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Abstract—To promote cloud computing from current pay-per-request model to truly pay-per-use, tenants are crying for automatic tools
to auto-estimate the amount of resources for MapReduce jobs. Such tools call for accurately quantifying the relationship among
workload, resources and completion time. Various prediction models have been proposed. However, none of these models takes virtual
machines’ (VMs) performance variance during a job’s execution into consideration, leading to underestimate the required resources
and exceed the job’s deadline. To address this problem, we propose a multi-view deep learning model to capture real-time performance
variance and automatically scale out the cloud cluster whenever necessary. We implement MarVeLScaler, a prototype system including
two useful modules, namely, Scale Estimator and Scale Controller. Scale Estimator preliminarily estimates the required cluster size for
a MapReduce job with given a concrete workload and deadline. During the runtime, Scale Controller adjusts the scale of the cluster
according to its real-time running status to guarantee the job finished on time. We evaluate the performance of MarVeLScaler based on
Hadoop in Alibaba Cloud. Experiments show that MarVeLScaler can provide 98.4% accuracy of prediction in determining initial cluster
size, and save 30.8% of expense while still guaranteeing similar performance compared with the state-of-the-art methods.

Index Terms—Cloud Computing, Auto-scaling, Multi-view Neural Network.
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1 INTRODUCTION

THE common practice of current cloud computing [1] is
that a tenant tells the cloud service provider the amount

of requested resources (i.e., the number of VMs and their
configurations), then the cloud service provider accordingly
allocates these resources [2] for the tenant, where virtual-
ization technology is used to improve resource utilization.
Tenants who want to finish their computing job, such as
MapReduce, by a specific deadline can benefit from this
practice since they can obtain plenty of computing resources
without purchasing these expensive servers. However, this
practice also makes tenants have to estimate their own
demand for resources. From the perspective of tenants, it
is hard for them to precisely estimate the most appropri-
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ate amount of resources to meet the deadline due to the
following two reasons. Firstly, tenants lack the knowledge
(i.e., the quantitative relationship among the workload, the
computing resources and the completion time of a job) of
estimating the requested resources to start VMs. Secondly,
even though a tenant can make a good estimation in a
bare-metal server environment, such estimation may not be
sufficient in a virtual environment, because the performance
of a VM is usually unstable in a public cloud [3].

Someone may suggest that the above problems can be
addressed by existing auto-scaling systems. That is, tenants
can always start with a small amount of resources and
then the auto-scaling system can add up more resources
in the later stage. Unfortunately, most current auto-scaling
systems in public clouds cannot work well on MapReduce
jobs. These systems are usually rule-based, which require
tenants to configure when and how much to scale. For
example, a tenant can set to scale out one VM when the
CPU utilization is higher than a certain threshold [4] [5] [6].
However, when a MapReduce job is in execution, the CPU
utilization will always maintain at a full level, which makes
it hard to decide the auto-scaling threshold. In fact, other
commonly used rules (e.g., memory utilization) are not good
indicators of triggering the scaling operation as well [7] [8].
First, threshold based methods usually require tenants to
configure these thresholds, which requires empirical knowl-
edge [7]. Second, static and predefined thresholds may not
work well when the workload changes. As a result, tenants
have to adjust these thresholds according to the workload,
which is time consuming [8].

Thus, we aim to design a prediction based auto-scaling
system for MapReduce jobs, but it faces the following two
challenges. The first challenge is that building such an auto-
scaling system without unpractical assumptions is difficult
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because these assumptions are adopted to simplify the con-
struction of the prediction model. Usually, the prediction
of a MapReduce job’s completion time requires detailed
analyses of its running procedure. However, a MapReduce
job contains several phases. Each phase requires different
resources and depends on each other. It is difficult to directly
characterize the relationship among workload, resources
and completion time for all phases of the job. Thus, previous
studies [9] [10] [11] [12] usually assume that the Map and
Reduce phases of a MapReduce job do not overlap with
each other, which means that the whole procedure is de-
composed into two completely separate sub-procedures and
the total completion time will be the sum of the run-time
in both phases. However, this assumption is not practical
in production environments, because this will lead to the
waste of resources. For example, SlowStart [13] is a running
setting parameter in Hadoop which decides the overlap
degree of the Map and Reduce phase. This parameter will
seldom be set to 1 (i.e., totally no overlap). As a result, the
prediction models in [9] [10] [11] [12] cannot predict well in
this situation.

The second challenge is that the performance degra-
dation of VMs badly cripples the effectiveness of existing
methods [14] [15] [16] [17]. These methods are only based on
some offline features (e.g., resource features and job-related
parameters). Directly applying these methods can easily
result in significant malfunction when VMs performance
degradation happens. Specifically, to guarantee finishing
the job by deadline usually requires the construction of
a prediction model to figure out the relationship among
needed computing resources, workload and completion
time. However, this relationship varies when VMs perfor-
mance degrades, which deviates the prediction from the
expected result and even lead to wrong scaling decisions.
As to be shown in the following Section 2, given the same
workload and VM configurations for a MapReduce job, if
we run the job multiple times on the same cloud cluster,
the completion time over multiple runs varies significantly
and break previous relationships with computing resources
and workload [18]. Therefore, to handle the performance
degradation of VMs is extremely critical in the auto-scaling
system design.

To address the above challenges, we present Mar-
VeLScaler, a two-stage auto-scaling system designed for
tenants. In the first stage, MarVeLScaler provides an accu-
rate and straightforward working module, referred to as
Scale Estimator, which estimates the required number of
VMs under different configurations for a MapReduce job
with given its workload and deadline. Specifically, Scale
Estimator applies a regression model that predicts the total
processing time directly based on resource features (i.e.,
the configuration of a VM and the number of VMs) and
workload. Thus, instead of analyzing the running procedure
of a MapReduce job, our idea is to leverage a regression
model to capture the quantitative relationship among the
workload, the computing resources and the completion time
of a job. Thus, our model avoids assuming that the Map
and Reduce phases of a MapReduce job do not overlap with
each other. Besides, the output of the Scale Estimator can
be directly applied to generate a detailed resource purchase
list for tenants to set up the cloud cluster for performing

MapReduce jobs.
In the second stage, MarVeLScaler offers another work-

ing module to guarantee the job finished by the deadline,
referred to as Scale Controller, which fine-tunes the resource
estimation and gives online scaling recommendations in
terms of when and how much to scale. As mentioned before,
although some offline features are good indicators of pre-
dicting the completion time, the performance degradation
of VMs will weaken the effectiveness of these features. To
deal with this problem, we propose using online features,
such as running speed features and resource utilization
features, to solve the degradation problem because they can
timely indicate the job running status, and Scale Controller
can accordingly adjust the prediction whenever necessary.
Specifically, Scale Controller applies a Deep Canonically
Correlated AutoEncoder (DCCAE) [19] structure to refine a
high-level representation from the raw multi-view features
(i.e., offline and online features), where this structure is
suitable to simultaneously learn different views of features
and maximize the correlations of features across views.
Thus, the predictions using this presentation would be more
accurate and sufficient to make scaling decisions.

In a brief summary, MarVeLScaler jointly using Scale
Estimator and Scale Controller can effectively help tenants
find the most cost-saving strategy of guaranteeing MapRe-
duce jobs to finish on time in public clouds. The main
contributions of this paper are summarized as follows:

• We develop Scale Estimator to help tenants choose
the most cost-saving amount of resources to set up
the cloud cluster for performing MapReduce jobs.
Specifically, it applies a regression model to provide
precise predictions (i.e., 98.4%) with only a limited
number of training samples.

• We develop Scale Controller to guarantee a MapRe-
duce job finished on time in public clouds by analyz-
ing its real-time running status. Specifically, it applies
a multi-view deep learning model to capture real-
time performance variance of VMs and automatically
scale out the cloud cluster whenever necessary.

• We implement MarVeLScaler, a prototype auto-
scaling system including the above two practical
modules (i.e., Scale Estimator and Scale Controller)
based on Hadoop in Alibaba cloud. The experiment
results show that MarVeLScaler reduces 30.8% of ex-
penses while still guaranteeing similar performance
compared with state-of-the-art methods.

2 MOTIVATION

In this section, we present the motivations to build a two-
stage auto-scaling system for performing MapReduce jobs
in public clouds.

2.1 Initial Resource Decision
Given the workload and preferred deadline, it is not easy
for a tenant to determine the best choice of initial re-
sources. Typically, a MapReduce job can be finished in a
similar time duration under different resource settings of
VM configurations and number of VMs, and each setting
has different costs. Specifically, we conduct experiments on
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Fig. 1: The detailed running progress of 20 VMs and
200 GB workload in the best and worst conditions.
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Fig. 2: The cost ($) under different numbers of VMs
with the same specification for a given workload.

TABLE 1: Different resource settings may lead to a similar
completion time for a 200 GB WordCount job.

No. of
VMs

Mem
(GB) Storage CPU Time

(s)
Cost
($)

28 16 SSD Exclusive 449 1.09
32 8 HDD Exclusive 440 0.99
36 16 SSD Shared 449 1.62
40 8 SSD Shared 456 1.40

Alibaba cloud by running a WordCount job with 200 GB
workload under different VM configurations 1. The results
are shown in Table 1. We can see that for a given workload,
there are multiple options of resources where each job can
be finished in a similar time period, which indicates that
computing resources may accelerate the running procedure
of a specific kind of workload in varying degrees. On
one hand, comparing the resource settings in row 1 and
row 3, exclusively using CPU 2 significantly accelerates the
computation process of a WordCount job and reduce the
number of used VMs. On the other hand, from row 1 and
row 2, introducing more VMs seems more cost-effective,
instead of using larger memory and expensive storage, such
as SSD, because WordCount workload is CPU intensive.
Thus, it is necessary to develop an auto-estimator to provide
a recommendation on the least payment for tenants.

2.2 Performance Variance
Even with a good choice of initial resources, a job may
still not be finished within the expected deadline because
of performance variance of VMs in a cloud environment.
To demonstrate the performance variance, we conduct ex-
periments in Alibaba cloud by comparing the completion
time of WordCount jobs over multiple runs under the same
settings. Specifically, we apply the same cloud cluster to
run the same workload for 10 times. As shown in Table 2,
the minimum and maximum completion time vary signif-
icantly, which is due to the sharing characteristic of the
virtual environments. For further study of the performance
variance, we conduct experiments to profile the MapReduce
jobs to figure out how the running speed changes during the
runtime. As shown in Fig. 1 where M stands for Map phase
and R for Reduce phase, Job 1 (J1) suffers the performance

1. All the VMs in this paper are equipped with 4 Intel Xeon E5-2682
v4 2.5GHz CPU.

2. Alibaba Cloud provides entry-level users with the shared CPU
service which is cheaper and has limited computing ability.

TABLE 2: The same workload and resources with different
completion time over multiple runs.

No. of
VMs Workload (GB) Min Time

(s)
Max Time

(s)
20 200 533 746
30 450 789 903
40 500 713 928

degradation while Job 2 (J2) does not. At around 200 s, the
speed of Job 1 decreases while the speed of Job 2 maintains
the same. Thus, it is crucial to capture the moments of
performance degradation (i.e., slower running speed than
expected) and timely make new resource estimation in order
to meet the deadline.

2.3 Disapproval for Additional Resources
Someone may suggest that according to pay-per-use charge
policy if more VMs are assigned initially, it takes less pro-
cessing time to finish the job, and the payment may be
less than that with fewer VMs. If this is true, it may be
unnecessary to do an online resource estimation. To dispel
this concern, we conduct experiments in Alibaba cloud by
comparing the cost under different numbers of VMs for the
same MapReduce job, where all the VMs initially use the
same specification and configuration. We can see in Fig. 2,
as the number of VMs increases, the cost of finishing the
MapReduce job also gradually increases, though more VMs
lead to shorter processing time. Thus, it is more beneficial
for tenants by starting a job with barely-meeting-deadline
resources and conducting necessary scaling through online
prediction.

2.4 Motivation of Multi-view Neural Network
As we can see from the above, the auto-scaling system is
important for cloud tenants to guarantee their MapReduce
jobs to finish on time while keeping the payment at a mini-
mum. This usually consists of two stages: 1) initial resource
decision, and 2) runtime dynamic resource adjustment.
However, it is extremely difficult to achieve this objective in
practice due to the following reasons: 1) Overprovisioning
resources and undershooting the deadline is wasteful; 2)
Exact performance prediction in the presence of failures and
dynamic events is difficult; 3) Heterogeneity plus the dimin-
ishing return of extra parallelism make performance non-
linear in the resources committed to a job. Hence, the key
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to achieving the above objective lies in preliminarily start
MapReduce jobs with barely-meeting-deadline resources,
and dynamically scale-out when necessary through online
prediction of MapReduce job’s completion time.

As a remedy for such a challenge, our idea is to leverage
machine learning techniques to estimate and dynamically
control the exact resources required to finish a MapReduce
job by a deadline. Specifically, we apply a multi-view deep
learning model to overcome the deadline violation problem
caused by VM performance degradation. In contrast, most
previous studies of auto-scaling on public cloud usually
do not take VM performance variations into account. The
multi-view deep learning model is good at exploring highly
non-linear relationships that exist among low-level features
across different groups [20] [21]. Taking this advantage,
our proposed system is able to comprehensively capture
the running status of a MapReduce job by extracting key
information from three different groups of features (i.e.,
computing resources, resource utilization, and processing
speed). For interested readers, a more detailed implemen-
tation of the multi-view neural network is also available in
Section 3.3.2.

3 SYSTEM OVERVIEW AND DESIGN

In this section, we first give an overview of MarVeLScaler,
and then introduce the detailed design of Scale Estimator
and Scale Controller, respectively.

3.1 Overview of MarVeLScaler
Fig. 3 shows the workflow of MarVeLScaler. Our system
consists of two modules, namely, Scale Estimator (SE) and
Scale Controller (SC). Before MarVeLScaler starts to work,
historical data (i,e., executed jobs, and their logs) are col-
lected for fitting the working unit inside Scale Estimator,
i.e., Allocator, and training the corresponding working unit
inside Scale Controller, i.e., Predictor. Upon receiving the
workload and deadline of a MapReduce job from a tenant,
Allocator generates a detailed resource purchase list. Then,
the tenant picks the most cost-saving option and requests
providers to set up the cloud cluster with corresponding
computing resources, like the number of VMs and configu-
rations. When the job is in execution, the other working unit
inside Scale Controller, i.e., Monitor, constantly collects on-
line data (i.e., running speed and resource utilization) from
the cluster to monitor the job’s running status. These online
data are processed into features as the input of Predictor.
As soon as the Predictor receives these data, it will predict
the completion time. If Predictor finds that the completion
time goes beyond the deadline, it will automatically scale
additional VMs into the cloud cluster to ensure that the
completion time is shortened to right before the deadline. In
a brief summary, MarVeLScaler jointly using Scale Estimator
and Scale Controller can effectively help tenants find the
most cost-saving strategy of guaranteeing MapReduce jobs
to finish on time in public clouds.

3.2 Scale Estimator Design
As mentioned before, it is crucial for Scale Estimator design
to have the ability to predict completion time based on

 

Jobs

Historical Data

Allocator

Monitor

Predictor

Initial VM Cluster

Additional VMs

Tenants MarVeLScaler Cloud

SE

SC

③Submit

②Train

④Initialize

⑥Control

Fig. 3: The workflow of MarVeLScaler.

TABLE 3: Resource features.

Symbol Description
w The total amount of workload to be processed
n The number of VMs in the cluster
R The volume of the memory
H The type of the storage medium
U The way in which the resources are used
G The architecture of CPU

features of the workload and computing resources shown in
Table 3. Our idea is to leverage machine learning techniques
to capture the quantitative relationship among workload,
the computing resources and the completion time of a
job. Specifically, we apply a regression model due to the
following two reasons.

• It can provide better prediction accuracy when the
number of training samples is limited. Neural net-
work is prone to cause an over-fitting problem when
the number of input features has the same quantita-
tive level as the training data [22]. In this situation,
neural network will perform well on the training
data-set but cannot perform beyond the training set.
However, regression model can solve this problem
by restricting the complexity of the formulas [23].
As a result, when the number of training samples
is limited, neural network will be over-fitting, while
regression model will still provide satisfactory pre-
dictions with proper formulas.

• We leave the guarantee on the deadline to Scale
Controller so that Scale Estimator can be offline.
The prediction errors of the regression model will
be solved by dynamic adjustments offered by Scale
Controller.

3.2.1 Regression Model Design
The completion time of a MapReduce job is determined by
the computing resources and its workload, we formulate the
relationship among these parameters as follows:

Testimate = F (w, n,H,U,R,G) (1)

where Testimate is the estimated completion time of a
MapReduce job and F (·) is a function mapping the re-
sources and workload to Testimate. The other notations of
parameters used in Eq.1 are defined in Table 3. Then, in
order to derive a precise formulation of F (·), we first figure
out the linear correlation between these features and the
completion time by using Pearson correlation coefficient
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TABLE 4: Pearson correlation coefficients.

Symbol Value Symbol Value
w 0.7002 U 0.1893
n -0.66 H 0.1968
R -0.2184 G -0.2184

(PCC), which is commonly used to describe the linear
correlation between two variables in statistics. Specifically,
we calculate the PCC between each feature and its cor-
responding completion time, by letting the covariance of
these two variables divided by the product of their standard
deviations [24]. PCC must be between -1 and 1, where 1
means a completely positive linear correlation, 0 means non-
linear correlation, and -1 means a completely negative linear
correlation. The bigger an absolute value of PCC is, the
greater the impact on the completion time a feature has.

To obtain the PCC of each feature in Table 3, we collect
the data from 80 samples, and each sample represents the
result of executing a WordCount job. As shown in Table 4,
the total amount of workload to be processed, w, and the
number of workers in the cluster, n, each have a relatively
strong correlation with the completion time. It means that
these two have a bigger effect than other features do. Thus,
we separately analyze the relationship between these two
features and the completion time to formulate our F (·).

As shown in Fig. 4 and Fig. 5, Consistent with our intu-
ition, the completion time decreases as the number of VMs
increases, but increases as the workload increases. Thus, we
can conclude that the completion time is negatively related
to the number of VMs in the job, but positively related to
workload. As for other features, we assume that they have
a linear relationship with the completion time and do not
interact with each other. Thus, the estimated completion
time is formulated as follows:

Testimate = b0 +
b1w

n(b2 + b3H + b4U + b5R+ b6G)
(2)

where b0, ..., b6 denote the coefficients need to be fitted. In-
side the numerator, w reflects the total amount of workload
of a MapReduce job. As for the denominator, let the linear
combination of H , U , R and G represent the computing
ability of one VM. Using a single computing ability of one
VM to multiply the total number of VMs gives us the overall
computing ability of a cluster, which is represented by the
denominator. In total, let the entire workload be divided by
the overall computing speed, then we get the total time of
completing one job along with the bias, b0.

3.3 Scale Controller Design

As mentioned before, most previous studies of auto-scaling
on public clouds usually do not take VMs performance
variations into account which lead to wrong scaling deci-
sions and exceed the deadline. To overcome the deadline
violation problem caused by VM performance degradation,
our idea is to apply a multi-view deep learning model,
which is good at exploring highly non-linear relationships
that exist among low-level features across different groups.
In the following, we briefly introduce the domain-assisted
feature engineering.

3.3.1 Domain-assisted Feature Engineering

In the auto-scaling domain, there is usually no luxury
to have enormous data where a model can be trained
to automatically eliminate irrelevant features. As such the
first challenge is to select the proper feature set for auto-
scaling decision predictions. Our feature engineering uses
domain knowledge to create features relevant to the prob-
lem through measurements, which is introduced as follows.

• View 1 (V1): The resource features are classified into
this view, which is listed in Table 3. In addition, run-
ning setting parameters (e.g., SlowStart) in Hadoop
is also included, which indicates that our model
considers different Hadoop configurations

• View 2 (V2): The MapReduce job running speed
features are classified into this view, which is listed
in Table 5. These dynamic features take the main re-
sponsibility to solve the performance variance prob-
lem in public clouds.

• View 3 (V3): The real-time resource utilization fea-
tures are classified into this view, which is listed in
Table 6. These features are usually the bottleneck of
performing MapReduce jobs.

Features in View 1 are selected to characterize the ini-
tial configurations of the cloud cluster and MapReduce
jobs (Hadoop in our experiment). Previous studies usually
construct models to characterize the non-linear relationship
between these features and completion time, which only
achieves satisfactory results when the performance of VMs
is steady. In our model, we deal with these features with
a neural network, which is more capable of building a
non-linear relationship. Thus, taking all these features into
account can greatly improve the prediction precision of our
model.

Features in View 2 are expected to characterize the run-
ning speed of the MapReduce job, which is able to address
the performance variance of VMs. As a result, when the
performance of VMs degrades, the features in this view
will provide better predictions about the completion time.
However, it is difficult to directly characterize the job’s
running status. The reason behind is that Map and Reduce
phases run simultaneously in a real production environ-
ment, and have totally different running speeds. Moreover,
these stages will interact with each other. Specifically, once
the Map tasks are finished, the computing resources will be
fully used by the Reduce tasks. If we regard the processing
of Map and Reduce as a whole procedure, the above-
complicated process cannot be well described. Thus, the
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TABLE 5: Job running speed features.

Symbol Description
MP The completion percentage of Map phase
RP The completion percentage of Reduce phase
MS The running speed of Map phase
RS The running speed of Reduce phase
TP The completion percentage of the whole procedure
TI The average interval between two completed tasks

TABLE 6: Resource utilization features.

Symbol Description
HC The CPU utilization of the header node
HL The one-minute average CPU load of the header

node
HM The remaining memory of the header node
WC The mean CPU utilization of the worker nodes
WL The mean one-minute average CPU load of the

worker nodes
WM The mean remaining memory of the worker nodes

prediction model will lose some key details about the job,
and predicted completion time will be less accurate.

From the above considerations, we finally design the
features of View 2 as shown in Table 5 to characterize the
running speed. These features come from Map phase, Re-
duce phase, and the whole procedure respectively. For each
phase, we use both running speed (i.e.,MS ,RS , and TI ) and
completion percentage (i.e., MP , RP , and TP ) features. The
reason why we have to introduce the completion percentage
is that the corresponding running speed will not make any
difference when the completion percentage in one stage is
100%. Thus, our model requires indicators to describe the
importance of running speed features and better capture
the interaction of Map and Reduce phases. We use TI , the
average time interval between any two completed tasks
to indicate the running speed of the whole job. Using TI
instead of the running speed of the whole job is because this
speed is the linear combination of the speed of each phase
(i.e., MS and RS).

Features in View 3 are important factors to predict job
processing time. For example, due to the I/O bottleneck,
some CPU cores may get idle during the running time,
which temporarily reduces the general computing power.
We use the features in View 3 to describe the amount
of resources used in the job. These features are mainly
classified into two categories (i.e., header node and worker
node), because they have different needs for resources. The
header node is mainly responsible for the task and resource
scheduling, while the worker nodes do all the computing
work. The total computing resources of the cluster along
with their utilization can represent the exact resource put
into computing. Thus, these resource utilization features in
this view would be a good complement to the resource
features in View 1.

In summary, in order to conduct online scaling deci-
sions, models based only on static features (e.g., features
in Table 3) may be insufficient to catch the performance
variance of VMs in public clouds. Thus, Scale Controller
uses three views of features, which contain complementary
information about the running job, for making more accu-
rate predictions.
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Fig. 6: The multi-view deep learning model of Scale
Controller.

3.3.2 Multi-view Deep Learning Model
Taking all these features into account combines the ad-
vantage of resource features and running status features
together. However, with more features, using regression
models to model the relationship between the features and
completion time becomes much more difficult. Notice that
neural networks have a greater ability to construct non-
linear relationships among feature. [25] proves that neural
networks with sufficiently smooth activation functions are
capable of accurate approximation to a function and its
derivatives, which is known as the universal approximation
theorem. In our system, we leverage a multi-view neural
network with a sophisticated feature fusion structure. Thus,
our neural network has the ability to construct an accurate
enough function to describe the relationship between the
given features and the completion time. Moreover, the train-
ing data would be sufficient in designing Scale Controller,
because these data are extracted from every sample interval
(e.g., 5 seconds in our system) during the runtime of each
job. Lastly, there still exist the following two challenges
for leveraging neural networks to explore highly non-linear
relationships that exist among low-level features across dif-
ferent groups.

• Features in View 1 are non-time-dependent, while
features in View 2 and View 3 are time-dependent
series. Thus, it is difficult to integrate these features
with different time scale together.

• Three views of features can provide a comprehensive
perspective of running jobs. However, these features
come from different views, and their correlation
information across views is weak. This may incur
significant noise in training data and influence the
prediction accuracy.

A model based on these features should have the ability
to be aware of performance degradation and also robust
to noise. To this end, we apply a multi-view deep learning
model [20] [21], which is good at exploring highly non-linear
relationships that exist among low-level features across
different groups. These neural networks are customized to
deal with the different characteristics of different views of
features. The features in our experiment can be classified
into time-dependent features and non-time-dependent fea-
tures. Thus, different types of neural network structures
should be applied to extract high-level features from low-
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level features. Then, these high-level features should be
fused together for the final prediction.

Before giving a detailed introduction to the multi-view
deep learning model, we introduce the following two re-
lated concepts. First, long short term memory (LSTM) [26] is
a well-designed neural network, usually used to extract time
dependency patterns from time series data. In this paper,
LSTM is applied to extract time-dependent patterns in View
2 and View 3. The sudden decrease in speed features does
not mean performance degradation, while a long term of
poor running speed may indicate the performance variance.
The memory cell in LSTM has the ability to make such
judgments and pass proper features to the next layer.

Second, deep canonical correlation analysis (DCCA) [27],
which is a deep neural network (DNN) based canonical
correlation analysis (CCA), where DNNs are applied for
constructing nonlinear features, and the canonical correla-
tion between views will be maximized. DCCAE [19] is a
correlation-aware auto-encoder, which concentrates on both
the canonical correlation between views and the reconstruc-
tion errors of the auto-encoder.

The detailed design of our multi-view deep learning
model is shown in Fig. 6. Firstly, we apply LSTM to deal
with time-dependent features in View 2 and View 3. The
output of the LSTM and the features in View 1 will be
sent into DCCAE, which combines these features into a
more compact representation. This low-noise and highly
correlated representation will be the input to a regression
layer and conduct the final predictions.

We formulate our objective function based on the idea of
making the best use of the information captured in each
view and latent patterns across views, where the auto-
encoder learns a high-level presentation with a maximum
lower bound on the mutual information and CCA maxi-
mizes the mutual information across views. Motivated by
[19], we are to design the objective function by jointly
considers the reconstruction errors of three auto-encoders
and the canonical correlations across the three views.

Given the views Vm(m = 1, 2, 3), the data matrices for
each view can be denoted as V = [v1, v2, ...vN ], where N is
the size of the sample set. As for nonlinear relationships, fm
is the encoder network, where its network weight is denoted
as Wfm , and gm is the decoder network with weight Wgm .
Correspondingly, we formulate our objective function as
follows:

min
Wf ,Wg,X,Y

3∑
m6=n,m=1

3∑
n=1

− 1

N
tr(X>mfm(Vm)fn(Vn)>Yn)

+
λ

N

3∑
j=1

N∑
i=1

‖vij − gj(fj(vij))‖2 (3)

s.t. X>m(
1

N
fm(Vm)fm(Vm)> + rvm

I)Xm = I (4)

Y >n (
1

N
fn(Vn)fn(Vn)> + rvnI)Yn = I (5)

x>j fm(Vm)fn(Vn)>yk = 0, for j 6= k (6)

where X = [x1, x2, ...xL], Y = [y1, y2, ...yL] in the first part
of Eq. 3 are the optimal projection matrices, which maximize
the mutual information between the projected views. The

second part of Eq. 3 is the training error of an auto-encoder,
which minimizes reconstruction errors between the input
features and learned representation. In Eq. 4 and Eq. 5, both
rvm

> 0 and rvn
> 0 are regularization parameters added

to the diagonal of the sample auto-covariance matrices so
that the regularized data can be used for estimating the
covariance matrices [28]. Eq. 6 ensures that, when finding
multiple pairs of projection pairs (e.g., (xj , yj) and (xk, yk)),
the subsequent projection is constrained to be uncorrelated
with the previous one.

Optimization Method. As shown in Fig. 6, our multi-
view deep learning model is not an end-to-end network.
Thus, the optimization method involves the tuning pro-
cedure of a DCCAE representation learning and the final
regression. The objective function of DCCAE is in a full-
batch form. However, the full-batch training algorithm [27]
is computation intensive and consumes too much mem-
ory. To overcome this issue, we use a mini-batch based
optimization method [29], where the gradient is estimated
from a large mini-batch. After the fine-tuning of DCCAE,
a representation from the middle layer of DCCAE will be
sent into the regression layer, whose loss function is based
on the mean square error (MSE). In general, our model first
leverages a combination of LSTMs and DCCAE to generate
a compact and highly correlated representation of raw low-
level features [30]. Then, this representation is used to make
predictions about the completion time.

3.3.3 The Choice of When and How Much to Scale
As discussed above, we are to apply a multi-view deep
learning model to capture the performance variance in real
time and automatically scale when it is necessary. How-
ever, once the predicted completion time is later than the
deadline, Scale Controller needs to decide when a scaling
operation should be triggered and how much to scale.

We should scale out the cloud cluster as early as possible
due to the following reasons. First, if we scale out the cluster
late, more VMs should be added to guarantee the deadline.
However, as shown in our previous experiment, more VMs
lead to higher costs. Second, VMs cannot be set up instantly.
Thus, if we scale out the cluster late, the overhead of adding
a newly set-up VM into the cluster will take a period of time
(e.g., 300 seconds in our experiment), leading to insufficient
preparation time before VMs start to work. Additionally,
the scaling trigger point also should be robust against the
predicted completion time spike caused by noise in data.

To this end, we introduce two thresholds, rthreshold
and tthreshold, to identify an appropriate scaling trigger
point. The conditions of triggering a scaling operation are
defined as: if the ratio of the predicted completion time to
the deadline is later than a value (i.e., rthreshold) and this
phenomenon lasts longer than a period (i.e., tthreshold), then
we scale out the cluster. In practice, the settings of rthreshold
and tthreshold need fine-tuning. In the following evaluation
section, we will evaluate how rthreshold and tthreshold may
affect the performance and how to fine-tune these two
thresholds.

Scale Controller has to determine the minimum number
of VMs to be scaled out when a scaling operation becomes
necessary. The main challenge for this determination is that
additional VMs cannot be effective to the cluster instantly.
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Algorithm 1 Minimum number of scaling VMs.

Require: V1=[w, n,R,H,U,G]; V2=[MP , RP ,MS ,
RS , TP , TI ]; V3=[HC , HL, HM ,WC ,WL,WM ];
p(·): prediction model of Scale Controller;
tthreshold; toverhead; tdeadline;

Ensure: ∆n;
Update V ∗1 = [w, n∗, R,H,U,G], where n∗ = n+ 1;
Calculate the locally weighted value of MS , RS and TI
during last tthreshold as MS , RS and TI ;
Update V ∗2 =[M∗P , R

∗
P ,MS , RS , T

∗
P , TI ], where M∗P =

MP + MS · toverhead, R∗P = RP + RS · toverhead and
T ∗P = TP + 1

TI
· toverhead;

Update V ∗3 = V3;
while p(V ∗1 , V

∗
2 , V

∗
3 ) > tdeadline do

n∗ = n∗ + 1;
∆n = n∗ − n;
return ∆n;

It takes about toverhead to actually launch VMs and make
the computing resources available to the computing job.
Before newly added VMs become effective, the running
status might have changed, which makes the newly added
resources either more than necessary or insufficient.

To address this issue, we propose an algorithm to obtain
the minimum number of VMs for scaling, which including
two steps as shown in Algorithm 1. The first step is to
get a proper estimation about running status, V ∗1 , V ∗2 , and
V ∗3 , before the newly added VMs are effective. Since the
provisioning time, toverhead, is rather shorter compared to
the overall running time, we assume that the running speed
is steady during toverhead and the resource utilization is
roughly the same (i.e., V ∗3 = V3). Other features in V1 need
not update except the number of VMs will change. Thus,
we only need to update V ∗2 , which can be calculated by
the sum of the current V2 and the processed percentage
during toverhead. However, in order to calculate the pro-
cessed percentage, MS , RS and TI should be appropriately
estimated. A good estimation should not be an outlier. It
should well present the running speed after the performance
degradation. Since the later time points during tthreshold are
closer to the trigger point, their value is more accurate to
estimate the running speed in toverhead. Finally, we select
the Locally Weighted Value of MS in the last tthreshold as
MS . For all the sample points during the last tthreshold, their
weight can be calculated as follow:

Wt = exp(− (tthreshold − t)2

2c
), (7)

where c is a parameter added to control the importance of
samples on a different timeline. In Eq. 7, Wt has a larger
value if it is closer to the trigger point. Then, we can
calculate MS as follows:

MS = MS(t) ·Wt/
∑

Wt, (8)

where RS and TI can be calculated in a similar way by
just replaces MS by RS or TI respectively. The second step
is to iteratively increase n∗ in V ∗1 until Scale Controller’s
predicted completion time is within the deadline. As a

result, the difference between n∗ and n is the minimum
necessary number of VMs.

4 PERFORMANCE EVALUATION

In this section, we first introduce the data set and experi-
ment setup. We then investigate the performance of Scale
Estimator and Scale Controller with extensive experiments.
Finally, through real experiments compared to the state-of-
the-art, we demonstrate the superiority of MarVeLScaler.

4.1 Data Set and Experiment Setup

Data Set. The raw data used for training our model, includ-
ing three kinds of representative MapReduce workloads
(i.e., WordCount, TeraSort, and PageRank). We run each
workload for 100 times and finally collect 300 groups of
data. Each group consists of 3 kinds of raw data: 1) Records
of computing resources and running settings; 2) Logs col-
lected with Log4j [31], an original log tool of MapReduce
framework; 3) Resource utilization data collected with Gan-
glia Monitoring System [32].

With straightforward feature engineering (i.e., normal-
ization and discretization), we transform the records of
computing resources as input feature vectors and the com-
pletion time as labels of Scale Estimator. 80% of the data
are randomly selected as training set, while the rest as the
evaluation set. Finally, we get 100 groups of data for each
workload to construct the regression model.

The feature engineering of Scale Controller involves
some important preprocesses. Since the logs and resource
utilization data are consecutive data, we first leverage a
sample window of 5 seconds to divide these data into
several small fragments. Then, we calculate the average
values of the features in Table 5 and Table 6, and obtain
approximately 30,000 groups of data. Thus, the data set
for Scale Controller is much larger and contains more use-
ful information. Next, through normalization and proper
padding, these data are suitable inputs of LSTM structures.
As for resources features and running setting features, a sim-
ilar feature process approach in Scale Estimator is applied.
Finally, 3 views of training data are obtained. We randomly
choose data from 80% jobs as the training set and the rest as
the evaluation set, which is a common setting in time-series
data mining [33] [34].

Experiment Setup. We implement MarVeLScaler, a pro-
totype auto-scaling system in Alibaba Cloud with at most
40 VMs, where each VM is equipped with 4 Intel Xeon E5-
2682 v4 2.5GHz CPU. The version of Hadoop on the VM is
2.7.2. This online prototype system is written in Python 3.5,
consisting of two threads, the Monitor thread for collecting
the information of the whole cluster and the Predictor thread
for online completion time predictions. Since the trace of
our experiment is generated, we need to set up proper
deadlines for the executed jobs in our training data. We
set the predicted completion time of Scale Estimator as
the deadline due to the following two reasons. First, Scale
Estimator works in an ideal situation where no performance
degradation occurs. If we set the result of Scale Estimator as
a deadline, jobs that experience performance degradation
will exceed the deadline. Second, Scale Estimator tries to
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TABLE 7: The statistics of our regression model.

Symbol Value Symbol Value
R2 0.9772 Chi-Square 23.5856

F -Statistic 554.3763 RMSE 19.4366
MRE 98.4%

TABLE 8: The results of Scale Estimator for resource
recommendation.

No. of
VMs

Mem
(GB) Storage CPU Time

(s)
Cost
($)

40 16 HDD Exclusive 669.2 2.37
40 16 SSD Exclusive 663.6 2.72
40 8 HDD Exclusive 692.4 2.29
40 8 SSD Exclusive 686.8 2.63
39 16 HDD Exclusive 672.9 2.31
39 16 SSD Exclusive 678.5 2.66
39 8 SSD Exclusive 696.1 2.23
38 16 HDD Exclusive 688.4 2.25
38 16 SSD Exclusive 682.8 2.60
37 16 HDD Exclusive 699.2 2.20
37 16 SSD Exclusive 693.6 2.53

provide the initial most cost-saving option (as shown in
Table 8) for tenants to set up the cloud cluster. And we
choose the resource allocation with a completion time of
699.2s, while the deadline is 700s. Overall, it is reasonable to
use the result of Scale Estimator as the deadline.

4.2 Evaluation of Scale Estimator
4.2.1 Statistics of the Regression Model
To examine the effectiveness of the regression model, we
first obtain several commonly used statistics [35] in Table 7.
The coefficient of determination, R2, is the proportion of
the variance in the dependent variables, which can be
used to test the fitness of the regression model. R2 takes
values from 0 (bad fitness) to 1 (good fitness). In the non-
linear fitting, the value of Chi-Square is generated under
the best values of all coefficients (less is better). Then, the
F -statistic is used when comparing statistic models that
have been fitted to a data set. It indicates the regression
model that best fits the population from which training
data were sampled. The Root-Mean-Square-Error (RMSE)
is the prediction errors between the observed value and the
ground truth. Finally, MRE denotes the mean relative error
of the regression model.

From Table 7, we can see that R2 (0.9772), RMSE
(19.4366) and MRE (98.4%) of our regression model are
rather good. To be specific, 0.9772 of R2 indicates good
fitness because its value is larger than 0.95. From the per-
spective of RMSE and MRE, the predictions of our model are
extremely close to the ground-truth value. While Chi-Square
(23.5856) and F -statistic (554.3763) are model-dependent,
which means the interpretation of these values varies ac-
cording to different models. In our case, the values of these
two statistics are the best we can get in our experiment.
Overall, the values in Table 7 validate the efficacy of our
proposed regression model.

4.2.2 Effect of Scale Estimator
Based on the above regression model, we implement Scale
Estimator which aims to generate a detailed resource pur-
chase list for tenants to set up the cloud cluster for perform-

TABLE 9: Prediction error (RMSE) of different views based
neural network model on WordCount workload.

Diff 0-10% 10-20% 20-30% >30% >0%
V1 1443.08 2995.16 5303.61 6273.25 1985.29
V2 3360.32 3482.78 3880.8 4015.4 3657.74
V3 Failed

Multi-view 1337.52 1960.8 3470.85 4158.55 1506.17

ing MapReduce jobs. To demonstrate the effectiveness, we
conduct a case study by submitting a WordCount job with
a workload of 400 GB and a deadline of 700 seconds to the
Scale Estimator.

To be specific, we first search all the resource allocation
combinations with at most using 40 VMs where makes a
job finished by the deadline will be recorded in a list. The
results are shown in Table 8, we can see that the row with
the underline is the resource recommendation of our Scale
Estimator, which is the most cost-saving choices (i.e., in-
cluding 37 VMs and each equipped with 16 GB of memory,
HDD storage and exclusive CPU) for the tenants to set up
the cloud cluster in terms of current submitted workload
and deadline. The reason behind this is that our regression
model can well capture the initial relationship among the
workload, the computing resources and the completion time
of a job. Overall, the case study successfully validate the
efficacy of our proposed Scale Estimator.

4.3 Evaluation of Scale Controller
4.3.1 Neural Network Model Accuracy
To demonstrate the promotion of prediction accuracy by
using multi-view instead of a single view. We are to train
4 neural network models with different views of input
features (i.e., V1, V2, V3 and Multi-view), respectively. Mean-
time, we measure the differences (i.e., the degree of VM’s
performance degradation), denoted as Diff , which indi-
cates the difference between real completion time (Rt) and
deadline (Dt) of jobs that exceed the deadline. Formally,

Diff =
|Rt −Dt|

Dt
.

According to the Diff metric, we divide the evaluation data
set into 5 groups (i.e., 0-10%, 10-20%, 20-30%, >30%, >0%).
Next, we test the prediction error (RMSE) of each neural
network on each group and give a detailed analysis.

As we can see in Table 9, the prediction error of V1
significantly increases with Diff (from 1443.08 to 6273.25),
which indicates bad prediction performance when the per-
formance of VMs degrades. This is because the features
in V1 are static, and they cannot capture the performance
variance of VMs. The prediction error of V2 is rather steady,
but the overall error (3657.74) of this view is rather severe.
The reason is that the features in V2 will violently fluc-
tuate before they get a stable state, which will introduce
significant errors. Moreover, the model based on V3 fails in
learning, because utilization cannot predict the completion
time alone. Our multi-view model always outperforms the
models based on V1 and V2 in terms of the prediction error
under different Diff conditions. For example, considering the
overall average prediction errors, our multi-view model is
1506.17, which is an improvement of 0.32 and 2.43 times
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Fig. 7: The running speed and CPU
utilization as a function of time.
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Fig. 8: The prediction results of using
single-view features.
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Fig. 9: The prediction results of using
multi-view features.

over the V1 and V2 based neural network, respectively. That
is because, our multi-view model takes the advantage to
comprehensively capture the running status of a MapRe-
duce job by extracting key information from three different
groups of features (i.e., computing resources, resource uti-
lization, and processing speed).

4.3.2 Effect of the Multi-view Model

For further study of the effectiveness of our multi-view
deep learning model, we conduct a case study by using
the neural networks above to predict the completion time
of a MapReduce job (e.g., 20 VMs for 400 GB workload)
with obvious performance degradation. We first profile a
job with obvious performance degradation at 200s, which is
shown in Fig. 7. We see that the current resource utilization
based auto-scaling rules (e.g., to scale when CPU utilization
is higher than 80%) cannot work well on MapReduce jobs.
That is because there exist no obvious changes in CPU
utilization when the performance degrades.

Next, we give a formal definition of Optimal Prediction,
which means capturing performance degradation immedi-
ately and adjust its result according to the running speed. As
we can see in Fig. 8. The variation in the running speed line
indicates when the performance degradation occurs (e.g.,
500s in this case). During the first 500 seconds, predictions
from V1 are accurate and almost fit the Optimal Prediction,
while the predictions of V2 varies significantly and tend to
make unnecessary scaling decisions. After the occurrence of
performance degradation, predictions from V1 cannot fol-
low the Optimal Prediction, leading to the absence of timely
scaling operations, while predictions of V2 gradually get
stable and show stable predicted completion time according
to the real-time running status. However, in Fig. 9, we
can see that our multi-view model performs well all the
time and shows the ability to make timely and accurately
scaling decisions. That is because our multi-view model
can capture the running status to overcome the deadline
violation problem caused by VM performance degradation.

4.3.3 Scaling Timing and Amount

As discussed in the previous section, the settings of
rthreshold and tthreshold are very crucial to the effectiveness
of our Scale Controller. In the following, we are to evaluate
how rthreshold and tthreshold affect the performance and
how to fine-tune these two thresholds.

First, we give a formal definition of P , which indicates
the ratio of the number of jobs with correct scaling opera-
tions to the number of total jobs. Formally,

P =
P1 + P2

N
,

where N denotes the total number of jobs; P1 and P2 denote
the number of jobs with performance degradation while
Scale Controller makes scaling decisions, and the number
of jobs without performance degradation while Scale Con-
troller does not make scaling decisions, respectively.

Next, we are to test P with different rthreshold and
tthreshold. As we can see in Fig. 10, the combination of
rthreshold and tthreshold greatly affects the scaling accuracy.
We first focus on rthreshold. For most lines, the highest P are
obtained when rthreshold is 0.85. Then, P drops gradually
with the increment of rthreshold, and achieves its lowest
value when rthreshold is 1. After that, P increases to about
90%, which indicates a satisfactory prediction result. The
lowest P are obtained when rthreshold is 1, which means
it is improper to scale out the cluster once the predicted
completion time is larger than the deadline. The reason
is that this setting cannot deal with the prediction errors
well. Through our observation, a considerable part of jobs
can be finished around the deadline, while their predicted
completion time fluctuates beyond and below the deadline.
When the completion time of a job exceeds the deadline
slightly, this fluctuation will make the system extremely
difficult to determine a proper scaling operation. However,
when rthreshold is 0.85, the determination of scaling opera-
tion would be easier. The aforementioned jobs will operate
well under this setting. However, it also leads to excessive
cost since it tends to make unnecessary scaling decisions.
When rthreshold is 1.15, the scaling operation would be even
harder to decide. The advantage of this setting is that it
prevents some unnecessary scaling operations, which saves
much cost. As for tthreshold, a higher tthreshold would be
better since it leads to enough time to obtain running speed
parameters (will show later). Considering P and cost, we
set rthreshold at 1.1 and tthreshold at 60s. In this situation,
we get an accurate enough P and rather low cost. Besides,
the choice of tthreshold will decide a timely scaling operation
and the reasonable amount of resources.

Finally, after determining the scaling time point, Scale
Controller needs to decide the proper number of scaling
VMs, while keeping the payment at a minimum. Note that
the overhead of adding additional VMs to the cloud cluster
is rather a long period of time (e.g., 300s) compared to the
completion time of most jobs. In order to obtain a more
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TABLE 10: The average cost, average tardiness and the number of missed deadline jobs of MarVeLScaler and baselines.

Workload Type WordCount TeraSort PageRank
Method BS1 BS2 BS3 Our BS1 BS2 BS3 Our BS1 BS2 BS3 Our

AvgCost (VM*s) 10501 14134 12531 11199 11239 15457 13573 11649 11206 16677 12600 11317
AvgTard (s) 251.8 13.3 125.1 20.0 81.2 11.0 29.3 11.3 127.8 11.5 38.6 15.7

No. of Missed
Deadline Jobs 6 1 4 1 4 1 2 1 5 1 2 1

precise number of scaling VMs, we take this overhead into
account. As explained in Section 3.3.3, the most critical
thing is to predict V ∗2 . Hence, we test V ∗2 under different
statistic parameters of MS , RS and TI in terms of prediction
accuracy, which consists of the following baselines: 1) the
maximum value (Max); 2) the minimum value (Min); 3) the
latest value (Lat); 4) the average value (Avg); 5) the locally
weighted value (LWV). In Fig. 11, we see that except for
the minimum value, other statistical methods all achieve
relatively good estimations. Notably, the locally weighted
value achieves the highest accuracy among them. That is
because it correctly captures the importance of the latter
value and dampens the influence of outliers. Thus, we
choose the locally weighted value of MS , RS and TI as our
MS ,RS and TI to calculate the scaling amount in Algorithm
1.

4.3.4 Effect of Scale Controller
Based on the above multi-view deep learning model, we
implement Scale Controller which aims to adjust the scale of
the cluster according to its real-time running status to guar-
antee the MapReduce job finished on time. To demonstrate
the effectiveness, we conduct a case study by submitting a
WordCount job with a workload of 400 GB and a deadline
of 1700 seconds to the Scale Controller.

To be specific, the initial size of the cloud cluster is 16
VMs according to the recommendation of Scale Estimator.
We employ the following baselines, namely, NSC-M and
NSC-R, which represent the running procedure of Map and
Reduce stage without scaling, respectively. Additionally, SC-
M and SC-R are the actual running procedure under the
control of Scale Controller. As we can see in Fig. 12, the
scaling timing appears at 675s, Scale Controller finds that
another 24 VMs should be added to the cluster to meet
the deadline. The cluster obtains these VMs at 975s. After
that, the running speed (in terms of the increasing speed of
competition percentage) of the job boosts a lot, and finally
meets the deadline at 1650s. In contrast, the baseline exceeds
the deadline with a completion time of 1950 seconds. The
reason behind is that our multi-view deep learning model

can timely capture the performance degradation of VMs and
make an auto-scaling decision whenever necessary. Overall,
the case study successfully validates the efficacy of our
proposed Scale Controller.

4.4 Evaluation of MarVeLScaler

The basic setup for the experiment is introduced in previous
sections. In the following, we are to evaluate the perfor-
mance of MarVeLScaler with 3 different workloads (i.e.,
WordCount, TeraSort, and PageRank), where each workload
contains 200 GB data and will be tested over 10 times.

Comparison Baselines. We select the following state-of-
the-art models as baselines. It is worth noting that the first
two are some of the static models, and the last two are the
dynamic models.

• Baseline 1 (BS1) is generated from [9] which reserves
10% of resources as extra resources to avoid missing
the deadline.

• Baseline 2 (BS2) uses the same static model as
BS1 but with reserving 30% of resources as extra
resources.

• Baseline 3 (BS3) conducts auto-scaling decisions
based on a neural network [11], while only uses job-
related features to make a prediction.

• MarVeLScaler (Our) leverages a multi-view deep
learning model to conduct real-time scaling decisions
making for guaranteeing MapReduce jobs finished
on time in public clouds.

Evaluation Metrics. For a resource allocation prediction
method, the ability to provide credible cost saving is crucial
to every tenant. Cost is always the first concern, and we
measure the Average Cost (AvgCost), which measures the
average cost of renting cloud resources to complete a job
before the deadline. Formally,

AvgCost =
1

|J |

J∑
j=1

n∑
i=1

Pi · ti,
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where J denotes the job set, i.e., J ={j}, which consists of
a series of jobs; n denotes the number of VMs requested
from cloud service providers; Pi and ti denote the price and
processing time of the ith VM, respectively.

It is also significant that our job should be finished before
the deadline, and we also measure the Average Tardiness
(AvgTard), which indicates the difference between the real
completion time and the deadline. Formally,

AvgTard =
1

|J |

J∑
j=1

(Rj −Dj),

where Rj − Dj =

{
0, if Rj ≤ Dj

Rj −Dj , otherwise
; Rj and Dj

denote the real completion time and deadline of the jth job,
respectively.

Experiments Results. Table 10 shows the Average Cost,
Average Tardiness and number of missed deadline jobs of
performing the same MapReduce job multiple times under
three baselines and MarVeLScaler. First, we can see that
MarVeLScaler always outperforms BS2 and BS3 in terms
of average cost under different kinds of MapReduce jobs.
As for the BS1, it gets less costs because of sacrificing not
being able to meet deadlines (will be shown later). Second,
from the average tardiness point of view, we can see that
MarVeLScaler is comparable with BS2, which outperforms
BS1 and BS3 by almost 11 and 5 times when performing
WordCount job. Finally, we see that MarVeLScaler exceeds
the deadline far less than other state-of-the-art methods.
Similar conclusions can be drawn for other workloads.
Overall, MarVeLScaler saves more money while keeping a
better ability to finish jobs by the deadline. That is because
MarVeLScaler applies multi-view deep learning techniques
to solve the inaccurate prediction issue caused by perfor-
mance degradation of VMs and conduct the auto-scaling
decisions whenever necessary. As for MarVeLScaler still
misses some deadlines, the reason presumably is that it only
becomes clear that the deadline will be missed when it’s
already too late to act. It would be an interesting future
work to further improve our MarVeLScaler’s performance
to ensure never miss the deadlines.

5 RELATED WORK

Recently, there is a trend of using knowledge-based models
to better estimate the completion time of a specific work-
load. Considering the different objectives, we classify these
models into the following two categories, namely static
models and dynamic models.

Static Models are mainly used for resource reservation
and job scheduling. Jalaparti et al. [36] use the knowledge
from historical executed jobs to plan and coordinate the
placement of data and tasks. Lim et al. [37] focus on process-
ing an open stream of MapReduce jobs with Service-Level
Agreements (SLAs). To schedule the open stream jobs, the
authors devise MRCP-RM, which is a constraint program-
ming based resource management scheme. Additionally,
a data locality-aware resource management algorithm is
designed to ensure that the whole system can satisfy SLAs.
Jockey [38], ARIA [39], and CRESP [9] also fall into this cat-
egory. These works explore different methods of acquiring

the quantitative relationship between job-related parame-
ters and deadline. However, these static models cannot be
directly applied for tenants to set up the cloud cluster. Our
Scale Estimator leverages machine learning (i.e., regression
model) techniques to capture the quantitative relationship
among the workload, the computing resources and the com-
pletion time of a job, which avoid the detailed analyses of
MapReduce processing procedure. Notably, Scale Estimator
is built in a more resource fine-grained way, so it can be
directly applied to generate a detailed resource purchase
list for tenants to set up the cloud cluster for performing
MapReduce jobs.

Dynamic Models are suitable for online resource ad-
justment. MLscale [40] aims to satisfy SLAs of interactive
applications (e.g., web server), by using a neural network to
model the relationship between monitored metrics and the
performance metrics (e.g., response time), and a regression-
based model to predict performance after scaling. AGILE
[14] introduces another model (i.e., polynomial curve fitting)
to conduct resource demand prediction and set up VMs pro-
actively to avoid performance degradation. Reinforcement
learning based models like [41] can transform the problem
of packing tasks with multiple resource demands into an
optimization problem, demonstrating good adaption, quick
convergence, and learning of smart strategies. Xu et al.
[16] propose a theoretic model to provide hard deadline
guarantees for cloud-based MapReduce. However, these
dynamic models ignore the performance degradation of
VMs, which may lead to wrong scaling decisions. This work
is the first attempt on applying multi-view deep learning
techniques to solve the inaccurate prediction issue caused
by the performance degradation of VMs. Specifically, we
applies a Deep Canonically Correlated AutoEncoder (DC-
CAE) [19] structure to refine a high-level representation
from the raw multi-view features (i.e., offline and online
features) to simultaneously learn different views of features
and maximize the correlations of features across views,
which sheds some new light on real-time scaling decision
making for guaranteeing MapReduce jobs finished on time
in public clouds.

6 DISCUSSION

Naturally, there is room for further work and possible
improvements. We discuss a few points here.

Dynamic Resource Provisioning Implementation in
Hadoop. Hadoop is a distributed computing framework,
which supports online dynamic resource provisioning. It
means that the original cluster needs not to suspend the
computing job, while additional VMs are added to the
cluster. Specifically, the newly added VM should first con-
figure its host name, running environment and Hadoop
operating user, etc. Then, the VMs in the original VMs
should include the host name and IP address of the newly
added VMs. Finally, when the Hadoop service on each new
VM is launched, these VMs can be used to accelerate the
computing job. In our system, we implement the dynamic
resource provisioning function with the APIs from Alibaba
E-MapReduce. More details can be found in [42]

Auto-scaling with Homogeneous VMs Scenarios. In
this study, we focus on auto-scaling merely with homo-
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geneous VMs scenarios, which is a typical practice for
IaaS Cloud tenants. First, the vast majority of auto-scaling
researches, such as [43] [44] [45], are assumed that VMs are
homogeneous. Second, when tenants execute their compu-
tation jobs on multiple VMs with different configurations
in practice, some problems will be raised. Take MapReduce
as an example, it has at least two phases. If we run Map
phase on those VMs with the same configuration, and then
feed the output to the Reduce phase while running on the
VMs with different configurations, those outputs may not
be compatible to those VMs in the Reduce phase. Moreover,
fatal errors may occur during execution. To avoid these
potential problems, in this study, we design our regression
model merely for homogeneous VMs scenarios. It would be
an interesting future work to extend our approach to those
heterogeneous VMs scenarios.

Linear Relationship Assumption in Regression Model.
In this study, our regression model is designed to generate a
detailed initial resource purchase list for tenants to set up the
cloud cluster for performing MapReduce jobs. Typically, the
list consists of the features such as H , U , R and G in Table 3,
which usually represent the computing ability of a VM. We
assume that these features have a linear relationship due to
the following reasons. Firstly, when we are constructing a re-
gression model, there must be given an exact form, which is
unlike neural networks that can be trained to automatically
eliminate irrelevant features according to the data. Secondly,
we have tried to assume other forms (e.g., non-linear), while
those are kind of less effective than the linear assumption in
terms of prediction accuracy. Finally, through the Pearson
correlation coefficients (PCC) test, these features have much
less impact on the predicted completion time, which means
our assumption will not significantly deviate the predicted
value from the ground truth. Exploring other models (e.g.,
neural network) would be an interesting future work for
generating the initial resources purchase list for tenants.

7 CONCLUSIONS

In this paper, we present MarVeLScaler, a prediction based
prototype auto-scaling system including two useful mod-
ules, namely, Scale Estimator and Scale Controller. Scale Es-
timator leverages a regression model to preliminarily esti-
mate the required cluster size for a MapReduce job with
given a concrete workload and deadline. During the run-
time, Scale Controller leverages a multi-view deep learning
model to adjust the scale of the cluster according to its
real-time running status to guarantee the job finished on
time. We evaluate the performance of MarVeLScaler based
on Hadoop in Alibaba Cloud. The experiment results show
that MarVeLScaler can provide 98.4% accuracy of predic-
tion in determining initial cluster size, and save 30.8% of
expense while still guaranteeing similar performance com-
pared with the state-of-the-art methods. We believe that our
MarVeLScaler offers an effective and practical mechanism
for reducing the required expenses associated with perform-
ing MapReduce jobs in public clouds.
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