
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Online MEC Offloading for V2V Networks
Fangming Liu∗, Senior Member, IEEE, Jian Chen, Qixia Zhang, and Bo Li, Fellow, IEEE

Abstract—As an enabling technology for vehicle-to-vehicle (V2V) networks, multi-access edge computing (MEC) provides a feasible
platform for sharing power and resources, and offloading some of the computation-intensive tasks between vehicles. This, however, is
challenging with the unpredictable variations in road traffic conditions and vehicle mobility in MEC-enabled V2V networks.
Consequently, such computation task offloading can be easily disrupted, which may require frequent switching of task offloading
between vehicles and degrade the Quality of Service (QoS). In this paper, we focus on the computation offloading problem under
unstable connections in MEC-enabled V2V networks. We first model this as a distributed online service optimization problem, which is
proved to be NP-hard. In order to minimize the out-of-service time (i.e., the service mismatching, switching and compromise time), we
propose a distributed Online Instability-aware Computation Offloading (OICO) heuristic algorithm to improve the service efficiency and
quality. Specifically, in order to minimize the service mismatching rate, we design an efficient Service Path Matching (SPM) algorithm
for matching pairs of customer vehicles (which require offload computing services) and server vehicles (which provide edge computing
services) that share the longest matching path. We evaluate OICO through real-world traces, i.e., GAIA open dataset from DiDi.
Extensive simulation results demonstrate that OICO can increase the service matching rate by 25% and reduce the power
consumption by about 54% per customer vehicle compared with the existing schemes.

Index Terms—V2V Communication, Multi-access Edge Computing, Computation Offloading, Online Service Optimization.

✦

1 INTRODUCTION

W ITH the evolution of 5G vehicular networks and base
station coordinated device-to-device (D2D) commu-

nications, short-range vehicle-to-vehicle (V2V) communica-
tion has become one of the key technologies in enhancing
the transportation and information exchange [1], [2]. Due
to the safety imperative, V2V communication usually has
high-level Quality of Service (QoS) requirements in terms of
ultra low latency and high reliability [3]. To meet these strin-
gent QoS requirements, multi-access edge computing (MEC)
emerges as a feasible solution for sharing power and re-
sources [4], [5], and even offloading some computation-
intensive services between vehicles, such as augmented
reality (AR) and vehicular games.

In fact, modes of MEC vehicular service offloading
can be categorized into two types: (1) offloading to edge
computing facilities (e.g., edge server, edge cloud) via
4G/5G/V2I (Vehicle to Infrastructure), and (2) offloading
to moving vehicles with idle computing resources via V2V
communications [6], [7]. Compared with offloading to edge
infrastructures via expensive V2I or 4G/5G cellular net-
works, offloading to vehicles via V2V communications can
be much cheaper by making use of the idle computing
resources of vehicles. This provides a feasible and cost-
effective alternative for offloading services. With the grow-

• F. Liu, Jian Chen, and Q. Zhang are with the National Engineering
Research Center for Big Data Technology and System, the Services
Computing Technology and System Lab, Cluster and Grid Computing Lab
in the School of Computer Science and Technology, Huazhong University
of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
E-mail: {fmliu, chenjian98, zhangqixia427}@hust.edu.cn.

• Bo Li is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology.

This work was supported in part by the NSFC under Grant 61761136014 and
61520106005, in part by National Key Research & Development (R&D) Plan
under grant 2017YFB1001703. The research was supported in part by RGC
RIF grant R6021-20, and RGC GRF grants under the contracts 16207818
and 16209120. (Corresponding author: Fangming Liu)

ing number of smart vehicles in recent years, V2V communi-
cation can now support in-car entertainment (e.g., vehicular
games in Tesla [8] or BYD electric cars) with reasonable
performance. In this scenario, MEC-enabled vehicles with
idle resources can act as “servers” to provide computing
services so as to deal with the challenges like battery anxi-
ety from customers [9]. This paradigm enables low-power
vehicles to offload part of their value-added computing
services to nearby vehicles via V2V communications [6]. In
V2V networks, customer vehicles are the vehicles requiring
to offload their computation services, while server vehicles
are the ones providing computation resources and services.
By offloading some of the computation-intensive tasks to
nearby server vehicles, the power consumption of customer
vehicles can be reduced and their endurance mileage can be
extended. In contrast, server vehicles can potentially gain
monetary profits by offering such services at the expense
of their own computation resources and electric/chemical
energy consumption.

Nevertheless, differing from offloading computation to
MEC servers with fixed locations, offloading computation
to vehicles is more challenging due to the unpredictable
variations of traffic conditions and real-time mobility of
vehicles [6], [9], [10]. In real-world cases, both customer
vehicles and server vehicles may change their directions,
speeds, and routes at any time. Under this circumstance,
among a large number of candidate server vehicles, intu-
itively a customer vehicle prefers to select a server vehicle
with the same start point, similar driving speed, and longer
matching path which refers to the common driving path of
two vehicles.

For example, as shown in Fig. 1, the white vehicle is
a customer vehicle, while the No.1, No.2, and No.3 black
vehicles are the candidate server vehicles. Ideally, No.1
server vehicle first matches the customer vehicle at point
A, and drives along path A-B at the same speed to provide

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

①

Customer Vehicle Server Vehicle

C

③

②

A B

Fig. 1: An example of computation offloading and service
matching in MEC-enabled V2V Networks.

offloading service. Then No.2 server vehicle serves the cus-
tomer along path B-C. We define the service matching time
by the period of time when a pair of customer and server
vehicles matches and offloads tasks.

When two vehicles are out of the effective V2V com-
munication distance [11], customer vehicle needs to find
new server vehicles for offloading its tasks. Switching server
vehicles will lead to further degraded QoS. Thus, how to
jointly minimize the service mismatching time and service
switching time is a significant challenge for customer vehi-
cles.

As for the server vehicles, to ensure the connectivity
and stability in computation offloading process, sometimes
they have to make a compromise to decelerate or accelerate
and maintain the same speed as customer vehicles, which
is defined as service compromise. For example, if a server
vehicle driving at 60 km/h matches a customer vehicle
driving at 40 km/h, then it needs to decelerate to 40 km/h
for providing continuous services. Generally, the profit of
service is positively correlated with the cost of service. For
example, in other aspects of life, such as online taxi service,
service profit is positively correlated with some indicators,
such as waiting time for passengers, distance, travel time
and so on. So the profits of server vehicles are positively
correlated with electric/chemical power consumption for
providing computation offloading services under normal
circumstances. They intend to maximize the service match-
ing time and minimize the service compromise time. To
jointly improve the profits of both customer and server
vehicles, in this paper, we study the online computation
offloading problem under complex vehicle mobility for
MEC-enabled V2V networks with an objective of minimiz-
ing the out-of-service time, i.e., the service mismatching,
service switching and service compromise time.

Currently, some efforts have been paid to tackle the
computation offloading problem in MEC systems and/or
V2V networks [5], [10], [12]–[16]. However, some existing
solutions provide centralized algorithms without consider-
ing the mobility of vehicles and unstable services [16]. Some
other works use lazy or passive task migration strategy
[9], which will greatly increase the end-to-end latency and
may not satisfy the strict QoS requirements of vehicular
networks. Differing from them, in this paper, we take

into account the service instability, service switching costs,
power, resource, and latency constraints, and then we model
the online computation offloading problem under complex
vehicle mobility for V2V networks as a distributed online
service optimization problem, which is proved NP-hard. To
minimize the out-of-service time, we propose a distributed
Online Instability-aware Computation Offloading (OICO)
heuristic algorithm for MEC-enabled V2V networks, which
can effectively improve the profits of both customer vehicles
and server vehicles. Specifically, OICO can be distributed to
server vehicles and does not need to know global informa-
tion, thus ensuring less information exchange and lower ex-
ecution delay than centralized algorithms. In OICO, we also
design an efficient Service Path Matching (SPM) heuristic
algorithm to match the most suitable server vehicle for each
customer vehicle, which shares the longest matching path.
We give theoretical analyses of algorithms in terms of both
optimality and computation complexity. Then we conduct
extensive evaluations based on real-world traces, i.e., 1.92
million GPS data from 1,000 vehicles in GAIA open dataset
from DiDi [17]. Evaluation results demonstrate that OICO
can efficiently minimize the out-of-service time and improve
both customer and server vehicles’ profits.

The main contributions are as follows:

• We model the online computation offloading prob-
lem under complex vehicle mobility for MEC-
enabled V2V networks as a distributed online service
optimization problem, which is proved NP-hard. The
service instability, power, resource, and latency con-
straints are all considered in our model.

• In order to minimize out-of-service time (i.e., the
service mismatching, service switching and service
compromise time), we propose a distributed Online
Instability-aware Computation Offloading (OICO)
heuristic algorithm together with an efficient Service
Path Matching (SPM) heuristic algorithm, which can
effectively improve the profits of both customer and
server vehicles.

• Extensive evaluations based on real-world traces
demonstrate that our proposed approach can in-
crease the service matching rate by 25% and reduce
the power consumption by about 54% per customer
vehicle, as compared with other existing schemes.

• Discuss the business model, and the privacy and
security concerns under this pattern.

2 RELATED WORK

There are many studies on improving the service quality
and energy efficiency in edge computing systems, such
as edge service allocation/migration [18]–[22] and energy-
efficient mobile cloud computing [23]–[26]. In this section,
we only discuss and summarize the closely-related litera-
ture: we first investigate the state-of-the-art on computation
offloading and task scheduling for MEC systems. Then we
focus on the latest related work on computation offloading
for vehicular networks, including the V2V networks.

2.1 Computation Offloading for MEC Systems
In recent years there has been a number of studies on
the computation offloading and task scheduling in MEC

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

systems. Specifically, Huang et al. [27] propose a stochas-
tic control algorithm to decide which software component
should be offloaded so as to minimize the long-term average
energy consumption. Liu et al. [28] propose a stochastic
computation task scheduling policy, incorporating differ-
ent timescales in both task execution and channel fading
process. Mao et al. [29] propose a Lyapunov optimization-
based online computation offloading algorithm with energy
harvesting devices under a strict processing latency require-
ment. And the authors in [30] also adopt the Lyapunov
optimization to design their energy-efficient cloud offload-
ing scheduling algorithm. Finally, Kwak et al. [31] solve the
dynamic resource and task allocation problem in mobile
cloud systems with heterogeneous types of mobile applica-
tions. These existing works mainly focus on the computation
offloading and task scheduling in single-user [32], [33] or
simple linear systems [34], while only a few works focus on
designing methodologies for multi-user MEC systems [12],
[35], [36].

To meet the demand of multi-user MEC systems, Apos-
tolopoulos et al. [12] investigate the trade-off between the
power consumption and latency reduction and propose a
Lyapunov optimization-based computation offloading algo-
rithm. Similarly, Zhang et al. [13] present an energy-aware
offloading scheme to jointly optimize the communication
and computation resource allocation under the limited en-
ergy and sensitive latency. Gao et al. [14], [37] also study
the problem of joint optimization on the access networks se-
lection and service placement for multi-user MEC systems.
Compared to these multi-user MEC systems, our proposed
approach supports large-scale real complex road conditions
and high mobility of users. And we adopt the distributed
method and do not need a central decision server for
scheduling.

2.2 Computation Offloading for Vehicular Networks

With the evolution of MEC and 5G technologies, some
efforts have been made to address the challenges (e.g.,
providing intelligent vehicle control and reliable commu-
nications) in vehicular networks. First, Zhang et al. [38]
list five perspective works regarding MEC for vehicular
networks. In particular, Huang et al. [39] explore the 5G-
enabled software-defined vehicular networks (5G-SDVNs)
and leverage MEC to strengthen network control of 5G-
SDVN. Liu et al. [40] introduce an SDN-enabled MEC net-
work architecture that integrates a heterogeneous vehicular
network and offers reliable communication services. Sasaki
et al. [41] propose an infrastructure-based vehicle control
system that shares internal states between edge servers
and cloud servers to reduce latency and balance the com-
putational load. Besides, Yuan et al. [42] propose a two-
level edge computing architecture for automated driving
services in order to make full use of wireless connections
for coordinated content delivery.

In addition, a few work has addressed the computation
offloading, task scheduling, and migration in MEC-enabled
vehicular networks. For instance, Zhang et al. [15] propose a
task-file transmission strategy with a predictive V2V relay
and an optimal predictive combination-mode offloading
scheme for MEC-based vehicular networks. However, some

of their assumptions are too strong for real-world cases,
e.g., vehicles arrive as a Poisson distribution and move at a
constant speed, and vehicular tasks are only offloaded once
without dynamic migration, which ignores the complex
vehicle mobility. Huang et al. [10] propose a joint SDN and
MEC enabled architecture for V2V data offloading in cel-
lular networks. However, they do not specify the many-to-
many relationship between base stations and MEC servers.
Ning et al. [16] investigate new methods to reduce the
task offloading latency in MEC-enabled vehicular networks,
while they do not take account of the real-time mobility
of vehicles and fail to provide an efficient online task of-
floading strategy. Han et al. [9] use idle vehicle-mounted
computing resources to assist the calculation, however, it
is still essentially a single-user MEC system. Feng et al. [5]
offload the calculations to surrounding vehicles with idle
computing power. However, in the experiment, the vehicles
are limited to a small area, which cannot fully reflect the
vehicle mobility and service instability.

For V2V communication, Naqvi et al. [43] state that
device-to-device (D2D) communication coordinated by base
stations is suitable for short-distance wireless transmission
of V2V communication. To reduce co-channel interference,
Yang et al. [44] enable D2D connections between vehicles
by reusing uplink spectrum resources while allocating base
station orthogonal spectrum resources to D2D users and cel-
lular users. Differing from these existing works, we propose
a distributed online instability-aware offloading approach
for MEC-enabled V2V networks with special consideration
for complex vehicle mobility, service switching costs, power,
resources and latency constraints, which can jointly improve
the profits of both customer vehicles and server vehicles.

3 MODEL AND PROBLEM FORMULATION

In this section, we first introduce the MEC-enabled V2V
networks model. Then we define the decision variables,
including indicators that reflect the instability and efficiency
in computation offloading process. Finally, we present the
mathematical formulation of the online computation of-
floading problem under complex vehicle mobility for MEC-
enabled V2V networks with the objectives and constraints.
Key notations are listed in Table 1.

3.1 MEC-enabled V2V Networks Model

First of all, we use a set U = {u1, u2, ..., u|U |} to represent
the set of customer vehicles, where each customer vehicle
has some computation tasks to be offloaded. And we define
the set of server vehicles by V = {v1, v2, ..., v|V |}, where
each server vehicle can offer computation offloading ser-
vices. In each time slot of our model, the number of active
U and V nodes and the relationship between supply and de-
mand change dynamically from moment to moment, rather
than simply assuming a fixed number. By computation
offloading, customers in U can pay some money to address
their battery/energy issue, while owners of server vehicles
in set V can earn some money by providing computation
services at the expense of their own energy consumption.
To ensure the connectivity and communication efficiency of
customer vehicles and server vehicles, we mainly consider

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

single-hop V2V communications in our model. Since most of
the throughput related activities can be reduced to this basic
single-hop problem [45], such as multi-hop network traffic
[46] that is essentially dependent on routing and single-hop
wireless link transmission planning and data aggregation
scheduling [47].

When performing a computation offloading task be-
tween a server vehicle and a customer vehicle, taking
game’s offloading service as an example, each rendered
frame of the game is transmitted back to customer vehicle in
real time. To deal with real-time cases, we divide time into
a set of time slots, defined as T = {t1, t2, ..., t|T |}, where
the length of each time slot is τ . Note that the offloaded
tasks are executed during the period of two vehicles driving
together. We assume that at the time slot ∀t ∈ T , the
set of computation offloading tasks in the set U is St,
where St = {st1, st2, ..., st|U |}. For ∀ui ∈ U , the computation
offloading task related to vehicle ui is sti. There are different
types of tasks in the set St, such as AR, vehicular games,
map services, etc. The customer vehicle does not need
service all the time, so in some time slots t ∈ T , the type
of sti may be idle. We assume that the set of types of tasks
is D, where D = {d1, d2, ..., d|D|}. Each type of task d ∈ D
has a computation offloading ratio αd, which represents the
proportion of the task that can be offloaded to the server
vehicles. Clearly, 1 − αd means the proportion of a type
d ∈ D task that can only be executed on customer vehicles
and cannot be offloaded to other server vehicles. We use ecd
to represent the power for computation offloading; while emd
represents the power for V2V communication when a task
is offloaded to another vehicle.

3.2 Decision Variables

As vehicles move in real time, the computation offloading
process will be affected by the complex vehicle mobility,
i.e., the real-time V2V communication distance. This means
that if two vehicles are within effective V2V communication
distance, customer vehicle can offload its tasks to server
vehicle; otherwise, the tasks cannot be offloaded. Based on
IEEE 802.11p [48] and 5G D2D technology and communi-
cation standards, we use M to represent the effective V2V
communication distance [11], [49]. Note that V2V communi-
cation distance can be modified under other communication
standards. At each time slot t ∈ T , we first use a binary
indicator xt

u,v to indicate whether server vehicle u ∈ U is
in the effective V2V communication distance of customer
vehicle v ∈ V . Naturally, we use xt

u,v = 1 to represent the
case that when the distance between v ∈ V and u ∈ U is
less than M at time slot t ∈ T , the tasks can be offloaded;
otherwise, xt

u,v = 0 means the tasks cannot be offloaded by
any other server vehicle. Thus, we have a constraint for xt

u,v

as follows:

xt
u,v ∈ {0, 1},∀u ∈ U,∀v ∈ V,∀t ∈ T. (1)

Due to the real-time mobility of customer and server
vehicles, the indicator xt

u,v can be changed as the time
slots move on, reflecting the complex vehicle mobility in
computation offloading process, which is a significant char-
acteristic of V2V communications. As defined, |U | customer
vehicles have |D| types of tasks. To indicate the specific

TABLE 1: Key Notations

Symbol Description
U The set of customer vehicles
V The set of server vehicles
D The set of tasks’ types
T The set of time slot
τ The length of each time slot

St The set of computation offloading tasks at
time slot t ∈ T

αd
The proportion of a type d ∈ D task that can
be offloaded to server vehicles

ecd
The electric power for computation offload-
ing of a type d ∈ D task

emd
The electric power for V2V communication
of a type d ∈ D task

fp
v The computation capacity of v ∈ V

fc
d The computation demand of d ∈ D

pu
The power capacity of customer vehicle u ∈
U for processing the local tasks

qv
The power capacity of server vehicle v ∈ V

for processing the offloaded tasks
M The effective V2V communication distance

xt
u,v

1 if customer vehicle u ∈ U is within the
service communication distance of server ve-
hicle v ∈ V at time slot t ∈ T , 0 otherwise

yt
u,d

1 if customer vehicle u ∈ U needs a type d ∈
D task at time slot t ∈ T , 0 otherwise

ztu,v
1 if customer vehicle u ∈ U is served by
server vehicle v ∈ V at time slot t ∈ T , 0
otherwise

t∗u The expected total service time of u ∈ U

tmis
u The service mismatching time of u ∈ U

tmt
u The service matching time of u ∈ U

tsd The service switching time of a type d ∈ D

task
tswc
u The total service switching time of u ∈ U

tcv The service compromise time of v ∈ V

type of task and the power consumption of each vehicle,
we introduce the second binary indicator ytu,d to indicate
whether the vehicle u ∈ U needs the type d ∈ D task
at time slot t ∈ T . In fact, each customer vehicle may
require different types of services at different time slots.
Thus, ytu,d = 1 means that vehicle u ∈ U needs the type
d ∈ D task at this time slot t ∈ T , and ytu,d = 0 means
u ∈ U does not need type d task. For simplification, we
assume that a customer vehicle only has one type of service
at a time slot, which can be represented as follows:∑

d∈D

ytu,d = 1,∀u ∈ U,∀t ∈ T. (2)

ytu,d ∈ {0, 1},∀u ∈ U,∀d ∈ D,∀t ∈ T. (3)

At each time slot t ∈ T , we use a binary indicator ztu,v to
indicate whether customer vehicle u ∈ U is served by server
vehicle v ∈ V at time slot t ∈ T . Thus, ztu,v = 1 means that

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

customer vehicle u is served by vehicle v at this time slot
t ∈ T ; otherwise, ztu,v = 0. In addition, as we stated before,
not all parts of the task can be offloaded to server vehicles
(i.e., only the αd parts of task can be offloaded). We use
ztu,0 = 1 to indicate that vehicle u ∈ U ’s task is running
locally instead of offloading to any other vehicle at time slot
t ∈ T . Thus we have constraints for ztu,v as follows:∑

v∈{0}∪U

ztu,v = 1,∀u ∈ U,∀t ∈ T. (4)

ztu,v ∈ {0, 1},∀u ∈ U,∀v ∈ {0} ∪ V,∀t ∈ T. (5)∑
v∈{0}∪V

ztu,v · xt
u,v ≤ 1,∀u ∈ U,∀t ∈ T. (6)

Constraint (6) means one task of customer vehicle can
only be served by one server vehicle or locally at any time
slot t.

3.3 Objective and Constraints

Now we formally propose the mathematical formulation of
the online computation offloading problem under complex
vehicle mobility for MEC-enabled V2V networks. We
begin with the constraints.

First of all, each server vehicle v ∈ V has a compu-
tation capacity fp

v (i.e., CPU frequency [32]) for dealing
with offloaded tasks, while each type d ∈ D task has a
computation demand f c

d . Thus, at time slot ∀t ∈ T , the total
computation demand of all tasks offloaded to server vehicle
v should not exceed its computation capacity fp

v , which can
be represented by:∑

u∈U

ztu,v ·
∑
d∈D

f c
d · ytu,d ≤ fp

v ,∀v ∈ V,∀t ∈ T. (7)

In terms of energy costs, we also consider the trans-
mission and computing energy costs of task offloading. In
related work, it makes sense to consider energy costs, Mao
et al. [50] also consider time costs and energy costs jointly.
Since the power used for providing computation offloading
services should not affect the driving of the vehicle. So
we put some constraints on the power consumption of the
vehicle for MEC service. We use qv to represent the available
power capacity of server vehicle v ∈ V for dealing with
offloaded tasks, and we have:∑

t∈T

∑
u∈U

ztu,v · τ(
∑
d∈D

ytu,d · (ecd · αd + emd)) ≤ qv. (8)

Besides, the power of each customer vehicle u ∈ U is
limited, we use pu to represent the available power capacity
for processing the local tasks (i.e., (1 − αd) parts of task
cannot be offloaded). Thus, all the power consumption of
local tasks of customer vehicle u should not exceed its
power capacity, which can be expressed as follows:∑

t∈T

∑
v∈V

ztu,v · τ(
∑
d∈D

ytu,d · (ecd · (1− αd)− emd)) ≤ pu. (9)

Now we introduce the time slot-based customer-related
parameters. First, each customer vehicle u ∈ U has an
expected total service time of t∗u, which represents that cus-
tomer vehicle u expects to get this certain period of time for

offloading its computation tasks. However, due to the com-
plex vehicle mobility, the customer vehicle cannot always
“match” a server vehicle for offloading its computation
tasks. Thus, we use tmt

u to represent the service matching time
of customer vehicle u ∈ U . Within tmt

u , customer vehicle u
can offload its tasks to other server vehicles, which can be
expressed as follows:

tmt
u =

∑
t∈T

∑
v∈V

ztu,v · τ . (10)

We also define a service mismatching time of customer
vehicle u ∈ U , represented by tmis

u . Thus, we have:

tmis
u = t∗u − tmt

u = t∗u −
∑
t∈T

∑
v∈V

ztu,v · τ . (11)

In fact, due to the complex vehicle mobility in V2V
networks, matching a server vehicle does not mean that a
customer vehicle can totally offload its tasks in the service
matching time. When a server vehicle drives out of the
V2V communication distance, the computation offloading
process will be interrupted and the customer vehicle needs
to find a new available server vehicle for its unprocessed
tasks. Due to the real-time mobility of vehicles, sometimes
a customer vehicle needs to switch its server vehicles fre-
quently. The sum of these periods of time is called by the
service switching time. When switching the service to another
vehicle, the sandbox or file needs to be loaded into memory
and initialized. We assume that each type d ∈ D task has its
service switching time tsd. For each customer vehicle u ∈ U ,
we define the cumulative time of total switching time by
tswc
u . Thus, the total switching time tswc

u of customer vehicle
u can be expressed as follows:

tswc
u =

|T |∑
t=2

(

|V |∑
v=0

|ztu,v − zt−1
u,v |

2
· (

∑
d∈D

tsd · ytu,d)). (12)

Note that since a service switching involves one cus-
tomer vehicle and two server vehicles, the sum of |ztu,v −
zt−1
u,v | in Eq. (12) needs to be divided by 2.

We also define the total in-service time as (tmt
u − tswc

u),
which represents the total time of customer vehicle u ∈ U
getting served by a server vehicle for computation offload-
ing.

In addition, to further measure the service switching
cost, we use a service switching indicator nu to represent
the number of service switching times of a customer vehicle
u ∈ U , which can be expressed as follows:

nu =

|T |∑
t=2

|V |∑
v=0

|ytu,v − yt−1
u,v |

2
. (13)

For the drivers of the server vehicles, they intend to
provide the computation capacity and power of their own
vehicles in exchange for profits. To ensure the connectivity
and stability in computation offloading process, sometimes
the server vehicles need to decelerate and maintain the same
speed as the customer vehicle. For example, as plotted in
Fig. 2, a customer vehicle u1 ∈ U driving at 30 km/h
matches a server vehicle v1 ∈ V driving at 60 km/h at time
slot t1 ∈ T . They are both driving from point A to point B
at a distance of 10 km on the same route. However, since

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

u1

v1

30km/h

60km/h 30km/h

A B10kmt1 t2

Fig. 2: An example for the service compromise of server vehicle.

vehicle v1 drives faster than u1, v1 is supposed to arrive
at B in 10 minutes, while u1 is supposed to arrive in 20
minutes. In this case, since v1 is the server vehicle providing
services, it has to compromise with the customer vehicle
u1. v1 will decelerate to 30 km/h and will also arrive at B
in 20 minutes at time slot t2. Thus, the service compromise
time tcv = 20 − 10 = 10 minutes, which represents the
speed compromise made by the server vehicle to maintain
the stability of the service. To measure tcv , we use tcu,v,t to
represent the service compromise time per time slot, when
customer vehicle u ∈ U matches a server vehicle v ∈ V .
In particular, tcu,v,t is calculated by the service matching
distance at time slot t divided by the speed difference
between vehicles u and v. More details can be found in
Sec. IV.

Thus, for ∀v ∈ V , the service compromise time twv can be
expressed as follows:

tcv =
∑
t∈T

∑
u∈U

ztu,v · tcu,v,t. (14)

From a customer vehicle u ∈ U point of view, the
objective is to maximize the service matching time while
minimizing the number of service switching times. From a
server vehicle v ∈ V point of view, its profits are positively
correlated with the power consumption for providing com-
putation offloading services. Thus, a server vehicle also aims
to maximize the service matching time while minimizing
the service compromise time. In short, in order to jointly
improve the profits of both customer vehicles and server
vehicles, our objective is to minimize the out-of-service
time, including the service mismatching, service switching
and service compromise time. Note that as stated in Eq. (11),
minimizing the service mismatching time tmis

u is equivalent
to maximizing the service matching time tmt

u . We use C as
the comprehensive performance metric, i.e., the total out-
of-service time of all vehicles in V2V networks. Thus, the
computation offloading problem under complex vehicle
mobility for MEC-enabled V2V networks can be formu-
lated as follows:

minC

=min
∑
t∈T

∑
u∈U

∑
v∈V

(
|ztu,v−zt−1

u,v |
2

∑
d∈D

tsd ·yt
u,d−ztu,v·τ+ztu,v ·tcu,v,t)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9).
(15)

4 ALGORITHM DESIGN AND ANALYSIS

In this section, we first analyze the problem complexity of
formulation Eq. (15). Then, we propose a distributed Online
Instability-aware Computation Offloading (OICO) heuristic

algorithm for MEC-enabled V2V networks, together with
the Service Path Matching (SPM) algorithm. Afterward, we
provide a theoretical analysis of our proposed algorithms in
terms of optimality and computation complexity.

4.1 Problem Complexity

To analyze the problem complexity, we first focus on solving
the sub-problem—minimizing the total service compromise
time. At time slot t ∈ T , this sub-problem can be represented
by:

min
∑
v∈V

∑
u∈U

ztu,v · tcu,v,t (16)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9).

Theorem 1. The sub-problem defined in Eq. (16) is NP-hard.

Proof. We construct a polynomial-time reduction to Eq. (16)
from the resource constrained generalized assignment prob-
lem (RGAP), a classic NP-hard combinatorial optimization
problem [51]:

min
m∑
i=1

n∑
j=1

ci,j · xi,j (17)

s.t.
m∑
i=1

xi,j = 1,∀j = 1, ..., n, (18)

n∑
j=1

ai,j · xi,j ≤ bi,∀i = 1, ...,m, (19)

xi,j ∈ {0, 1},∀i = 1, ...,m, j = 1, ..., n. (20)

We relax the constraints of equation (16) to (2), (3), (4),
(5), (7). Then we can reduce an RGAP problem to (16). In
Eq. (17), ci,j can be mapped to tcu,v,t. Constraint (18) means
that only one machine can be assigned to perform each
task. Constraint (19) indicates that the number of resources
consumed by each machine during the execution of tasks
cannot exceed the fixed number of resources provided,
where ai,j represents the amount of resources consumed
by the machine during execution. In constraint (19), ai,j
can be mapped to

∑
d∈D fm

d · ytu,d and bi can be mapped to
fp
v . Clearly, this reducing can be done in polynomial time.

Therefore, if there exists an instance solution for the RGAP
problem, it also solves the sub-problem defined in Eq. (16).
Thus, we can conclude that the sub-problem defined in
Eq. (16) is NP-hard.

Theorem 2. The online computation offloading problem under
complex vehicle mobility defined in Eq. (15) is NP-hard.

Proof. The proof process is similar to Theorem 1. As proved,
the sub-problem defined in Eq. (16) is proved NP-hard,
which is part of the Eq. (15) problem. Since Eq. (15) consists
of three time costs, we first conduct a relaxed formulation
of the problem (15) by setting the service mismatching time∑

u∈U tmis
u and the total switching time

∑
u∈U tswc

u to 0.
We can reduce Eq. (15) to Eq. (16). Clearly, this reduction

can be finished in polynomial time. Based on Theorem 1, the
reducing from RGAP (17) formulation to Eq. (16) can also be
finished in polynomial time. Thus, we can conclude that the
problem defined in Eq. (15) is NP-hard.

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

4.2 Instability-aware Computation Offloading Algo-
rithm

To deal with the NP-hard problem of Eq. (15), we propose an
Online Instability-aware Computation Offloading (OICO)
heuristic algorithm, considering the service instability, ser-
vice switching costs, power, resource, and latency con-
straints. Specifically, OICO can efficiently offload real-time
services from each customer vehicle to the most suitable
server vehicles, which are selected by a Service Path Match-
ing (SPM) algorithm for the longest matching path. We
first explain how OICO works. Since OICO is a distributed
algorithm that does not require a unified central controller
or server, the algorithm distributed to the server vehicle
is listed in Algorithm 1 and the customer vehicle version
is listed in Algorithm 2. Some common variable formats
have emerged in several algorithms, such as the Check Point
which contains latitude and longitude information as well
as time information.

For the server vehicle version of OICO (Algorithm 1),
firstly we explain individual variables of the input and
output parts. Three-dimensional array CP1j contains check
points, which include encrypted longitude, latitude and
time information. The navigation route is equivalent to
CP1j . The method of encryption is determined by using the
conventions of both parties. Each server vehicle broadcasts
to the surrounding area to provide service information (the
encrypted navigation route, the vehicle’s various resource
capacity limits, line 4), while vehicles that are already
providing service do not need to broadcast (line 2). We
choose to let the service vehicle broadcast its encrypted
track and other information instead of the user vehicle to
better protect the user vehicle’s privacy. If multiple customer
vehicles choose the same optimal candidate vehicle, then
at this time, the candidate vehicle will match and serve a
customer vehicle with the longest service time (lines 10-12).
At a certain time, there may be no vehicle around to request
service from the server vehicle, then the server vehicle will
try for n1 times at most. n1 is a constant to indicate the
maximum number of loop attempts (line 5). The return state
0, 0 means no service is available in the current time period
for vj . Matching duration td is used to indicate the number
of time slots that two matched vehicles are driving together.

For the customer vehicle version of OICO (Algorithm
2), each unmatched customer vehicle u ∈ U uses V2V
communication to search for the serviceable vehicles nearby
(line 4). Then, Algorithm 2 compares the power consump-
tion of each vehicle, and deletes the candidate vehicles that
do not meet the power demand and computation capacity.
The optimal server vehicle candidate will be selected from
the candidate set. Each customer vehicle accepts a set of
server vehicles that provide service within V2V distance.
Then, the optimal set of top n1 candidate server vehicles is
obtained by calling SPM (line 8). Up to now, if the idle server
vehicles set S2 becomes an empty set, it is unfortunate
that the vehicle can only run the service locally during the
time slot, consuming the power of its own (line 10). The
user vehicle defines the end point of the co-drive path as a
Separation Point. The user vehicle sends the requested ser-
vice information including Separation Point to the currently
optimal service vehicle (line 17). A failed competitor needs

Algorithm 1 Online Instability-aware Computation Offload-
ing Algorithm (Server vehicle version)

Input: Check points set array CP1j for each server vehicle of
vj within T ; Current time slot t; Time slot length τ ;

Output: Matching customer vehicle ui; Matching duration
slots td;

1: if vj has provided service then
2: return The current state of service;
3: end if
4: Through V2V broadcast the encrypted navigation route

CP1j , the current power that can provide for service,
and the maximum idle computing capacity of vj to the
surrounding;

5: for m = 1 to n1 do
6: Accept a set S1 of user vehicles that request for match-

ing in a certain amount of time τ/n1;
7: if S1 == ∅ then
8: continue;
9: end if

10: Accept a set S2 that represents common path separation
points of S1;

11: Calculate the maximum common path customer vehicle
ui, the service matching duration slots td according to S2
by calling SPM;

12: Match vj with ui, and send a confirmation message to
ui;

13: Update binary indicators x, y, z;
14: return ui, td;
15: end for
16: return 0, 0;

to compete for the remaining sub-optimal server vehicles
(line 12) until the competition is successful (line 22) or the
candidate set becomes an empty set (line 14).

Some variables with the same name appear in Algo-
rithm 1 and Algorithm 2, such as S1 and S2, which are
independent of each other in different algorithms. And the
fourth line of Algorithm 1 and the fourth line of Algorithm
2 describe the process of moving path, resource and energy
information transfer between vehicles.

OICO not only determines the allocation of vehicles
in the current time slot, but also makes use of the ad-
vantages of ride-hailing to allocate the partial decisions of
vehicles in future multiple time slots in advance (such as
Algorithm 2, line 8). Then, OICO calls SPM to find the
current best candidate vehicles for customer vehicle u. As
mentioned, if u is selected to match the server vehicle out
of all candidate customer vehicles, the unselected candidate
customer vehicles will move on to compete for other server
vehicles. Once a pair of server vehicle and customer vehicle
matches successfully, they will share the same period of time
slots along the common route. The speeds of two vehicles
are then adjusted to the same to ensure the continuity of
computation offloading service. OICO can achieve a stable
MEC service by maintaining the same speed of two vehicles
as much as possible without affecting the main business
of the vehicle. In OICO, the customer’s vehicle does not
need to send its navigation information to any vehicle, only
an encrypted common path separation coordinate point is
sent to the target server vehicle, which protects the path
privacy of the customer vehicle and avoids disclosing the
passengers’ track to a certain extent.

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Algorithm 2 Online Instability-aware Computation Offload-
ing Algorithm (Customer vehicle version)

Input: Check points set array CP2i for each customer vehicle
of ui within T ; Current time slot t; Time slot length τ ;

Output: Matching customer vehicle vj ;
1: if ui has been serviced then
2: return The current state of service;
3: end if
4: Accept a collection S1 of server vehicles that provide ser-

vice via V2V;
5: if S1 = ∅ then
6: return 0;
7: end if
8: Select top n1 idle server vehicles S2 from set S1 that satisfy

(4), (5), (6), (7), (8), (9), sorting by common driving path
length according to SPM;

9: if S2 == ∅ then
10: return 0;
11: end if
12: for m = 1 to n1 do
13: if S2 == ∅ then
14: return 0;
15: end if
16: Select the first candidate service vehicle vj from S2;
17: Send common path Separation Point to vj ;
18: if vj refuses to provide the service then
19: Remove vj from S2, wait a certain amount of time

τ/n1;
20: continue;
21: else
22: Service matching with vj , update binary indicators

x, y, z;
23: return vj ;
24: end if
25: end for
26: return 0;

4.3 Service Path Matching Algorithm

The Service Path Matching (SPM) algorithm, is used to assist
OICO to select the most suitable server vehicles from the set
of candidate vehicles V 2. The procedure of SPM is listed
in Algorithm 3. The current order route for ride-hailing is
known. We match the current route of the vehicle u in order
to be served and the vehicles in V 2. In line 1, pui [2] means
the check time in pui . In each cycle, we remove all candidate
vehicles whose current time slot does not meet the relevant
constraints, leaving only one (line 7). The time range of our
filtering method is small enough to flag the common path.
One of the evaluation indexes, waiting time, is reflected in
SPM. At each time slot, we detect whether the vehicles in
the set V 2 are out of the V2V communication distance of the
customer vehicle u (lines 5-7). Note that we have extended
the detection range of vehicles in V 2 to x · τ , where x is an
artificially controlled constant. In this way, we can control
that the waiting time of potential server vehicles does not
exceed x · τ .

At the same time, a more stable V2V edge computing
service can be provided by controlling the server vehicle to
adjust its running speed within a certain acceptable time.
The tcu,v,t mentioned above in Sec. II can be given by SPM.
And if only one server vehicle v ∈ V is passed in the
incoming server parameter, SPM will give tcu,v,t for that
vehicle v ∈ V if it serves u ∈ U at time slot t ∈ T .
Specifically, if the input includes V 2 = v, and the check
point information set is related to u, the check time is in
time slot t, then tcu,v,t = |tend1−tend2|

nτ . Meanwhile, in the

Algorithm 3 Service Path Matching Algorithm

Input: The vehicle ui that request service; Check point infor-
mation set pui = [longitude, latitude, check time] of vehicle
ui; Potential server vehicle set array V 2; Check points set
array P2 for each customer vehicle of V 2;

Output: The selected best trajectory matching server vehicle
vs; Number of slots for the duration of the service nτ ;
Service ending time point tend1; Selected server vehicle’s
service adjustment ending time point tend2;

1: tend1 = pui [2], tend2 = pui [2], ttemp = pui [2], nτ = 1;
2: for true do
3: Take the check point ptemp

i =
[longitude, latitude, check time] of ui, where the check
time is the maximum time data check time of ui in range
[ttemp, ttemp + τ];

4: for each v2j ∈ V 2 do
5: Extract all check points of v2j of the time range

[Max{ptemp
i [2]− x ∗ τ, pui [2]}, ptemp

i [2] + x ∗ τ] as P3;
6: Select the check point closest to ptemp

i in P3 as pclose;
7: if the distance between check point pclose and ptemp

i

is greater than M or not satisfy (4), (5), (6), (7), (8), (9) then
8: if |V 2|==1 then
9: return v2j , n

τ , tend1, tend2;
10: end if
11: Remove v2j from V 2;
12: else
13: tend2 = pclose[2];
14: vs = v2j ;
15: end if
16: end for
17: ttemp = ttemp + τ ;
18: nτ = nτ + 1;
19: tend1 = ptemp

i [2];
20: end for
21: return vs, nτ , tend1, tend2;

time interval [t, t + nτ − 1], the value of tcu,v,t equals to
|tend1−tend2|

nτ .

4.4 Algorithm Optimality Analysis

Now we give a brief optimality analysis of OICO. We ana-
lyze the worst-case performance bound of OICO algorithm.
We use Θ(OPT) to represent the optimal out of service time.

Theorem 3. The worst-case performance bound of OICO

is H+|T |lmax

H+|T |lmin
, where H =

u=|U |∑
u=1

t∗u, lmax = max
t∈T

lt,

lmin = min
t∈T

lt, lt = −
v=|V |∑
v=1

τ · ztu,v +
u=|U |∑
u=1

tcu,v,t · ztu,v +

v=|V |∑
v=0

|ztu,v − zt−1
u,v | · Pu , Pu =

d=|D|∑
d=1

tswc
d · ytu,d/2, and z0u,v =

z1u,v .

Proof. Assume that at any time slot t ∈ T , Θ(OICO) repre-
sents the out of service time of OICO as defined in Eq. (15),
while Θ(OPT) represents the optimal out of service time.

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

Θ(OICO)
Θ(OPT)

=

u=|U|∑
u=1

(tmis
u + tswc

u) +
v=|V |∑
v=1

tcv

u=|U|∑
u=1

(tmis∗
u + tswc∗

u) +
v=|V |∑
v=1

tc∗v

≤

u=|U|∑
u=1

t∗u +
t=|T |∑
t=1

(−
v=|V |∑
v=1

τ ∗ ztu,v) +
u=|U|∑
u=1

tswc
u +

v=|V |∑
v=1

tcv

u=|U|∑
u=1

t∗u +
t=|T |∑
t=1

(−
v=|V |∑
v=1

τ ∗ zt∗u,v) +
u=|U|∑
u=1

tswc∗
u +

v=|V |∑
v=1

tc∗v

≤
H +

t=|T |∑
t=1

(
u=|U|∑
u=1

tcu,v,t ∗ ztu,v −
v=|V |∑
v=1

τ ∗ ztu,v) +
u=|U|∑
u=1

tswc
u

H +
t=|T |∑
t=1

(
u=|U|∑
u=1

tcu,v,t ∗ zt∗u,v −
v=|V |∑
v=1

τ ∗ zt∗u,v) +
u=|U|∑
u=1

tswc∗
u

≤
H +

t=|T |∑
t=1

(
u=|U|∑
u=1

tcu,v,t ∗ ztu,v −
v=|V |∑
v=1

τ ∗ ztu,v + EQswc
u,t)

H +
t=|T |∑
t=1

(
u=|U|∑
u=1

tcu,v,t ∗ zt∗u,v −
v=|V |∑
v=1

τ ∗ zt∗u,v + EQswc
u,t)

≤ H + |T | ∗ lmax

H +
t=|T |∑
t=1

(
u=|U|∑
u=1

tcu,v,t ∗ zt∗u,v −
v=|V |∑
t=1

τ ∗ zt∗u,v + EQswc∗
u,t)

≤ H + |T | ∗ lmax

H + |T | ∗ lmin

where zt∗u,v is the optimal solution of OPT,
EQswc

u,t =
∑v=|V |

v=0 |ztu,v − zt−1
u,v | ∗ Pu and EQswc∗

u,t =∑v=|V |
v=0 |zt∗u,v − zt∗−1

u,v | ∗ Pu.

We started with the relationship between expected total
service time and service mismatching time, and made a
series of scaling. Then we obtain the ratio of OICO and
the optimal result Θ(OPT) through multi-step mathematical
deduction. The worst-case performance bound of OICO is
H+|T |lmax

H+|T |lmin
.

4.5 Algorithm Complexity Analysis

SPM, which is used to assist OICO to select the most
suitable server vehicles from the set of candidate vehicles
V 2, cyclically matches the A candidate vehicles passing
by (Algorithm 3, line 4). Suppose that each vehicle, not in
service currently, has a maximum number of A candidate
vehicles within the effective V2V communication distance.
A’s number can be determined by space constraints. As-
sume that the maximum check times for all server vehicles
in the total time slot is B times (Algorithm 3, line 2). Among
A candidate vehicles, the maximum order duration is B
time slots. Thus, SPM has a time complexity O(A ∗B).

For OICO, the complexity mainly comes from the user
vehicle algorithm. Decisions are made for server vehicles
at each time slot. Then, each customer vehicle that has
not met its demand of service calculates the serviceability
of surrounding vehicles, which will cost a constant time
(Algorithm 1, line 4; Algorithm 2, line 4, respectively). For
the distributed algorithm of each vehicle, the accumulated
time complexity so far is A. OICO algorithm then calls SPM
algorithm to select the best candidate vehicle. Combined
with the complexity of SPM, OICO obtained the ranking
of the candidate vehicle set. At the same time, distributed
OICO competed for the candidate service set in turn, which

lasts at most A times (Algorithm 2, line 8). So far, OICO
has a time complexity of O(A2 ∗ B). To sum up, the time
complexity of distributed OICO is O(A2 ∗B).

5 EVALUATION

In this section, we first introduce the evaluation setup based
on real-world traces and the schemes for comparison. Then
we discuss the performance evaluation results of OICO and
provide some analyses and insights.

5.1 Simulation Setup

We adopt the KDD CUP 2020 driving track data set from
DiDi’s GAIA open dataset [17]. The data set is obtained
from the track data and order data of DiDi vehicle platform
in a local area of Chengdu. The acquisition interval of
locus points is 2-4 s (including latitude, longitude and time
information). The locus point has been treated with road
binding, which ensures that the data can correspond to the
actual road information. The driver and order information
is encrypted, desensitized and anonymized. We randomly
select the data of 1,000 vehicles, where we select 200 vehicles
as customer vehicles and the other 800 vehicles as server
vehicles. The experiment data set contains more than 1.92
million check-in records. We set the effective V2V commu-
nication distance M as 200 m [49]. In the experiment, we
set the time slot to 60 seconds. According to the common
calculation and communication power consumption, we
give a reasonable power consumption range. Depending
on the type of service, we set the power consumption for
computation offloading ranging from 200 to 400 watts. Sim-
ilarly, we set power consumption for V2V communication
between 0.5 and 2 watts. The number of computation task
types is 5, and the corresponding offloading ratio αd ranges
from 0.1 to 0.9. Tasks requested for each customer vehicle are
not needed all the time. For a customer vehicle that needs
service, we assume that it needs service only during the
period when there are passengers in the vehicle. Whether
there are passengers in the vehicle is not simulated, but the
real behavior in DiDi’s driving data set.

We compare OICO algorithm with the following two
algorithms:

• FSM. First-hit Service Matching algorithm, where
customer vehicles match the first-hit nearest server
vehicle [52].

• NMM. Non-waiting Maximum Matching algorithm,
where customer vehicles greedily select the server
vehicle with the maximum matching path but do not
compromise on deceleration. Heuristic algorithms
based on basic greedy strategy are common in MEC
related work [53].

FSM and NMM are both the existing frameworks of cen-
tralized computing offloading system. Compared with those
existing frameworks of centralized computing offloading
system, the proposed method OICO is distributed, requiring
only local information to make decisions.

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

Fig. 3: The average service
matching rate per ten min-
utes.

Fig. 4: The average total in-
service time per ten minutes.

Fig. 5: The average service
mismatching time per ten
minutes.

Fig. 6: The average service
switching time per ten min-
utes.

Fig. 7: The average power
saving of a customer vehicle
per ten minutes.

Fig. 8: The average power
consumption of a server vehi-
cle per ten minutes.

Fig. 9: The average service
compromise time per ten
minutes.

Fig. 10: The trend of total in-
service time with total vehicle
size per ten minutes.

5.2 Performance Evaluation Results

Service Matching Rate. The service matching rate is defined
by the service matching time divided by the expected total
service time, which reflects the performance of OICO in
providing stable and continuous computation offloading.
As shown in Fig. 3, the average service matching rates of
OICO, FSM, and NMM are 64.57%, 51.77%, and 55.51%,
respectively. Compared with NMM and FSM, OICO im-
proves the service matching rate by 16.32% and 24.73%,
respectively.

Total In-service Time. During the service process, the
matching and switching of the service affect the actual ser-
vice time. The actual total in-service time reflects the user’s
real experience. Fig. 4 shows that the actual service time
of users is affected by the results of service matching and
service switching. In particular, the average actual service
time of OICO, FSM and NMM per ten minutes for each
customer vehicle is 4.30 minutes, 3.38 minutes and 3.67
minutes, respectively. In other words, OICO improves the
in-service time by up to 27.22% as compared with other
schemes.

Service Mismatching Time. As plotted in Fig. 5, FSM’s
service mismatching time is minimal because it does not
consider service interruptions caused by service switching.
Since FSM is based on greedy concepts and chooses the first-
matched vehicle. However, OICO takes the service interrup-
tions caused by frequent switching into account, and some-
times it would rather not match when there is no suitable
candidate. In particular, the average service mismatching
time per ten minutes of OICO, FSM and NMM is 96.82
seconds, 93.01 seconds and 115.54 seconds, respectively.

Service Switching Time. A service switching occurs
when computing hardware resources are replaced. In fact,
OICO takes into account the service interruptions caused by
frequent switching, and neither FSM nor NMM optimizes
the costly service switching overhead. As illustrated in
Fig. 6, the average service switching time per ten minutes for
OICO is 44.65 seconds, and that for FSM and NMM is 95.93
seconds and 61.32 seconds, respectively. In short, OICO can
efficiently reduce the average switching time by 53.45% and

by 27.17% as compared with FSM and NMM.
Power Saving of Customer Vehicle. Customer vehicle

gets the offloading service of mobile edge computing, and
it achieves energy saving by transferring the computing to
server vehicle with sufficient power. Fig. 7 plots the average
power savings of three algorithms per customer vehicle in
ten minutes, where OICO saves averagely 212.66 watts, FSM
and NMM save averagely 106.56 watts and 158.29 watts of
power per vehicle, respectively. Since the average power
consumption of processing all the computations in customer
vehicle (without offloading to another vehicle) is 302.82
watts, OICO can reduce the power consumption by about
54.06% and 37.62%, as compared with FSM and NMM.

Power Consumption of Server Vehicle. The server
vehicles can gain some profits by offering services at the
expense of their own computation resources and power
consumption. Fig. 8 shows the average power consumption
of three algorithms every ten minutes. OICO provides the
highest average power consumption, about 73.35 watts. The
NMM algorithm achieves the second-largest average power
consumption, about 68.20 watts, while FSM consumes about
58.13 watts. In the experiment of Power Consumption of
Server Vehicle, OICO performed slightly worse than com-
parison method NMM in some time slots. One of the main
factors is: Compared with NMM, OICO comprehensively
considers the optimization of subsequent time slots, so the
optimization does not show much in some time slots, but
more benefits are obtained in subsequent time slots. In short,
the server vehicles using OICO can achieve the highest total
profits as compared with other schemes.

Total Out-of-service Time. As we defined in Sec. III, the
total out-of-service time is our comprehensive performance
metric. The total out-of-service time of FSM is the highest in
most cases. In contrast, OICO and NMM show the same
trend in the total out-of-service time. In particular, the
average total out-of-service time per ten minutes of OICO,
FSM and NMM is 405.64 minutes, 448.58 minutes and 416.96
minutes.

Service Compromise Time. To ensure the connectivity
and stability in computation offloading process, the server

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

vehicles using OICO sometimes need to decelerate to the
matched customer vehicle’s speed. As plotted in Fig. 9,
the average service compromise time for a server vehicle
is 14.26 seconds per ten minutes. On the contrary, FSM
and NMM do not adjust the vehicle speed, so the service
compromise time is always zero. However, this will lead
to disconnection of a pair of matched customer and server
vehicles, since they are driving at different speeds. Sooner or
later, they will drive out of the effective V2V communication
distance and the service will be interrupted. Thus, even
though OICO pays a little cost of the service compromise
time, it efficiently increases the in-service time and reduces
the service switching times.

Scalability Analysis. In-service time is an important
metric in this scenario. We perform scalability analysis on
the In-service time. Total in-service time reflects the user’s
real experience. Fig. 10 shows the trend of total in-service
time with total vehicle size per ten minutes. The ratio
of server vehicles to customer vehicles remains 8: 2. The
results show that the proposed framework is scalable and
applicable in large-scale settings.

In-service time, service matching time and power sav-
ing can intuitively reflect the efficiency and quality of
edge computing services based on V2V networks. Exten-
sive real-world evaluations have shown that OICO out-
performs other existing solutions, specifically improving
service matching by 25% and reducing power consumption
by about 54% per customer vehicle. At the same time, the
expansibility of the proposed method is analyzed, and the
results show that the proposed method has good expansi-
bility.

6 DISCUSSION

V2V-based edge computing services are suitable for ride-
hailing companies such as Uber. They can use navigation
information to improve the QoS of MEC and increase the
additional profits of server vehicle owner. In this section, we
discuss privacy and security concerns under this pattern.

Privacy and Personal Safety. Since there is no binding
association between passengers and online ride-hailing ve-
hicles, passenger information is anonymous when a vehicle
driving track is transmitted between online ride-hailing
vehicles. In this way, the private track data of passengers
can be protected. At the same time, as online ride-hailing
becomes a public service, the established route of online
ride-hailing is under supervision of the responsible orga-
nization or company. Besides, ride-hailing companies are
paying more and more attention to the safety of passengers.
For example, in many places around the world, when online
ride-hailing vehicles deliberately deviate from the prede-
termined navigation route, alarm information will be seen
immediately to ensure the safety of passengers.

Under the MEC-enabled V2V pattern, the matched
server vehicle and customer vehicle are agreed to share the
planned route. By monitoring the driving route of vehicles,
the ride-hailing companies can send alarms to customers
when their cars deviate from the planned routes. In case that
the MEC-enabled V2V is carried out, two vehicles will drive
in coordination, which improves the safety of passengers to
a certain extent and prevents the infringement of passengers

by drivers. For example, DiDi will continuously track the
driving trajectory during the journey of customers. And
DiDi will monitor and intervene for abnormal trajectory
and yaw behavior [54]. Through the European Strategy on
Cooperation-Intelligent Transportation Systems (C-ITS), the
EU has identified a number of V2V services as candidates
for early deployment, where V2V can be applied for con-
nected and cooperative navigation, vulnerable road user
protection [55].

Traffic Safety. In terms of traffic safety, server vehicle and
customer vehicle can cooperate with each other at the same
speed through vehicle queue control technology during
the service process. Collaborative driving is beneficial to
collision avoidance, emergency braking, improving road ca-
pacity and increasing the safety of driving process [56], and
reducing energy consumption by bringing vehicles together
to reduce air drag [57], [58]. Under these circumstances, our
proposed method can not only improve the service stability,
but also indirectly improve the traffic safety and driving
safety.

7 CONCLUSION

In this paper, we study the online computation offloading
problem under complex vehicle mobility in MEC-enabled
V2V networks, considering unpredictable variations of traf-
fic conditions and real-time mobility of vehicles. The prob-
lem is modeled as a distributed online service optimization
problem and proved to be NP-hard, which takes account of
service instability, service switching costs, power, resources,
and delay constraints. In order to minimize the out-of-
service time (i.e., service mismatching, service switching
and service compromise time), we propose a distributed
OICO algorithm together with an efficient SPM algorithm,
which can effectively improve the profits of both customer
vehicles and server vehicles. Extensive evaluations based on
real-world traces demonstrate that OICO outperforms other
existing schemes, specifically, it increases service matching
rate by 25% and reduces power consumption by about 54%
per customer vehicle.

REFERENCES

[1] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning
based resource allocation for V2V communications,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[2] L. Wang, J. Yan, K. Yu, and D. Deng, “Research of D2D commu-
nications mode for 5G vehicular networks,” in 2019 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2019, pp. 1–6.

[3] N. Alliance, “5G white paper,” Next generation mobile networks,
white paper, vol. 1, 2015.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[5] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Mobile edge computing for the
internet of vehicles: Offloading framework and job scheduling,”
IEEE Vehicular Technology Magazine, vol. 14, no. 1, pp. 28–36, 2018.

[6] C. Chen, L. Chen, L. Liu, S. He, X. Yuan, D. Lan, and Z. Chen,
“Delay-optimized V2V-based computation offloading in urban
vehicular edge computing and networks,” IEEE Access, vol. 8, pp.
18 863–18 873, 2020.

[7] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gear-
ing resource-poor mobile devices with powerful clouds: architec-
tures, challenges, and applications,” IEEE Wireless communications,
vol. 20, no. 3, pp. 14–22, 2013.

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

[8] “Vehicular game in tesla electric cars.” [Online].
Available: https://www.theverge.com/2021/1/27/22253258/
tesla-model-s-ps5-xbox-series-x-next-gen-10-teraflop

[9] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy for
vehicle assisted mobile edge computing systems,” IEEE Wireless
Communications Letters, vol. 8, no. 2, pp. 420–423, 2018.

[10] C.-M. Huang, M.-S. Chiang, D.-T. Dao, W.-L. Su, S. Xu, and
H. Zhou, “V2V data offloading for cellular network based on the
software defined network (SDN) inside mobile edge computing
(MEC) architecture,” IEEE Access, vol. 6, pp. 17 741–17 755, 2018.

[11] L. Liang, H. Peng, G. Y. Li, and X. Shen, “Vehicular communica-
tions: A physical layer perspective,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 12, pp. 10 647–10 659, 2017.

[12] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in 2016 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2016, pp.
1–6.

[13] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng,
and B. Hu, “Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2633–2645, 2017.

[14] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting
line: Joint network selection and service placement for mobile
edge computing,” in IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 2019, pp. 1459–1467.

[15] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge com-
puting for vehicular networks: A promising network paradigm
with predictive off-loading,” IEEE Vehicular Technology Magazine,
vol. 12, no. 2, pp. 36–44, 2017.

[16] Z. Ning, X. Wang, and J. Huang, “Mobile edge computing-enabled
5G vehicular networks: Toward the integration of communication
and computing,” IEEE vehicular technology magazine, vol. 14, no. 1,
pp. 54–61, 2018.

[17] “Data source: DiDi chuxing.” [Online]. Available: https:
//gaia.didichuxing.com

[18] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware vnf
chain deployment with efficient resource reuse at network edge,”
in IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions. IEEE, 2020, pp. 267–276.

[19] M. Li, Q. Zhang, and F. Liu, “Finedge: A dynamic cost-efficient
edge resource management platform for nfv network,” in 2020
IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS). IEEE, 2020, pp. 1–10.

[20] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-
aware vnf deployment and migration for 5g network slice,”
IEEE/ACM Transactions on Networking, 2021.

[21] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-
task transfer learning: Model and practice with data-driven task
allocation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 6, pp. 1357–1371, 2019.

[22] S. Chen, L. Jiao, F. Liu, and L. Wang, “Edgedr: An online mecha-
nism design for demand response in edge clouds,” IEEE Transac-
tions on Parallel and Distributed Systems, 2021.

[23] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “etime:
Energy-efficient transmission between cloud and mobile devices,”
in 2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 195–199.

[24] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang, “etrain:
Making wasted energy useful by utilizing heartbeats for mobile
data transmissions,” in 2015 IEEE 35th International Conference on
Distributed Computing Systems. IEEE, 2015, pp. 113–122.

[25] X. Yi, L. Pan, Y. Jin, F. Liu, and M. Chen, “Edirect: Energy-efficient
d2d-assisted relaying framework for cellular signaling reduction,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 860–873,
2020.

[26] F. Liu, P. Shu, and J. C. Lui, “Appatp: An energy conserving
adaptive mobile-cloud transmission protocol,” IEEE transactions
on computers, vol. 64, no. 11, pp. 3051–3063, 2015.

[27] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading
algorithm for mobile computing,” IEEE Transactions on Wireless
Communications, vol. 11, no. 6, pp. 1991–1995, 2012.

[28] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal com-
putation task scheduling for mobile-edge computing systems,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2016, pp. 1451–1455.

[29] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting

devices,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 12, pp. 3590–3605, 2016.

[30] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading
for multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306–2316,
2015.

[31] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource
and task allocation for energy minimization in mobile cloud
systems,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 12, pp. 2510–2523, 2015.

[32] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal
delay constrained offloading for vehicular edge computing net-
works,” in 2017 IEEE International Conference on Communications
(ICC). IEEE, 2017, pp. 1–6.

[33] X. Guo, R. Singh, T. Zhao, and Z. Niu, “An index based task
assignment policy for achieving optimal power-delay tradeoff
in edge cloud systems,” in 2016 IEEE International Conference on
Communications (ICC). IEEE, 2016, pp. 1–7.

[34] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient mobility-
aware task offloading for vehicular edge computing networks,”
IEEE Access, vol. 7, pp. 26 652–26 664, 2019.

[35] I. Ketykó, L. Kecskés, C. Nemes, and L. Farkas, “Multi-user com-
putation offloading as multiple knapsack problem for 5G mobile
edge computing,” in 2016 European Conference on Networks and
Communications (EuCNC). IEEE, 2016, pp. 225–229.

[36] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint
computation offloading and interference management in wireless
cellular networks with mobile edge computing,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 8, pp. 7432–7445, 2017.

[37] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online framework
for joint network selection and service placement in mobile edge
computing,” IEEE Transactions on Mobile Computing, 2021.

[38] Y. Zhang, J. Lopez, and Z. Wang, “Mobile edge computing for
vehicular networks [from the guest editors],” IEEE Vehicular Tech-
nology Magazine, vol. 14, no. 1, pp. 27–108, 2019.

[39] X. Huang, R. Yu, J. Kang, Y. He, and Y. Zhang, “Exploring
mobile edge computing for 5G-enabled software defined vehicular
networks,” IEEE Wireless Communications, vol. 24, no. 6, pp. 55–63,
2017.

[40] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A
scalable and quick-response software defined vehicular network
assisted by mobile edge computing,” IEEE Communications Maga-
zine, vol. 55, no. 7, pp. 94–100, 2017.

[41] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control
system coordinated between cloud and mobile edge computing,”
in 2016 55th Annual Conference of the Society of Instrument and
Control Engineers of Japan (SICE). IEEE, 2016, pp. 1122–1127.

[42] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward
efficient content delivery for automated driving services: An edge
computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, 2018.

[43] S. A. R. Naqvi, H. Pervaiz, S. A. Hassan, L. Musavian, Q. Ni,
M. A. Imran, X. Ge, and R. Tafazolli, “Energy-aware radio resource
management in D2D-enabled multi-tier hetnets,” IEEE Access,
vol. 6, pp. 16 610–16 622, 2018.

[44] Y. Yang, G. Song, W. Zhang, X. Ge, and C. Wang, “Neighbor-
aware multiple access protocol for 5G mmtc applications,” China
Communications, vol. 13, no. 2, pp. 80–88, 2016.

[45] X. Xu, Y. Chen, Y. Zhao, S. He, and H. Song, “Delay efficient
D2D communications over 5G edge-computing mobile networks,”
in Proceedings of the 11th International Conference on Modelling,
Identification and Control (ICMIC2019). Springer, 2020, pp. 1249–
1260.

[46] P.-J. Wan, “Multiflows in multihop wireless networks,” in Pro-
ceedings of the tenth ACM international symposium on Mobile ad hoc
networking and computing, 2009, pp. 85–94.

[47] X. Jiao, W. Lou, X. Wang, J. Cao, M. Xu, and X. Zhou, “Data
aggregation scheduling in uncoordinated duty-cycled wireless
sensor networks under protocol interference model.” Ad Hoc Sens.
Wirel. Networks, vol. 15, no. 2-4, pp. 315–338, 2012.

[48] C. F. Mecklenbrauker, A. F. Molisch, J. Karedal, F. Tufvesson,
A. Paier, L. Bernadó, T. Zemen, O. Klemp, and N. Czink, “Ve-
hicular channel characterization and its implications for wireless
system design and performance,” Proceedings of the IEEE, vol. 99,
no. 7, pp. 1189–1212, 2011.

[49] M. Sepulcre and J. Gozalvez, “Experimental evaluation of coop-
erative active safety applications based on V2V communications,”
in Proceedings of the ninth ACM international workshop on Vehicular
inter-networking, systems, and applications, 2012, pp. 13–20.

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

[50] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Risk-aware data offloading in multi-server multi-access edge
computing environment,” IEEE/ACM Transactions on Networking,
vol. 28, no. 3, pp. 1405–1418, 2020.

[51] M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove, “A multiplier
adjustment method for the generalized assignment problem,”
Management science, vol. 32, no. 9, pp. 1095–1103, 1986.

[52] P. Zhang, M. Durresi, and A. Durresi, “Mobile privacy protection
enhanced with multi-access edge computing,” in 2018 IEEE 32nd
International Conference on Advanced Information Networking and
Applications (AINA). IEEE, 2018, pp. 724–731.

[53] M. Guo, X. Huang, W. Wang, B. Liang, Y. Yang, L. Zhang, and
L. Chen, “Hagp: A heuristic algorithm based on greedy policy
for task offloading with reliability of mds in mec of the industrial
internet,” Sensors, vol. 21, no. 10, p. 3513, 2021.

[54] “DiDi improved ability to detect route abnormali-
ties.” [Online]. Available: https://technode.com/2020/03/30/
didi-has-resumed-late-night-hours-for-carpooling-service-hitch

[55] B. M. Masini, A. Bazzi, and A. Zanella, “A survey on the roadmap
to mandate on board connectivity and enable V2V-based vehicular
sensor networks,” Sensors, vol. 18, no. 7, p. 2207, 2018.

[56] E. Mitsakis and I. S. Anapali, “Recent developments on security
and privacy of V2V & V2I communications: A literature review,”
Periodica Polytechnica Transportation Engineering, vol. 48, no. 4, pp.
377–383, 2020.

[57] F. Lin, K. Wang, Y. Zhao, and S. Wang, “Integrated avoid collision
control of autonomous vehicle based on trajectory re-planning and
V2V information interaction,” Sensors, vol. 20, no. 4, p. 1079, 2020.

[58] T. R. Gonçalves, V. S. Varma, and S. E. Elayoubi, “Vehicle platoon-
ing schemes considering V2V communications: A joint commu-
nication/control approach,” in 2020 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.

Fangming Liu (S’08, M’11, SM’16) received the
B.Eng. degree from the Tsinghua University, Bei-
jing, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Hong
Kong. He is currently a Full Professor with the
Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests in-
clude cloud computing and edge computing, dat-
acenter and green computing, SDN/NFV/5G and
applied ML/AI. He received the National Natural

Science Fund (NSFC) for Excellent Young Scholars, and the National
Program Special Support for Top-Notch Young Professionals. He is a
recipient of the Best Paper Award of IEEE/ACM IWQoS 2019, ACM
e-Energy 2018 and IEEE GLOBECOM 2011, the First Class Prize of
Natural Science of Ministry of Education in China, as well as the Second
Class Prize of National Natural Science Award in China.

Jian Chen received his B.Eng. degree from
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, China in 2019. He is currently a master stu-
dent in School of Computer Science and Tech-
nology, Huazhong University of Science and
Technology. His research interests include In-
ternet of Vehicles, cloud computing and edge
computing, 5G network and network slicing.

Qixia Zhang received his B.Eng. degree from
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, China in 2016. He is currently a Ph.D. stu-
dent in School of Computer Science and Tech-
nology, Huazhong University of Science and
Technology. His research interests include net-
work function virtualization, cloud computing and
edge computing, datacenter and green comput-
ing, 5G network and network slicing. He is a
recipient of the Best Paper Award of IEEE/ACM

IWQoS 2019.

Bo Li (S’89-M’92-SM’99-F’11) is a Chair Profes-
sor in the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, which he has been affiliated
with since 1996. He held the Cheung Kong Chair
Professor in Shanghai Jiao Tong University be-
tween 2010 and 2015. His research interests
cover broad areas in networking and distributed
systems, with recent focuses on big data and
machine learning systems, cloud and edge com-
puting. He was a co-recipient of seven Best Pa-

per Awards from IEEE including the Test-of-Time Paper Award from
IEEE INFOCOM (2015) and the Best Paper Award from IEEE INFOCOM
(2021). He received his PhD in the Electrical and Computer Engineering
from University of Massachusetts at Amherst, and his B. Eng. (summa
cum laude) in the Computer Science from Tsinghua University, Beijing,
China.

