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ABSTRACT
Recent advances in deep learning (DL) have spawned various
intelligent cloud services with well-trained DL models. Nev-
ertheless, it is nontrivial to maintain the desired end-to-end
latency under bursty workloads, raising critical challenges
on high-performance while resource-efficient inference ser-
vices. To handle burstiness, some inference services have
migrated to the serverless paradigm for its rapid elasticity.
However, they neglect the impact of the time-consuming
and resource-hungry model-loading process when scaling
out function instances, leading to considerable resource inef-
ficiency for maintaining high performance under burstiness.
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To address the issue, we open up the black box of DL
models and find an interesting phenomenon that the sen-
sitivity of each layer to the computing resources is mostly
anti-correlated with its memory resource usage. Motivated
by this, we propose asymmetric functions, where the original
Body Function still loads a complete model to meet stable
demands, while the proposed lightweight Shadow Function
only loads a portion of resource-sensitive layers to deal with
sudden demands effortlessly. By parallelizing computations
on resource-sensitive layers, the surging demand can be well
satisfied, though the rest of the layers are performed serially
in Body Functions only. We implement asymmetric func-
tions on top of Knative and build a high-performance and
resource-efficient inference serving system named AsyFunc
with a new auto-scaling and scheduling engine. Evaluation
results driven by production traces show that compared with
the state of the art, AsyFunc saves computing and memory
resources by up to 31.1% and 32.5%, respectively, while pro-
viding consistent performance guarantees under burstiness.
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1 INTRODUCTION
Deep Learning (DL) has enabled a variety of intelligent ap-
plications in recent years, from virtual assistants to smart
trafficmanagement. According to data statistics fromChina’s
largest local life service platform, millions of queries are pro-
cessed every minute using DL models [60]. On Facebook
alone, more than 200 trillion inference queries are processed
daily [32]. Typically, these models go through two phases
for each application scenario: offline training to achieve the
desired accuracy by iteratively tuning the model parame-
ters, and online inference to perform user-facing tasks in
real-time. In contrast to training, model inference imposes
strict requirements on real-time performance, especially
the end-to-end latency specified by service level objectives
(SLOs) [10, 62]. For example, 98% of user requests should
complete within 200 ms, and SLO violations result in a poor
user experience and potentially lower business revenue [62].
A recent report shows that a 100 ms increase in latency can
lead to a 1% decrease in revenue [23].
However, the ubiquitous bursts of user requests make it

difficult to maintain desired SLOs [2, 40] as more resources
are suddenly requested but are not available at the moment
(e.g., occupied by another service or idle but not initialized).
A common practice to deal with bursts is over-provisioning,
i.e., preparing sufficient resources in advance, which would
result in a considerable waste of resources during valley
periods [59]. The problem posed by bursts is exacerbated
in an inference platform because DL models are generally
resource-hungry. For example, the GPT-3 model [8] con-
sumes 325 GB of memory for storing its parameters, as well
as necessary computing resources to run the inference, mean-
ing that prohibitive amounts of resources need to be allocated
in advance. This overhead increases dramatically as more
DL models are served simultaneously [25] and as the models
grow larger over time, especially with the recent emergence
of large language models such as ChatGPT [36]. Therefore,
a question emerges about providing high-performance yet
resource-efficient inference services despite bursts.
There have already been some attempts at this question.

Amazon SageMaker [5] is a well-known inference platform
that uses virtual machines (VMs) to execute inferences. De-
spite low operational costs, the bulky VMs make scaling too
slow to meet real-time requirements during sudden spikes
in requests. More recently, serverless computing offers oppor-
tunities for dealing with bursts [57]. For example, MArk [62]
combines sparse VMs and elastic serverless functions1 for
model serving under bursts, demonstrating the potential
benefits of serverless. Industry products such as Amazon

1The serverless function contains a piece of user code and can be instantiated
as an individual execution unit.

Alexa [4] and Netflix content delivery [44], have also gradu-
ally deployed their services on serverless platforms, which
can respond to fluctuating workload levels in a quick and
cost-effective manner due to the rapid elasticity and fine-
grained billing that serverless offers [2, 25, 60].

Despite the prominent advantage of serverless in handling
bursts, we note that the unavoidable model-loading process
when creating new function instances significantly limits
the benefits of auto-scaling for the following two reasons.
(1) High model-loading latency invalidates the reactive on-
demand scaling policy. According to our measurements, the
model-loading latency can be 2 to 50 times the inference
latency, making real-time services impossible during bursts.
(2)High resource requirements prevent the proactive prediction-
based scaling policy. Since a DLmodel can consume hundreds
to thousands of megabytes of memory, prewarming a suffi-
cient number of function instances in advance can result in
significant resource consumption. Given the unpredictability
of future requests, the pre-warmed instances typically far
surpass the actual demands [45]. These issues ultimately pre-
clude high performance while resource-efficient inference
services under bursts.

By solving the scaling issue as a consequence of the time-
consuming and resource-hungry model-loading process, we
aim to arm serverless functions with resource-efficient scal-
ing capabilities while maintaining consistent performance.
Rather than viewing the entire DL model as a complete black
box, as has been the case in previous works [2, 25, 60], we
identify unique opportunities that arise from the heteroge-
neous behavior of the internal layers. In particular, we find
that the sensitivity of each layer to computing resources
is almost negatively correlated with its parameter size, as
shown later in Figure 2. This implies that loading a small
number of resource-sensitive layers can achieve comparable
inference latency as loading a complete model, but signif-
icantly reduces the overhead of loading the model when
provisioning a new instance. For example, for one of the
latest object detection models YOLOv8x [43], if the top 10%
most resource-sensitive layers get loaded, the model-loading
time and memory consumption can be reduced from 163 ms
and 261 MB to 13.6 ms and 17.8 MB, respectively, while the
inference latency can remain almost unchanged by allocating
a few more CPU cores temporarily.

Driven by the observation on the completeness of DL mod-
els, we propose a fine-grained layer-level scaling policy in
combination with the existing coarse-grained model-level
scaling policy. The former scales out functions with a portion
of resource-sensitive layers which we call Shadow Function,
and the latter scales out functions still with a complete model
which we call Body Function. Body Function basically loads
a complete model to maintain consistent performance under
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stable demands, and adjusts periodically to long-term fluc-
tuations in workload levels (e.g., 1 minute). In comparison,
Shadow Function loads only a portion of resource-sensitive
layers so that it can respond quickly to sudden demands.
When a burst arises, it will be too slow to provision a new
Body Function, but the Shadow Function can be provisioned
in a timely manner. By pairing an existing Body Function
with a new “asymmetric” Shadow Function, they can per-
form inference executions on the resource-sensitive layers
together, while only the Body Function is still responsible
for the rest of the layers, achieving high resource efficiency
to maintain consistent performance at bursts.

To fulfill Asymmetric Functions, we develop a serverless-
oriented inference serving system called AsyFunc. Specifi-
cally, we make the following four contributions:
• We investigate the scaling issue of current serverless
inference platforms caused by the time-consuming and
resource-hungry model-loading process, and propose
the key concept of asymmetric functions with different
levels of model completeness (i.e., Body Function vs.
Shadow Function) to solve this issue.
• We develop a heuristic algorithm for the model-level
scaling (MLS) that adapts periodically and a priority-
based heuristic algorithm for the layer-level scaling
(LLS) that adapts on demand. Both of them aim to
maximize the resource efficiency without hurting the
performance. To make full use of the asymmetric func-
tions, we devise an adaptive scheduling scheme to
dispatch requests in real time.
• To enable fine-grained scaling at the layer level, we
implement a high-performance and resource-efficient
inference serving system AsyFunc2 on top of Knative.
For efficient coordination between Body and Shadow
Functions during collaborative inference executions,
we establish an efficient communication and synchro-
nization mechanism that imposes negligible overhead
on inference performance and resource consumption.
• We conduct extensive experiments to evaluate the
performance of AsyFunc. Based on real-world traces,
the evaluation results demonstrate that AsyFunc cuts
down the memory resource consumption by up to
32.5% over an existing system and keeps the SLO vio-
lation rate at a low level despite the bursts.

2 BACKGROUND AND MOTIVATION
In this section, we first analyze the scaling issue of exist-
ing serverless inference platforms. Then, we illustrate the
layer heterogeneity of DL models. Finally, we discuss the
opportunities and challenges of layer-level scaling.

2Our project is open-sourced at https://github.com/peiqiangyu/AsyFunc.
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Figure 1: RPS over time, the number of provisioned in-
stances, and SLO violation rate under different scaling
policies. Existing policies involve inevitable trade-offs
between resource efficiency and SLO satisfaction.

2.1 Scaling Issue of Serverless Inference
DL models consist of different types of neural network lay-
ers with different parameters ( a.k.a. weights) [41]. The lay-
ers and their connections form a computationally directed
acyclic graph (DAG), and inference executions are performed
on these layers along the DAG. The DL models have re-
cently achieved impressive performance in many areas, from
image classification [21, 51] to natural language process-
ing [13]. Major cloud providers, such as Amazon and Alibaba,
have widely deployed DL models to provide inference ser-
vices [42, 55]. However, online inference services are usually
both latency-critical and resource-hungry, which leads to
inevitable trade-offs between performance and resource effi-
ciency, especially given the significant burstiness observed
in the inference requests from users [7, 18, 27].
Serverless computing is considered to be a promising

choice for handling bursty workloads due to its rapid elastic-
ity and fine-grained billing [28, 34]. Therefore, model infer-
ence based on serverless platforms (i.e., serverless inference)
has received widespread attention [2, 25, 60, 62]. In serverless
inference, each DLmodel is deployed separately in a function
instance (e.g., Docker [33], Firecracker [1]) that scales out/in
as workload levels grow/drop. It is worth noting that before
providing inference services, the function instance needs to
be created first and then complete the model-loading process,
i.e., loading the model file into the memory and initializing
the model, which is very time-consuming. To maintain low
inference latency in case of bursts, one common remedy is
prewarming the instances and pre-loading the model before-
hand [12, 16]. However, prewarming a sufficient number of
instances for each DL model can cause a huge waste of re-
sources, especially when there are many different models and
under significant workload fluctuation. A recent study [35]
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proposes a remedy that saves resources by only prewarm-
ing the instances without instantiating any model and thus
can be shared by all models. In this way, the corresponding
model will be loaded into the instance on demand. However,
we notice that the time for loading the model is even longer
than that for performing an inference execution (e.g., the
gap is around 2× on CPU, which can be over 10× on GPU),
which disables persistent real-time inference serving.

We attribute the above scaling issue to the time-consuming
and resource-hungry behavior of the DL model-loading pro-
cess. We conduct an experiment to verify this issue with a
real-world trace from Twitter [3]. We select three classical
scaling policies, namely on-demand scaling (OD), prediction-
based scaling with the last value (LV) (i.e., the maximum
resource demand during the last period) [9], and prediction-
based scaling by multiplying the last value by a factor 𝑘
(k-LV, k is 2 here), and also present the ideal scaling policy
(Ideal) that provision functions on demand but assumes zero
model-loading latency. The requests per second (RPS) during
a day, the number of provisioned instances3 and the SLO
violation rate are plotted in Figure 1. We do not present the
SLO violation rate of the Ideal policy since it is always zero.

Two conclusions can be summarized from this experiment:
(1) The long model-loading process is likely to cause SLO
violations if we scale out instances conservatively (the aver-
age SLO violation rates of the OD and LV are 6.0% and 8.7%,
respectively); (2) The high demand for computing and stor-
ing will lead to a waste of resources if we scale out instances
aggressively, where many instances are provisioned but actu-
ally unused (the average number of created instances of the
k-LV is 5.0, about 2.1× of the actual demand as indicated by
the Ideal policy). We notice that the contradiction between
SLO satisfaction and resource efficiency arises from the
existing coarse-grained model-level scaling that always
loads the whole DL model into the new instances. Thus, we
wonder whether we can reduce unnecessary resources with-
out incurring perceptible SLO violations, by opening the
black box of DL models and studying its internal layers.

2.2 Heterogeneous Behavior of the Layers
To improve the scaling efficiency, we identify the opportu-
nity provided by the internal layers. It is worth noting that
batching is a useful approach to increase the processing rate
by grouping a number of user requests together, and the
batch size denotes the number of grouped requests. A larger
batch size can increase the processing rate but at the expense
of latency performance. We measure the inference latency in-
crease, the parameter size, and the loading time of each layer
inside the EfficientNet-b5 model [52] when the batch size

3We refer to function instances that pre-load DL models as provisioned
instances.

0
30
60
90

La
te

nc
y

in
cr

ea
se

 (m
s)

Latency increase of each layer

0
5

10
15

Pa
ra

m
et

er
si

ze
 (M

B) Parameter size of each layer

0 10 20 30 40 50 60 70 80
Layer index

0
3
6
9

Lo
ad

in
g

tim
e 

(m
s) Loading time of each layer

Figure 2: The latency increase of each layer in the
EfficientNet-b5 model as the batch size grows. Surpris-
ingly enough, the latency increase is almost negatively
correlated with the parameter size and loading time.
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Shadow Function.

increases from 2 to 4, as shown in Figure 2. As we can see, the
sensitivity of each layer to the computing resources varies.
Specifically, the inference latency increase is almost neg-
atively correlated with the parameter size, while the
model-loading latency is generally proportional to the
parameter size4. That is to say, both the memory usage and
model-loading time can be reduced remarkably by loading a
small number of resource-sensitive layers into the instance.

Figure 3 plots the cumulative distribution function (CDF)
of the latency increase of each layer when the batch size in-
creases. It is obvious that the latency increase of most layers
is only marginal. For example, when the batch size doubles to
four, although the largest latency increase is 92 ms, the 90th
percentile of latency increase is around 24 ms, and the 50th
percentile is nearly zero (note that the latency increase of
the whole model is around 900 ms). For those non-resource-
sensitive layers, increasing the batch size can increase the
throughput largely but would not cause a significant latency

4We provide more proof from other DL models and on other hardware of
this anti-correlation phenomenon in Appendix A.
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Figure 5: Illustration of collaboration between Body
Function and Shadow Function in the layer-level scal-
ing. The red circles denote the resource-sensitive layer,
and computations on this layer are partially offloaded.

increase even if the amount of resources remains unchanged.
Inspired by the above observation, we propose a fine-grained
layer-level scaling mechanism to handle bursty workloads,
where only some of the resource-sensitive layers will be
loaded rather than a bulky complete model.

2.3 Opportunities of the Layer-level Scaling
Opportunities to handle bursts. In existing inference serv-
ing systems, to avoid perceptible latency increase because
of a sudden spike of user requests, the scaling policy will
re-direct the additional requests to new function instances
that load a complete model. By contrast, when bursts arise,
the layer-level scaling policy will allow new function in-
stances to load only a small number of resource-sensitive
layers in a timely manner which we call Shadow Function.
As illustrated in Figure 5, during the inference process, the
original function instances containing a complete model
which we call Body Function, can offload part of the com-
putations on those resource-sensitive layers to the Shadow
Function. The two instances will perform computations on
the common layers collaboratively and in parallel, and only
the Body Function needs to perform computations on the
remaining non-resource-sensitive layers. This helps satisfy
sudden spikes in demand without heavy resource waste or
performance degradation.
Evidence supporting the advantages. Figure 4 shows

the latency increase when offloading computations on differ-
ent numbers of layers to the Shadow Function as the number
of requests (i.e., the batch size) grows from 2 to 3, 4, and 5.
Note that the x-axis represents the ratio of the layers’ param-
eter size to the whole model’s parameter size, and the layers
are sorted in descending order by their latency increase when
chosen to load into the Shadow Function. Thus, “100%” indi-
cates that the additional computations on the whole model
are offloaded to the Shadow Function, which is equivalent
to the model-level scaling policy. As observed, the latency
increase grows slowly when computations on only a small
number of layers get offloaded. In particular, the latency in-
crease remains nearly zero when offloading computations
on a few layers whose total parameter size is about half of
the model’s size. Also, such a small latency increase can be
easily offset by allocating a few more cores to the Shadow
Function temporarily.
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Figure 6: Brief comparison of three scaling policies to
deal with bursts.

Preliminary demonstration. Figure 6 shows a compar-
ison of the layer-level scaling policy with the model-level
one (including over-provisioning and on-demand scaling) as
workload level grows unexpectedly. The over-provisioning
policy provisions enough instances with the whole model
pre-loaded in case of sudden request surges, while the on-
demand scaling policy provisions instances just for stable
workloads (e.g., the most common workload level during
a period) and provisions additional instances when bursts
happen. By contrast, although the layer-level scaling policy
also provisions instances only for stable workloads, it scales
rather fast when bursts come by loading only a small num-
ber of resource-sensitive layers, achieving a good balance
between SLO satisfaction and resource efficiency. Accord-
ing to our measurements, the model-loading time can be
reduced by one to two orders of magnitude compared to that
of loading a complete model.

Challenges to address. Despite proving to have great po-
tential for serverless inference, the layer-level scaling mech-
anism faces critical challenges in coordinating Body and
Shadow Functions. Firstly, it is necessary to adapt the func-
tions’ configuration (i.e., # of allocated CPU cores) and the set
of layers loaded into the Shadow Function based on real-time
workload levels, which affects both the inference latency and
resource efficiency. Moreover, as offloading computations
to another instance causes the inference workflow to span
two instances, it consumes extra time to transfer the layers’
output data, which varies from several KB to tens of MB.
Thus, it is important to consider the output data size when
deciding on the set of loaded layers. Finally, since current
serverless platforms are a poor fit for supporting fine-grained
coordination between functions, it is essential to devise an
efficient communication and synchronization mechanism
with minimum overhead and easy-to-use user interfaces.
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3 SYSTEM DESIGN
In this section, we present the design of AsyFunc, a serverless
inference system that supports both coarse-grained model-
level scaling and fine-grained layer-level scaling.

3.1 Design Philosophy
To take advantage of the fine-grained layer-level scaling dis-
cussed in Section 2.3, we develop a high-performance and
resource-efficient serverless inference system with a new
auto-scaling and scheduling engine. The main idea behind
the engine lies in two aspects: (1) leveraging the Body Func-
tion that loads a complete model to handle stable inference
workloads, and (2) leveraging the Shadow Function that loads
a selective percentage of resource-sensitive layers to handle
spiky inference workloads effortlessly.When bursts arise, the
resource-sensitive parts of the DL model can be executed in a
parallel manner using the Shadow Function, while other non-
resource-sensitive parts are executed serially in the Body
Function only. In this way, AsyFunc aims to achieve a good
balance between SLO satisfaction and resource efficiency
despite the ubiquitous bursts of inference requests.

3.2 System Overview
Based on the above design philosophy, we establish AsyFunc.
Figure 7 shows the system overview of AsyFunc with the
Extractor, Profiler, Scaler, Scheduler, and Coordinator.
In the offline phase, ❶ after the well-trained DL model

is submitted to the platform, ❷ the Extractor automatically
extracts its layer information (including the layer type and
parameters) and structure information (i.e., the connections
between adjacent layers). Then, ❸ the Profiler analyzes the
resource sensitivity of each layer as well as other necessary
metadata information. ❹ Finally, the layer, structure, and
metadata information are stored in the model repository.
In the online phase, ❺ after receiving an SLO-specified

request from users through the API Gateway, 6a the Scaler on
the master node collects the inter-arrival time information

that will be used to calculate historical RPS for generating the
scaling decision periodically. The scaling decision includes
scaling out/in new Body Function instances periodically (i.e.,
the model-level scaling), and adjusting the maximum sup-
ported batch size of existing Body Function instances at
bursts by scaling up/down Shadow Function instances (i.e.,
the layer-level scaling). Meanwhile, 6b the Scheduler on the
master node is responsible for dispatching the incoming re-
quest to an appropriate Body Function instance on worker
nodes. ❼ Requests are first cached in the waiting queue to
form a batch. Then, all requests in the queue are grouped to-
gether and sent to an instance on worker nodes. ❽ The Body
Function instance can offload partial layers’ computations to
its paired Shadow Function instance at bursts, and the two
instances are coordinated by the Coordinator on the worker
node. In the following, we introduce each module in detail.

3.3 Extractor & Profiler
A DL model is composed of various types of layers that
exhibit different behaviors. AsyFunc needs to extract layer
information frommodel profiles submitted by developers and
analyze the resource sensitivity of every layer. The Extractor
and Profiler modules are responsible for these tasks.

The Extractor first parses the model profile and generates
a profile for each layer as an individual file which contains
the layer name, type, and parameters. In this way, layers can
be selectively loaded as a sub-model into a Shadow Function
instance at runtime, and the instance can perform inference
computations only on these layers. Then, the Extractor reads
the DAG structure information, i.e., connections between
layers. With this connection information, the output data
from the previous layer can be correctly passed to the next
layer during an inference execution.

The Profiler first estimates the resource sensitivity of each
layer based on its latency increase, groups adjacent layers
with similar sensitivity into a layer block, and filters out layer
blocks with low sensitivity or very large memory consump-
tion. Instead of each individual layer, the layer block as a
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whole will be selectively loaded into the Shadow Function to
avoid frequent data transfer during an inference execution.
For example, as shown in Figure 2, the layers numbered 8
to 15 will be merged into one block and the layer numbered
3 will be treated as another separate block. Next, the Pro-
filer obtains the metadata information of each layer block by
performing inference executions on these blocks separately,
including the inference latency (𝑙), parameter size (𝑝), and
output data size (𝑑) under different numbers of CPU cores
(𝑐) and batch sizes (𝑏), as a 5-tuple < 𝑐, 𝑏, 𝑙, 𝑝, 𝑑 >.

3.4 Scaler
The Scaler is responsible for scaling out/in Body Functions pe-
riodically and scaling up/down Shadow Functions at bursts.
On the one hand, the Scaler estimates the average work-

load level during the next period based on historical inter-
arrival time information. When it is expected to rise or de-
cline, the Scaler will make scaling decisions through model-
level scaling. Based on the model metadata and real-time
node & instance status (including the number of free CPU
cores on each node and the number of allocated CPU cores
to each instance), the Scaler decides the configuration of
the Body Function (i.e., # of CPU cores) and which worker
node to accommodate it. On the other hand, when bursts
arise unexpectedly within each period, the Scaler will make
scaling decisions through layer-level scaling. The purpose
of the layer-level scaling policy is to increase the maximum
supported batch size of existing Body Function instances
temporarily, by scaling up well-sized Shadow Function in-
stances for a collaborative inference execution. Based on the
model metadata and the reserved resources on each worker
node, the Scaler decides which worker node to provision the
Shadow Function and which layer blocks to load. The scaling
details will be discussed in Section 4.

Note that the container pool is distributed among worker
nodes. In other words, each worker node reserves one empty
container that can load any layer blocks from any models on
demand. In this way, the Shadow Function can be provisioned
quickly by loading only the resource-sensitive layers without
waiting for creating a container. Those reserved resources
can also make room for other Body Functions when the
remaining resources on that worker node are insufficient at
high workload levels.

3.5 Scheduler & Coordinator
Both the Scheduler and Coordinator help realize real-time in-
ference serving. First, the Scheduler is responsible for sched-
uling incoming requests to the best candidate instance, either
the Body Function instance only or the Body and Shadow
Function instance pair. Specifically, the Scheduler collects the
instance status on all worker nodes, including the running

state (i.e., idle or busy) and pairing state. As requests con-
tinue arriving in the waiting queue, the Scheduler forwards
them as a batch to the best idle Body Function instance. We
regard the instance that achieves the maximum throughput
(i.e., the actual batch size divided by the inference latency)
per CPU core as the best one. The scheduling details will be
discussed in Section 5.1.
Second, the Coordinator is responsible for coordinating

each instance pair during a collaborative inference execution
in three ways: creating and destroying instances, facilitating
efficient data transfer, and controlling correct synchroniza-
tion. Note that the Body Function and its Shadow Function
partner would be created on the same worker node as much
as possible to avoid time-consuming cross-server communi-
cation. The details will be discussed in Section 5.2.

4 FINE-GRAINED SCALING MECHANISM
In this section, we describe in depth the design of model-level
scaling and layer-level scaling in the Scaler.

4.1 Scaling Principle
First, we summarize the following two scaling principles:
(1) Themodel-level scaling policy for Body Functions aims

at satisfying stable workloads which are represented
by the expected average RPS.

(2) The layer-level scaling policy for Shadow Functions
aims at satisfying spiking workloads which are repre-
sented by the unexpected instantaneous RPS.

Before making the model-level scaling decision periodi-
cally, the Scaler needs to evaluate whether the existing in-
stances can meet the resource demand under the expected
average RPS. Specifically, since it is Body Function instances
that directly serve the user requests, the Scaler calculates the
maximum supported RPS by all the Body Function instances
paired with Shadow Function instances or not. Suppose there
are 𝑛 Body Function instances distributed in different worker
nodes. For a Body Function instance 𝑖 , we use 𝑏𝑖 , 𝑡𝑖𝑞 , and 𝑡𝑖𝑙
to represent the batch size, queuing time, and the inference
latency of the instance, respectively. As 𝑡𝑖𝑞 approaches zero,
the RPS that existing instances can handle (denoted as 𝑅𝑚𝑎𝑥 )
reaches the maximum. Thus, 𝑅𝑚𝑎𝑥 can be calculated by:

𝑅𝑚𝑎𝑥 =

𝑛∑︁
𝑖=1

max{𝑏
𝑖

𝑡𝑖
𝑙

| 𝑡𝑖
𝑙
≤ 𝑡𝑆𝐿𝑂 }, ∀𝑏𝑖 ∈ {1, 2, ..., 𝐵𝑚𝑎𝑥 }, (1)

where 𝑡𝑆𝐿𝑂 is the latency SLO. With Equation (1), the Scaler
makes the following decisions:
(1) 𝑅 > 𝛼𝑅𝑚𝑎𝑥 . It means that existing instances cannot

satisfy the predicted average RPS. The Scaler will scale
out new Body Function instances by using the model-
level scaling policy. We denote the residual RPS as 𝑅𝑘
which is equal to 𝑅 − 𝛼𝑅𝑚𝑎𝑥 .
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(2) 𝛽𝑅𝑚𝑎𝑥 ≤ 𝑅 ≤ 𝛼𝑅𝑚𝑎𝑥 . It indicates that existing in-
stances can serve requests stably. The Scaler should
take no action to avoid system instability caused by
frequent scaling and node status switching.

(3) 𝑅 < 𝛽𝑅𝑚𝑎𝑥 . It means that existing instances are be-
yond the demand under the predicted average RPS.
The Scaler will release instances to save resources.

The Scaler makes the layer-level scaling decision each time
a new request arrives. Once it detects that the instantaneous
RPS grows largely, in other words, the waiting queue be-
comes crowded, it will provision Shadow Functions through
the layer-level scaling policy. Since only the most resource-
sensitive but memory-efficient layers will be loaded, the
online model-loading process makes no perceptible impact
on the latency performance. When the number of queuing
requests drops back, the Shadow Functions will be released.

4.2 Model-Level Scaling
Based on Equation (1), the Scaler scales out Body Function
instances to satisfy residual RPS or scales in to save resources.

However, it is nontrivial to decide on an appropriate con-
figuration (i.e., # of CPU cores) as the RPS fluctuates. As the
number of allocated CPU cores grows, the instance could
achieve a lower inference latency or process a larger batch
at a time with similar latency. In terms of resource efficiency,
allocating more CPU cores would reduce the processing effi-
ciency represented by the maximum throughput per core but
increase the memory efficiency as fewer instances will be cre-
ated. Thus, to select the best configuration, the model-level
scaling policy is formulated as follows:

min
𝑁1∑︁
𝑖=1

(
𝑐𝑖 + 𝜌𝑚𝑖

)
(2)

s.t. 𝑅𝑘 ≤ 𝛼

𝑁1∑︁
𝑖=1

max{𝑏
𝑖

𝑡𝑖
𝑙

| 𝑡𝑖
𝑙
≤ 𝑡𝑆𝐿𝑂 }, ∀𝑏𝑖 ∈ {1, 2, ..., 𝐵𝑚𝑎𝑥 },

where 𝑐𝑖 and𝑚𝑖 represent # of CPU cores and memory con-
sumption of the instance 𝑖 ∈ 1 . . . 𝑁1 to be created, and 𝜌 is a
normalizing factor related to the parameter size of the whole
model. Considering that the Body Function instance loads a
complete model in which𝑚𝑖 is a fixed value, the objective
function (2) can be converted into min(∑𝑁1

𝑖
𝑐𝑖 + 𝑁1 · 𝜌 ·𝑚).

To solve this problem, we develop a heuristic algorithm for
model-level scaling (MLS) which decides the number of cre-
ated instances 𝑁1 and their configuration 𝑐𝑖 .
As shown in Algorithm 1, when deciding to scale out

(Line 2), for each core number and batch size (Lines 3-4),
MLS first estimates the average longest service time that is
equal to the average longest queuing time plus inference
latency (Line 5). If it is within the latency SLO (Line 6), MLS
calculates the resource efficiency that is defined as the

Algorithm 1 Heuristic Algorithm for Model-Level Scaling
1: 𝑋 : the set of existing Body Function instances;

𝑥𝑖 : the i-th instance in 𝑋 ;
𝑡
𝑐,𝑏

𝑙
: the estimated inference latency when the number

of CPU cores and batch size is 𝑐 and 𝑏, respectively;
𝑡
𝑐,𝑏
𝑠 : the estimated longest service time when the number
of CPU cores and batch size is 𝑐 and 𝑏, respectively;
𝑐𝑏𝑒𝑠𝑡 : the selected configurations of # of CPU cores of
the newly created Body Function;
𝜂𝑐𝑚𝑎𝑥 : the maximum achievable resource efficiency when
the number of CPU cores is 𝑐 , initialized as zero;

2: if 𝑅 > 𝛼𝑅𝑚𝑎𝑥 then
3: for 𝑐 = 1, 2, . . . ,𝐶𝑚𝑎𝑥 do
4: for 𝑏 = 𝐵𝑚𝑎𝑥 , 𝐵𝑚𝑎𝑥 − 1, . . . , 1 do
5: 𝑡

𝑐,𝑏
𝑠 = 𝑏−1

𝑅
+ 𝑡𝑐,𝑏

𝑙
;

6: if 𝑡𝑐,𝑏𝑠 ≤ 𝑡𝑆𝐿𝑂 then
7: 𝜂 = 𝑏

𝑐 ·𝑡𝑐,𝑏
𝑙

+ 𝑏

𝜌𝑚 ·𝑡𝑐,𝑏
𝑙

;

8: if 𝜂 > 𝜂𝑐𝑚𝑎𝑥 then
9: 𝜂𝑐𝑚𝑎𝑥 = 𝜂;
10: break;
11: 𝑐𝑏𝑒𝑠𝑡 = {𝑐1, 𝑐2, . . . , 𝑐𝑛 | 𝜂𝑐1𝑚𝑎𝑥 ≥ 𝜂

𝑐2
𝑚𝑎𝑥 ≥ · · · ≥ 𝜂

𝑐𝑛
𝑚𝑎𝑥 ≥

· · · ≥ 𝜂
𝑐𝐶𝑚𝑎𝑥
𝑚𝑎𝑥 };

12: while 𝑅 > 𝛼𝑅𝑚𝑎𝑥 do
13: Create a Body Function with 𝑐 ∈ 𝑐𝑏𝑒𝑠𝑡 of cores on

the worker node with the most available cores.
14: else if 𝑅 < 𝛽𝑅𝑚𝑎𝑥 then
15: Sort 𝑋 by 𝜂 in ascending order;
16: for 𝑖 = 1, 2, . . . , |𝑋 | do
17: if 𝑅 < 𝛽𝑅𝑚𝑎𝑥 then
18: Destroy 𝑥𝑖 ;
19: else
20: break;

maximum throughput per unit of computing resources plus
that per unit of memory resources (Line 7) and obtains the
maximum value for each core number (Lines 8-10). Finally,
MLS chooses 𝑛 configurations with the maximum resource
efficiency (Line 11) and creates Body Function instances until
𝑅 ≤ 𝛼𝑅𝑚𝑎𝑥 (Lines 12-13). On the contrary, when deciding to
scale in (Line 14), MLS will calculate the resource efficiency
of each instance in 𝑋 during the last period and sort them in
ascending order (Line 15). Then, MLS will destroy them one
by one until 𝑅 ≥ 𝛽𝑅𝑚𝑎𝑥 (Lines 16-20).

4.3 Layer-Level Scaling
As illustrated in Section 2, although the average RPS often
varies slowly, the instantaneous RPS fluctuates severely and
unexpectedly. When bursts arise, the Shadow Function helps
improve 𝑅𝑚𝑎𝑥 by increasing the maximum supported batch
size of existing Body Function instances. In the following, we
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Algorithm 2 Heuristic Algorithm for Layer-Level Scaling
1: 𝑄 : the waiting queue;

𝑋 : the set of unpaired Body Function instances sorted
in descending order by the time they become idle;
𝑥𝑖 : the i-th instance in 𝑋 ;
𝑐𝑖 ,𝑚𝑖 : # of CPU cores and the memory usage of the i-th
instance in 𝑋 ;
𝑐𝑖𝑎 : the number of available CPU cores on the worker
node where 𝑥𝑖 resides;
𝑏𝐵 , 𝑏𝑆 : the batch size supported by the Body and Shadow
Functions, respectively, on the parallel part;
𝑏: the batch size supported by the Body Function on the
non-parallel part, where 𝑏 = 𝑏𝐵 + 𝑏𝑆 ;
𝐿: the set of candidate layer blocks sorted in descending
order by their resource sensitivity;
Φ: the set of selected layer blocks, where Φ is initialized
as ∅ for each Shadow Function;
𝑚Φ: the memory consumption of the selected blocks Φ;
Φ𝑏𝑒𝑠𝑡 : the best set of layer blocks for a Shadow Function;
𝜂𝑚𝑎𝑥 : the maximum achievable resource efficiency, ini-
tialized as zero;

2: if |𝑄 | ≥ 𝛾 then
3: for 𝑖 = 1, 2, . . . , |𝑋 | do
4: if 𝑐𝑖𝑎 ≥ 𝐶𝑚𝑎𝑥/4 then
5: 𝑐 = min{𝑐𝑖𝑎,𝐶𝑚𝑎𝑥/2};
6: for 𝜄 in 𝐿 do
7: 𝜙 ← 𝜙 ∪ 𝜄;
8: Update𝑚Φ;
9: for 𝑏 = 𝐵𝑚𝑎𝑥 , 𝐵𝑚𝑎𝑥 − 1, . . . , 1 do
10: Select 𝑏𝐵 , 𝑏𝑆 to min |𝑡𝑐

𝑖 ,𝑏𝐵
𝑝𝐵
− 𝑡𝑐,𝑏−𝑏𝐵

𝑝𝑆
|;

11: 𝑡
𝑐,𝑏

𝑙
= max{𝑡𝑐

𝑖 ,𝑏
𝑛𝑝 + 𝑡𝑐

𝑖 ,𝑏𝐵
𝑝𝐵

, 𝑡
𝑐𝑖 ,𝑏
𝑛𝑝 + 𝑡𝑐,𝑏𝑆𝑝𝑆

};
12: 𝑡

𝑐,𝑏
𝑠 = 𝑡𝑙𝑜𝑎𝑑 (𝜙) + 𝑡𝑐,𝑏𝑙

;
13: if 𝑡𝑐,𝑏𝑠 ≤ 𝑡𝑆𝐿𝑂 then
14: 𝜂 = 𝑏

(𝑐𝑖+𝑐 ) ·𝑡𝑐,𝑏
𝑙

+ 𝑏

𝜌 (𝑚𝑖+𝑚Φ ) ·𝑡𝑐,𝑏𝑙

;

15: if 𝜂 > 𝜂𝑚𝑎𝑥 then
16: 𝜂𝑚𝑎𝑥 = 𝜂;
17: 𝜙𝑏𝑒𝑠𝑡 = 𝜙 ;
18: break;
19: Provision a Shadow Function instance that loads

the layer blocks of 𝜙𝑏𝑒𝑠𝑡 on the worker node.

propose a layer-level scaling policy that scales up Shadow
Function instances in a timely manner to satisfy sudden
demands with minimum resource consumption.

Each Body Function instance can be pairedwith one Shadow
Function instance. Suppose 𝑁2 represents the number of un-
paired Body Function instances on all worker nodes, so there
are at most 𝑁2 Shadow Function instances to be scaled up,
where the Scaler needs to determine their configurations,

including # of CPU cores and the set of loaded layer blocks.
The layer-level scaling policy is formulated as follows:

min
𝑁2∑︁
𝑗=1

(
𝑐 𝑗 + 𝜌𝑚 𝑗

)
s.t. 𝑅𝑏𝑢𝑟𝑠𝑡 ≤

𝑁2∑︁
𝑗=1

max{𝑏
𝑗

𝑡
𝑗

𝑙

| 𝑡 𝑗
𝑙
≤ 𝑡𝑆𝐿𝑂 }, ∀𝑏 𝑗 ∈ {1, 2, ..., 𝐵𝑚𝑎𝑥 },

𝑡
𝑗

𝑙
= max{𝑡 𝑗𝑛𝑝 + 𝑡

𝑗

𝑝𝐵
, 𝑡

𝑗
𝑛𝑝 + 𝑡

𝑗

𝑝𝑆
}, ∀𝑗 ∈ {1, 2, ..., 𝑁2}, (3)

where 𝑐 𝑗 and 𝑚 𝑗 represent # of CPU cores and memory
consumption of the instance 𝑗 ∈ 1 . . . 𝑁2, and 𝑡 𝑗𝑛𝑝 , 𝑡

𝑗

𝑝𝐵
, and 𝑡 𝑗

𝑝𝑆

refer to the inference latency on the non-parallel part of the
Body Function, the inference latency on the parallel part of
the Body Function, and the inference latency on the parallel
part of the Shadow Function plus the data transmission time.
Taking the case shown in Figure 5 as an example, 𝑡 𝑗𝑛𝑝 refers
to the inference latency of layers numbered 1, 4, and 5, 𝑡 𝑗

𝑝𝐵
is

the inference latency of layers numbered 2 and 3 in the Body
Function instance, and 𝑡

𝑗

𝑝𝑆
is the inference latency of the

layer numbered 2 in the Shadow Function instance as well
as the data transmission time. The overall inference latency
is the highest one of (𝑡 𝑗𝑛𝑝 + 𝑡

𝑗

𝑝𝐵
) and (𝑡 𝑗𝑛𝑝 + 𝑡

𝑗

𝑝𝑆
).

As an NP-hard problem, we convert it into a heuristic
algorithm for realizing the layer-level scaling (LLS). First,
LLS gives priority to Body Functions with earlier time to
become idle to be paired with Shadow Functions so that the
Shadow Functions can be fully used soon after. Secondly,
layer blocks with higher resource sensitivity will be selected
first. Thirdly, the number of CPU cores allocated to Shadow
Functions is fixed; however, if the available CPU cores are
insufficient on the node where the Body Function resides,
all the remaining cores will be allocated. As shown in Al-
gorithm 2, for each Body Function instance (Line 2), LLS
first judges whether it is necessary to scale up according to
the length of 𝑄 (Line 2). If so, for each Body Function, LLS
determines the number of cores for the Shadow Function,
adds one layer block each time, and updates the memory
usage (Lines 3-8). Next, for each batch size, LLS determines
𝑏𝐵 and 𝑏𝑆 to guarantee the two parallel parts almost finish at
the same time (Lines 9-10). Then, LLS estimates the inference
latency based on Equation (3) and the service time that is
equal to the model-loading time 𝑡𝑙𝑜𝑎𝑑 and inference latency
(Lines 11-12). If the latency SLO can be satisfied (Line 13),
LLS chooses the configuration that maximizes the resource
efficiency (Lines 14-18) to provision a Shadow Function in-
stance (Line 19). For the next Body Function, LLS repeats the
above steps until the number of newly provisioned Shadow
Functions exceeds a pre-defined value 𝜅. Similar to MLS, as
the burst passes off, LLS scales down by destroying Shadow
Function one by one whose 𝜂 is the smallest.
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Algorithm 3 Adaptive Scheduling Algorithm
1: 𝑄 : the waiting queue;

𝑋 : the set of idle Body Function instances sorted in as-
cending order by # of allocated CPU cores;
𝑥𝑖 : the i-th instance in 𝑋 ;
𝑡𝑤 : the longest waiting time of queuing requests in 𝑄 ;
𝑡𝑖
𝑙
, 𝑡𝑖𝑠 : the estimated inference latency and the estimated

longest service time of queuing requests if choosing 𝑥𝑖 ;
2: Flag = FALSE;
3: while a request arrives in 𝑄 do
4: for 𝑖 = 0, 1, . . . , |𝑋 | do
5: 𝑡𝑖𝑠 = 𝑡𝑤 + 𝑡𝑖𝑙 ;
6: Record 𝑡𝑖𝑠 in 𝑇 ;
7: if 𝑡𝑖𝑠 ≤ 𝑡𝑆𝐿𝑂 then
8: Schedule 𝑄 to 𝑥𝑖 and clear 𝑄 ;
9: Flag = TRUE;
10: break;
11: if not Flag then
12: if 𝑡𝑖𝑠 > 𝑡𝑆𝐿𝑂 , ∀𝑡𝑖𝑠 ∈ 𝑇 , then
13: Choose an instance 𝑥𝑖 with the largest 𝑖;
14: Schedule a portion of the latest requests in 𝑄 to

𝑥𝑖 and clear 𝑄 ;
15: else
16: Wait for the next request;

5 REAL-TIME INFERENCE SERVING
In this section, we present the scheduling algorithm to dis-
patch incoming requests to the best instance and the coordi-
nation mechanism to manage Body and Shadow Function
instances, both of which ensure real-time inference serving.

5.1 Adaptive Scheduling
As requests arrive in the waiting queue, the Scheduler needs
to decide on both the appropriate time to dispatch all these
requests as a batch and the best instance to serve them. The
former impacts both the waiting time and inference time as
the number of requests in the waiting queue increases, while
the latter only impacts the inference time. To maximize the
processing efficiency (defined as the actual throughput per
core) while keeping a low SLO violation rate, the Scheduler
makes decisions based on the following observation: Smaller
instances generate higher processing efficiency, while larger
instances are more robust to workload fluctuations as they
can process a larger batch size a time.

Hence, we develop an adaptive scheduling algorithm that
prioritizes smaller instances and leaves behind larger ones
for dealing with bursts. As shown in Algorithm 3, as a new
request arrives (Line 3), the Scheduler first calculates the
estimated longest service time if choosing the instance 𝑥𝑖
(Lines 4-5), and records it in a list (Line 6). If that instance
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Figure 8: Demonstration of the coordination process.

satisfies the SLO, the Scheduler will dispatch all the requests
in 𝑄 at once and change the flag (Lines 7-10). If the requests
are not successfully scheduled in the end (Line 11), there
are two cases: (1) None of the idle instances can satisfy the
SLO. Hence, to ensure the SLO of as many as requests, the
Scheduler will selectively dispatch a portion of the latest
requests in the queue to an idle instance with the highest
configuration (i.e., the largest 𝑖 value) and drop other earlier
requests [27] (Lines 12-14); (2) There is no idle instance at
the moment. Therefore, the Scheduler will wait for the next
request (Lines 15-16).

5.2 Coordination Mechanism
As introduced in Section 3.5, the Coordinator is distributed
on each worker node and manages the life cycle of all func-
tions. Specifically, AsyFunc maintains a Function Registra-
tion Table (FRT) that records the metadata information of
each function, including the function ID, function type, ID of
its paired function, indexes of loaded DL model layers, and
function status. Upon receiving a scaling decision from the
Scaler, the Coordinator will create or destroy corresponding
functions and update the node and instance status as well as
the FRT. At runtime, AsyFunc uses shared memory for fast
data transmission between Body and Shadow Functions.

As plotted in Figure 8a, when receiving a layer-level scal-
ing decision, a the Coordinator will parse the received mes-
sage, insert a record into the FRT, and provision a Shadow
Function. b When the provisioning process completes, c the
Coordinator updates the function status and d sends a reg-
istration success message to the corresponding paired func-
tions so that they start to process inference requests collab-
oratively. As plotted in Figure 8b, when the Body Function
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receives an invocation and then finishes the computations
on the non-parallel part, a it sends an offloading message to
the Coordinator with the intermediate data to be processed in
parallel. Meanwhile, the Coordinator b queries the registra-
tion table, obtains the ID of the paired Shadow Function, and
c then forwards the intermediate data to the Shadow Func-
tion. Once the processing is complete, d the Shadow Func-
tion sends a completion message to the Coordinator with the
result data. e After obtaining the result data from both the
Coordinator and local processing, the Body Function merges
them and continues to perform further computations.

6 IMPLEMENTATION
We implement a real system prototype of AsyFunc on top
of an open-source serverless platform based on Knative [22]
with about 3k lines of code in Python and C++. First, to
obtain model metadata from benchmark models (as listed
later in Table 2), we implement the Extractor and Profiler as
a Python toolkit. Second, we implement the API Gateway,
Scaler, Scheduler, and Coordinator to deploy and invoke func-
tions through Knative Serving Service and Knative Serving
Ingress. These modules realize the following functions: col-
lecting and preprocessing user requests, and making scaling
and scheduling decisions. We detail the implementation of
the Coordinator as follows.
The Coordinator creates a TCP service to send/receive

notifications to/from each function and leverages the mem-
ory filesystem [50] to transfer intermediate data during an
inference execution. The shared memory is viewed as a di-
rectory and is mapped to the memory area of each function
instance on the same node using the Linux kernel’s mmap
system call [38], where the cross-function communication
is established through reading and writing files in this di-
rectory. At runtime, the Coordinator monitors file system
events in the shared memory using the inotify [31] API in
the Linux kernel. The file system events include creating or
destroying functions and transferring data between func-
tions. Specifically, (1) Once a new function is provisioned, it
records its metadata information as a new file in the mem-
ory. When the Coordinator identifies this event, it updates
the record in the FRT with the metadata and then deletes
the file. (2) When a Body Function needs to call a Shadow
Function for offloading computations, it writes the offloaded
data as a new file in the memory, which is differentiated by
the instance’s ID. Then, the Coordinator uses the ID to find
the corresponding ID of the paired Shadow Function in the
FRT and instructs the Shadow Function to read the data and
then delete the file. At last, the Shadow Function returns
the inference result to the Body Function in the same way.
According to our experiments, it takes about 0.32 ms to write
and read 1 MB of the data through the shared memory.

For application developers, they only need to make three
changes to their code for using AsyFunc, including (1) im-
port AsyFunc’s Python package, (2) use getModel(model)
for extracting and profiling of the DL model, and (3) use
inference(inputs,SLO) for executing the inference.

7 EVALUATION
In this section, we evaluate the performance of AsyFunc
through extensive experiments. We first introduce the ex-
perimental setup and then show the experimental results
compared to the state of the art.

7.1 Experimental Setup
Environment configuration.We deploy AsyFunc in a local
private cluster to provide inference services, and the specifi-
cation of each node can be found in Table 1. To accelerate the
experiments on a 30-node cluster, we switch our implemen-
tation to the simulation mode as previous work does [27],
where the inference latency under different configurations
and the data transmission time under different data sizes are
measured on the physical node.

Table 1: Experimental environment.

Item Specification
CPU device Intel Xeon E5-2697
Number of cores 36
Base frequency 2.30 GHz
Memory capacity 64 GB
Operating system Ubuntu 18.04
DL framework PyTorch 1.12

System parameters. The maximum number of allocated
CPU cores𝐶𝑚𝑎𝑥 and themaximum supported batch size𝐵𝑚𝑎𝑥

of a Body Function are set to 16 and 4, respectively, because
it could be ineffective to further reduce latency by allocating
more cores. Further, the scaling parameters 𝛼 and 𝛽 are set
to 0.8 and 0.6, respectively, and the adaptation period of the
model-level scaling is 60 s. The layer-level scaling thresholds
𝛾 and 𝜅 are set to 2 and 10, respectively.

User requests.We use real-world traces from Twitter [3]
to generate user requests. It represents a typical arrival of
tweets for sentiment analysis, which has beenwidely used for
evaluating inference systems [2, 62]. Figure 1 shows the RPS
during a day which exhibits obvious burst characteristics.
Inference workloads. We select six representative DL

models from different families as the inference workloads,
including InceptionV3, ResNet50, EfficientNet-b5, SSD300,
YOLOv8x, and VGG16, which are built on PyTorch [39]. We
set their latency SLOs based on the inference latency when
the number of allocated cores is 𝐶𝑚𝑎𝑥 and the batch size is
𝐵𝑚𝑎𝑥 , for the following experiments. Their values and the
model details are shown in Table 2.
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Table 2: Benchmark DL models.

Model Parameter
size

# of
layers

# of layer
blocks SLO (s)

InceptionV3 [51] 91 MB 104 5 0.3
ResNet50 [21] 98 MB 126 15 0.5
EfficientNet-b5 [52] 117 MB 80 7 2.0
SSD300 [29] 136 MB 65 6 1.2
YOLOv8x [43] 261 MB 119 12 4.0
VGG16 [49] 528 MB 39 6 0.8

Performance metrics and baseline systems. We com-
pare AsyFunc with a state-of-the-art serverless inference
systemBATCH [2] under twometrics, including resource effi-
ciency and the SLO violation rate. For fairness of comparison,
we realize BATCH’s scaling policy on top of AsyFunc’s im-
plementation, which determines the functions’ configuration
offline and scales at a coarse-grained model level. To show
the benefit of the layer-level scaling, we disable the layer-
level scaling ability and denote this system as AsyFunc− .

7.2 Overall Performance
Computing resource efficiency.We first calculate the com-
puting resource usage of all provisioned function instances
in the cluster in each adaptation period. Figure 9 shows the
violin plot of the CPU usage by six DL models under Asy-
Func, AsyFunc− , and BATCH, where the text labels show
the average values. As we can see, AsyFunc− reduces the
CPU usage by 7.0%∼20.9% as compared with BATCH due to
its adaptive scaling and scheduling ability, which adjusts the
configuration of functions and the batch size flexibly to make
full use of CPU resources. On the contrary, BATCH adjusts
the configuration and the batch size after a long period and
restricts the configuration to just one value in each period,
making it hard to capture short-term workload fluctuations.
AsyFunc further lowers the CPU usage by 0.7%∼13.0%

than AsyFunc− and 9.6%∼31.1% (19.0% on average) than
BATCH thanks to its layer-level scaling ability. Given the
high model-loading time, BATCH tends to provision suffi-
cient functions in advance for maintaining SLOs. By com-
parison, through scaling at a fine-grained layer level, the
model-loading overhead can be largely reduced so that the
Shadow Function can be provisioned in a timely manner in
case of possible performance degradation as bursts come
unexpectedly. For the InceptionV3 and ResNet50 models, the
additional savings brought by the layer-level scaling seem
marginal. This is because they are very lightweight (see their
SLOs) and consume fewer CPU resources to finish infer-
ence tasks than other models. Thus, provisioning Shadow
Functions for them may bring marginal performance gains.
Nevertheless, the layer-level scaling is able to cut down re-
source usage considerably as the model grows large in terms
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Figure 9: The violin plot of the CPU usage.
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Figure 10: The violin plot of the memory usage.

of computational complexity, such as EfficientNet-b5 and
YOLOv8x, whose additional resource savings are about 12%.

Memory resource efficiency.As discussed in Section 2.2,
the proposed layer-level scaling is especially friendly to mem-
ory resources. Next, we calculate the memory resource usage
in each period. As plotted in Figure 10, AsyFunc− lowers
the memory footprint by 0.7%∼17.0% than BATCH, while
AsyFunc furthers reduces it by 12.6%∼24.6% than AsyFunc−
and 13.3%∼32.5% (23.1% on average) than BATCH. Such sig-
nificant resource savings arise from AsyFunc’s layer-level
scaling ability that takes advantage of the anti-correlation
phenomenon as presented in Section 2.2. To maintain a low
SLO violation rate in the face of burstiness, the Shadow Func-
tions only load a portion of resource-sensitive layers adap-
tively that consume only a few memory resources. This is es-
pecially promising for future AI accelerators whose on-chip
memory is usually scarce as compared to the host memory.
SLO violation rate. Finally, we calculate the SLO vio-

lation rate by counting the percentage of requests whose
SLO constraint is not satisfied. Figure 11 shows the violin
plot of the SLO violation rate of the six DL models. As com-
pared to BATCH, there is an insignificant or no increase
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in the violation rate under AsyFunc and AsyFunc− thanks
to the lightweight layer-level scaling that can scale up a
Shadow Function instance within a few milliseconds. In this
way, the Body Function instance can offload additional com-
putations to the Shadow Function instance and thus serve
more requests when the workload level suddenly grows high.
In summary, to achieve similarly low SLO violation rates,
the fine-grained scaling and adaptive scheduling capabili-
ties of AsyFunc can save abundant computing and memory
resources, which potentially helps improve the function den-
sity and thus save costs for datacenter facilities.

7.3 Extension of AsyFunc
Serving transformer-based models. According to our
investigation, there may be no significant anti-correlation
phenomenon in transformer-based models. Nevertheless,
AsyFunc still outperforms the state of the art thanks to its
layer-level scaling support that achieves an adaptive trade-
off between performance and resource efficiency. Accord-
ing to our experiments on the Vision Transformer (ViT)
model [15], AsyFunc consumes 6.6% fewermemory resources
than BATCH while keeping a low SLO violation rate.
Supporting GPU hardware. Nowadays, it is very com-

mon to use heterogeneous hardware, such as GPUs, for infer-
ence executions. As major serverless platforms [5, 17] do not
support heterogeneous hardware at the moment, we do not
include advanced heterogeneous hardware in our current ver-
sion. Nevertheless, it complements AsyFunc’s fine-grained
scaling capabilities at the layer level. Here, we briefly illus-
trate how AsyFunc can be equipped with GPU support. First,
in the scaling algorithm, the GPU resources can be repre-
sented as the number of SMs (vs. # of CPU cores) and/or
the GPU memory usage (vs. the host memory) with virtu-
alization technologies like virtual GPU and Multi-Instance
GPU. Second, for the implementation, the CPU functions can
be replaced by GPU-supported ones, such as nvidia-docker.

There are indeed some technical issues to overcome, such
as efficient coordination between CPU functions and GPU
functions and the logic of data exchange between the Body
Function and Shadow Function. It would be an interesting
futurework to extend our approach to these scenarios in prac-
tice. In the Appendix, we show that on GPU, the overhead of
loading models becomes more severe, where the inference
latency is much lower than on CPU, but the model-loading
time is higher. Thus, we expect the revealed anti-correlation
phenomenon may benefit the GPU scenarios more.

8 RELATEDWORK
Conventional model serving. Many efforts have been
devoted to designing efficient scheduling mechanisms for
model serving to achieve various objectives, e.g., low end-to-
end latency [11, 19, 27, 58], high throughput [14, 20, 27], high
resource efficiency [30, 56], and good fairness [24]. However,
they only focus on the application level, without digging into
the bottom inference platforms, leaving a large performance
gap to be filled. Additionally, facing the widespread bursti-
ness in the production environment, most of these prior arts
cannot adapt to the fluctuating workload efficiently, leading
to a significant trade-off between performance and resource
efficiency. Although AlpaServe [27] employs statistical mul-
tiplexing with model parallelism to reduce serving latency
for bursty workloads, the biggest difference is that it focuses
on static provisioning through automatic parallelization and
placement of models, ignoring the auto-scaling capability
that the serverless native provides.
Serverless inference. Driven by the development of

serverless computing, many works [2, 7, 25, 60–62] have
attempted to deploy efficient machine learning inference
serving on serverless platforms to take advantage of its
rapid elasticity and fine-grained billing ability. Neverthe-
less, although these techniques consider an auto-scaling set-
ting, most of them regard the DL model as a complete black
box [2, 7, 60, 62], which leads to resource inefficiency at a
coarse-grained model-level scaling when directly applied for
serverless inference serving. Recent literature has further
attempted to open the black box of DL models to reduce
resource footprint through tensor sharing [25], but it still
lacks generalizability in dealing with various model families
as it relies on the layer sameness that mainly exists among
model variants in the same family. By contrast, AsyFunc ex-
ploits the differences between any model layers. Gillis [61] is
another work to open the box, which focuses on partitioning
large DL models so that they can fit into small functions.
By comparison, AsyFunc focuses on the scaling problem of
serverless platforms and only scales out resource-sensitive
layers to perform additional computations as bursts arise.
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Serverless cold start. The cold start issue of serverless
functions has been an active research topic in recent years [1,
6, 26, 37, 46–48, 53, 54]. These works typically adopt two
different technical paths, including (1) avoiding cold starts
based on predictive prewarming techniques [6, 46] and con-
tainer keep-alive strategies [37, 47], and (2) reducing the
latency of a single cold start based on snapshots [53, 54] and
lightweight runtime techniques [1, 26, 48]. Taking industrial
practices as an example, Azure deploys a practical hybrid
histogram policy to dynamically decide the prewarming and
keep-alive windows by characterizing the serverless work-
loads, which significantly reduces the number of cold starts
but consumes fewer resources [47]. However, these works
focus on platform-level cold starts, while AsyFunc deals with
“cold starts” specifically for inference applications. They are
complementary to AsyFunc to further improve the resource
efficiency of real-time inference serving for cloud providers.

9 CONCLUSION
In this paper, we propose a high-performance and resource-
efficient serverless inference system called AsyFunc for han-
dling bursty DL workloads efficiently. By analyzing the im-
pact of DL models’ completeness, we find that the layer’s sen-
sitivity to computational resources is largely anti-correlated
with its parameter size, and the latter further determines
the memory usage and model-loading time. Driven by this
phenomenon, we propose a new concept of asymmetric func-
tions where the original Body Function still loads a complete
model to satisfy stable demands, while the proposed light-
weight Shadow Function loads only a portion of resource-
sensitive layers to handle surging demands. On top of Kna-
tive, AsyFunc is equipped with layer-level scaling capability
to achieve the above goal. The evaluation results show that
AsyFunc outperforms the state-of-the-art system by up to
32.5% in memory resource efficiency while meeting the SLO
target despite workload burstiness.
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A MORE PROOF OF THE
ANTI-CORRELATION PHENOMENON

To show the widespread anti-correlation phenomenon of DL
models, we provide more proof from other model families
and on other hardware here.
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