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Opara: Exploiting Operator Parallelism for
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Abstract—GPUs have become the defacto hardware devices for accelerating Deep Neural Network (DNN) inference workloads.
However, the conventional sequential execution mode of DNN operators in mainstream deep learning frameworks cannot fully utilize
GPU resources, even with the operator fusion enabled, due to the increasing complexity of model structures and a greater diversity of
operators. Moreover, the inadequate operator launch order in parallelized execution scenarios can lead to GPU resource wastage and
unexpected performance interference among operators. In this paper, we propose Opara, a resource- and interference-aware DNN
Operator parallel scheduling framework to accelerate DNN inference on GPUs. Specifically, Opara first employs CUDA Streams and
CUDA Graph to parallelize the execution of multiple operators automatically. To further expedite DNN inference, Opara leverages the
resource demands of operators to judiciously adjust the operator launch order on GPUs, overlapping the execution of
compute-intensive and memory-intensive operators. We implement and open source a prototype of Opara based on PyTorch in a
non-intrusive manner. Extensive prototype experiments with representative DNN and Transformer-based models demonstrate that
Opara outperforms the default sequential CUDA Graph in PyTorch and the state-of-the-art operator parallelism systems by up to 1.68×
and 1.29×, respectively, yet with acceptable runtime overhead.

Index Terms—DNN inference, DNN operator parallelism, scheduling, GPU resource utilization
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1 INTRODUCTION

D EEP Neural Networks (DNNs) have gained notable
success in various business fields such as image

processing, speech recognition, and virtual reality [1]. In
general, DNN inference tasks are exceptionally latency-
sensitive. For instance, latency requirements in autonomous
driving scenarios are non-negotiable (e.g., within 100 mil-
liseconds) due to safety considerations [2]. Accordingly,
increasing attention from both academia and industry has
been paid to fast and efficient model serving [3]. To meet
such performance requirements, modern cloud datacenters
are hosting thousands of GPUs to accelerate DNN inference
for users. For instance, Alibaba Cloud houses more than
6, 000 GPUs, many of which are tasked with managing a
substantial volume of inference requests [4].

Cloud-based GPUs are equipped with an increasing
amount of computational power, which typically exceeds
the resource demands of individual inference tasks, leading
to under-utilization and wastage of hardware resources [5].
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To achieve the objective model accuracy with fewer compu-
tations, several recent works (e.g., Szegedy et al. [6]) focus
on substituting large operators with several smaller and
multiple-branch operators in DNN models, which further
exacerbates the issue of GPU under-utilization. While batch-
ing requests [7] or co-locating model inference tasks [8] on a
GPU can mitigate such GPU under-utilization, it inevitably
prolongs the model inference due to batching latency and
performance interference [9]. Moreover, the operator fu-
sion [10] cannot fully utilize the GPU resources (as discussed
in Sec. 2.2) due to the limited scope of pre-defined fusion
rules. Fortunately, as DNN models can typically be rep-
resented by a Directed Acyclic Graph (DAG) with parallel
operators, it provides us an opportunity to exploit inter-
operator parallelism for accelerating DNN inference on GPUs
while improving the GPU utilization.

However, it is nontrivial to efficiently parallelize the
execution of DNN operators for a DNN inference task due
to the following two facts. First, the model DAG typically
exhibits considerable complexity, often incorporating hun-
dreds of operators with complex inter-operator dependen-
cies. For simplicity, existing deep learning (DL) frameworks
execute DNN operators one by one in topological sorting
order [11]. To achieve operator parallelism, a recent work
(i.e., Nimble [12]) relies on a reduction transformation of
the DNN computation graph, which inevitably brings heavy
computation overhead. Second, inadequate operator parallel
scheduling can adversely impact the DNN inference perfor-
mance. As evidenced by motivation experiments in Sec. 2.3,
the inadequate operator launch order in mainstream DL
frameworks (e.g., PyTorch) can prolong the DNN inference
latency by up to 29%, due to the GPU blocking caused by
the non-preemption feature of CUDA kernels [13] and per-
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formance interference among parallelizable operators [9].
In addition, several existing works (e.g., IOS [14]) fail to
consider the operator launch and function call overhead due
to excessive CPU-GPU interactions when parallelizing DNN
operators in the DL framework.

To address the challenges above, in this paper, we design
Opara, a resource- and interference-aware DNN Operator
parallel scheduling framework, with the aim of expediting
the execution of DNN inference while improving the GPU
utilization. We make the following contributions as below.

▷ We propose a lightweight stream allocation algorithm
without any modifications or transformations of the compu-
tation graph. It greedily allocates operators without depen-
dencies to multiple CUDA Streams to maximize operator
parallelism. Meanwhile, operators with data dependencies
are allocated to the same CUDA Stream without impacting
parallel executions of operators, thereby reducing the num-
ber of time-consuming synchronization operations.

▷ We devise a resource- and interference-aware operator
launch algorithm to judiciously prioritize launching oper-
ators with a small amount of GPU resource demands, so
as to effectively mitigate GPU resource fragmentation and
performance interference while reducing DNN inference
latency. Such resource demands of operators can be obtained
by lightweight inference profiling in practice.

▷ We have implemented a prototype of Opara (https:
//github.com/icloud-ecnu/Opara) as a plug-in module of
PyTorch 2.0 to parallelize the executions of DNN operators.
It can generate a parallelized CUDA Graph by capturing the
stream allocation plan and optimized operator launch order
to mitigate the operator launch and function call overhead.
Our prototype experiments with 6 representative DNN and
Transformer-based models demonstrate that Opara outper-
forms the default sequential CUDA Graph in PyTorch and
the state-of-the-art DNN operator parallelism systems by
up to 1.68× and 1.29×, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce how DNN operators are
executed in mainstream DL frameworks, and identify the
key factors that cause the low GPU utilization when serv-
ing DNN inference on GPUs. We then conduct motivation
experiments to show how to judiciously parallelize the
operator executions on GPUs.

2.1 DNN Operator Executions on NVIDIA GPUs

After being scheduled on GPUs, a DNN operator is actu-
ally recognized as a kernel. In general, a kernel comprises
multiple thread blocks, which are the smallest scheduling
granularity in CUDA. A thread block is scheduled to a
Streaming Multiprocessor (SM) once the SM has sufficient
resources to meet its resource demands [15]. In particular,
an SM can concurrently execute multiple thread blocks, and
each SM is constrained by a limited number of threads,
shared memory, and registers.

To enable parallel executions of operators, we launch op-
erators on multiple CUDA Streams. Each stream is actually
a task queue that executes tasks sequentially. The execution
order of kernels in different CUDA Streams is determined
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Fig. 1: Average SM efficiency
of an NVIDIA A100-PCIE-40GB
GPU when running GoogLeNet,
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Fig. 2: Inference latency of
GoogLeNet running on an NVIDIA
RTX 2080 Super GPU with different
operator launch orders and batch
sizes.

by their arrival order at the stream head. In general, the
kernel execution time is considerably short as the batch
size is typically small (i.e., ranging from 1 to 16) in latency-
critical inference scenarios [10], [16]. Accordingly, the kernel
launch overhead constitutes the primary time cost for DNN
inference, which negatively impacts the performance gains
achieved by the parallel executions of kernels in multiple
CUDA Streams. To reduce such overhead, CUDA Graph is
a key feature introduced from CUDA 10 that allows schedul-
ing multiple DNN operators on a GPU device at a time.

2.2 Low GPU Utilization Due to Sequential Execution of
DNN Operators
Mainstream DL frameworks execute DNN operators sequen-
tially in topological sorting order, which cannot fully utilize
GPU resources. To illustrate that, we conduct motivation
experiments using the stock PyTorch 2.0 and ONNX Run-
time 1.121 with the operator fusion [10] enabled. We serve
three typical DNN inference models including GoogLeNet2,
Inception-v3 [6], and BERT3 on both an NVIDIA A100-PCIE-
40GB GPU and an NVIDIA RTX 2080 SUPER GPU. In par-
ticular, we adopt the SM efficiency measured using NVIDIA
Nsight Compute CLI4 to evaluate the GPU utilization.

As shown in Fig. 1, DNN inference on the mainstream
DL frameworks achieves relatively low to medium GPU
utilization even with the operator fusion technique enabled.
Specifically, the SM efficiency of GoogLeNet, Inception-v3,
and BERT with the batch size as 1 is merely 2.53%, 12.04%,
and 18.5%, respectively, achieved in the stock PyTorch on
an A100 GPU. Even when the batch size is increased to 16
and serving DNN inference in the ONNX Runtime, the SM
efficiency of the three workloads is moderately increased
to 57.21%, 39.9%, and 76.37%, respectively. Moreover, we
repeat our experiments on a less powerful GPU (i.e., RTX
2080 SUPER), and the SM efficiency of the three workloads
ranges from 10.47% to 82.98%. Such experiment results
above indicate that (1) the sequential execution of DNN
operators is the root cause of low GPU utilization for serving
DNN inference; (2) The operator fusion technique can only
combine a certain number of parallelizable operators based
on the pre-defined fusion rules [10], resulting in moderate

1. https://onnxruntime.ai/
2. https://pytorch.org/hub/pytorch vision googlenet/
3. https://huggingface.co/google-bert
4. https://docs.nvidia.com/nsight-compute/NsightComputeCli/

index.html
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Fig. 3: Overlapping the execution of compute-intensive and memory-
intensive operators denoted as red circles and blue circles, respectively.

GPU utilization. Accordingly, there still exists enough room
to exploit the operator parallelism for improving the GPU
utilization of DNN inference on GPUs.

2.3 Performance Impacts of Operator Launch Order

Apart from the sequential execution of DNN operators, the
inadequate operator launch order (i.e., the topological sorting
order of the model DAG) in mainstream DL frameworks
can also lead to idle GPU resource usage and performance
interference, thereby prolonging the inference latency. We
conduct two motivation experiments to identify why the
operator launch order can impact the inference latency.

GPU blocking. As each operator has a different num-
ber of blocks requiring three types of resources for execu-
tion, i.e., threads, shared memory, and registers, a resource-
unaware operator launch order can easily block the execution
of operators until enough resources become available on the
GPU. Such GPU blocking can severely waste the available
GPU resources. As shown in Fig. 2, changing the operator
launch order from order 1 (i.e., depth-first topological sort-
ing) to order 2 (i.e., Opara designed in Sec. 3) for GoogLeNet
can reduce the inference latency by up to 29% with different
batch sizes. Furthermore, we repeat such an experiment on
the A100 GPU, and the experiment results show around
10.3% of performance improvement by optimizing the op-
erator launch order for GoogLeNet.

Performance interference. As the performance interfer-
ence among operators can prolong the inference latency [9],
we further conduct another experiment on A100 to illus-
trate the effectiveness of overlapping the execution of compute-
intensive and memory-intensive operators in mitigating the infer-
ence. As depicted in Fig. 3 (case 1), prioritizing the parallel
execution of ReLU and Conv operators can cause less severe
interference, compared with parallelizing two ReLU opera-
tors, leading to a 13.6% reduction in the inference latency.
Similarly, prioritizing the launch order of Add operator in
case 2 can increase the inference performance by 12.7%,
simply because the execution of compute-intensive and
memory-intensive operators is overlapped.

Summary. Low GPU utilization of DNN inference is
mainly caused by two factors: First, the sequential execution
of DNN operators cannot fully utilize the GPU resources,
even with the operator fusion enabled. Second, the default
topological sorting order of operator launch is commonly
resource- and interference-unaware. Accordingly, judiciously
parallelizing DNN operators with an adequate operator
launch order is compelling for accelerating DNN inference
on GPUs while improving the GPU utilization.

operator resource demands
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CUDA Graph
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Fig. 4: System overview of Opara.

3 SYSTEM DESIGN

In this section, we design Opara illustrated in Fig. 4, an op-
erator parallel scheduling framework to reduce DNN infer-
ence latency while improving the GPU resource utilization.
Specifically, Opara takes DNN models and input tensors
(i.e., inference data) from users. According to the operator
dependencies in the model DAG, the Stream Allocator first
employs a stream allocation algorithm to determine which
stream the operators should be allocated to. The Model
Profiler then gathers the resource demands of each operator
using the model profiling. With such resource demands
of operators, the Operator Launcher further employs a
resource- and interference-aware operator launch algorithm
to optimize the operator launch order on GPUs. Finally,
the Graph Capturer generates a parallelized CUDA Graph
by combing the stream allocation plan and operator launch
order, thereby enabling efficient DNN inference on GPUs.

3.1 Stream Allocator
To parallelize the execution of operators in CUDA Streams,
we leverage the computation graph (i.e., DAG) of DNN
models to determine how many streams to launch and how
to allocate operators to the streams.

Definition of a model DAG. DNN computation graph
can be represented as a DAG G = (V, E), where V denotes
the set of operators in the model, and E denotes the operator
dependencies. Each vertex v ∈ V denotes a DNN operator
(e.g., Conv, MaxPool). Each edge ⟨u, v⟩ ∈ E denotes the
operator dependency, where u is a predecessor of v and v is
a successor of u. The set of all predecessors of an operator v
are denoted as Npred. The set of all successors of an operator
v are denoted as Nsucc.

Problem formulation and analysis. As a maximum of
|V| streams can be launched for a DAG, we simply use a
matrix A of size |V| × |V| to represent the stream allocation
plan, which determines how the DNN operators are paral-
lelized and synchronized. Each element aij ∈ A is a boolean
value, indicating whether the i-th operator is executed in the
j-th stream. We formulate the inference latency Tinf as

Tinf = Tpara + Toverhead, (1)

where Tpara denotes the parallelized execution time of a
DNN model and Toverhead denotes the operator synchro-
nization overhead given a stream allocation plan A. In more
detail, as the plan A can parallelize the execution of DNN
operators, Tpara can further be formulated as

Tpara = h(A)× Tseq, (2)
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where Tseq denotes the inference latency of sequential exe-
cution of DNN operators and h(A) ∈ (0, 1] denotes the in-
ference acceleration factor achieved by operator parallelism
with the plan A. To ensure the parallelized execution of the
model, a certain number of synchronization operators [17]
require to be inserted into the model DAG. Such a process
introduces significant operator synchronization overhead
Toverhead, which can be formulated as

Toverhead = g(A)× toverhead, (3)

where toverhead is the time overhead caused by one syn-
chronization operator and g(A) is positively correlated with
the number of synchronization operators in approximation.

By substituting Eq. (3) and Eq. (2) into Eq. (1), we aim
to minimize the inference latency Tinf by identifying an op-
timal stream allocation plan A. Accordingly, we formulate
the stream allocation optimization problem as

min
A

Tinf = h(A)× Tseq + g(A)× toverhead (4)

s.t.
|V|∑
j=1

aij = 1, ∀i ≤ |V| (5)

where Constraint (5) mandates that each operator must be
allocated to and only to one stream. toverhead and Tseq can
be considered as constant values given a DNN model. Ac-
tually, our optimization problem in Eq. (4) (i.e., minimizing
h(A) and g(A)) can be considered as scheduling DAGs
with dependency constraints (i.e., adjusting the matrix A)
to minimize the makespan, which has been proven to be
an NP-hard problem [18]. Accordingly, we turn to devising
a heuristic algorithm to acquire an appropriate (i.e., sub-
optimal) solution to our stream allocation problem.

Algorithm 1: Stream allocation algorithm in Opara.
Input : DNN computation graph G = (V, E)
Output: Set of streams to be launched S

1 Initialize: S ← ∅, SYNC flag ← False for each operator
v ∈ V , and sort V in topological sorting order;

2 for each operator v ∈ V do
3 for each predecessor p ∈ Npred of v do
4 if flag of p is False then
5 stream of v ← stream of p; // put v and

p in the same stream
6 flag of p← True;
7 break out of the loop;

8 if stream of v is null then
9 stream of v ← launching a stream; // put v

in a newly launched stream
10 S ← S ∪ {stream of v};

11 return S;

Stream allocation algorithm. The key idea of Alg. 1 is to
allocate parallelizable operators to multiple CUDA Streams
as much as possible (i.e., minimizing the value of h(A)).
Moreover, we greedily put non-root nodes (i.e., operators)
in the same CUDA stream as one of their predecessor op-
erators, so as to avoid excessive synchronization operators
(i.e., minimizing the value of g(A)). Specifically, given a
computation graph G, Opara first initializes a set of streams
to be launched S and the SYNC flag of each v ∈ V . It

then enumerates operators in V in topological sorting order
(lines 1-2). For each operator v ∈ V , it iterates over all of its
predecessors p ∈ Npred (line 3). If the current predecessor
p has not yet contributed to reducing the synchronization
overhead (i.e., flag is False), it allocates v to the same
stream of p, and set the flag of p as True (lines 4-7). If v does
not find a predecessor that satisfies such a condition above,
we allocate the operator v to a newly launched stream (lines
8-10). In particular, the parallelized execution of streams
does not impact each other as long as operators are not
executed on GPUs. To ease the understanding of Alg. 1, we
present an illustrative example in Appendix A.

3.2 Model Profiler
As discussed in Sec. 2.3, the blocks in an operator exe-
cute the same instructions even with different data, which
indicates that the GPU resources required by the blocks
in an operator are the same. Accordingly, we obtain the
resource demands of each operator by simply profiling the
resource consumption (i.e., the amount of shared memory,
the number of registers and GPU threads) of a block in
an operator. Such resource demands of operators will be
used by Operator Launcher to determine an adequate op-
erator launch order. In particular, we implement our Model
Profiler utilizing the torch.profiler.profile() API,
and it requires profiling each DNN inference only once to
acquire the resource demands information for each operator,
thereby bringing acceptable profiling overhead. We will ex-
amine the inference profiling overhead of Opara in Sec. 5.3.

3.3 Operator Launcher
Problem analysis. As illustrated in Sec. 2.3, inadequate
operator launch orders can significantly affect the DNN
inference latency. To identify an optimal launch order, a
naive solution is iterating through all possible topological
sorting orders of a model DAG and choosing the order
with the lowest inference latency. However, such a method
involves selecting nodes with zero indegree and deleting
the corresponding vertices and their connected edges. By
assuming n operators exist in a model DAG, the time
complexity of traversing all topological sorting orders is
O(n!), which is also an NP-hard problem [18]. As a result,
we turn to designing a heuristic operator launch algorithm
to solve such a complex problem.

Resource- and interference-aware operator launch al-
gorithm. Launching operators with heavy resource de-
mands first to the GPU is likely to cause resource fragmenta-
tion, hindering the GPU executions of subsequent operators.
Moreover, the GPU can thus be blocked due to the non-
preemptive feature of kernel execution [13]. To maximize
the GPU utilization, the key idea of Alg. 2 is to greedily
prioritize launching the operators with the least amount of
GPU resource demands, aiming at maximizing the parallel
executions of multiple operators within a model. To further
mitigate the performance interference among operators [9],
we simply overlap the execution of compute-intensive oper-
ators and memory-intensive operators, as classified by our
offline-collected operator table.

Specifically, it first initializes and maintains a priority
queue Q of operators in resource- and interference-aware
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Algorithm 2: Operator launch algorithm in Opara.
Input : DNN computation graph G = (V, E)
Output: Operator queue Q in resource- and

interference-aware operator launch order

1 Initialize: List of operators to be launched L ← ∅,
Lmem ← ∅, Lcomp ← ∅, and Q ← ∅;

2 Add the operators v ∈ V with an indegree of 0 that are
memory-intensive and compute-intensive to Lmem and
Lcomp, respectively;

3 while Lmem or Lcomp is not empty do
4 L ← alternately choose a non-empty list from

{Lmem,Lcomp};
5 vmin ← the operator that requires the least amount

of GPU resources in L;
6 L.remove(vmin), and Q.append(vmin); // launch

the operator vmin

7 for each successor s ∈ Nsucc of vmin do
8 Update indegree of s← indegree of s− 1;
9 if indegree of s == 0 then

10 if operator s is memory-intensive then
11 Lmem.append(s); // add s to Lmem

12 else
13 Lcomp.append(s); // add s to Lcomp

14 return Q;

operator launch order (line 1). It then retrieves all oper-
ators to be launched with an indegree of 0 in a list L,
which alternates between the non-empty lists for memory-
intensive operators Lmem and for compute-intensive oper-
ators Lcomp (lines 2-4). Each time the operator requiring
the least amount of GPU resources (e.g., shared memory,
threads, registers) is chosen from L and then put into the
queue Q (lines 5-6). In particular, the potential GPU block-
ing issue faced by the remaining large operators is noncritical
in our scenario, as L is dynamic and can be compensated
for the upcoming small operators to be launched. Finally,
Lmem and Lcomp are continuously updated by adding new
operators with an indegree of 0 (lines 7-13).

3.4 Graph Capturer
To eliminate the overhead caused by kernel launches and
function calls, the Graph Capturer first sets the CUDA
Streams obtained from the Stream Allocator to the capture
mode, and then it launches the operators of the DNN
model to these streams according to the operator launch
order specified by the Operator Launcher. To ensure the
dependencies among operators, the Graph Capturer also
launches the necessary synchronization operators to the
streams. Consequently, a CUDA Graph is generated to en-
able operator parallelization while improving the GPU uti-
lization. Such a graph capture process is lightweight and
non-intrusive to PyTorch, as it has been exposed as a high-
level API in PyTorch officially. We simply use the PyTorch
API to capture and then generate the CUDA Graph.

4 IMPLEMENTATION OF Opara
We implement a prototype of Opara with around 1, 000 lines
of Python codes, which have been integrated into PyTorch
2.0 as a plug-in module. The source codes are currently

publicly available on GitHub (https://github.com/icloud-
ecnu/Opara). Specifically, we employ torch.fx.Graph as
the computation graph for DNN models in Opara. Its In-
termediate Representation (IR) allows us to schedule DNN
operators directly in Python. In more detail, we lever-
age the torch.cuda.set_stream() API in PyTorch to
launch operators on the CUDA Streams. To particularly
guarantee the operator dependency in parallelized execu-
tions of streams, we add the appropriate synchronization
operators to the model graph using the event.record()
and stream.wait_event(event) APIs. Finally, we use
torch.cuda.graph(g) to generate a CUDA Graph that
can execute DNN operators in parallel based on the CUDA
Streams. In summary, we build our prototype of Opara
only using the high-level APIs of PyTorch in a lightweight
and non-intrusive manner, rather than modifying the com-
putation graph construction module as in Nimble [12].

5 PERFORMANCE EVALUATION

In this section, we carry out prototype experiments to
demonstrate the efficacy and runtime overhead of Opara
in comparison to the stock PyTorch and state-of-the-art
operator parallelism frameworks.

5.1 Experimental Setup
Hardware configuration and workloads. We conduct our
experiments on an NVIDIA A100-PCIe-40GB GPU and an
NVIDIA GeForce RTX 2080 SUPER-8GB GPU. We imple-
ment Opara based on CUDA 11.7, cuDNN 8.5.0, and as a
plug-in module of PyTorch 2.0. Our experiments employ
six representative DNN models, including the three models
(i.e., Inception-v3 [6], GoogLeNet, BERT) adopted in Sec. 2.2,
as well as DeepFM [19], NASNet5, and T56. Specifically,
three models (i.e., GoogLeNet, Inception-v3, and DeepFM)
are executed on the RTX 2080 GPU, while the other three
(i.e., NasNet, T5, and BERT) are run on the A100 GPU.

Baselines and metrics. We compare DNN inference per-
formance of Opara with that of the stock PyTorch (with CUDA
Graph disabled), default sequential CUDA Graph, ONNX
Runtime (with operator fusion enabled), Rammer− [10],
and Nimble [12]. Specifically, we implement Rammer’s BFS-
based operator scheduling algorithm (i.e., Wavefront) into
PyTorch 2.0, denoted as Rammer−. Nimble transforms the
model graph into a bipartite graph and identifies its maxi-
mum matching to determine an appropriate stream for each
operator. In particular, we focus on 4 key metrics including
DNN inference latency, SM efficiency, and GPU memory
consumption, as well as DNN inference throughput. All the
experiment results are averaged over 1, 000 runs.

5.2 Effectiveness of Opara
End-to-end inference latency. As shown in Fig. 5(a), Opara
consistently outperforms the five baselines for six represen-
tative DNN models. Specifically, Opara can achieve 1.80×
to 10.97× speedup compared to the stock PyTorch. This is
because Opara utilizes CUDA Graph to eliminate the opera-
tor launch and function call overhead. Opara surpasses the

5. https://huggingface.co/timm/nasnetalarge.tf in1k
6. https://huggingface.co/google-t5
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Fig. 5: (a) Relative speedup, (b) SM efficiency and peak memory
consumption of GPUs running representative DNN models with batch
size set as 1 achieved by PyTorch, CUDA Graph, ONNX Runtime,
Rammer−, Nimble, and Opara operator scheduling mechanisms.

default CUDA Graph by up to 1.68×, simply because of the
parallel execution of DNN operators in Opara. Though the
operator fusion technique outperforms the stock PyTorch,
Opara achieves a higher speedup by up to 2.97× and 1.18×,
compared with ONNX Runtime and Rammer−, respec-
tively. Such performance improvements above are mainly
due to two facts: First, the operator fusion cannot com-
bine all parallelizable operators based on the pre-defined
fusion rules, which cannot fully utilize the GPU resources.
Second, Opara accelerates model inference through operator
parallelization, while the Wavefront scheduling algorithm
in Rammer introduces additional synchronization overhead
(i.e., the unnecessary operator waiting time during wave
executions). Furthermore, Opara outperforms Nimble by up
to 1.29× because it judiciously alternates the scheduling
of different types of operators with the lowest GPU re-
source consumption for each kernel launch time. Moreover,
Opara initiates enough streams to increase parallelism (e.g.,
28 streams with Opara versus 4 streams with Nimble for
GoogLeNet), thereby maximizing the operator parallelism.

GPU utilization and memory consumption. To unveil
the performance gains of Opara, we proceed to look into
the GPU utilization (i.e., SM efficiency) and memory con-
sumption during the model inference. As shown in Fig. 5(b),
Opara exhibits a similar improvement in GPU utilization

CUDA Graph

Nimble

Opara

①

Scheduling strategies

②

③

④

④ ③

①

②

④ ①

Time

Fig. 6: Timeline of operator executions during a segment of inference
process of GoogLeNet achieved by CUDA Graph, Nimble, and Opara.

compared to the five baselines as in Fig. 5(a). Specifically,
Opara significantly improves the GPU utilization compared
to the stock PyTorch, because Opara mitigates the scheduling
overhead of the stock PyTorch. When compared with the
default CUDA Graph, Opara increases the GPU utilization
of Inception-v3, GoogLeNet, DeepFM, NASNet, BERT, and
T5 by 36%, 58%, 126%, 48%, 20%, and 19%, respectively.
Such performance gains mainly come from the parallelized
execution of operators. When compared to ONNX Runtime,
Rammer−, and Nimble, Opara boosts the GPU utilization
by up to 3.86×, 1.36× and 1.42× mainly because (1) max-
imizing stream allocations in Opara can increase operator
parallelism opportunities, and (2) optimizing the operator
launch order in Opara further minimizes the GPU idle time.
Furthermore, the parallel execution of operators requires an
increased amount of data to reside in the GPU memory
simultaneously, thereby leading to a higher peak GPU mem-
ory consumption of Opara than that of sequential executions.

Timeline of operator executions. We further illustrate
the operator execution timeline by taking a segment of infer-
ence process of GoogLeNet as an example. In particular, we
leverage NVIDIA Nsight System CLI7 to track the timeline
of operator executions. As depicted in Fig. 6, we observe
that CUDA Graph executes the 4 operators sequentially in
a stream, and only operators 4 and 1 appear within the
time window. The remaining operators 2 and 3 are forced
to queue up, which leads to a long inference time. Though
Nimble can parallelize operators in the order of 1, 2, 3, and
4, it only schedules 2 operators on two streams, causing a
long GPU idle time. In contrast, Opara prioritizes operator 4
and initiates more streams than Nimble, so that operators
4, 1, and 2 can be executed in parallel to maximize the
operator parallelism. Accordingly, Opara can achieve the
shortest inference latency by exploring operator parallelism
compared with CUDA Graph and Nimble.

Effectiveness of Opara on Transformer-based models.
We conduct experiments with T5 and BERT model, and
Opara outperforms Nimble by 9.3% for the T5 model as
shown in Fig. 5(a). This is because Opara optimizes the
launch order of operators in T5 and schedules them into
6 streams compared with 3 streams in Nimble. Moreover,
the operator diversity in T5 offers Opara overlap the compute-
intensive Arange operators and the memory-intensive To
and Ones operators, as shown in Fig. 7(a). For BERT,
however, Opara achieves a similar operator launch order
and the same number of streams as Nimble as depicted
in Fig. 7(b). This is because the parallelizable operators of

7. https://docs.nvidia.com/nsight-systems/UserGuide/index.html
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baselines by varying the batch size
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Fig. 9: Relative speedup of
Inception-v3 with Opara and the
five baselines by varying the batch
size from 2 to 32 on an A100 GPU.

BERT are always the Embedding operators or the Sgemm
operators, which reduces the opportunity for operator over-
lapping and launch order optimization. Accordingly, Opara
achieves marginal performance gains for BERT compared
with Nimble, yet 1.08× to 4.06× speedup compared to the
stock PyTorch and CUDA Graph as shown in Fig. 5(a).

Throughput under different batch sizes. As depicted in
Fig. 8, we observe that Opara consistently surpasses the five
baselines except for ONNX Runtime by varying the batch
size from 1 to 32. Nevertheless, the performance gains of
Opara gradually diminish as the batch size increases. As an
example, Opara outperforms the default CUDA Graph by
1.41× and 1.09× when the batch size is 1 and 32, respec-
tively. This is because the amount of GPU resources occu-
pied by a single operator increases when dealing with larger
batch sizes, resulting in fewer GPU resources available for
the execution of parallelized operators. This also explains
why Opara exhibits marginal throughput improvement for
large batch sizes of 16 and 32. The results above also show
that maximizing the operator parallelism can also improve
the inference throughput.

Effectiveness of Opara on high-end GPUs with suf-
ficient resources. We repeat the inference experiment of
Inception-v3 on a high-end GPU (i.e., A100). As shown in
Fig. 9, we observe that Opara consistently outperforms the

TABLE 1: Computation time (in milliseconds) of the stream allocation
algorithm in Opara (i.e., Alg. 1) and Nimble [12] for various models.

BERT GoogLeNet NASNet Inception-v3 T5

Opara 0.58 0.27 1.75 0.50 2.8
Nimble 20.8 5.80 257.83 14.40 161.4

five baselines by varying the batch size from 2 to 32, mainly
because operator parallelism works well for high-end GPUs
with sufficient resources. In more detail, Opara achieves
an inference speedup by up to 2.08×, 1.29×, and 1.15×
compared to ONNX Runtime, Rammer−, and Nimble, re-
spectively. In particular, Opara achieves speedups of 1.47×
and 1.18× relative to ONNX Runtime for batch sizes of 16
and 32, which is larger than the results achieved on the RTX
2080 GPU. This is because the A100 GPU provides sufficient
resources, which allows the operator parallelism to achieve
more performance gains than the operator fusion.

5.3 Runtime Overhead of Opara

We evaluate the runtime overhead of Opara in terms of
algorithm computation time and inference profiling over-
head. As listed in Table 1, Opara can reduce the computation
time of the stream allocation algorithm by up to two orders
of magnitude compared with Nimble [12]. This is because
Nimble requires a graph transformation together with an
exhaustive search in the bipartite graph. Such a process is
time-consuming with a complexity in the order of O(n3),
where n is the number of operators in a model DAG. In
contrast, the time complexity of Opara can be reduced to the
order of O(n), simply because the inner loop of Alg. 1 (lines
3-10) in Opara only depends on the maximum width (i.e.,
typically below 20) of the computation graph. Accordingly,
as DNN models become increasingly complex [20], the
number of operators n gets even larger, while the algorithm
computation overhead of Opara can still be well contained.
In addition, as the Model Profiler needs to run the DNN
inference only once, Opara requires several (i.e., 4.25) mil-
liseconds of profiling overhead in our experiment. In sum,
the runtime overhead of Opara is practically acceptable.

6 RELATED WORK

Inter-operator parallelism within a single model. To par-
allelize the execution of DNN operators, Rammer [10]
proposes fine-grained operator scheduling based on the
Wavefront algorithm and enables operator fusion on a GPU
device. To increase the operator parallelism, Cocktailer [21]
further co-schedules control flow and data flow operators
based on Rammer. The two prior works above operate
at the compilation level, which requires significant compi-
lation overhead and manual customization of operators.
Orthogonal to them, Opara focuses on the runtime operator
scheduling optimization of the stream allocation and the
operator launch order. A recent work Nimble [12] lever-
ages the bipartite graph algorithm to schedule operators
on CUDA streams adequately. IOS [14] deploys operator
fusion and dynamic programming to determine operator
parallelization plans. However, Nimble and IOS require a
lengthy search process and neglect the optimization space
of operator launch order. In contrast, Opara utilizes the
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CUDA Graph to eliminate such performance overhead. It
also employs a lightweight stream allocation algorithm to
achieve inter-operator parallelism. To reduce the GPU idle
time and interference, Opara determines a feasible operator
launch order according to operator resource demands.

Inter-operator parallelism among different models. To
improve GPU utilization, several works parallelize opera-
tors from multiple models co-located on a GPU device. For
example, S3DNN [22] and Abacus [23] optimize the co-
location of operators from different models and schedule
them to the corresponding steams. To minimize the model
co-location interference, iGniter [9] and Orion [16] focus
on optimizing the GPU resource allocation and operator
scheduling on multiple prioritized streams, respectively.
Paella [17] dispatches the optimal kernel from multiple
models by jointly considering the remaining time and model
fairness. Different from optimizing the inference co-location,
Opara minimizes the inference latency while increasing the
GPU utilization by parallelizing operators within a single
model. Moreover, it achieves inter-operator parallelism as a
plug-in module of PyTorch 2.0 without developing a new
DL inference runtime or framework.

Intra-operator parallelism. Existing DL frameworks,
such as PyTorch and TensorFlow, employ expert-optimized
operator libraries to accelerate the execution of individual
operators. TVM [24] uses machine learning methods to
automatically search for efficient operators, which is time-
consuming and requires the specified parameter space man-
ually. To achieve automated code generation, Ansor [25]
implements an automatic search space construction of op-
erators. As a single DNN operator cannot fully utilize GPU
resources in general, Opara can work with the intra-operator
parallelism methods above to further improve the resource
utilization of GPUs.

7 CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of
Opara, a lightweight operator scheduling framework to
speed up DNN inference on GPUs. By reducing the syn-
chronization overhead among operators, Opara designs a
stream allocation algorithm to automatically allocate op-
erators without dependencies to different CUDA streams,
thereby achieving operator parallelism effectively. Further-
more, Opara leverages non-intrusive inference profiling to
judiciously select an appropriate operator launch order to
mitigate interference and maximize the GPU utilization. Ex-
tensive prototype experiments show that Opara can improve
the performance of DNN inference by up to 29%, as com-
pared to the state-of-the-art operator parallelism systems.

We plan to extend Opara in the following directions: (1)
constructing an analytical model to analyze the performance
interference caused by inter-operator parallelism, and (2)
examining the effectiveness of Opara for accelerating more
large models (e.g., GPT-3, LLaMA).
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