [5].

Existing edge-based video analytics frameworks achieve
high accuracy of video analytics with low bandwidth overhead
by strategically offloading the task from the client to the edge.
For example, some approaches compress the resolution or filter
offloaded frames to reduce the size of offloaded video [6]–
[8]. To further optimize video compression, researchers have
proposed fine-grained video encoding mechanisms that capture
the region of interest (RoI) for the video analytics task, and
apply high quality to the RoI and low quality to non-RoI
areas [9]–[12].

However, most existing frameworks focus on “discrete”
video analytics, such as object detection, and cannot be
directly extended for depth estimation tasks. As detailed in
Section II, object detection outputs a few bounding boxes with
labels and scores, while depth estimation produces a depth
image where each pixel encodes scene depth. For example,
detecting a car requires only its location and label, whereas
depth estimation must recover the precise depth of every pixel
on its surface. The RoI areas1 which have a significant effect
on the depth estimation accuracy, cannot be fully captured by
the detection model, potentially increasing the error of depth
estimation, measured by the root mean squared error (RMSE),
by 43.49%. Moreover, coarse-grained configurations, such as
lower resolution and reduced quantization parameters (QPs)2,
have different degrees of impact on depth estimation and
object detection. Based on our observations in Section II-B, the
error of depth estimation can increase by more than 2.47 times
when using coarse-grained configurations, while the intersec-
tion over union (IoU) for object detection reduces by 9%. As a
result, it is impractical and inefficient to utilize a detection-RoI
encoding framework for handling depth estimation tasks.

In this work, we propose DeVA, an edge-assisted video
analytics framework for depth estimation designed to balance
accuracy and bandwidth overhead. DeVA analyzes the RoI
areas for depth estimation, dynamically adjusts the configura-
tions for video analytics, including the resolution of encoded
video and the QPs for RoI and non-RoI areas, and finally
offloads the encoded video to the edge server for analysis.

1Unless otherwise specified, the term RoI refers to RoI for depth estimation
in the following discussion.

2QPs in video encoding control the degree of compression by adjusting
the level of spatial detail retained in the encoded output [13]. A higher QP
results in stronger compression and smaller file size but with reduced visual
quality and potential degradation of analytic accuracy. Conversely, a lower
QP preserves more detail, yielding better quality at the cost of a larger file
size.
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DeVA addresses the following three key challenges in reducing
the error of depth estimation for the edge-assisted video
analytics with minimal overhead:

The relationship between configuration and error of
depth estimation is unclear. Although there has been some
progress in video analytics, existing work does not thoroughly
explore the factors affecting the error of depth estimation. Bal-
ancing the tradeoff between accuracy and bandwidth overhead
is challenging without understanding these relationships. To
address this challenge, we measure the impact of commonly
used configurations, including resolution and QPs, on RMSE
of depth estimation. Our measurement results reveal that re-
ducing resolution significantly increases the error compared to
changes in QPs. Additionally, the scenario (indoor or outdoor),
the period (day or night), and the client’s motion status
(moving or static) greatly influence the configuration-RMSE
relationship. DeVA introduces a lightweight content analysis
approach. To be specific, it utilizes the relationship between
pixel value in grayscale frame and the brightness to estimate
the period. Moreover, it trains a ResNet18-based model to
classify the scenario and utilizes the Scale Invariant Feature
Transform (SIFT) algorithm [14] to analyze the motion status
of the client. Based on the estimated video content, DeVA can
adaptively select suitable configurations during runtime.

How to capture RoIs efficiently? Our observation in
Section II-B shows that, unlike object detection, the error of
depth estimation is affected by the entire frame. To balance the
accuracy and bandwidth overhead, we define the background
areas (whose depth values are high) as RoIs by analyzing the
impact of different areas on the error. Moreover, considering
RoIs usually contain elements not included in the object detec-
tion dataset, such as sky and wall, conventional object tracking
approaches are inefficient. DeVA proposes an RoI capturing
approach and a tracking approach to estimate RoIs on the
device. To be specific, after obtaining the depth image and
determining the RoI areas, the edge server performs connected
component analysis and contour capturing, and calculates the
minimum enclosing rectangle and inscribed rectangle to create
bounding boxes. Since the RoI areas are usually covered
by foreground objects, DeVA utilizes a lightweight object
detection model to identify the foreground objects that cover
the contour of RoIs. Based on these results, the client can
capture the RoI more accurately by tracking RoI areas and
foreground objects, respectively.

How to find the optimal configuration efficiently? Due to
the extensive configuration space and diverse video content as
well as RoI areas, selecting the optimal configuration online
is prohibitively expensive. DeVA presents a profiling-based
configuration adaptation approach to determine the resolution
of the offloaded video and the QPs for all macroblocks. In the
offline phase, DeVA simplifies configuration determination by
classifying all macroblocks into RoI and non-RoI categories.
To reduce the profiling overhead, DeVA utilizes the area ratio
of RoI to non-RoI to identify the variation in RoI, which allows
us to capture the configuration-RMSE relationship according
to this ratio rather than for every possible RoI area. Based
on the observation that the impact of configurations on error
is largely independent, DeVA further minimizes the profiling

(a) Raw image (b) Depth image

Fig. 1. An example of depth estimation.

cost by filtering out the configuration where the error exceeds
a predefined threshold. Additionally, DeVA profiles different
video content types to ensure the robust performance of the
profiling-based configuration adaptation. At runtime, DeVA
selects the optimal configuration according to the profiling,
aiming to minimize the video size while maintaining the error
within acceptable thresholds.

In summary, this paper achieves the following contributions:
• We present DeVA, an edge-assisted video analytics

framework for depth estimation that achieves high ac-
curacy and low bandwidth overhead.

• We analyze the relationship between video analytics
configurations and the error of depth estimation, and its
key impact factors.

• We analyze the RoI for depth estimation, alongside an
RoI tracking approach with low resource overhead.

• We propose a profiling-based configuration adaptation
approach that reduces the bandwidth overhead while
ensuring accuracy.

• We implement DeVA and demonstrate through evalu-
ations that DeVA reduces the average RMSE by up
to 47.48% compared to the baselines, and effectively
keeps the error within the acceptable threshold. Addi-
tionally, DeVA reduces the average bandwidth overhead
by 57.12% compared to raw-video transmission.

The rest of this paper is organized as follows. Section II
introduces the background, defines the RoI area for depth
estimation, and provides motivations for system design. Sec-
tion III and Section IV present the system overview and the
detailed design, respectively. Section V describes the imple-
mentation of DeVA. Section VI evaluates the performance of
DeVA and Section VII summarizes the related work. This
work is concluded in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Depth Estimation

Figure 1 illustrates an example of depth estimation. Dis-
tinctly different from the output of object detection, the depth
image is typically grayscale where darker parts represent
closer objects and lighter parts indicate objects further away.
It is worth noting that each pixel in the depth image has
a depth value representing the distance from the camera
to the object. This feature implies that the RoIs for depth
estimation, which significantly affects the performance of the
depth estimation model, often contain elements not typically
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(a) QP vs. RMSE (b) Resolution vs. RMSE

Fig. 2. The relationship between configurations and RMSE.

targeted by common object detection classes. This point will
be further discussed in the following Section II-B. As a
result, detection-RoI encoding approaches are inefficient for
capturing RoIs specific to depth estimation.

Based on the type of input image, depth estimation can be
classified into monocular depth estimation and stereo depth
estimation. Unlike the stereo depth estimation which requires
multiple synchronized cameras positioned at a fixed distance
apart, monocular depth estimation can measure the depth from
a single image. RL-based monocular depth estimation, like
ZoeDepth [15] and Depth Anything [16] can achieve this with-
out any professional equipment (e.g., RGB-D cameras [17] and
lidar [18]) or auxiliary information, making it more accessible
and widely applicable.

Existing work generally employs several metrics to measure
the error of depth estimation. In this work, we primarily utilize
the RMSE which indicates the average difference between the
ground truth and the estimation value. The RMSE is calculated
by RMSE =

√∑
i∈N ||di−d∗

i ||2
|N | , where di and d∗i are the

estimated depth value and ground truth of pixel i, respectively.
Other commonly used metrics include absolute relative error

(REL) =

∑
i∈N

di−d∗i
d∗
i

|N | , and threshold accuracy: % of di, s.t.,

max( di

d∗
i
,
d∗
i

di
) = δ < thr.

B. Motivation

Limitations of Existing Approaches. Edge-assisted video
analytics is a promising approach for ensuring video analytics
accuracy, which, however, mostly focuses on “discrete” video
analytics tasks and often neglects depth estimation. Specif-
ically, coarse-grained configuration adaptation frameworks,
such as Chameleon [6] and DARE [7], adapt the system con-
figurations based on the profiling of the relationship between
system configurations and detection accuracy. We evaluate the
error of depth estimation and object detection under different
resolution and QPs (the evaluation setting is consistent with
that in Section VI-A). The evaluation results in Figure 2 show
that video compression by reducing the QP and resolution
indeed hurts the accuracy of object detection, but increases
the error of depth estimation more significantly: As shown
in Figure 2a, RMSE of depth estimation increases by 2.47
times when the QP varies from 27 to 41, while IoU of object
detection decreases by only 9%. We also evaluate the use of
super-resolution techniques for depth estimation. However, the
results indicate that the additional time overhead introduced

Fig. 3. The relationship among the depth value threshold, average RMSE, and
the ratio of high-quality to total area. A lower quality setting (QP = 40) is
applied to pixels with depth values below the threshold, while pixels above the
threshold are encoded in high quality. The area ratio indicates the proportion of
the frame that is preserved in high quality (i.e., depth values above the threshold)
relative to the total area.

Fig. 4. RMSE and video size (normalized to the raw-video size) of different
encoding methods.

by super-resolution is prohibitive. Specifically, upscaling a
single image from 270p (480× 270) to 1080p (1920× 1080)
using recent super-resolution algorithms, i.e., SinSR [19] and
ResShift [20], takes 2.22 seconds and 3.64 seconds, respec-
tively. Given this significant latency, we conclude that super-
resolution is not suitable for edge-assisted depth estimation.
RoIs for Depth Estimation. To balance the accuracy and
resource consumption, some approaches dig into the RoI
for object detection tasks and encode macroblocks of video
frames with different quality. For example, EdgeDuet encodes
small objects with high quality to ensure inference accu-
racy [10]. AccMPEG presents a lightweight model for the
client to adaptively select the QPs for each macroblock [11].
RegionFilter presents a server-assisted approach for resource-
limited edge nodes to efficiently encode and transmit RoIs
in video frames [21]. Although these detection-RoI encoding
approaches achieve high efficiency, they are impractical for
depth estimation tasks since RoIs for depth estimation are not
consistent with those for object detection. In the following,
we will define the RoI for depth estimation and illustrate the
need for designing RoI encoding in such tasks.

We first analyze the RoI for depth estimation, focusing on
areas where the error of depth estimation is more sensitive to
the encoding quality. We normalize the depth value of each
video frame to a range of 0 to 255 (i.e., the range of one
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color channel). We then simulate progressive degradation by
incrementally applying low-quality encoding (with a quantiza-
tion parameter, QP = 40) from the nearest scene depth (depth
value = 0) to the farthest (depth value = 255). Specifically,
we vary the depth value threshold from 0 to 255, such that
all pixels with depth values below the current threshold are
encoded with low quality, while those above the threshold
retain high-quality encoding. The results in Figure 3 reveal
that the background area plays a critical role in determining
the accuracy of depth estimation. For example, when the
threshold is set to 91, approximately 39% of the frame is
considered ”background” (i.e., depth above the threshold)
and encoded in high quality, while the remaining 61% is
”foreground” and encoded in low quality. At this setting, the
resulting RMSE remains relatively low, indicating acceptable
estimation performance. However, as the threshold increases
to 151, resulting in a substantial reduction of the high-quality
background region to less than 10%, the RMSE increases
sharply, exceeding 1.2. This suggests that overly compressing
the background significantly degrades the overall accuracy of
depth estimation. Based on these findings, we define the high-
depth background region as the RoI for depth estimation and
prioritize its encoding quality.

Figure 4 illustrates the error of depth estimation obtained
by raw video, depth-RoI encoding, detection-RoI encoding,
and coarse-grained low-quality encoding. The first one is to
utilize the raw video for depth estimation and the last one
is to encode the video with low quality (QP = 40). For
the depth-RoI (or detection-RoI) encoding, we apply high
quality (QP = 23) and low quality (QP = 40) to depth-RoI
(or detection-RoI) areas and non-depth-RoI (or non-detection-
RoI) areas, respectively. Specifically, the depth-RoI regions are
determined using our method described in Section IV-C, and
the detection-RoI regions are generated by YOLOv8 [22]. And
other implementation details are consistent with Section V and
Section VI-A. We find that detection-RoI encoding’s error
is only marginally lower than the coarse-grained approach.
Compared with detection-RoI encoding, depth-RoI encoding
reduces RMSE by 43.49%. The results identify that existing
detection-RoI approaches are inefficient for the depth estima-
tion task. It is non-trivial to design an RoI encoding approach
for depth estimation.
Impact of Video Content on Depth Estimation. To effi-
ciently achieve the balance between the bandwidth overhead
and accuracy, we should analyze the configuration-RMSE
relationship and dig into the key impact factor on this rela-
tionship. The dataset and experiment setup are consistent with
Section VI-A. The results in Figure 2 show that the error of
depth estimation is more sensitive to the resolution: compared
with QPs, the resolution drop significantly reduces the video
size which is the key determinant of the video quality.

We further test the impact of video content on this
configuration-RMSE relationship. Considering the usage sce-
nario and behavior, we classify the video content based on the
scenario (i.e., indoor and outdoor), period (i.e., day and night),
and motion status of the client (i.e., moving or static). Results
in Figure 5 illustrate that the depth estimation has better
accuracy for the indoor scenario. The average RMSE outdoors

can be 15.65 times worse than that indoors. This discrepancy
may be due to the larger range of distances in outdoor settings,
along with more complex elements and lighting conditions,
which make depth estimation more challenging.

Figure 5 also compares the error of depth estimation during
the daytime and at night. The results show that the depth
estimation has poorer performance in dealing with the night
scene. The error of depth estimation on the night scene can
be at most 1.30 times higher than that on the day. We also
find that the accuracy of depth estimation is more sensitive
on the night scene: the RMSE increases more quickly when
the quality gets worse. That is likely because poor lighting
conditions at night not only increase noise in video frames
but also reduce the effective range of vision.
Impact of Client’s Motion Status on Depth Estimation.
Figure 6 shows the impact of the client’s motion status on
the accuracy of depth estimation. The results indicate that the
depth estimation performance is more sensitive when the client
is moving, especially under low video quality. The average
RMSE with a moving client is up to 24% higher than in the
static case. That is because the aggressive compression strat-
egy under high compression levels struggles to accommodate
significant inter-frame variations in moving scenes, resulting
in increased reconstruction errors.

III. SYSTEM OVERVIEW

Figure 7 illustrates the system overview of DeVA. DeVA
consists of seven components: Motion Analyzer, RoI Tracker,
Depth Estimator, Content Analyzer, Optimizer, Encoder, and
Decoder. The workflow is as follows: 1 The video captured
by the client is initially processed by the Motion Analyzer
which estimates whether the client moves. The result will
be sent to the Optimizer on the edge server for assistance
in configuration determination. Then 2 RoI Tracker filters
keyframes and offloads them to the Depth Estimator on the
edge server for depth estimation. 3a Using the RoIs returned by
the server, the tracker estimates the RoI areas for the remaining
frames. 4a These video frames and their corresponding RoIs
are then passed to the Encoder.

Simultaneously, 3b the Depth Estimator sends the RoI areas
to the Optimizer. In addition to being processed by the Depth
Estimator, 3c the filtered frames are also passed to the Content
Analyzer, which examines the video features and provides the
analysis results to the Optimizer. Based on the RoI areas and
the video content, 4b the Optimizer determines the optimal
configurations for the video clip, including the resolution
and the QPs for each macroblock, to balance accuracy and
bandwidth overhead. The Encoder then encodes the video
clip according to this configuration, applying the specified
QPs and resizing the resolution as needed. ❺ The encoded
video is then transmitted to the edge server, where ❻ it is
decoded and processed by the Depth Estimator to generate
depth information for ❼ further processing such as AR content
rendering and depth-based anomaly detection. The proposed
framework ensures that DeVA efficiently balances the accuracy
with network resource usage.
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(a) QP vs. RMSE (b) Resolution vs. RMSE

Fig. 5. The relationship between configurations and RMSE under different
video content.

(a) QP vs. RMSE (b) Resolution vs. RMSE

Fig. 6. The relationship between configurations and RMSE under different
motion statuses of the client.
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IV. SYSTEM DESIGN

A. Motion Analyzer

As discussed in Section II-B, depth estimation is more
challenging and less accurate when the client moves during
the video capturing. Thus, it is essential to analyze whether
the offloaded video is captured with a moving or static camera.

We use SIFT algorithm [14] to detect keypoints and com-
pute descriptors of video frames, and find correspondences
with a fast library for approximate nearest neighbors (FLANN)
matcher. Then, the Motion Analyzer filters and evaluates
those matches using the Lowe’s ratio test to estimate if these
consecutive frames are from the same scene or have undergone
displacement, thus assessing the motion status of the client.

B. RoI Tracker

As the client has limited capacity, it is impractical to
implement a depth estimation model on the client. We propose
an RoI tracking approach that tracks RoI areas based on the
RoIs of keyframes returned by the server. Figure 8 shows the

workflow of RoI Tracker. The tracker will offload one video
frame to the edge server for depth estimation and RoI analysis.
Upon receiving the RoI results from the edge server, RoI
Tracker will locally track the RoIs of the subsequent frames
by following the motion of each RoI area.

As the tracking algorithm is not perfect, the accuracy
of tracking will decrease as the number of tracked frames
increases [23]. To ensure the tracking accuracy, we first adopt
the cosine similarity method to calculate the similarity between
the feature vectors of the current tracking area and those of
the previous frame’s tracking area. By evaluating the level
of feature matching between tracking areas in consecutive
frames, we can effectively judge whether the tracked target
has consistent moving trajectory. If the target is mismatched,
the tracker will upload a new key frame to request the RoIs
from the edge server, ensuring the accuracy and reliability of
the tracking process.

As discussed in Section II-B, the RoI area for depth es-
timation often includes elements that cannot be recognized
by the object detection model, rendering traditional tracking
algorithms for object detection inefficient. By analyzing the
RoI area in consecutive frames, we find that it is often covered
by foreground objects. The variation of the RoI is not only due
to its own movement but also because the occluded positions
change as the foreground objects move. As a result, after
estimating the RoI areas, the Depth Estimator further detects
the objects covering the contour of the RoI, enabling the client
to track the RoI area accurately. This detection process will
be discussed in the following Section IV-C.

Based on our empirical observations, the RoI areas in
outdoor scenarios are predominantly the background, such as
the sky and wall. These areas typically remain stable over short
periods. Consequently, the RoI Tracker will maintain fixed the
RoI areas during the update period. For the foreground objects
covering the contour of the RoI, we utilize the kernelized
correlation filters (KCF) [24] to track the objects individually.
KCF is a widely used tracking algorithm because of its high
efficiency and robustness.

C. Depth Estimator

The Depth Estimator is responsible not only for conducting
depth estimation but also for determining the RoI areas,
creating the bounding boxes enclosing them, and detecting
the foreground objects covering the contour of RoI.
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(a) The contours (blue) and their bounding rectan-
gles (green)

(b) The maximum inscribed rectangles of the con-
tours (pink)

(c) The resulting bounding boxes (red)

Fig. 9. Illustration of creating bounding boxes for RoI.

As discussed in Section II-B, the depth image is grayscale
and the RoI is the background area which affects the error
of depth estimation significantly. Based on the observations
in Figure 3, we define the threshold of depth value as the
intersection point of average RMSE and area ratio. If the
normalized depth value of a pixel in a depth image exceeds the
threshold, we consider it belongs to RoI areas; otherwise, it is
contained in non-RoI areas. As the error of depth estimation
is affected by the full video frame, we believe this setting is
a good balance between the performance and the bandwidth
overhead. This is also verified by our evaluation.

To assist the RoI Tracker with efficient tracking, DeVA
then create bounding boxes that enclose RoI areas. DeVA first
performs connected component analysis on the depth image to
identify the largest non-background (here the target RoI areas
are regarded as foreground) rectangle that encompasses the
RoI areas. DeVA then extracts the contours within this rect-
angle, and computes the bounding rectangle that encapsulates
them. Figure 9a shows an illustration, the blue lines represent
the contours of the RoI areas, and the green rectangles are the
bounding boxes encapsulating these contours.

It is worth noting that if the contours are irregular, such
as in concave regions, the bounding rectangle might contain
irrelevant parts outside the actual region. For example, the left
green rectangle in Figure 9a includes a large non-RoI area.
To address this issue, DeVA refines the region by taking the
intersection of the bounding rectangle and complement of the
maximum inscribed rectangle (pink rectangles in Figure 9b).
This refinement ensures the resulting region is more accurate
and excludes extraneous areas. Finally, DeVA segments the
refined region into multiple bounding boxes (depicted by the
red rectangles in Figure 9c).

Given the bounding boxes enclosing RoI areas identified,
the Depth Estimator then detects the objects covering them.
To this end, DeVA passes the frame to an object detection
model. Then it calculates the intersection of the RoI and the
object detection results. The intersecting areas are classified
as the covering areas. These results are finally returned to the
RoI Tracker on the client for further processing.

D. Content Analyzer

As discussed in Section II-B, the video content, namely
the scenario (indoor or outdoor) and period (day or night),
significantly impacts the relationship between configurations
and the error in depth estimation. This relationship, in turn,
affects the configuration decision made by the Optimizer.

To assist the Optimizer in making the optimal configuration
decision for each macroblock, the Content Analyzer provides
a method to identify the video content.

Scenario indicates the location where the user is. Different
scenarios provide distinct ranges of visibility. For example, the
length of a meeting room is typically about 10 meters, while
users can see objects 50 meters away on a playground. As
a result, the scenario affects both the accuracy of the depth
estimation model as well as the accuracy required by users.

We classify the scenario as either indoor or outdoor based on
specific features. DeVA utilizes ResNet18 [25], a lightweight
deep neural network (DNN) architecture, to identify the
scenario. To be specific, we train the scenario classifica-
tion model using a public dataset from Kaggle [26] which
consists of 348,512 images of indoor scenarios (e.g., shop,
laundry, and living room) and 585,259 images of outdoor
scenarios (e.g., highway, park, and mountain). We also col-
lect outdoor-scenario videos from Bilibili (a user-generated
content platform similar to YouTube in China) for training,
yielding 13,779 extracted frames covering streets, cities, and
other outdoor environments. To improve the accuracy of the
scene identification, we utilize a queue to store the latest 5
classification results. We identify the scene with the most
frequent classification result in the queue, unless the last 2
classification results are consistent.

Period refers to the time of day when the video is recorded.
The levels of brightness vary significantly between day and
night, affecting the difficulty of depth estimation. It is chal-
lenging for the depth estimation model to accurately capture
depth values at night due to low visibility and reduced contrast.

To identify the period, we convert the video frame to a
grayscale image and calculate the number of pixels that exceed
a pre-defined threshold. We empirically set the threshold as
100 since the difference between day and night is pronounced
at this value and it works well on all the videos in our
dataset. When the frame contains a large number of pixels
above this threshold, we classify the period as day; otherwise,
it is classified as night. This method works since grayscale
values are predominantly lower in nighttime images due to
limited light, whereas daytime images have higher grayscale
values due to abundant natural light, see Figure 10 for details.
It allows the Content Analyzer to distinguish between day
and night and identify the configuration-RMSE relationship
accordingly. We also utilize a queue to store the latest period
classifications. The period is identified based on the results in
the queue, similar to the policy in scene identification.
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Fig. 10. The cumulative distribution function (CDF) of grayscale values under
different periods, illustrating the probability that the grayscale value is less
than or equal to a given threshold.

E. Optimizer

The Optimizer is to determine the configuration for each
macroblock to ensure depth estimation accuracy and reduce
bandwidth overhead as much as possible. Given the high num-
ber of macroblocks in a video frame (e.g., 8100 macroblocks
in a 1080p video) and the large number of configuration
candidates, it is prohibitively expensive to find the optimal
configuration online. To address this challenge, we propose a
profiling-based approach to enable efficient decision-making
on the edge server. Using the profiling of the configuration-
RMSE relationship collected offline, the Optimizer can decide
on the configuration with a trivial time overhead.

Based on the observations in Section II-B, in the offline
phase, we classify videos into two independent dimensions for
the offline profiling phase: video content (indoor, outdoor+day,
and outdoor+night) and the client’s motion status (moving
and static). This classification enhances the accuracy of the
profiling-based approach. We propose four methods to reduce
the profiling overhead.

Area-based QP assignment: As discussed previously, it
is impractically costly to determine an optimal QP for each
macroblock, especially for the high-definition video. To im-
prove the time efficiency, instead of making fine-grained
determination, we simplify the process by categorizing the
video frame into two distinct areas: RoI and non-RoI. DeVA
applies a high QP to the RoI area and a low QP to the non-RoI
area. This method is aligned with state-of-the-art approaches
for detection-RoI encoding [10].

Area ratio profiling: The RoI area varies with the ob-
ject or camera movement, making it impractical to create
configuration-RMSE profiling for every possible RoI area. To
reduce the profiling overhead while maintaining performance,
we utilize the area ratio of RoI to the non-RoI to represent
the variation in RoI. This method allows us to effectively
capture the RoI variation by profiling the configuration-RMSE
relationship based on the area ratio of RoI to non-RoI.

Motion status identifying: Furthermore, as discussed in
Section II-B, Depth estimation error becomes more pro-
nounced when the client is moving, particularly in low video
quality. It is necessary to slightly enhance the quality of non-

RoI areas when the camera is moving. The evaluation results
in Figure 6 indicate the effectiveness on ensuring the accuracy
of depth estimation.

Resolution filtering: From the evaluation results in Sec-
tion II-B, we find that the configuration-RMSE relationship is
more sensitive to resolution and the impact of configurations
on error is largely independent. Consequently, DeVA initially
filters out resolutions where the error exceeds a predefined
threshold. For instance, based on the results in Figure 5b,
DeVA does not profile 240p and 480p resolutions in the
outdoor+night scenario.

At runtime, the Optimizer queries the Motion Analyzer for
the motion status of the client, the Content Analyzer for the
video content and the Depth Estimator for the RoIs. Based
on this information, the Optimizer can select the optimal
configuration from the corresponding profiling and instruct the
Encoder on the client for video encoding accordingly.

V. IMPLEMENTATION

In this section, we introduce the implementation of DeVA
on the client and server, respectively.

Client. We use NVIDIA Jetson TX2 as the end device,
as also used in related works [1], [2], [27]. We also utilize a
Raspberry Pi 4B with 8GB memory to evaluate the overhead of
DeVA on resource-limited device, as detailed in Section VI-E.
We implement the functionality of video capturing and video
splitting with OpenCV library [28]. The end device offloads
the encoded video to the server using a TCP connection. As
shown in Figure 7, DeVA contains three modules on the client
side: Motion Analyzer, RoI Tracker, and Encoder. All these
modules are performed on the CPU.

• Motion Analyzer: We use the SIFT create method from
OpenCV to detect keypoints and compute their descrip-
tors for both images using the detectAndCompute func-
tion. Following this, we apply a FLANN-based matcher
to find matches between the two sets of descriptors,
filter these matches using the Lowe’s ratio test [14],
and evaluate the quality of the matches to judge if two
consecutive frames are from the same scene or have
undergone some displacement.

• RoI Tracker: We use KCF tracker [24] for detectable
RoI tracking. When the tracking area mismatching, the
Tracker will update a new key video frame.

• Encoder: The video encoder is implemented using open-
source H264-QPBlock encoder [29]. This library is based
on FFmpeg [30] and x264 [31], and supports encoding
macroblocks with different target QP values. To support
encoding with adaptive configurations, we modify the
encoder and set the rate control mode as CRF, the
adaptive quant mode as VARIANCE, and the default qp
as 23 (consistent with the default setting of FFmpeg).

Server. We use a commodity server equipped with two 16-
core CPUs, DRAMs of 128 GB in total, and two Nvidia
RTX 4090 GPUs each with 24 GB memory. The modules
of DeVA on the server side consist of four components:
Content Analyzer, Depth Estimator, Optimizer, and Decoder.
All modules run on the CPU, except for the Depth Estimator
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and the scenario classification component of the Content
Analyzer, which are executed on the GPU.

• Content Analyzer: We train the scenario classification
model utilizing the ResNet18 [25] as the backbone model.
The training dataset is from Kaggle [26] and videos
collected from Bilibili. In the period classification ap-
proach, we utilize cvtColor in OpenCV to convert
video frames to grayscale images, for measuring the
brightness level of the video frame.

• Optimizer: The threshold of the depth estimation error is
set to 1, as it is reported that an RMSE within this range
is acceptable for practical users for AR applications [32].
The video analytics configurations consist of resolution
in {480p, 720p, 1080p}, QPs for RoI areas in {23,
28, 33, 38}, and QPs for non-RoI areas in {25, 30,
35, 40}. The Optimizer also utilizes the H264-QPBlock
encoder to capture the profiling of the configuration-
RMSE relationship under the area-based QP assignment
and camera movement.

• Decoder: DeVA utilizes VideoCapture module in
OpenCV to decode the offloaded video for further depth
estimation.

• Depth Estimator: The Depth Estimator uses ZoeDepth
with two pre-trained weight configurations: ZoeD K,
trained on the KITTI dataset, and ZoeD N, trained on
the NYU dataset [15], to generate a depth map for each
video frame. We set the threshold of normalized depth
value as 75, 55, and 20 for outdoor + day, outdoor +
night, and indoor contents, respectively, to balance the
accuracy and bandwidth overhead of RoI encoding. To
create the bounding boxes enclosing the depth image,
we use OpenCV to analyze the connected component
and extract contours, and utilize an open-source tool
lir [33] to capture the maximum inscribed rectangle.
For ease of RoI tracking, DeVA utilizes YOLOv8 with
weights YOLOv8n [22] to identify the objects covering
the contour of the RoI areas.

ZoeDepth provides different weights trained on the in-
door dataset (NYU Depth v2 [34]) and the outdoor dataset
(KITTI [35]). To ensure accuracy, we utilize the ZoeDepth
model with pre-trained weights ZoeD N for indoor scenarios
and ZoeD K for outdoor scenarios. To enable DeVA to adjust
the depth estimation model, besides the process introduced
in Section IV, the Content Analyzer also provides the esti-
mated video content to both the Depth Estimator for creating
RoIs and the Optimizer. The Optimizer then determines the
appropriate model weights based on the video content. Upon
receiving the video clip, the Depth Estimator will use the
corresponding model for inference.

VI. EVALUATION

A. Evaluation Setup

1) Video Datasets: We gather 30 video clips from YouTube
which are captured by the dashboard camera, smartphone, or
action camera. Each video clip ranges from 10 to 20 seconds in
duration. All video clips in our study are 1080p (1920×1080)
and 30 FPS. Our video dataset has diverse content, covering

different periods (day and night) and scenarios (indoor and
outdoor). To be specific, each category, i.e., outdoor + day,
outdoor + night, and indoor, contains 10 videos.

2) Baselines: We use the following approaches as our
baselines:

• GT, for which the client offloads the raw video to the
edge server for depth estimation. Since the loss of human-
annotated ground truth, we use the depth image given by
GT as the ground truth to calculate RMSE.

• DetRoI, for which the system focuses on the object
detection task and only takes RoIs for object detection
into consideration. EdgeDuet [10] and AccMPEG [11]
belong to this type of approach.

• DDS, for which the system utilizes two-round offloading
to reduce the transmission overhead [9]. It first offloads
a low-resolution video (e.g., 240p) and extract RoI for
every frame to identify the feedback regions that need to
be re-uploaded with higher quality.

• PtnDetRoI, a partition-based baseline inspired by
AdaPyramid [36], divides each video frame into
three vertical layers based on object detection (using
YOLOv8l [22]). Objects are assigned to layers according
to the centroid of their bounding boxes, and the maximal
enclosing rectangle in each layer defines the RoI. A
coarse-to-fine compression strategy is then applied from
bottom to top.

• OptTrk, for which the system achieves the optimal RoI
tracking accuracy. To be specific, the RoI area of every
video frame is obtained using the method outlined in
Figure 9.

B. Overall Performance

We first compare the overall performance of DeVA against
four baselines under varying video contents. Figure 11a shows
the comparison results on the average error of depth esti-
mation. The results show that DeVA effectively keeps the
RMSE within the specified threshold (RMSE = 1). As the GT
approach offloads the raw video to the edge server for depth
estimation and its resulting depth images are regarded as the
ground truth, its error is 0. While GT achieves the best accu-
racy, as discussed later, its bandwidth overhead is the highest.
As highlighted in Section II-B, the RoI significantly affecting
depth estimation error differs from the RoI used for object
detection. The evaluation results confirm this argument: the
error obtained by the DetRoI approach increases by 41.72%
compared with DeVA, and exceeds the RMSE threshold by
10.90%. For PtnDetRoI, dividing the frame into regions based
on object detection and applying different quality levels proves
ineffective in reducing RMSE: it yields an RMSE 32.10%
higher than DeVA and improves on DetRoI by only 6.80%. For
DDS, there is a significant 90.44% increase in error than ours
and exceeds the RMSE threshold by 49.02%, indicating that
it is not satisfactory to upload low-resolution videos to extract
RoI for depth estimation. Finally, the OptTrk approach, with
optimal accuracy in RoI tracking, achieves the lowest RMSE,
but DeVA only induces an 3.67% RMSE increase compared
to OptTrk, illustrating the high efficiency of the RoI Tracker.
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(a) (b)

Fig. 11. Overall performance in (a) RMSE and (b) normalized video size.

Fig. 12. The normalized bandwidth consumption of different methods.

Figure 11b compares the video sizes of all approaches, with
sizes normalized to that of the raw video. The results show
that DeVA, which adjusts the resolution and QPs for each
macroblock, reduces videos size by 70.87% compared to GT.
The result indicates that DeVA efficiently reduces the size of
the uploaded video to save bandwidth. The DetRoI approach
has minimal video size since it allocates large low-quality
areas. As discussed in Section II-B, detection-RoIs typically
involve detectable foreground objects and are smaller than the
RoIs for depth estimation, which often include background
areas. PtnDetRoI achieves a 22.97% smaller normalized video
size compared to DeVA, but at the cost of significantly higher
RMSE. This suggests that its partition-based approach is less
effective than DeVA for depth estimation. It is worth noting
that while DDS has a 58.84% smaller offloaded video size than
DeVA, it results in a 90.44% increase in RMSE, indicating that
DeVA can effectively reduce the error in depth estimation. As
the optimal RoI is sometimes larger than the estimated one,
the OptTrk approach results in a slightly higher video size
compared with DeVA.

Figure 12 shows the bandwidth overhead of all approaches.
The bandwidth consumption measures all the transmission
overhead during the whole edge-assisted depth estimation
process. Compared to GT, our method efficiently reduces

the size of uploaded files by 57.12%, leading to substantial
bandwidth savings. Although DetRoI and DDS achieve lower
bandwidth consumption by 21.09% and 30.61%, they both
fail to ensure the accuracy of depth estimation, indicating that
DeVA strikes an acceptable balance between bandwidth over-
head and accuracy. PtnDetRoI incurs a bandwidth overhead
of 161.28%, significantly higher than the GT. This is because
achieving layer-wise partitioning requires frequent uploads
for server-side detection, including low-confidence regions.
These regions are harder to track due to differences from the
original PtnDetRoI method, resulting in more re-detections and
thus higher bandwidth consumption. OptTrk causes a 5.77%
higher bandwidth consumption than DeVA as it will make the
configuration on resolution changes more frequently and have
to offload a single frame rather than a compressed video when
the resolution varies.

The above comparisons identify that DeVA achieves a great
balance between the accuracy and bandwidth overhead among
representative approaches.

C. Performance Breakdown

Figure 13 shows the performance under different video con-
tents. Since the depth estimation generally has better accuracy
for the indoor scenario, all approaches achieve good perfor-
mance in limiting RMSE within the predefined threshold, as
illustrated in Figure 13a. DeVA achieves a low error of depth
estimation in outdoor scenarios, compared with DetRoI and
PtnDetRoI. This is because the Content Analyzer of DeVA
estimates the video content accurately and the Optimizer
selects the configurations according to the estimated video
content. It is worth noting that the RMSE of DeVA exceeds the
predefined threshold by 5.59%. As the depth estimation model
has the poorest performance in dealing with the night scene,
the RMSE on outdoor + night scenarios is more sensitive to
the accuracy loss of RoI tracking and configuration determi-
nation. However, DeVA’s performance in this scenario is also
better than the DetRoI, PtnDetRoI and DDS. As the DetRoI
approach only takes the detectable foreground objects into
consideration, it cannot provide acceptable performance under
complex outdoor scenarios. Moreover, as the low resolution



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 10

(a) (b)

Fig. 13. Breakdown performance in (a) RMSE and (b) normalized video size under different video contents.

(a) (b)

Fig. 14. Breakdown performance in (a) RMSE and (b) normalized video size under different motion status of the client.

will distort the depth value significantly, DDS cannot identify
the RoI accurately in the first round, making its performance
drops dramatically. Lastly, due to the reduced reliability of
object detection in low-light conditions, particularly for objects
near the top of the frame, PtnDetRoI may misallocate quality,
assigning higher quality to less important regions and lower
quality to critical ones, resulting in suboptimal RoI coverage
and degraded depth estimation accuracy.

Figure 14 shows the performance under different motion
statuses of the client. Our video dataset consists of 19 videos
captured while in motion and 11 videos captured while
stationary. DeVA achieves better accuracy under the RMSE
threshold for both moving and static status. In moving status,
DeVA achieves lower errors because it applies a slightly higher
QP to non-RoI areas for the detail in Section IV-E. DetRoI
exceeds the threshold by 17.17% in moving status and 41.77%
in static status. PtnDetRoI surpasses the threshold by 8.20%
during motion and 34.60% in static status. This difference in
performance arises because object detection identifies fewer
RoI areas in moving scenes, which enables the application of
a lower QP to more non-ROI areas, thereby reducing overall
error. Regardless of the motion status, DDS fails to meet the

accuracy requirements for depth estimation tasks.
From the evaluation results in Figure 13b and Figure 14b,

we find that the offloaded video sizes are distinct among
different video contents. The reason is that as the relationship
between configurations and RMSE is more sensitive in outdoor
scenarios, the Optimizer has to choose a higher resolution and
better QPs for both RoI and non-RoI areas to ensure the RMSE
is within the threshold, leading to a higher video size. It is
worth noting that the ratio of RoI area to total frame area is
comparable between outdoor + day (51.56%) and outdoor +
night (63.78%) scenarios, indicating that the RoI distribution
is not the dominant factor. This further supports that the
variation in video size is primarily attributed to the Optimizer’s
configuration choices in response to content sensitivity.

D. Accuracy of Scenario Classification

We further evaluate the performance of the ResNet18-
based scenario classification model on both our dataset and
the ACDC dataset [37]. The ACDC dataset contains diverse
driving scenes under various environmental conditions, includ-
ing challenging weather and lighting scenarios. As shown
in Table I, the model achieves classification accuracies of
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TABLE I
SCENARIO CLASSIFICATION ACCURACY ON OUR DATASET AND ACDC

DATASET

Dataset Scenario Accuracy (%)

Ours Outdoor 100.00
Indoor 98.73

ACDC Outdoor (extreme weather) 99.93
Indoor —

100% for outdoor scenes and 98.73% for indoor scenes,
demonstrating its reliability in distinguishing general scenario.
To assess its robustness under adverse conditions, we also
test the model on extreme weather scenarios—night, fog, rain,
and snow—using samples from the ACDC dataset. The model
achieves an accuracy of 99.93%, confirming its effectiveness
in handling a wide range of complex visual environments.

E. System Overhead

We further analyze the processing delay of DeVA. Figure 15
shows the average delay of key processes in DeVA at a
bandwidth of 2Mbps. On the Jetson TX2, the primary device
used in our evaluation, the tracking delay, i.e., the average
processing time of the RoI Tracker on the client, is only
9.73 ms per frame. Although the RoI Tracker needs to wait
for RoI areas captured and returned from the edge server,
the time cost amortized over the video frames within one
updating period is trivial, indicating good time efficiency.
The encoding delay refers to the time required per frame to
compress and encode, which is 73.81 ms. Motion analyzing
delay refers to the time needed to assess the motion within
the current video content, which is 789 ms. The majority
of this time is spent on computing the matching of feature
points between two consecutive frames to identify the client’s
motion status. The decision-making delay is the time between
when the edge server receives the filtered video frame and
when the Optimizer determines the configurations. Most of
this delay is attributed to obtaining the depth image, which
takes approximately 163 ms, and identifying RoIs, which takes
about 439 ms. As the frequencies of motion analyzing and
decision making are low (which are consistent with the RoI
Tracker’s updating period), these overheads are acceptable for
practical use.

We further evaluate the overhead of DeVA on a Raspberry Pi
4B, as shown in Figure 15. While the overall latency increases
compared to the TX2 platform, the most notable overhead
comes from motion analysis, which rises by 8.6% to 857ms
per calculation. Other components, including tracking and
encoding, experience moderate increases that remain within
an acceptable range. Despite the performance gap between
platforms, the system still runs smoothly on the Raspberry Pi,
demonstrating its feasibility on low-end edge devices.

DeVA imposes trivial system overhead at runtime. As
discussed in Section IV-B, the client periodically sends video
frames for updating reference RoI, and the edge server will
return the RoIs and configurations to the client. The average
network traffic for sending video frames is 64 KB/s, and the
RoI and configurations exchanging is no more than 1 KB/s.
On the edge server, DeVA consumes about 29.80% of the CPU

Fig. 15. The latency of key processes in DeVA on TX2 and Raspberry Pi
4B.

and 4.78% of the memory on average. On the client, the RoI
Tracker accounts for 2.50% of the CPU utilization and 4.00%
of the memory utilization.

VII. RELATED WORK

This section reviews state-of-the-art depth estimation ap-
proaches and video analytics frameworks. Table II summarizes
representative video analysis systems, comparing their tasks,
architectures, core techniques, and objectives.

Depth estimation. Depth estimation is a critical vision
task for AR, intelligent surveillance, autonomous driving, etc.
Based on the input type, depth estimation can be classified
into stereo depth estimation and monocular depth estimation.
Stereo depth estimation utilizes the disparity between images
captured from different viewpoints to estimate depth values.
Zhang et al. propose a real-time and on-device depth estima-
tion utilizing dual cameras [45]. Monocular depth estimation,
which predicts depth from a single image, is more broadly
applicable. Recent advancements leverage neural networks
to enhance the accuracy of monocular depth estimation.
Bhat et al. propose ZoeDepth, a model that predicts depth
values by integrating relative and metric depth estimation
techniques [15]. Luo et al. introduce an algorithm that fine-
tunes the traditional depth estimation model to achieve high-
accuracy and geometrically consistent results [3].

Edge-assisted video analytics. Edge-based video analytics
has been extensively studied in recent years. Jiang et al.
introduce Chameleon, which balances the tradeoff between re-
source consumption and accuracy by exploiting the spatial and
temporary correlations in the video [6]. Kong et al. propose
AccuMO, an edge-assisted multi-task scheduling framework
that optimizes the accuracy of multiple augmented reality (AR)
tasks, such as depth estimation and odometry, by scheduling
offloaded frames and local trackers [38]. Although AccuMO
considers the depth estimation task, it does not address the
fine-coarse relationship between configurations and the accu-
racy of AR tasks. It also overlooks the analysis of RoI for
depth estimation, leaving significant room for optimization
in this area. Xiao et al. propose Yoda, a benchmark for
video analytics to provide performance clarity [39]. Yoda
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TABLE II
SUMMARY OF REPRESENTATIVE RELATED WORK.

Works Tasks System Architecture Core Techniques Objectives

DeVA Depth estimation Client-server
Depth-RoI-based encoding
and configurations
adaptation

Ensure accuracy and reduce
network resource overhead

Chameleon [6] Video analytics pipelines
(VAPs) Client-only Configurations adaptation Achieve higher accuracy or

reduce resource consumption

AccuMO [38] Depth estimation and
odometry Client-server Dynamic scheduling multiple

tasks Improve overall task accuracy

Yoda [39] Object detection — VAP performance clarity Improve VAP evaluation

Wang et al. [40] Semantic segmentation Client-server Super-resolution Reduce bandwidth
consumption

AccDecoder [41] Object detection Server-only
Adaptive frame selection,
super-resolution, and
inference result reuse

Improve accuracy and reduce
latency

Mi et al. [42] Object detection Server-only Resolution-involved Markov
decision process

Improve accuracy and reduce
latency

Dai et al. [43] Object classification Client-server Collaborative inference Reduce computational cost
and transmitted data

EdgeDuet [10] Object detection Client-server Tile-level parallelism Improve accuracy and reduce
latency

Chen et al. [44] Image classification and
object detection Client-server Contextualized image

compression
Reduce bandwidth
consumption and speed up

DDS [9] Object detection and
semantic segmentation Client-server Server-side DNN feedback Improve accuracy or reduce

bandwidth consumption

Accmpeg [11]
Object detection,
semantic segmentation,
and keypoint detection

Client-server Encoding quality at each
macroblock

Reduce latency and ensure
accuracy

Elf [2]
Instance segmentation,
object classification, and
pose estimation

Client-server Parallel offloading Accelerate inference up and
save bandwidth

CrossVision [12] Object detection Client-server Information redundancy Reduce latency and improve
accuracy

AdaPyramid [36] Object detection Client-only Frame partitioning Reduce latency and ensure
accuracy

compares the performance of state-of-the-art video analytics
frameworks using proposed benchmark videos and provides a
comprehensive understanding of their dependencies on video
content characteristics.

Super-resolution imaging is a technique to reconstruct high-
resolution images from low-resolution inputs. Utilizing this
approach, Wang et al. propose to offload video streams in low
resolution and reconstruct them to high-resolution frames on
the cloud [40]. To further reduce the end-to-end latency, Yuan
et al. propose using limited keyframes as input to the super-
resolution model [41]. For the remaining frames, they present
an approach that combines super-resolution transferring and
inferencing result reuse to ensure inference accuracy. Building
on this, Mi et al. [42] introduce a Markov Decision Process
for adaptive resolution control, balancing inference accuracy
and latency across varying video resolutions.

RoI-based video analytics. To further compress the video
size, researchers focus on the RoI areas in each frame,
encoding only the necessary parts with high quality. Dai et
al. propose a collaborative inference approach that divides
the object classification workload between the client and the

server [43]. The client implements an extractor submodel to
identify the RoI areas for object classification and offloads
them to the server for performing classification. Wang et al.
argue that the client can detect large-size objects, but it still
struggles with small objects [10]. They propose to offload
only small objects to the edge and use tile-level parallelism
to reduce the end-to-end latency. Chen et al. propose a
context-aware image compression optimization framework that
identifies the importance of different image regions in a visual
analytics task, enabling contextualized image compression for
offloading [44].

Du et al. present a two-stage video analytics framework,
DDS, for reducing the video streaming overhead: DDS sends
a low-quality video stream to the server to identify areas
requiring higher quality, and the client then re-encodes the
video accordingly to enhance the inference accuracy [9]. To
further reduce the end-to-end latency from the server-driven
mechanism, Du et al. later propose a lightweight model for
the client to select the QPs for each macroblock. They also
utilize frame sampling and quality-assignment expansion to
reduce the overhead [11]. Zhang et al. propose to offload the
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RoI regions to multiple servers for parallel processing [2].
Zhang et al. proposes a distributed framework to match and
balance the workload of RoIs between smart cameras with
overlapping fields of view, achieving localized processing of
video data [12]. Shi et al. propose a method that partitions
frames to select different detection model weights to improve
the accuracy of object detection [36]. These approaches,
however, all consider the “discrete” video analytics tasks and
are difficult to extend to depth estimation tasks.

VIII. CONCLUSION AND FUTURE WORK

We present DeVA, an edge-assisted video analytics frame-
work for depth estimation that supports depth RoI encoding.
We define the area that significantly impacts the error of
depth estimation as the RoI for depth estimation. To cap-
ture the RoI areas efficiently, DeVA proposes a method for
creating bounding boxes enclosing RoI areas on the edge
server and a tracking approach to estimate RoI areas on
the client. Additionally, DeVA also measures the relationship
between the video analytics configuration and the error of
depth estimation, and identifies the key role of video content
in affecting this relationship. DeVA provides a methodology
to adaptively adjust the configurations, including the QPs for
RoI and non-RoI areas and the resolution of encoded video,
based on the video content, area ratio, and motion status of
the client. Our evaluation results confirm that DeVA guarantees
the accuracy of depth estimation while reducing the network
resource overhead of video offloading.

Based on the insights and findings of this work, we identify
several promising directions for future research: (1) to enhance
the decision-making process by incorporating real-time con-
straints, enabling the system to adapt to dynamic bandwidth
conditions and latency requirements; (2) to integrate adaptive
bitrate streaming techniques as a secondary compression layer,
achieving controllable accuracy in edge-assisted depth estima-
tion under varying network conditions; (3) to expand the con-
figuration space by incorporating frame rate and intra-frame
refresh rate as tunable parameters, allowing more fine-grained
control over the trade-off between bandwidth efficiency and
analytics accuracy; and (4) to support multiple concurrent
client requests by exploring scalable offloading strategies and
improving server-side batching capabilities
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