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Abstract—As computing shifts toward the edge, edge datacenters are becoming essential for supporting diverse real-time applications.
Unlike traditional cloud datacenters, edge datacenters face unique cooling challenges due to their requirements for proximity to end users,
high density, and hardware heterogeneity. While warm water cooling is a promising technique for this infrastructure, current
one-size-fits-all cooling strategies significantly compromise efficiency due to severe inter- and intra-component hotspots. In this work, we
present CoolEdge™, a cost-effective component-level water cooling system for enhancing the cooling efficiency of edge datacenters.
Specifically, CoolEdge™ dynamically adjusts the inlet water temperature for each component through a carefully designed water
circulation architecture to mitigate inter-component hotspots. To address intra-component hotspots, it employs vapor chamber—based cold
plates that rapidly dissipate heat without manual intervention or additional energy consumption. We further design a fine-grained cooling
control framework that leverages a well-managed power capping approach to decide on customized inlet water temperatures and
hardware power limits. Based on a hardware prototype and a real-world trace from Alibaba PAI, evaluation results show that CoolEdge™
reduces cooling energy consumption by up to 27.19% compared to existing coarse-grained systems, while maintaining performance
guarantees. Compared to the state-of-the-art CoolEdge, CoolEdget saves 35.24% more cooling costs with comparable energy

consumption and no latency violations.

Index Terms—edge datacenter energy, warm water cooling, heterogeneity, hotspot mitigation, vapor chamber

1 INTRODUCTION

Edge datacenters are emerging as a crucial component of
edge computing infrastructure. To provide real-time services
to end-users, the edge datacenters are being widely deployed
in urban areas for low network transmission overhead. It
is predicted that the global edge computing market will
expand from around 14 billion dollars in 2024 to around $182
billion dollars by 2032, representing a compound annual
growth rate of 38.2% [1]. This significant growth emphasizes
the importance of edge datacenters in meeting the needs
of emerging edge services. Although the power rating of
a single edge datacenter is generally low, e.g., in the range
of tens to hundreds of kilowatts, which is typically three
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orders of magnitude smaller than a cloud datacenter [2],
their increasing number will inevitably bring a heavy energy
burden. It is estimated that by 2028, the energy demand
of edge datacenters is comparable to the total electricity
consumption of global datacenters in 2020 [3], [4]. With the
rapid development of technologies like artificial intelligence
(AI), the Internet of Things, and 5G, more and more data
processing and analysis tasks will be completed at the edge,
further driving the growth in the energy demand of edge
datacenters.

Several leading cloud service providers have explored
modular and distributed datacenter architectures to support
edge computing. For example, Azure has designed modular
edge datacenters for complex environments, such as emer-
gency rescue, military missions, and mineral exploration, to
meet the demands of low-latency, high-intensity, and secure
computing at the edge [5]. Tencent Cloud has opened its first
edge datacenter to provide real-time services like video pro-
cessing, cloud gaming, and smart healthcare [6]. While many
traditional cloud workloads like Web services can be easily
processed by a central processing unit (CPU), those emerging
computational edge workloads like real-time analytics rely
heavily on accelerators for computation acceleration, such
as graphics processing units (GPUs). Therefore, to support
diverse performance-critical edge applications, edge servers
typically need to be equipped with enough heterogeneous
hardware components, which also results in a high power
provisioning to edge servers [7].

Despite the small power capacity of an edge datacenter,
its power density is generally much higher than that of
a cloud datacenter due to space restrictions and dense
deployment of heterogeneous hardware components. In
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Table 1: Thermal Specifications of Some IT Hardware Components

Hardware Intel Xeon Intel Xeon Nvidia GeForce Nvidia H100

type | E5-2680 v4 CPU | 6980P CPU | RTX 2080 Ti GPU | 80GB PCle GPU DRAM Samsung 983 DCT SSD
MOT (°C) 86 80 89 87 85 70
TDP (W) 120 500 250 350 Typically < 10 | Read: 8.7, Write: 10.6

particular, the rack density in edge datacenters can reach as
high as 35 kW /rack, whereas in cloud datacenters, it typically
ranges from 6 to 12 kW /rack [3], [8]. Inspur has introduced
the NE5260M5 edge server, featuring a chassis depth that
is only 65% of the standard defined by the Open Compute
Project [9]. This compact design not only saves space and
offers greater deployment flexibility but also increases power
density due to the use of short racks and compact aisle
layouts.

Based on the above industrial examples, we summarize
three unique requirements of edge datacenters as follows:
proximity to end-users, heterogeneity, and high density. While
these characteristics enable edge datacenters to better support
edge computing, they also render previously widely adopted
cooling techniques inefficient or even impractical. Specifically,
the free cooling technique requires access to low ambient
temperatures and natural cooling sources such as cold
outdoor air [10], which often conflicts with the requirement
for edge deployments to be close to end-users. Addition-
ally, high density and heterogeneity further exacerbate the
challenges of effective cooling. As power density increases
significantly, the air cooling technique struggles to satisfy the
cooling demand because of its low thermal capacity [11]
and the difficulty in managing airflow in compact rack
and aisle configurations. This is particularly problematic
when dealing with thermal imbalances across heterogeneous
hardware components. According to a report by Schneider
Electric, air cooling becomes inefficient for rack densities
exceeding 20 kW /rack [11]. In contrast, water cooling offers
a promising alternative for edge datacenters, thanks to
water’s significantly higher density (775x), specific heat
capacity (4.18 ), and thermal conductivity (23.4x) compared
to air [11], making it well-suited for efficient heat removal in
high-density and heterogeneous edge scenarios.

As compared with conventional cold water cooling [12],
recent literature [13] advocates the use of warm water
cooling (e.g., 40°C~50°C) to reduce cooling energy waste by
avoiding the over-cooling of servers operating at low utiliza-
tion. However, existing coarse-grained warm water cooling
approaches can be highly inefficient for edge datacenters
due to the severe hotspot issue at multiple levels. On the
one hand, imbalanced hardware utilization as well as the
different thermal specifications of heterogeneous components
leads to inter-component thermal imbalance. To cool down
a small subset of hotspot components, the global cooling
water must be lowered to an unnecessarily low temperature.
This over-provisioning results in inefficiency, as non-hotspot
components also receive excessively cold water. On the
other hand, thermal imbalance also occurs within individual
components due to the uneven utilization and varying
thermal characteristics of subunits, further increasing cooling
costs and impacting hardware reliability [14].

In summary, conventional one-size-fits-all water cooling

systems lead to significant cooling waste for dealing with
local hotspots. To tackle this issue, we propose CoolEdge™, a
cost-effective and practical component-level water cooling
system designed to improve cooling efficiency in high-
density and heterogeneous edge datacenters. Specifically,
our contributions are as follows:

o We propose a cost-effective component-level water
cooling architecture CoolEdge™, featuring two key
designs. First, through fine-grained cooling control en-
abled by a dual-circulation water system, CoolEdge™
efficiently mitigates inter-component hotspots. Sec-
ond, with our newly developed vapor chamber-
based cold plates, intra-component hotspots can be
effectively dissipated without manual intervention or
additional energy consumption.

o We design a fine-grained cooling control mechanism
to implement the customized cooling control. By in-
corporating a well-managed power capping approach,
CoolEdge™ can achieve similar cooling efficiency
improvements as our preliminary work, CoolEdge,
but at significantly lower cooling costs, and enables
a flexible trade-off between cooling energy efficiency
and hardware performance while ensuring hardware
safety.

e We build a hardware prototype to validate the practi-
cability of CoolEdge™, and conduct datacenter-level
simulations to evaluate its effectiveness in addressing
multi-level hotspots and reducing cooling costs. The
evaluation results reveal that compared with the
existing coarse-grained water cooling architecture,
CoolEdge™ reduces cooling energy consumption by
up to 27.19%. A cost saving analysis further estimates
that CoolEdge™ can save up to $3,598,400 yearly in a
city, a 35.24% improvement over the state-of-the-art
CoolEdge.

2 BACKGROUND AND MOTIVATION

In this section, we first investigate the hotspot issue both
across and within hardware components. Then, we discuss
the necessity of designing a new cooling architecture tailored
to the unique requirements of edge datacenters.

2.1

In conventional coarse-grained water cooling systems, differ-
ent components share the same inlet water temperature and
flow rate despite having distinct cooling demands. To ensure
adequate cooling for high-utilization components operating
at elevated temperatures, the inlet water temperature is
typically set at a low level (e.g., 7°C~10°C [13]),which results
in a lot of cooling energy waste. While some cloud providers
have proposed raising the water temperature set-point (i.e.,

The Hotspot Issue in Edge Datacenters



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, DECEMBER 2025

CPU Core Temperature (°C)
# tested cores | Core0 | Core1 | Core2 | Core3 | Core4 | Core5 | Core6 | Core7 | Core8 | Core9 |Core10[{Core11|Core12|Core13| Max. AT
1 38 38 39 38 38 41 40 39 39 39 41 42 43 47 9
10 44 44 45 47 51 15

Figure 1: Temperature variation among CPU cores when stressing different numbers of cores.
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Figure 2: Temperature variation of heterogeneous hardware.

Figure 3: Temperature distribution within a CPU core.

adopting warm water cooling) to reduce cooling costs,
existing coarse-grained warm water cooling architectures
suffer from a severe hotspot issue, where high-utilization
components are prone to overheating, leading to perfor-
mance degradation and potentially affecting hardware relia-
bility [15]. What is worse, compared to cloud datacenters, the
hotspot issue is even more pronounced in edge datacenters
due to the requirements of high density and heterogeneity,
along with the skewed hardware utilization patterns of edge
workloads [7] and the non-ideal ambient conditions at the
edge. In the following, we analyze two kinds of thermal
imbalance in edge datacenters: inter-component and intra-
component thermal imbalance.

The inter-component hotspot issue: Previous litera-
ture [13], [16] has demonstrated that the hotspot issue exists
among homogeneous hardware components, such as CPUs,
GPUs, or dynamic random-access memories (DRAMs) of
the same type. More recent research [17], [18] has further
highlighted significant component-level hotspots when run-
ning popular Al workloads. For over 3,000 GPUs operating
under high load and similar inlet temperatures within the
same datacenter, the temperature disparity can reach nearly
30°C [17]. When serving different models, running the
YOLOv8x model exclusively increases GPU temperature
by only 2°C, whereas running the large Diffusion model
can raise GPU temperature by up to 10°C [18], indicating
a substantial inter-component thermal imbalance in multi-

model inference serving scenarios.

For heterogeneous hardware components, the thermal
imbalance becomes even more pronounced due to their
differing thermal specifications and dynamic characteris-
tics. Table 1 shows the Maximum Operating Temperature
(MOT) and Thermal Design Power (TDP) specifications for
various hardware types. As observed, there are considerable
differences in both MOT and TDP across different hardware
types, especially between compute hardware and memory
or storage hardware. Additionally, we evaluate the dynamic
thermal characteristics of heterogeneous components under
varying load conditions. As illustrated in Figure 21 these
components show distinct operating temperatures and tem-
perature variation rates even in the same status. Usually, the
operating temperatures of compute and memory hardware
are above and below 40°C, respectively. Moreover, when
transitioning between different load conditions, compute
hardware exhibits significantly faster temperature variations
compared to memory hardware and stabilizes at a new
equilibrium temperature more quickly.

The intra-component hotspot issue: Considering the
hardware type and workload characteristics, different in-
ternal units inside a component may operate at different
utilization and power levels, leading to hotspot formation
at the chip level. We investigate this hotspot issue in three
scenarios: among CPU cores, within a CPU core, and within
a GPU.

(1) Hotspots among CPU cores: A CPU typically consists
of multiple processing units, i.e., cores. To analyze tempera-
ture variations among CPU cores, we conduct an experiment
by applying stress to different numbers of cores, as illustrated
in Figure 1'. The region enclosed by the blue box highlights
the stressed cores. In particular, when ten cores are under
stress, the maximum temperature difference reaches as high
as 15°C.

(2) Hotspots within a CPU core: A micro CPU core
contains several subunits, ranging from low-powered cache
units to high-powered computing units. Using the HotSpot
simulator [19], we analyze the temperature distribution
within a CPU core while running integer workloads, as
presented in Figure 3. As we can see, there exist several
hotspots, especially in the integer register unit marked as
IntReg. In particular, the temperature difference between
computing units and cache units can be over 20°C.

(3) Hotspots within a GPU: A GPU consists of multiple
functional units, including computing units, memory units,
etc. According to the measurement result of an AMD GPU
for a stress test, the internal hotspots can exceed 100°C and
the maximum temperature difference is over 30°C. A recent
study [17] further shows that when running large language
models (LLMs), the GPU memory generally operates at a

1. Details of the hardware components are presented in Section 5.1.
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lower temperature than the GPU cores, though in some cases,
it can be around 10°C higher.

2.2 Motivation for a New Cooling Architecture for Edge
Datacenters

Some software-based solutions can be implemented to
mitigate hotspots in a cloud datacenter, including power
throttling [15], [20], [21], thermal-aware workload place-
ment [16], [22], [23], [24], and workload deferral [10], [23].
However, applying software-based solutions alone could
show poor performance, as the space for sacrificing perfor-
mance for eliminating hotspots is marginal when serving
edge workloads with strict requirements on performance
like processing latency. For example, avoiding hotspots by
lowering hardware frequency largely will degrade hardware
performance and is likely to cause latency violations. Also,
for many mission-critical edge applications, such as smart
traffic management, there could be no deferrable workloads,
and therefore, hotspots can emerge constantly. As a result,
it is essential to combine the cooling architecture design to
solve the hotspot issue for general cases at the edge.

Jiang et al. [13] propose a thermoelectric cooler-based
(TEC-based) solution to address the hotspot issue in homoge-
neous cloud datacenters with only CPUs. Specifically, it uses
warm water for uniform CPU cooling, while equipping each
CPU with a TEC to provide additional localized cooling for
hotspots. However, this approach faces significant challenges
in meeting the unique requirements of edge datacenters,
i.e.,, high density and heterogeneity. First, it necessitates
substantial modifications to server internals. In addition to
installing a TEC for each CPU, the solution requires attaching
a copper plate twice the size of the CPU and an extra cold
plate to maintain thermal conductivity when the TEC is
disabled, which is somewhat impractical for already space-
constrained edge servers. Second, this approach does not
readily support heterogeneous hardware due to the same
installation constraints and the limited cooling capacity
of TECs, which are insufficient to handle high-powered
components such as GPUs, whose TDP can reach over 1kW.

In our preliminary work [25], we propose a fine-grained
warm water cooling architecture called CoolEdge, which
utilizes proportional valves to provide customized cooling
water for each component. The water temperature can be
dynamically adjusted within the range defined by the inlet
temperatures of the chilled and hot water. While CoolEdge
achieves significant cooling energy savings, we identify that
the use of proportional valves not only incurs relatively high
capital costs but also introduces increased complexity in
cooling management (which will be discussed in Section 3.2).
For some excessively underutilized datacenters, the expected
energy savings may not sufficiently offset the capital expendi-
tures associated with these valves. Motivated by this practical
limitation, this study aims to develop CoolEdge™, a highly
efficient yet cost-effective cooling solution with low cooling
complexity and improved cooling reliability for edge datacen-
ters. The key enhancements of CoolEdge™ include: (1) Adopt-
ing on/off valves for component-level cooling control with a
customized power capping mechanism: Instead of flexible
but costly proportional valves, CoolEdge™ leverages simpler
and more economical on/off valves. Although this approach
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restricts the inlet water temperature to a discrete set of values,
it still effectively mitigates over-cooling by employing a
service level objective-aware (SLO-aware) power capping
mechanism. (2) Integrating a customized vapor chamber-
based cold plate: Rather than relying on off-the-shelf vapor
chambers, which are less efficient, CoolEdge™ incorporates a
fully integrated, custom-designed vapor chamber-based cold
plate, which improves heat dissipation efficiency and enables
a more uniform temperature distribution within hardware
components.

To evaluate the effectiveness of these enhancements, we
also perform extensive experiments. Specifically, we evaluate
CoolEdge™ using a new production trace and compare its
performance against CoolEdge and an additional baseline
from prior work [15]; we evaluate and analyze the vapor
chamber-based cold plate from three perspectives under
various cooling conditions. Finally, we provide practical
recommendations for datacenter operators, guiding them
in choosing between the two solutions of CoolEdge and
CoolEdge™ based on their specific financial constraints and
operational requirements.

3 SYSTEM DESIGN

In this section, we formally propose CoolEdget, a
component-level warm water cooling system specifically
designed for edge datacenters. We begin with an overview
of the system architecture and then detail its key design
components.

3.1

As shown in Figure 4, every server is equipped with multiple
heterogeneous hardware components, such as CPU and GPU.
There are two key cooling loops in CoolEdge™, including
Inner-and-Outer Loop and Mini Loop that deal with inter-
component and intra-component hotspots, respectively. The
control system is responsible for implementing fine-grained
cooling control through the Inner-and-Outer Loop.

System Overview

1) Inner-and-Outer Loop. It involves two water circula-
tions, i.e., Inner Loop and Outer Loop. Specifically,
the Inner Loop refers to a hot water circulation
that directly recycles the “used” water after it has
absorbed heat from hardware components. In con-
trast, the Outer Loop is a cold water circulation
that routes the heated water to a chiller, where it
is cooled and refreshed. Differing from conventional
water cooling systems, our design utilizes a valve
to provide a customized inlet water temperature
for each hardware component. This is achieved by
selectively supplying hot water from the Inner Loop,
cold water from the Outer Loop, or a mixture of both
— resulting in appropriately tempered warm water.

2) Mini Loop. It refers to a small vapor-fluid circula-
tion inside a two-phase vapor chamber, which is
implemented on the cold plate to enhance thermal
conductivity and mitigate local hotspots inside the
component in an automated manner.

3) The control system. It comprises a global controller
and multiple local controllers, i.e., one local controller
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Figure 4: CoolEdge™: Component-level water cooling system.

for each server. Specifically, based on the task infor-
mation and the cooling control strategy (introduced
in Section 4.3), the local controller determines the
optimal cooling configuration, i.e., the inlet water
temperature for each component. Subsequently, it
sends control signals to each valve to set the water
temperature accordingly.

3.2 Inner-and-Outer Loop: Inter-Component Hotspot
Elimination with Customized Water

As illustrated in Section 2, both homogeneous and hetero-
geneous components have different cooling demands over
time. To deal with hotspots among different components, we
design two water circulations including the Inner Loop and
the Outer Loop which achieve fine-grained component-level
cooling control in an edge datacenter. As plotted in Figure 4,
the Inner Loop gathers the “used” water from the outlet of
each component to the water tank and pumps it to the inlet
again. Since the hot water from the Inner Loop cannot cool
down some high-utilization components, the Outer Loop
pumps hot water from the water tank to the chiller and
then sends the chilled water to the inlet. At the inlet of
every component, there are valves that regulates the water
temperature at a suitable value based on the component’s
power demand. As compared to merely using the cold water
directly, the choice between using cold water, hot water, or
their mix helps reduce the required amount of chilled water
and thus save cooling energy.

In our preliminary work [25], CoolEdge uses proportional
valves to provide customized cooling water. Leveraging
such valves, CoolEdge can provide any amounts of hot
and cold water to regulate the inlet water temperature at
any value within the range of the temperatures of the cold
and hot water. However, those valves are somewhat costly
(the purchase price is about $30 for each component [26]).
Hence, we further design a cost-effective solution CoolEdge™
here that replaces the proportional valves with economical
on/off valves (about $14 for each component [27]) to save
capital expenditures significantly. As on/off valves either
allow unimpeded flow or stop flow completely, only three
discrete water temperature values can be regulated, by

allowing hot water only, cold water only, or the mix of
both the hot and cold water that generates warm water. It is
worth noting that directly using the on/off valves could
reduce the cooling efficiency improvement largely since
there are only three water temperature values available. To
maintain high cooling efficiency, we devise a dynamic cooling
control mechanism with a power capping approach which
balances the cooling demand and computing performance
by adjusting the maximum allowed hardware power, which
will be detailed in Section 4.

3.3 Mini Loop: Intra-Component Hotspot Dispersion
with Two-Phase Vapor Chambers

To mitigate intra-component hotspots, we incorporate a two-
phase vapor chamber into the cold plate and implement a
vapor-liquid mini loop within the chamber. As illustrated in
Figure 4, the cold plate is attached directly to the hardware
component to transfer heat into the circulating cooling
water. A layer of thermal paste is applied between the
hardware and the cold plate to eliminate air gaps and
enhance thermal conductivity. It is worth noting that vapor
chambers are typically used as standalone elements placed
between a heat source and a cooling device to conduct
heat directly. However, we observe that this conventional
usage is inefficient when transferring heat from a hardware
component to the cooling water in a full cold plate assembly,
due to the extended thermal path and the additional layer
of thermal paste. To address this, instead of attaching the
vapor chamber to the bottom of the cold plate, we replace
the cold plate’s baseplate entirely with the vapor chamber.
This structural integration significantly enhances thermal
conductivity.

In our preliminary work [25], CoolEdge employs off-
the-shelf vapor chambers directly. In this study, we par-
ticularly focus on server-grade hardware and develop a
customized, fully integrated vapor chamber-based cold
plate with an internal fin structure to improve the heat
conduction performance largely, as shown later in Figure 12.
We provide a detailed description of its physical structure,
working principle, and attractive characteristics in Appendix
A of the Supplementary File. Further, in Section 5.4, we
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conduct extensive experiments to demonstrate its superior
performance.

3.4 Control System

In the control system, a global controller controls the over-
all thermal management, while each server is managed
by an individual local controller. The global controller is
responsible for periodically monitoring the temperatures of
the hot water from the water tank and the chilled water
from the chiller and distributing this information to each
local controller via the Monitor module. Also, it adjusts the
chilled water temperature set-point periodically based on the
overall cooling demand through the Manager module. Each
local controller, operating at the server level, determines the
power limits for individual components and enforces these
limits via the Power Controller module. It also regulates each
valve accordingly through the Valve Controller module. In
the event of an unexpected overheating incident, the Power
Controller module is further responsible for continuously
monitoring the temperatures of all components to ensure
system reliability.

Figure 5 describes a typical controlling procedure. First,
each local controller @ retrieves the hot and chilled water
temperatures from the global controller. Next, upon a task
scheduling decision made by the cluster scheduler (e.g.,
Kubernetes), the local controller @ collects the hardware and
task information (e.g., hardware type, task type and latency
constraint). Based on this collected information and the
cooling control strategy (introduced in Section 4.3), the local
controller @ decides the best inlet water temperature and
power limit for the component. Finally, the local controller
@ sends control signals to the corresponding valve installed
on the server to implement the cooling control. At runtime,
the local controller also monitors the real-time temperatures
of all the CPUs and GPUs with the 1m_sensors and
nvidia-smi tools, respectively. As the cooling control
decision is made by the local controller on each server, and
every server operates its own local controller independently,
even in large-scale deployments with hundreds of servers,
the control loop latency remains stable. Such a distributed
architecture demonstrates strong scalability and minimal
centralized overhead.
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To ensure hardware safety and system robustness in
the event of valve or cooling loop failures, such as a valve
becoming stuck in an open or closed position, or a circulation
failure in the Inner or Outer Loop, CoolEdge’ employs a
tiered mitigation strategy based on the mismatch between
actual cooling capacity and the real-time cooling demand of
the executing workload. First, each local controller continu-
ously monitors key thermal indicators including hardware
temperatures and inlet water temperatures. If a valve fails
but the resulting cooling capacity is still sufficient to maintain
the component within its safe thermal operating range (i.e.,
within the T, f. threshold), the controller triggers a non-
blocking warning to the datacenter operator via the global
controller. The workload continues executing uninterrupted,
and the faulty valve is scheduled for graceful maintenance
or replacement. However, if the controller determines that
the cooling capacity is insufficient, e.g., when the hardware
temperature shows a rapid or sustained rise beyond the
acceptable thermal margin, the system initiates a two-phase
emergency response:

1) Immediate workload migration: The local controller
promptly notifies the cluster scheduler to migrate
the affected workload to an idle and better-cooled
hardware component, thereby preventing thermal
violations or unexpected performance degradation.

2) Fault isolation and escalation: The faulty valve or
loop segment is logically marked as “unavailable” to
avoid further task assignment, and an urgent alert is
dispatched to the datacenter operator for inspection
and repair.

In more severe scenarios, such as pump failures in the Inner
or Outer Loop, or chiller malfunction in the Outer Loop, the
global controller can fall back to a conservative cold/hot-
water-only configuration. In parallel, it applies SLO-aware
power capping to all non-idle components to prevent thermal
overload, albeit at the cost of possible performance degrada-
tion. Together, these fault-tolerant measures ensure hardware
safety, system availability, and service continuity, even under
partial cooling system degradation. This makes CoolEdge™ a
practical and resilient solution for edge deployments, where
manual intervention may not always be timely or feasible.

4 COMPONENT-LEVEL COOLING CONTROL FRAME-
WORK

In this section, we first theoretically quantify the power
saving achieved by the warm water cooling. Then, we
introduce the cooling control mechanism of CoolEdge™ and
its main difference from that of CoolEdge. Finally, we present
the details of the cooling control strategy.

4.1 The Natural Heat Dissipation under Warm Water
Cooling

It is widely recognized that increasing the cooling water
temperature has significant potential for reducing cooling
energy consumption, as confirmed by numerous studies [13],
[28]. When warm water is used, its temperature often
exceeds that of the surrounding air, leading to a significant
phenomenon of natural heat dissipation in pipes and water
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Figure 6: The cooling control mechanism of CoolEdge™ vs.
CoolEdge [25].

tanks. This passive heat loss can reduce the load on the chiller,
resulting in lower cooling energy consumption compared
with conventional cold water cooling. This section presents a
quantitative analysis of warm water cooling, with a particular
focus on the role of natural heat dissipation. According to
the theoretical derivations?, the efficiency of the natural heat
dissipation depends on (1) AT" the temperature difference
between the cooling water inside the pipe and the ambient
air, (2) v: the water flow rate, (3) h: the convective heat
transfer coefficient of the air, and (4) £ and u: parameters
associated with the physical properties of the pipe and the
water, respectively. Based on Fourier’s law of heat conduction
and Newton’s law of cooling, the amount of heat dissipated
through the pipe, denoted as P (in Watts), can be expressed
as:

pP= vaT(l — exp(—uh/v)). (1)

Equation (1) analyzes the key factors affecting the amount
of dissipated heat to the ambient, and thus the efficiency of
water cooling. Our analysis reveals that, from the perspective
of natural heat dissipation, increasing the water temperature
contributes significantly to the heat dissipation and has a
remarkable impact on improving cooling efficiency.

4.2 Component-Level Cooling Control Mechanism

To take full advantage of the natural heat dissipation phe-
nomenon, it is beneficial to increase the water temperature
while ensuring the hardware safety. However, in view of the
unavoidable hotspots, it is crucial to customize the cooling
water temperature for each hardware component based on its
cooling demand, as discussed in Section 3.2. Rather than us-
ing costly proportional valves, CoolEdge™ leverages simpler

2. The theoretical derivations are provided in Appendix B of the
Supplementary File.

7

Algorithm 1 Fine-grained cooling control algorithm of
CoolEdge™

1: Initialize: the list R recording all the running tasks, the
temperature of the chiller water from the chiller 7,4, the
temperature of the hot water directly from the water tank
Thot, the ratio of the flow rates of the hot water to the cold
water ¢, the power model P = Mp(Tyater; Tsafe,J),
and the latency model L = M (P, i, j).

2: while a request r of the i-th task type arrives, with

the latency constraint of Lsro and demanding the j-th

hardware type do
Record r in R;
Update T}+ according to the temperature reading;
for Tyater = Th0t7 %7 cold do

Estimate P = Mp(Twater, Tsafe,J);

Estimate L = M (P,i,7);

if L < Lgro then
break;

10: end if

11:  end for

12:  Set the hardware power limit based on P, tune the

valves and pumps based on T,4ter, and dispatch the
request;

13: end while

14: for Every time period of length C' do

15:  Update T}, according to the temperature reading;

16: forrin R do

17: for Tyater = Thot, (!Th(giﬂﬂcoldy cold do

18: Estimate P = Mp(Twater, Tsafe,J);

19: Estimate L = M (P,i,5);

20: if L < Lgro then

21: break;

22: end if

23: end for

24: Tune the hardware power limit based on P, and

tune the valves and pumps based on all T}, qzer;
25:  end for
26: end for

and more ecnomical on/off valves to implement component-
level, fine-grained cooling control. Instead of customizing
arbitrary cooling water temperatures as CoolEdge does,
CoolEdge™ can regulate three discrete water temperature
values only, by allowing hot water only, cold water only, and
the mix of both the hot and cold water in a fixed ratio. In
the case that the number of allowed inlet water temperature
values is restricted to three, to avoid potential efficiency
drop because of over-cooling, we integrate an SLO-aware
power capping approach into the design. By allowing limited
performance degradation (e.g., 5%) through power capping,
the cooling demand can be reduced slightly to match the
cooling capacity provided by the cooling water under one
of the three possible temperatures. Figure 6 summarizes the
difference between CoolEdge™ and CoolEdge in the cooling
control mechanism. As shown in Figure 6a, leveraging the
well-managed power capping approach, CoolEdge™ can
avoid over-cooling significantly and achieve comparable
cooling efficiency as CoolEdge.
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4.3 Fine-Grained Cooling Control Strategy

According to the above control mechanism, Algorithm 1
presents the control details of CoolEdge™. In the offline
phase, based on the thermal profiles collected from the
hardware prototype shown later in Figure 7, we build a
power model P = Mp(j, Twater; Tsafe) Of the j-th hardware
type to estimate the maximum allowable power consumption
P under its safe operating temperature T, r. while being
cooled by water at temperature T4t Specifically, for the
hardware of the j-th type, we first let it run at each sampled
power value P and measure its temperature Th,qrdware under
different cooling water temperatures Ty,q¢er, including 30°C,
40°C, and 50°C. Then, we apply the linear regression method
to describe the relationship among hardware power P, water
temperature Tiyqter, and hardware temperature T}, qrdware,
and obtain the power model Mp of the j-th hardware type.
Note that in this fine-grained cooling system with on/off
valves only, all components will share the same water flow
rate, so we do not consider the flow rate in the power model
and set it at a fixed value. We define the ratio of the flow rates
of the hot water to the cold water as «, a hyperparameter
that influences the warm water temperature when mixing
the hot and cold water. We also build a latency model
L = M (P,i,j) to obtain the processing latency of the i-
th task type (e.g., machine learning inference) running on the
Jj-th hardware type under the power limit of P. Specifically,
on the hardware of the j-th type, we set the hardware power
limit at each sampled value P and measure the processing
latency L of each task type i. As the number of candidate P
values is limited, we directly store the measured data and
obtain the latency model M7, on the j-th hardware type.

In the online phase, for each incoming request of the i-th
task type with the latency constraint of Ls; o and demanding
the j-th hardware type (Line 2), the local controller first
records its metadata (e.g., the task type i, the hardware
type j, and the processing latency under no additional limit
on the hardware power) and updates the temperature of
the hot water in the water tank 7}, since it will change
over time (Lines 3-4). Then, for each of the three water
temperature values in descending order, the controller will
estimate the maximum allowed hardware power P and the
processing latency of the i-th task type running on the j-th
hardware type under the power limit of P based on the
power and latency models (Lines 5-7). Once the processing
latency is within Lgr0, the controller will implement the
cooling control and set the hardware power limit accordingly,
and the request will be scheduled to that component (Lines 8-
12). Finally, to avoid cooling failures when the hot water
temperature 1T}, rises too high as time goes by, every C' time
period the controllers will perform a global adjustment to
all valves by repeating the above cooling steps (Lines 14-26).
The above algorithm is very lightweight: for each hardware
component, only three candidate cooling water temperatures
need to be evaluated, resulting in a time complexity of O(1)
(i.e., Lines 5-11); during global adjustment, if there are n
hardware components currently processing requests, the
overall time complexity becomes O(n) (i.e., Lines 16-25).
Notably, when running on a core of the Intel Xeon E5-2697
v4 CPU, it takes only about 0.2 ms for CoolEdge™ to make a
cooling decision (i.e., Lines 5-11).
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Figure 7: Hardware prototype for CoolEdge™.

5 EVALUATION

In this section, we first show the hardware prototype and
present the evaluation setup. Then, we perform extensive
simulations to evaluate the performance of CoolEdget and
estimate its cost savings as compared with other cooling
systems including CoolEdge. Finally, we present our further
experiments on the advanced vapor chamber-based cold
plates.

5.1

To verify the practicability of CoolEdge™ and collect thermal
profiles of hardware components, we develop a hardware
prototype based on a Dell Precision Tower 7910 Workstation,
as illustrated in Figure 7a. The cooling system consists of
two water circulations: the Inner Loop and the Outer Loop.
The Inner Loop includes a water tank, a pump, a flowmeter
for monitoring the water flow rate, and a thermosensor for
measuring the temperature of the inlet warm water from the
water tank. The Outer Loop comprises a pump, a flowmeter,
and a chiller for cooling the water. By controlling the
inlet on/off valves, customized cooling water is ultimately
delivered to each hardware component. Figure 7b shows the
items in the server, including an Intel Xeon E5-2680 v4 CPU
and an Nvidia GeForce RTX 2080 Ti GPU. For illustration
clarity, we do not connect water pipes to all components and
use the CPU as a representative example.

Hardware Prototype

5.2 Evaluation Setup

Simulation methodology: To simulate an edge datacenter,
we incorporate the essential physical infrastructure, includ-
ing water pipe lengths as well as the shared use of the chiller
and pumps. We also consider the fans to maintain the ambi-
ent temperature and improve the natural heat dissipation by
increasing h. Considering that their energy consumption is
much lower than the water cooling equipment, we compute
the total energy consumption E}q; by the summation of the
energy consumption of the centralized chiller Ep;jje, and
the two pumps Ep,,mp. Note that the calculation of Ecpijier
takes into account the natural heat dissipation phenomenon,
as described by Equation (1). The thermal profiles of the
hardware components are collected using our hardware
prototype.

Workload trace and workloads: We use the workload
trace from Alibaba PAI [29] to evaluate CoolEdge™. The
Alibaba PAI trace contains high-level information of machine
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Table 2: Parameter settings

Parameter Tsafe h Coefficient of Performance of the chiller | Ambient temperature
Value 70% of MOT | 10 W/m?2°C 3.6 35°C
10
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Figure 8: Total cooling energy consumption.

learning (ML) workloads during two months in a cluster with
6,500 GPUs, such as the task name, start time, and end time.
We select the first seven days of the trace in the simulation.
As the trace does not include the task type information, We
divide the tasks into ten groups manually according to the
remainder of its job name divided by 10, and assume that all
the tasks in the same group are ML inference tasks on the
same ML model, including ResNetV2-101, Inception, VGG16,
EfficientNet-B3, EfficientNet-B5, EfficientNet-B7, YOLOvV3,
UNet, Pix2Pix, and XLNet. To build the power and latency
models for each ML model type (i.e., task type) as mentioned
in Section 4.3, we measure the average power consumption
and inference latency of these models on one GPU in our
hardware prototype under different power limits. The latency
SLO is randomly set to 1.01~1.10x the inference latency
under no additional limit on the hardware power.

Baselines: Since air cooling has a hard time meeting the
cooling demands of edge servers, we consider three water
cooling baseline strategies as follows:

o Conventional coarse-grained water cooling system
(Vanilla): For this baseline [12], we set the global water
temperature and flow rate according to the highest
cooling demand of all the hardware components.

o State-of-the-art fine-grained water cooling system
(CoolEdge): As mentioned in Section 3.2, CoolEdge [25]
leverages the proportional valves to mix a certain
amount of hot and cold water and regulate the
water temperature at the desired value as per each
component’s cooling demand.

o Coarse-grained water cooling system with SLO-aware
power capping (ATAC): ATAC [15] proposes a dy-
namic power capping solution to reduce cooling
energy consumption by turning down power usage
of hotspot components in air-cooled datacenters. We
apply this power capping solution to the water
cooling system and control the number of tasks with
a latency increase of more than 5% to be between
20% and 40% after capping the power. After that, we
set the global cooling configuration according to the
highest cooling demand of all the components.

Parameter settings: Table 2 lists all the parameter set-
tings. As prolonged operation at near MOT may degrade

Figure 9: The inference latency increase.
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Figure 10: The CDF of SLO satisfaction when applying
CoolEdge™.

performance and shorten hardware lifespan, we set the safe
operating temperature as 70% of the MOT. Note that the
ambient temperature is set to 35°C since it is stated that the
Alibaba PAI trace was collected in summer days [29].

5.3 Evaluation Results

We analyze the simulation results of CoolEdge™, CoolEdge,
ATAC, and Vanilla from several aspects as follows.

Energy savings: As shown in Figure 8, CoolEdge™ and
CoolEdge reduce the cooling energy consumption by 27.19%
and 28.05%, respectively, as compared with Vanilla, and ATAC
lowers the cooling energy slightly by 1.30% than Vanilla
at the expense of hardware performance. As we can see,
although CoolEdge™ can choose between only three inlet
water temperature values for each hardware component, its
energy consumption is very close to CoolEdge thanks to the
well-managed power capping approach that helps improve
the match between cooling demand and cooling supply
significantly. However, by comparing ATAC and Vanilla, we
can see that using the power capping approach alone shows
little energy efficiency improvement when serving latency-
critical, SLO-specified workloads.

Computing performance: Figure 9 plots the inference
latency increase of all tasks as compared to the inference
latency under no additional limit on the hardware power,
and Figure 10 plots the CDF of the inference latency to its
SLO constraint (Lsr,0) when applying CoolEdge™. Although
CoolEdge* increases the inference latency by a ratio of
1~1.09 and by 1.02 on average, the latency is still within the
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Table 3: Cost Saving Calculation (Unit: $/(server x year))

Description | ATAC CoolEdge CoolEdge™
ExCapEx o | Proportional |4, g | On/off | 57
ChiSav 0.68 17.33 17.32
EnerSav 0.53 11.30 10.96
CoSav 1.21 16.63 22.49

SLO constraint. By comparison, ATAC increases the latency
by 1.03 on average based on the cooling setup presented in
Section 5.2. It is worth noting that CoolEdge™ provides the
ability to balance the computing performance and cooling
energy efficiency by setting different SLOs, as illustrated by
the bar filled with diagonal stripes in Figure 6.

Cost savings: Here, we estimate the cost savings from
CoolEdge™, CoolEdge, and ATAC as compared with Vanilla.
We consider extra capital expenditures (ExCapEXx), capital
expenditure savings of the chiller (ChiSav), and cooling
energy savings (EnerSav) in the analysis. Specifically, Ex-
CapEx mainly depends on the valves and can be calculated
according to their purchase prices and lifespans [26], [27];
ChiSav can be calculated based on the demand on the cooling
capacity of the chiller [30]; EnerSav can be calculated from
Figure 8. Ultimately, Cost Savings (CoSav) can be calculated
by ChiSav + EnerSav — ExCapEx. All the calculation results
are summarized in Table 3. As we can see, CoolEdge+
further improves the cost savings by as high as 35.24%
than CoolEdge. For 2,000 small-scale edge datacenters (each
equipped with 80 servers) in a city, the cost savings brought
by CoolEdge™ can reach $3,598,400/year.

Comparison between CoolEdge™ and CoolEdge: Here,
we provide practical guidelines for choosing between
CoolEdge* and the preliminary work CoolEdge [25] for
real-world deployment. According to the aforementioned
results, we can see that CoolEdge™ achieves comparable
energy savings as CoolEdge while reducing the CapEx of
valves by over half, thus increasing the cost savings by nearly
one million dollars every year for a city. However, the main
concern of CoolEdge™ is the slightly degraded computing
performance. Specifically, CoolEdge™ is able to satisfy all SLO
constraints on the condition that the computing performance
is allowed to decline marginally. Otherwise, CoolEdge™ may
behave fairly worse than CoolEdge in avoiding over-cooling
and improving cooling efficiency, as depicted in Figure 6.
Therefore, CoolEdge™ is not suitable for edge datacenters
with extreme performance requirements (e.g., the processing
latency should be reduced as much as possible), where the
power capping approach needed by CoolEdge™ could be
no longer feasible. On the other hand, since CoolEdge+
maintains similar cooling efficiency but cuts down cooling
complexity and costs significantly, CoolEdge™ could be a
better choice as long as slight performance degradation is
allowable (e.g., 2% on average), even if it is allowed just
sometimes (e.g., when the datacenter is lightly loaded). In
conclusion, CoolEdge™ and CoolEdge differ in the cooling
mechanism, and the selection between them is highly depen-
dent on the requirements of the workloads supported by the
edge datacenters.
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(a) The appearance (b) The fin structure

Figure 11: Our newly developed cold plate.
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Figure 12: The CPU temperature under different cold plates,
CPU utilization, water temperature, and flow rate.

Supporting Al clusters: CoolEdge™ offers a practical and
promising solution for Al clusters, particularly for Al infer-
ence workloads for the following reasons. (1) Component-
level cooling tailored for heterogeneous hardware: Al clusters
typically use a mix of CPUs, GPUs, and memory/storage
components with diverse thermal characteristics. CoolEdge™
provides both inter- and intra-component thermal control,
effectively addressing the thermal imbalance problem among
heterogeneous hardware components. (2) Discrete temper-
ature control with SLO-aware power capping: Al inference
workloads are typically latency-sensitive, requiring careful
thermal control without violating performance constraints.
CoolEdge™ allows three discrete cooling water temperatures
and introduces an SLO-aware power capping approach
that dynamically adjusts hardware performance to maintain
inference latency within acceptable bounds. This trade-off
between thermal efficiency and performance preservation is
crucial for Al clusters.

Performance impacts under heavy and bursty work-
loads: CoolEdge™ is designed to enhance cooling efficiency
through fine-grained, component-level control and SLO-
aware power capping. While this approach could slightly
affect hardware performance, it offers a favorable trade-off
by reducing cooling complexity and energy consumption
significantly. Here, we outline potential performance consid-
erations under heavy and bursty workloads as well as future
directions for improvement. First, by deliberately capping
hardware power to align with limited cooling capacity,
especially when only three discrete inlet water temperatures
are available, the execution time of latency-sensitive tasks
may slightly increase. Although almost all workloads remain



JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, DECEMBER 2025

11

03

40,1 ) 40, 3

o
L
!

CPU Core
[4)]

A G OO O
o O
P
PR

) 40,7 ) 40, 10

o
L
!

50, 1

L1

50, 3

(]
f
!

(3]
f

CPU Core
Temperature (°C) Temperature (°C)

D OO N N
o
!
!

o
1

50,7 50, 10

cC VC cC VC
Cold Plate Cold Plate

CcC VC CC VC
Cold Plate Cold Plate

Figure 13: The CPU core temperature distribution under various cooling conditions and utilization patterns. The first number
in the title of each subfigure denotes the water temperature (°C), and the second number denotes the number of tested cores.
The tested cores are kept at 100% utilization, and the rest remain 0%.

90
) —— VC, 40,120 —— VC, 50, 180
801 === CC,40,120  ---- CC,50,180------- s
2 )
T 70
@
Q.
£ 60+
)
'_
D 4
7 50
O

40

0 3 6 9 12 15 18 21 24 27 30
Time (s)

(a) At time = 11.6 s, the CPU utilization grows from
0% to 100%

90
%) — VC, 40, 120 — VC, 50, 180
":; 801 - CC, 40,120 - CC, 50, 180
§ LT R e
© 70
[
Q.
€ 604"
()
'_
o 4
2 50
O

N
o

0 3 6 9 12 15 18 21
Time (s)
(b) The CPU utilization grows from 0% to 100% at
time = 3.6 s, to 20% at time = 9.3 s, to 80% at time =
15.0 s, and finally, to 40% at time = 23.2 s

24 27 30

Figure 14: CPU temperature variation as its utilization varies.

within their SLO constraints, the cumulative effect may
reduce the peak supported throughput of the system and
its ability to absorb short-term workload surges, thus de-
grading overall responsiveness during traffic bursts. Second,
under dynamic and unpredictable load conditions, hard-
ware components may experience rapid and non-uniform
increases in thermal output. Due to the discrete nature of
on/off valve control and the absence of continuous inlet
temperature modulation, CoolEdge™ may not always react
with sufficient granularity to match instantaneous cooling
demand. In such cases, thermal safeguards (e.g., DVFS-
based frequency throttling) may be involuntarily triggered to

prevent overheating, leading to temporary but unanticipated
performance degradation. To deal with these implications,
future work could explore predictive and adaptive control
strategies, such as ML-based workload forecasting or thermal
trajectory modeling. These approaches could further enhance
the system’s ability to anticipate upcoming load spikes and
proactively adjust power caps or cooling configurations,
thereby improving reactivity and robustness under highly
dynamic workload patterns.

5.4 Experiments on Advanced Vapor Chamber-Based
Cold Plates

In this work, we develop a customized, fully integrated vapor
chamber-based cold plate with an internal fin structure, as
shown in Figure 11. We perform several experiments to
compare the newly developed vapor chamber-based cold
plate (VC) with the commonly used cold plate (CC), both
of which include the internal fin structure. The results
demonstrate the following three characteristics that are
promising to edge datacenters.

Reducing the overall hardware temperature: Figure 12
shows the overall CPU temperature, where the horizontal
line indicates MOT (i.e., 86°C), and CC, 20, 30 refers to
using the commonly used cold plate under the inlet water
temperature of 20°C and flow rate of 30 L /h. We can see that
VC outperforms CC, especially when the CPU utilization and
inlet water temperature get high. For example, when the CPU
utilization and inlet water temperature are 100% and 50°C,
respectively, the CPU temperature difference reaches 9°C.
This characteristic helps narrow the temperature difference
between hotspot components and others, especially for high-
powered hardware components and in the scope of warm wa-
ter cooling, saving the cooling energy for dispersing hotspots.
As the TDP of modern server components continues to grow
(e.g., 1.4kW of the latest Nvidia B300 GPU), we think that VC
could make a valuable and lasting contribution to datacenter
cooling.

Smoothing the temperature distribution spatially: Fig-
ure 13 plots the core temperature distribution under various
cooling conditions and utilization patterns. Across these
eight settings, VC reduces the median and the maximum
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core temperature by 1°C~7°C and 1°C~5°C, respectively,
as compared with CC. Also, the standard deviation drops
from 2.38°C~5.99°C to 2.08°C~4.73°C after using VC. This
characteristic brings two benefits. (1) Hardware safety: VC
helps reduce the probability of local overheating inside a
component automatically, especially when the component
is partially utilized. This improves hardware safety and
lifespans since there cannot be thermosensors everywhere
inside the component to monitor local temperatures. (2) Cool-
ing energy usage: VC helps reduce the maximum core
temperature that usually determines the cooling demand.
The cooling energy for dealing with hotspots can be reduced,
especially in the existing coarse-grained cooling system.

Smoothing the temperature variation temporally: Fig-
ure 14 plots the CPU temperature variation as the utilization
varies. As we can see, the CPU temperature varies more
smoothly when using VC rather than CC. For example, as
shown in Figure 14a, when the water temperature is 50°C,
it takes 1.0 s and 2.9 s for the CPU temperature to reach
70°C with CC and VC, respectively. This characteristic helps
slow down the instantaneous hardware temperature rise in
the face of the cooling lag and thus improves hardware safety,
especially for high-powered hardware components running
edge workloads with high utilization variation [7].

6 RELATED WORK

Power and thermal management in datacenters. With the
rapid growth of cloud and edge computing, the power
consumption of datacenters is rising sharply, especially under
the pressure of Al workloads [31]. Extensive research has
been conducted on power and thermal management in
datacenters, such as workload scheduling [17], [18], [23],
[32], [33], [34], hotspot mitigation [13], [15], [35], and over-
subscription [10], [36], [37]. Stojkovic et al. [17] systematically
analyze GPU power and temperature behavior in datacenters
running LLM inference tasks. Based on the findings, they
propose a thermal- and power-aware inference workload
scheduling framework that reduces the peak GPU tem-
perature and power consumption through three strategies:
virtual machine placement, request routing, and instance
configuration. Patel et al. [37] systematically analyze the
power consumption characteristics of LLMs during training
and inference. They propose a GPU power management
framework that reduces peak power demands through
frequency locking while meeting quality-of-service require-
ments. This approach enables power over-subscription in
datacenters and improves server deployment density. Dif-
fering from them, this work focuses on improving cooling
efficiency without requiring the redistribution of workloads
or impacting workload performance, through component-
level cooling control designed specifically for high-density,
heterogeneous edge datacenters.

Increasing coolant temperature. Recent literalture sug-
gests to increase the coolant temperature to reduce cooling
energy consumption while maintaining hardware safety and
reliability [13], [28], [38], [39], [40]. El-Sayed et al. [38] point
out that increasing the datacenter’s temperature set-point
by 1°C can lead to 2%~5% energy savings. They conduct
an in-depth analysis of the impact of temperature on hard
reliability, as well as the changes in server performance
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and power consumption. They further propose practical
temperature management guidelines aimed at achieving
energy efficiency while ensuring system reliability and
performance. Higher coolant temperatures also expand the
feasibility of utilizing the free cooling technique, thereby
further reducing cooling energy. To mitigate the potential
reliability risks caused by unstable outdoor temperatures,
Goiri et al. [23] propose a prediction-based method that
manages datacenter temperature, relative humidity, and
temperature fluctuations by dynamically adjusting workload
distribution, server states, and cooling modes. To balance
cooling energy savings and hardware thermal requirements
under the water cooling technique, Jiang et al. [13] propose a
fine-grained warm water cooling architecture. The method
supplies warm water for global cooling, while addressing
local hotspots using additional cooling capacity provided by
TECs.

Exploiting renewable energy in edge datacenters. Com-
pared to centralized cloud datacenters, small-scale and
geo-distributed edge datacenters offer greater flexibility in
harnessing local renewable energy sources, such as wind
and solar power [41], [42], [43], [44]. To maximize the use of
renewable energy for edge services, Gu et al. [42] propose
a deep reinforcement learning—based service management
strategy that dynamically schedules tasks and decides energy
provisioning among edge servers. In contrast to energy
management at the datacenter level, Souza et al. [45] propose
an application-oriented energy management mechanism that
allows upper-layer applications to directly access information
such as grid carbon intensity and local renewable energy
availability, and to adapt their energy usage based on com-
putational demands at a fine granularity, thereby improving
carbon efficiency. While prior efforts manage workloads
at the datacenter level to better utilize renewable energy,
our proposed component-level cooling architecture not only
reduces the overall datacenter energy demand, but also
enables fine-grained adjustment of coolant temperature for
each component, which further helps align datacenter energy
demand with the amount of renewable energy available to
the edge datacenter.

7 CONCLUDING REMARKS

In this study, we propose CoolEdge™, a cost-effective
component-level water cooling system tailored for edge dat-
acenters. To mitigate inter-component hotspots, CoolEdge™
combines fine-grained cooling control and hardware power
management that significantly reduce cooling energy con-
sumption and capital expenditures with only an average la-
tency increase of 2%, while consistently satisfying the latency
SLO. To mitigate intra-component hotspots, CoolEdge™ inte-
grates our well-developed vapor chamber-based cold plates
that provide superior heat conduction capabilities. Based
on a hardware prototype, the simulation results indicate
that CoolEdge™ delivers cooling efficiency improvements
comparable to the original CoolEdge, while achieving up
to 35.24% additional cost savings, making the solution
highly practical, scalable, and well-suited for widespread
edge deployment. For a city with 2,000 small-scale edge
datacenters, our estimates suggest that CoolEdge™ can yield
$3,598,400 in annual cost savings.
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