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ABSTRACT
With the evolution of network function virtualization (NFV), diverse
network services can be �exibly o�ered as service function chains
(SFCs) consisted of di�erent virtual network functions (VNFs). How-
ever, network state and tra�c typically exhibit unpredictable vari-
ations due to stochastically arriving requests with di�erent qual-
ity of service (QoS) requirements. Thus, an adaptive online SFC
deployment approach is needed to handle the real-time network
variations and various service requests. In this paper, we �rstly
introduce a Markov decision process (MDP) model to capture the
dynamic network state transitions. In order to jointly minimize the
operation cost of NFV providers and maximize the total through-
put of requests, we propose NFVdeep, an adaptive, online, deep
reinforcement learning approach to automatically deploy SFCs
for requests with di�erent QoS requirements. Speci�cally, we use
a serialization-and-backtracking method to e�ectively deal with
large discrete action space. We also adopt a policy gradient based
method to improve the training e�ciency and convergence to opti-
mality. Extensive experimental results demonstrate that NFVdeep
converges fast in the training process and responds rapidly to ar-
riving requests especially in large, frequently transferred network
state space. Consequently, NFVdeep surpasses the state-of-the-art
methods by 32.59% higher accepted throughput and 33.29% lower
operation cost on average.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
resources allocation;Networkdynamics; •Computingmethod-
ologies →Machine learning.
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1 INTRODUCTION
By shifting the way of implementing hardware middleboxes (e.g.,
�rewalls, WAN optimizers and load balancers) to software-based
virtual network function (VNF) instances, network function virtu-
alization (NFV) emerges as a promising paradigm that embraces
great �exibility, agility and e�ciency [5, 17, 39]. Expected to reduce
Capital Expenditure (CAPEX) and Operational Expenditure (OPEX),
NFV o�ers new ways to design, orchestrate, deploy and manage a
variety of network services for supporting growing customer de-
mands [10, 23]. Notably, NFV and software de�ned network (SDN)
are regarded as two of the most important enabling technologies
that would be the keystones for 5G systems [36].

In an NFV system, a service request is typically represented by
a service function chain (SFC), which is a sequence of network
functions (NFs) that have to be processed in a pre-de�ned order [13,
43]. Generally, conventional hardware NFs are �xed with physical
locations; on the contrary, NFV permits software-based VNFs to
be placed in any resource-su�cient virtual machines (VMs) or
containers deployed on commercial-o�-the-shelf (COTS) servers
[5]. In other words, NFV o�ers a good opportunity to improve the
system performance and quality of service (QoS) by determining
how to deploy the service-required SFCs among multiple candidate
COTS servers in NFV network and further in service-customized
5G network slices [42].

Currently, some e�orts have been paid to tackle the VNF place-
ment problem or the SFC deployment problem, which is proved
NP-hard [1, 43], and thus heuristic solutions are usually proposed
for di�erent optimization objectives [5]. Nevertheless, there still
exist some challenges that have not been completely solved in pre-
vious works: (1) network state and tra�c typically exhibit great
variations due to stochastic arrival of requests [12], thus an ap-
propriate model is needed to capture the dynamic network state
transitions; (2) di�erent network service requests may have dif-
ferent tra�c characteristics (e.g., �ow rate and packet size), QoS
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Figure 1: An example of two ways to deploy an SFC. There are three
servers with di�erent remaining resources. The SFC is composed of
VNF 1 and VNF 2 with di�erent resource demands.
requirements (e.g., latency, bandwidth and security requirements),
thus an adaptive, online approach is needed to automatically deploy
SFCs with di�erent demands; (3) NFV providers and customers usu-
ally pursue di�erent objectives (i.e., reducing operation cost and
improving QoS), which can even be con�icting ones, thus it is usu-
ally di�cult to achieve a win-win SFC deployment solution that
jointly maximizes both sides’ pro�ts.

For instance, Fig. 1 plots two alternative solutions for deploying
a request’s SFC. Solution (a) bene�ts the NFV providers since they
can shut down the idle server to reduce the operation cost, while
it increases the bandwidth occupation of the NFV system and the
communication latency of the request. On the other hand, as a result
of VNF consolidation [37, 41], solution (b) improves the customers’
QoS with improved communication e�ciency; while as one more
server is used, the operation cost would increase accordingly. Thus,
it is worth investigating how to balance the trade-o� between NFV
providers and customers, and further considering how to jointly
optimize the SFC deployment with multiple objectives.

Even though existing works like [1, 7, 25, 33, 38] have investi-
gated the SFC deployment problem, [1, 7, 38] assume that the set
of arriving requests is predetermined, regardless of the real-time
network variations. Di�ering from previous works, we propose
NFVdeep, an adaptive, online, deep reinforcement learning (DRL)
approach for SFC deployment, which integrally tackles the three
challenges. Firstly, to address the �rst challenge, we introduce a
Markov decision process (MDP) model to capture the dynamic net-
work state transitions. We construct the MDP state as the current
network resource utilization (i.e., CPU, memory and bandwidth)
and deployment results of currently-running SFCs. We also de�ne
the action as the VNF’s deployment strategy for an arriving request.
In this way, dynamic network variations can be automatically and
continually expressed as MDP state transitions.

To address the second challenge, we devise a policy gradient
(PG) based DRL [18] approach to automatically deploy SFCs. DRL
is an emerging approach to deal with large network state space
and real-time network state transitions; while PG is a model-free
approach, which shows good advantages in improving the training
e�ciency and convergence to optimality. After converged in the
training procedure, NFVdeep can e�ciently provide a high-reward
SFC deployment solution to each arriving request, considering its
resource demand and the current resource utilization. This online,
adaptive method can support a variety of service requests with

di�erent QoS requirements in NFV network and further 5G network
slices.

To address the third challenge, we aim to jointly achieve two
objectives: (1) minimizing the operation cost of occupied servers for
NFV providers and (2) maximizing the total throughput of accepted
requests for customers. We model them together in the MDP re-
ward function, which is de�ned as the weighted total throughput
of accepted requests (income) minus the weighted total cost of
occupied servers (expenditure) for deploying SFCs. This reward
can be regarded as the total pro�ts of the NFV system. Besides,
we use a serialization-and-backtracking method to reduce the high-
dimension action space for placing SFCs among muitiple candidate
servers. In particular, we serially deal with each VNF of an SFC
within each MDP state transition, and backtrack to the previous
state if an SFC cannot be completely deployed.

In summary, the PG based NFVdeep can respond rapidly to
stochastically arriving requests and automatically provide QoS-
aware SFC deployment solutions with high rewards. Through ex-
tensive trace-driven simulations, we demonstrate that NFVdeep not
only handles dynamic network variations well, but also achieves
superior performance as compared with the state-of-the-art meth-
ods.

The main contributions of this paper are as follows:
• To capture the real-time network variations, we use an MDP
model to formulate the online SFC deployment problem,
where network variations are automatically and continually
expressed as MDP state transitions.

• In order to jointlyminimize the operation cost of NFV providers
and maximize the total throughput of requests, we propose
NFVdeep, an adaptive, online, PG based DRL approach to
automatically deploy SFCs for requests with di�erent QoS
requirements.

• Extensive trace-driven simulation results show that NFVdeep
not only responds rapidly to dynamic arriving requests, but
also outperforms the state-of-the-art solutions by 32.59%
higher accepted throughput and 33.29% lower operation cost
on average.

The rest of this paper is organized as follows. Section II discusses
the related work and motivation. Section III presents the MDP
model and the formulation of the SFC deployment problem. In
Section IV, we formally propose NFVdeep, an adaptive, online, PG
based DRL approach with detailed introductions on its architecture,
neural network design and training procedure. Section V presents
the evaluations and at last, Section VI concludes the paper.

2 RELATEDWORK AND MOTIVATION
In this section, we �rst investigate the state-of-the-art works deal-
ing with the VNF placement problem. Then we elaborate on why
adaptive online SFC deployment is needed and why PG based DRL
approach is suited to solve the problem.

2.1 VNF Placement
Recent years have witnessed the proliferation of the studies on the
VNF placement problem and the SFC deployment problem consid-
ering the service chaining requirements. Typically this problem is
categorized as a resource management problem in NFV systems
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[23], which has been proved NP-hard in [1]. In order to achieve
some speci�c optimization objectives (e.g., minimizing the num-
ber of occupied servers, minimizing the end-to-end latency and
maximizing the acceptance rate of requests), some mathematical
programming methods such as integer linear programming (ILP)
[34] and mixed ILP (MILP) [20] are generally used. Since deriving
the optimal solutions is usually computational-expensive in large
network scale, heuristic solutions are usually proposed with near-
optimal solutions but small execution time (e.g., [15, 21, 30, 43]).

For instance, Moens et al. [25] formulate the VNF placement prob-
lem as an ILP, which aims to allocate SFCs to the physical network
with the minimum number of used servers. Cohen et al.[7] explore
the NFV location problem and solve it by jointly placing network
functions and calculating path in the embedding process. Addis et
al.[1] propose a VNF chaining and placement model, formulate it
as an MILP and then devise a heuristic algorithm.

Speci�cally, these VNF placement or SFC deployment solutions
can be categorized based on their application scenarios, such as
traditional core cloud datacenters or NFV providers’ network (e.g.,
[1, 7, 19, 22, 25, 30, 44]), geo-distributed datacenters (e.g., [11]),
content delivery network (CDN, e.g., [9]), autonomous response
network (e.g., [27]), edge cloud datacenters (e.g., [16]), 5G network
and service-speci�c 5G network slices (e.g., [2, 6]). However, these
existing solutions have some limitations, for instance [7] does not
consider VNF service chains (i.e., SFCs) and [1, 7, 33, 38] assume
that the set of requests is pre-determined, regardless of the real-
time arrival of requests, which may cause severe network tra�c
�uctuations.

2.2 Why Need Adaptive Online SFC
Deployment?

In summary, these existing works have not integrally tackled the
three challenges as mentioned in Section I. First, many existing VNF
placement and SFC deployment solutions do not take account of
the real-time network variations. In fact, network state and tra�c
typically exhibit unpredictable variations due to stochastic arrival
of requests, thus an appropriate model is needed to capture the
dynamic network state transitions.

Second, most existing solutions are customized for a certain ap-
plication scenario (e.g., the traditional core cloud datacenters, CDN
or 5G network). Despite the e�ciency of scenario-customized solu-
tions, their network-speci�c or service-speci�c constraints make
them di�cult to be �exibly applied to other network topologies and
scenarios. Thus, an e�cient, adaptive solution is needed to automat-
ically deploy SFCs for NFV providers without manual intervention,
meanwhile considering each request’s tra�c characteristics (e.g.,
�ow rate) and QoS requirements (e.g., latency and bandwidth re-
quirements). This solution should be scalable in di�erent network
typologies and applicable to di�erent scenarios, such as di�erent
5G use cases provided by di�erent 5G network slices.

Third, most existing works (e.g., [1, 7, 25, 34, 38]) basically focus
on optimizing the VNF placement or the SFC deployment from
the NFV providers’ perspective (i.e., minimizing the CAPEX and
OPEX, resource allocation and power consumption) while do not
consider improving the customers’ QoS. Only a few works consider
optimizing the SFC deployment from the customers’ perspective

(e.g., [19, 33, 40]), aiming at improving the request acceptance rate
or reducing the end-to-end response latency. Even though it is
challenging to deal with the NP-hard SFC deployment problem
with multiple objectives (sometimes even con�icting ones), we still
�nd a way to jointly maximize the pro�ts of both NFV providers
and customers. In particular, we combine the two objectives (i.e.,
minimizing the operation cost and maximizing the total throughput
of requests) in the MDP reward function, which can automatically
maximize the NFV system’s pro�ts in the SFC deployment process.

2.3 Why Adopt PG Based DRL Approach?
Deep Reinforcement Learning. In recent years, deep reinforce-
ment learning (DRL) has been prevailing in natural language pro-
cessing problems, robotics, decision games, etc., and achieves su-
perior results, like the Deep Q Learning (DQN) [24] algorithm
and AlphaGo [32]. DRL combines deep learning with reinforce-
ment learning (RL) to implement machine learning from perception
to action [18]. Based on MDP, RL trains an intelligent agent to
learn policies directly through interacting with the environment
and automatically maximize the reward. The general RL approach
maintains a look-up table to store policies, which is not capable of
dealing with large in�nite state space. To overcome this problem,
DRL approach emerges, utilizing deep neural network (DNN) as
an approximation function to learn policy and state value repre-
sentations. In NFV systems, the network state space is associated
with the number of servers and links and the frequency of state
transition is positively correlated with the the number of arriving
requests. With DRL, NFVdeep can e�ciently handle a large number
of real-time arriving requests especially in large, frequently trans-
ferred network state space. In addition, NFVdeep can �exibly scale
with di�erent network topologies and can also be easily applied to
di�erent application scenarios.

Policy Gradient. The DRL approach can be classi�ed into two
categories, one is value-based approach (e.g., DQN) and the other
is policy-based approach. Policy gradient (PG) [29] based approach
enables automatic feature engineering and end-to-end learning,
thus the reliance on domain knowledge is signi�cantly reduced
and even removed [18]. For some environments with continuous
control or particularly large action space, it is di�cult to calculate
all the value functions to get the best strategy with the value-based
DQN approach. In the SFC deployment problem, even for one VNF,
there are usually many candidate servers for placing it; the chaining
of VNFs makes the action space even larger. Under these circum-
stances, the policy-based approach is more practicable and e�cient,
since it not only shows a good advantage in high-dimension action
space, but also improves the training e�ciency and convergence
to the optimal solution. The core concept of PG is that if an ac-
tion results in more rewards, then increase the probability of its
occurrence; otherwise, reduce the probability of its occurrence.
Through PG based training procedure, NFVdeep can e�ciently and
automatically learn and act to arriving requests with di�erent QoS
requirements.

3 MODEL AND PROBLEM FORMULATION
In this section, we begin with the NFV system description including
the NFV network structure, VNFs and requests. Then we elaborate
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Table 1: Key Notations

Symbol Description
G The graphG = (V , E) representing the underlying

NFV network
V The set of server nodes within the network
E The set of edges (or links) between the servers, 8e =

(�1, �2) 2 E, �1, �2 2 V
F The set of service-required VNFs
R The set of service requests

C� = (Ccpu
� , Cmem

� ) The quantity of available resources of server � 2 V
in terms of CPU and memory

Df = (Dcpu
f , Dmem

f ) The resource demand of VNF f 2 F in terms of CPU
and memory

Tu,� The communication latency between every two
nodes u, � 2 V

W� The output bandwidth of server node � 2 V
Wr The bandwidth demand of request r 2 R
�r The packet arrival rate of request r 2 R
Tr The response latency limitation of request r 2 R
tr The total end-to-end latency of request r 2 R
�r The time to live (TTL) of the SFC for request r 2 R ,

�r = l ⇤ �, l 2 N, r 2 R
ar ,� 1 if a request r 2 R is in service in time slot [� sr , � sr +

�r ], 0 otherwise
nf�,� The number of service instances of VNF f 2 F that

are deployed on server � 2 V in time slot [� sr , � sr +
�r ]

ur�,� 1 if any VNF of request r 2 R is placed at node
� 2 V in time slot [� sr , � sr + �r ], 0 otherwise

x ir ,� 1 if the i-th VNF of SFC for request r 2 R is deployed
at node � 2 V , 0 otherwise

�r 1 if request r 2 R is accepted, 0 otherwise
z�,� 1 if any VNF instance is placed on node � 2 V in

time slot [� sr , � sr + �r ], 0 otherwise

on how to use the MDP model to capture the dynamic network
state transitions. At last, we formally present the SFC deployment
problem formulation with objectives and constraints. Key notations
are listed in Table 1.

3.1 NFV System Description
In a common NFV network structure (e.g., three-tier topology or fat-
tree), the server nodes are connected via multi-level switches [35].
Thus we represent the network as a connected graph G = (V ,E),
where V is the set of server nodes, and E is the set of edges (or
links) that connect every two nodes, 8e = (�1,�2) 2 E,�1,�2 2 V .
In fact, each server has a resource capacity, which contains the
computing resources (i.e., CPU), memory and storage resources
(i.e., RAM and hard disk). Thus, we denote the resource capacity
of each server by C� = (Ccpu� ,Cmem

� ), representing its quantity of
available resources in terms of CPU and memory. Note that other
types of resource are relatively su�cient in servers, such as hard
disk storage; while they can also be added in C� if necessary.W�
represents the total output bandwidth of server � 2 V and Tu,�
represents the communication latency on the link between server
nodes u 2 V and � 2 V .

We use F = { f1, f2, ..., f |F | } to represent the service-required
VNFs, including commonly-used ones, such as �rewall, network
address translation (NAT), deep packet inspection (DPI), load bal-
ancer (LB), tra�c monitor, etc., and other service-customized VNFs
(e.g., video processing VNF). Each service instance of VNF f 2 F

has a resource demand in terms of CPU and memory, denoted by
Df = (Dcpu

f ,Dmem
f ).

Next, we use R to denote the set of stochastically arriving re-
quests. Since each request r 2 R needs to be steered through a
sequence of VNFs based on its service requirements, we denote its
service-related SFC _

r as follows:
_
r = [f1, f2, ..., f |_r | ], fi 2 F , i = 1, 2, ..., |_r |.

Each service request r 2 R has its tra�c characteristics, i.e., the
packet arrival rate �r and its speci�c QoS requirements, including
the bandwidth requirementWr and the response latency limitation
Tr . Besides, for each request r 2 R, we use a binary variable x ir,� to
indicate the deployment decision of each VNF fi in sequence _

r of
its SFC. Speci�cally, if VNF fi can be successfully placed on server
node � 2 V , x ir,� = 1; otherwise, x ir,� = 0.

3.2 MDP Model
To deal with the real-time network variations caused by stochastic
arrival and departure of requests, we introduce the concept of time
slot � , which can be de�ned as the integral multiple of a constant
time period � (i.e., � = n ⇤ �,n 2 N,� = 1 µs, 1 ms or 1 s based on
the actual demand). At each time slot � , the NFV system executes
the following procedures: rescanning all the servers and links, re-
moving timeout requests, receiving arriving requests, making SFC
deployment decisions and then updating the network states. Thus,
at time slot � , we de�ne bC�,� as the remaining resource capacity of
server node � 2 V after removing timeout requests, and bW�,� as
the remaining output bandwidth.

In particular, we de�ne a list R� ⇢ R to represent arriving re-
quests at time slot � . In each time slot, if a request is arriving alone,
it can be handled immediately; if several requests are arriving si-
multaneously, they will be processed in serial based on the arriving
time. Di�erent requests can also be processed in pipeline and even
in parallel for improving e�ciency if the NFV system supports. We
also denote the arriving time of request r 2 R by � sr =m ⇤�,m 2 N,
and its SFC’s time to live (TTL) by �r = l ⇤ �, l 2 N, if it has been
successfully deployed. The de�nition of TTL helps to multiplex a
deployed SFC if the requests have the same tra�c characteristics,
resource demands, QoS requirements, which can further improve
the resource utilization and reduce the service deployment cost. At
a time slot � , we use binary ar,� to indicate whether request r 2 R
is still in service:

8r 2 R : ar,� =

(
1,� sr  � < (� sr + �r ),
0, otherwise.

(1)

Since multiple service instances of a VNF can be deployed at the
same node to deal with multiple requests, we use nf�,� to indicate
the number of service instances of VNF f 2 F that are deployed on
node � 2 V . Hence, we have:

8� 2 V , f 2 F : nf�,� =
’
r 2R

r (i)=f’
1i |r |

x
i
r,�ar,� , (2)

where r (i) represents the i-th VNF of _r .
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Besides, we use z�,� to indicate whether any VNF instances are
placed on server node � 2 V . We have:

8� 2 V : z�,� =

8>>>>><
>>>>>:

1,
’
f 2F

n
f
�,� > 0,

0,
’
f 2F

n
f
�,� = 0.

(3)

With all these preparations, we now formally present the MDP
model, which is typically de�ned as < S,A,P,R,� >, where S
is the set of discrete states, A is the set of discrete actions, P :
S ⇥A ⇥ S is the transition probability distribution, R : S ⇥A is
the reward function, and � 2 [0, 1] is a discount factor for future
rewards.

State De�nition. For each state st 2 S, we de�ne it as a vector
(bCt , bWt , It ). bCst = (bCt

1 ,
bCt
2 , ...,

bCt
|V | ) represents the remaining re-

source of each node, while bWt = (bW t
1 ,

bW t
2 , ...,

bW t
|V | ) represents the

remaining output bandwidth. It = (Wri ,bT j
ri ,

bN j
ri ,Cfi, j , Pri ) reveals

the characteristics of the current VNF being processed, fi, j , where
Wri is the bandwidth demand, bN j

ri is the number of undeployed
VNFs in ri , bT j

ri is the residual latency space (i.e., the response la-
tency limitationTr of ri minus the current total latency of deployed
VNFs), Cfj,i is the resource demand on servers and Pri is the TTL
of the request ri .

Action De�nition. We �rst label each server node in the net-
work with an integral index k = 1, 2, ..., |V |. Then we denote action
a 2 A as an integer, where A = {0, 1, 2, ..., |V |} is the set of server
indexes. We use a = 0 to represent the case that VNF fi, j can not
be deployed; otherwise, a denotes the speci�c index of server node
in V , which means we have successfully place VNF fi, j on the a-th
server node.

Reward Function. Since we want to jointly optimize two ob-
jectives considering both NFV providers’ and customers’ pro�ts,
we de�ne the reward function as the weighted total accepted re-
quests (income) minus the weighted total cost of occupied servers
(expenditure) to deploy the arriving requests, which can combines
the two objectives. The mathematical formulation of the reward
function is given in Section IV-B, considering two di�erent cases
as the time slot moves on.

State Transition. An MDP state transition is de�ned as (st ,at ,
rt , st+1), where st is the current network state, at is the action
taken for dealing with one of the service-required VNFs in request
rt and st+1 is the new network state. The MDP state transition will
also be elaborated in Section IV-B.

3.3 Problem Formulation
Now we present the mathematical formulation of the SFC deploy-
ment problem. We begin with the constraints and then the objec-
tives together with some insights.

First, in fact, NFV providers can place multiple VNFs at the same
server node if it has su�cient resource, which is known as VNF
consolidation [28] as we mentioned previously. Thus, we state the
resource constraint on servers in inequality (4).

8� 2 V :
’
f 2F

n
f
�,�Cf  C� . (4)

Second, we introduce the latency constraint. We use tr to rep-
resent the total response latency of a request r 2 R, which is the
sum of the communication latency on links and the processing
latency on server nodes. Speci�cally, we use tf to represent the
processing latency of a service instance of VNF f 2 F . Thus, the
total end-to-end latency of request r 2 R can be represented by:

8r 2 R : tr =
’
� 2V

r (i)=f’
i=1

x
i
r,� tf +

’
u,� 2V

|_r |�1’
i=1

x
i
r,�x

i+1
r,�Tu,� . (5)

If a request r 2 R is accepted, its total response latency tr can
not exceed its response latency limitationTr . Thus, we use a binary
variable �r to indicate whether r is accepted or not, which can be
expressed as follows:

8r 2 R : �r =

8>>>>>>>><
>>>>>>>>:

1,
|_r |’
i=1

’
� 2V

x
i
r,� = |_r | and tr  Tr ,

0,
|_r |’
i=1

’
� 2V

x
i
r,� < |_r | or tr > Tr .

(6)

Third, we explore the bandwidth resource constraint. We use
u
r
�,� to indicate whether any VNFs of request r 2 R are placed at
node � 2 V , thus we have:

8� 2 V , r 2 R : ur�,� =

8>>>>>>>><
>>>>>>>>:

1,
|_r |’
i=1

x
i
r,�ar,� > 0,

0,
|_r |’
i=1

x
i
r,�ar,� = 0.

(7)

Since the bandwidth demand of all requests passing through
server node � 2 V cannot exceed its total output bandwidth, we
have:

8� 2 V :
’
r 2R

�rWru
r
�,� W� . (8)

In general, we want to achieve two objectives.
Objective 1 is to minimize the operation cost of occupied

servers, which can be expressed as:

min
’
�=1

’
� 2V

z�,� (�CC� + �WW� ),

s .t . (1), (2), (3), (4),
(9)

where �C is the unit cost of server resource, while �W is the unit
cost of bandwidth. Both �C and �W are determined by the real NFV
market and NFV service providers.

Insight: This objective bene�ts the NFV providers for reduction
in the CAPEX and OPEX. In order to minimize the operation cost
of occupied servers, the NFV providers have to fully utilize the
remaining resource of occupied servers, and thus more idle servers
can be shut down. However, simply focusing on Objective 1 will
be likely to increase the processing latency of requests as plotted
previously in Fig. 1 (a). Moreover, the growth in communication
latency may lead to a higher rejection rate of requests, which will
further reduce some levels of QoS.
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Objective 2 is tomaximize the total throughput of accepted
requests, which can be expressed as:

max
’
r 2R

�rWr�r ,

s .t . (1), (5), (6), (7), (8).
(10)

Insight: This objective intuitively bene�ts the customers. To
achieve Objective 2, the paramount consideration is to maximize
the acceptance rate of requests. For instance, the NFV providers may
consider consolidating some VNFs on the same server to reduce the
communication latency of some latency-sensitive requests, which
is shown in Fig. 1 (b). This bene�ts the customers with improved
QoS, however, it uses more servers in service and leads to higher
operation cost.

Note that an NFV system’s pro�t is primarily obtained from
accepting requests. To jointly optimize the two objectives, we de-
�ne the total reward in the MDP model as the income of the total
accepted requests minus the total cost of used servers to deploy the
arriving requests. There still exist some trade-o�s between di�erent
deployment decisions — whether to accept a request with strict
QoS requirements by occupying more servers, or reject it but loss
some pro�ts.

4 A POLICY GRADIENT BASED DEEP
REINFORCEMENT LEARNING APPROACH
FOR ONLINE SFC DEPLOYMENT

In this section, we begin with the architecture of NFVdeep together
with its neural network design. Then we introduce that how this
adaptive online DRL approach, NFVdeep works to deploy SFCs with
di�erent QoS requirements. Finally, we introduce the PG based
training procedure of NFVdeep.

4.1 Architecture of NFVdeep
With MDP, we can automatically and continually characterize the
network tra�c variations and network state transitions. Next, we
need to �nd an appropriate, e�cient SFC deployment policy which
can automatically take appropriate actions in each state so as to
achieve a high reward. Thus, we propose NFVdeep, an adaptive,
online, PG based DRL approach to adaptively deploy SFCs with
di�erent QoS requirements.

The architecture of NFVdeep is illustrated in Fig. 2. Note that
the NFV environment is the NFV network, including the servers
and links in the network topology; with DRL, the NFVdeep agent
is designed as a deep neural network (DNN) [8]. In particular, the
NFVdeep agent gets the state information from the NFV environ-
ment and automatically selects an action as return. After the action
is taken, the NFV environment transfers the reward to the agent.
Finally, the agent updates related policies according to the reward.
Repeat this procedure until the reward converges.

With PG, a policy � |S ⇥ A is de�ned as a multi-layer fullly-
connected DNN Q

� based on the back propagation (BP) network,
which performs better in large action space than DQN. It has an
input layer, an output layer and several hidden layers. As shown in
Fig. 3, the input layer is the state vector and the output layer is the
actions’ probability distribution.

Figure 2: Architecture of NFVdeep.

Input 
Layer

 

  

 

 

Hidden 
Layers

Output 
Layer Actions: (|V|+1)

: |V| : |V| : 5

Figure 3: The PG based neural network design (with two hidden lay-
ers for example).

Table 2: Parameters of Hidden Layers

|V | l1 l2 l3 l4
24 51 40 (tanh)
50 97 83 (tanh) 68 (tanh)
100 180 (ReLU ) 151 (tanh) 127 (tanh)
200 355 (ReLU ) 307 (tanh) 272 (tanh) 240 (tanh)
500 875 (ReLU ) 761 (tanh) 664 (tanh) 580 (tanh)

Now we elaborate on how to determine the number of hidden
layers and the width of each hidden layer in DNN Q

� . We begin
with one hidden layer h with S as its input layer andA as its output
layer. According to [26], we adopt a useful empirical equation |h | =
2
p
|S | ⇥ |A|, � = 0, 1, ..., 10 to decide the width of each layer. For

a DNN with two hidden layers, the number of nodes of its �rst
hidden layer is |S | 23 |A| 13 +� , and the second is |S | 13 |A| 23 +� . We �nd
that when the number of nodes |V | is less than 200, three hidden
layers are enough. However, when |V | is over 200, a DNN with four
hidden layers performs better.

The detailed design of DNN’s hidden layers is listed in Table. 2,
where ReLU and tanh are two activation functions [26] added to
related layers, which introduce non-linear features to the neural
network and improve the DNN’s capacity.

At last, we also use the input data normalization [14] method to
format the input data into a small range (i.e., from -1 to 1), which
makes the neural network easier to train. In order to keep the
quantitative relations of input data such as the resource utilization,
we devise a simple yet e�ective scaling approach, which compresses
the related inputs with a constant. For the resource related inputs
in state s , we divide it by a maximum Cmax = max(C� ),8� 2 V ,
including the remaining resource of each node bCt

j ,8j 2 1, 2, ..., |V |
and the resource demandCfj,i of current VNF fj,i . We also compress
the bandwidth related inputs and others in the same manner. In
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this way, the normalized input state is: (
bC t
1

Cmax
,

bC t
2

Cmax
, ... ,

bC t
|V |

Cmax
,

cW t
1

Wmax
,

cW t
2

Wmax
, ... ,

cW t
|V |

Wmax
,

Wri
Wmax

,
bT j
ri

1000 ,
bN j
ri

100 ,
Cfi, j
Cmax

, Pri
1000 ).

4.2 Adaptive, Online Approach for SFC
Deployment

To e�ciently deal with the dynamic network variations, we intro-
duce the time slot as de�ned previously. During each time slot � ,
the NFV system �rstly removes timeout requests, then successively
processes all requests in R� , making a series of decisions about
whether to reject or accept each SFC and then updates the network
states.

To reduce the large discrete action space, we devise a serialization-
and-backtracking method, which deals with only one VNF within
each MDP state transition. NFVdeep serially deals with the VNFs
of an SFC, and backtracks to the previous network state if an SFC
cannot be completely deployed (i.e., some VNF(s) of the SFC cannot
be placed due to the resource shortage, or the latency or bandwidth
constraint of the request can not be satis�ed). Fig. 4 illustrates how
NFVdeep works as the time slot moves on.

As we can see, there are two cases between every two time slots:
(1) Intra time slot, when there are several arriving requests in a
time slot. NFVdeep sequentially deals with these arriving requests,
speci�cally one VNF of an SFC after another. In this case, an MDP
state transition happens when a VNF is deployed or rejected. (2)
Inter time slot, when there is no request arriving during a number
of continuous time slots. In this case, no action can be taken and
the network state stays the same. Now we detailedly discuss each
case in turn.

Intra time slot. As shown in Fig. 4, two requests arrive (i.e.,
SFC1 and SFC2) at time slot � . The NFV system �rstly removes the
timeout requests and refreshes the network state by releasing the
resources occupied by these requests. Then it processes these two
arriving requests successively based on their arriving time. As we
can see, SFC1 has three VNFs to be placed, i.e., VNF1, VNF2 and VNF3.
At state st , the NFVdeep agent reads the network state and �nds all
candidate servers with su�cient resources to place VNF1. Then, an
action is taken to place VNF1 on one of the candidate servers. The
required resource is allocated and the server’s index is recorded in
the NFV system. Since SFC1 is not completely deployed, no reward
is returned to the NFVdeep agent. Then the system moves to state
st+1 with rewardU (st ,a) = 0.

At state st+1, since there is no server node having su�cient
resource to place VNF2, or the latency or bandwidth constraints
can not be satis�ed, no action will be taken and SFC1 is rejected.
The NFV system “backtracks” to the state before st and takes back
the resource occupied by VNF1. It then deals with SFC2 in the
same manner. As a result, SFC2 is successfully deployed at state
st+3 with a reward, i.e., the throughput of SFC2 minus its resource
consumption cost, U (st+3,a) =Wr2Pr2 � Cost(st+3,a), where the
resource consumption costCost(st+3,a) is de�ned as Eq. (9). Finally,
the system moves to a new state as the time slot moves to � + 1.

Inter time slot. As shown in Fig. 4, at time slot � , the NFV
system has successfully deployed the last VNF of the last request
in R� at state st+2. In the next k (k 2 N+) time slots, there is no
request arriving (i.e., Rp = ;). Then at every two time slots (i.e.,

Figure 4: The procedure of NFVdeep as the time slot moves on.

Algorithm 1 The NFVdeep Procedure
1: Begin: Initiate time slot �  1
2: while R� = ; do
3: �  � + 1
4: end while
5: Select a request r1 from R� based on the arriving time
6: Initiate i  1, j  1
7: for t  1, T do
8: Initiate state st
9: Take action a from A to place fi, j
10: if fi, j is accepted then
11: j  j + 1, st  st+1
12: end if
13: if ri is rejected or j > |_r i | then
14: if ri is rejected and j > 1 then
15: Backtrack the network state to st�j+1
16: end if
17: if R� is all processed then
18: repeat
19: �  � + 1
20: until R� , ;
21: Select a new request r 01 from R�
22: Reset i  1, j  1
23: else
24: Select request ri+1 from R�
25: i  i + 1
26: end if
27: end if
28: Calculate the reward U (st , a)
29: end for

� + k and � + k + 1), the NFV system only executes the following
procedures: removing timeout requests and releasing the resources
they occupied. Since there is no action to be taken, no state tran-
sition happens. Until the time slot when new requests arrive, the
state transition happens and the reward is calculated when one
arriving request is accepted or rejected. As expressed in Eq. (11),
the reward function includes the state transitions across a series of
time slots.

U (st ,a) =
8>>><
>>>:

� �tCost(st ,a) +Wri Pri ,ri is accepted,
0 ,ri is rejected or

not fully deployed,
(11)

where �t is a binary variable indicating whether the time slot
changes after state st , and Cost(st ,a) is the total cost as de�ned
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in Eq. (9). To take the e�ect of the future decision’s reward into
account, we de�ne the reward function at state st as:

Ust =
1’
i=0

�
i
U (st+i ,a), (12)

where � 2 [0, 1] is the discount factor for future reward.
The whole procedure of NFVdeep is listed in Algorithm 1. With

the serialization-and-backtracking method, the NFV system can
adaptively deploy SFCs for various requests with di�erent QoS
requirements.

4.3 Policy Gradient Based Training Procedure
We adopt the PG based method to directly optimize the quality of
SFC deployment by the gradient computed from rollout estimates.
With PG, our target is to �nd a policy to maximize the �nal reward
after a sequence of state transitions. The policy �� (s,a) = P(a |s,� )
is parameterized with � , which represents action a’s probability
at state s under parameter � . An episode of training consists of a
sequence of MDP state transitions. During each episode, all the
state transitions are successively stored in a bu�er and used for
training until this episode ends. The objective function is de�ned
as:

J(� ) =
’
t

�� (s,a)R(t), (13)

which is the �nal reward of an episode.
The policy gradient is de�ned as:

r�J(� ) =
✓
@J(� )
@�1

, ...,
@J(� )
@�n

◆
, (14)

which is the gradient descent of the parameter � , where � is updated
as:

�i+1 = �i + �r�iJ(�i ), (15)
where � is the learning rate, which can be adjusted based on the
convergence speed in the training procedure. PG algorithm aims
to maximize J(� ) by ascending the gradient with respect to the
product of the log sampling possibility and the accumulated reward
associated with selected actions. Thus, policies with high-reward
actions get encouraged, whereas policies with low-reward actions
get discouraged in the future.

The PG based training procedure is listed in Algorithm 2. In each
episode, we initialize the NFV system and in each MDP state transi-
tion NFVdeep processes one VNF of an SFC.When an episode comes
to an end, the total rewardUt of each state st is calculated and trans-
mitted to the NFVdeep agent. The NFVdeep agent is trained through
one episode after another until the reward converges. Speci�cally,
since the reward does not descend as the time slot moves on, we
set the discount factor � = 1. We also add a noise mechanism to
avoid trapping into the local optimum and improve the training
e�ect, which is a probability � 2 (0, 1) to choose a random action
at , otherwise choose at = P(a |s,� ).

5 PERFORMANCE EVALUATION
5.1 Simulation Setup
Network topology: We simulate a conventional NFV network
topology based on a fat-tree architecture [35]. In this topology, all
servers are connected via three layers of switches. We scale the

Algorithm 2 PG Based Training Procedure
1: Begin: Build and initialize PG neural network Q��

2: for episode  1, M do
3: Initialize the NFV environment and let s  s1
4: for t  1, T do
5: Select an action a randomly with the probability � , otherwise

select action a according to policy �� = P(a |s, � )
6: Take action a and calculate reward U (st , a)
7: Transfer the state to st+1 and get the next VNF ft+1
8: Store transition (st , a, U (st , a)) to PG batch memory
9: end for
10: for t  1, T do
11: Ut  

Õt
q=1 �

t�qU (sq, a)
12: end for
13: for i  1, 10 do
14: for t  1, T do
15: � = � +

Õ
t �r

Õt
i=1 �� (si , ti )U (ti )

16: end for
17: end for
18: end for

number of server nodes |V | from 24 to 500, each with [1, 500] units
of CPU resource and [1, 64] units of memory. The output bandwidth
of each server depends on its type and number of NICs, ranging
from 100 Mbps to 100 Gbps. Finally, we set the intra-pod delay
ranging from 40 to 100 µs and the inter-pod delay ranging from 50
to 200 µs.

SFC of requests: The requests we simulate are based on real-
world trace in [3]. According to [1], 30 di�erent commonly-deployed
VNFs are simulated for composing SFCs, including 6 typical VNFs
(i.e., �rewall, NAT, IDS, load balancer, WAN optimizer and �ow
monitor) and other service-customized VNFs. We simulate from 24
to 1,000 requests and each request requires an SFC consisted of 1 to
7 VNFs. Di�erent requests have di�erent QoS requirements in terms
of latency and throughput. We assume that each service instance
of VNF serves a request independently with a �xed service rate µ
ranging from 100 to 1,000. We simulate from 1,000 to 60,000 time
slots in each episode. For each request, we assume that its packet
arrival rate ranges from 1 to 100 packets/s. For the cost de�ned in
Eq. (9), we set �C = 0.2 and �W = 6.0 ⇥ 10�4.

Baseline and schemes compared: We �rst use a fast and ef-
fective algorithm as the baseline, the non-recursive greedy SFC
placement (NGSP) algorithm, which is reduced from the recursive
greedy SFC placement (RGSP) algorithm in [4]. NGSP preferentially
deploys VNFs of SFCs at used nodes with high resource utilization
rate and can get a feasible result with O(m ⇥ n) time complexity
as compared with RGSP’s O(mn ). To evaluate the performance of
NFVdeep, we compare it with GPLL (a greedy-based policy to �nd
path with the lowest latency) [33] and Bayes (a Bayesian learning
based approach) [31]. GPLL aims at �nding a path for each SFC with
the lowest end-to-end latency. Since GPLL is an o�ine algorithm,
we divide the whole request set into di�erent R� as the time slot
� moves on. Bayes method adopts Bayesian learning approach to
solve NFV components prediction, partition and deployment. For
intuitively showing the experiment results, we normalize other
results as divided by NGSP in all �gures (i.e., from Fig. 5 to Fig. 12).

Simulation platform:We use a Python-based framework, Ten-
sorFlow to construct the architecture of NFVdeep and its deep
neural network. All experiments are conducted on a Dell machine
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Figure 6: The average runtime
cost of di�erent schemes with
di�erent number of nodes.
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Figure 7: The average total re-
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nodes.
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Figure 8: The average total re-
ward with di�erent time slots.

learning workstation, in which the CPU is Intel(R) Core(TM) i7-
6850K with 6 cores 12 threads.

5.2 Performance Evaluation Results
Training e�ciency: To show the training e�ciency, we train
NFVdeep in di�erent network scales with the di�erent number of
server nodes and links. Fig. 5 plots the training procedure for 24-,
50- and 100-node network topologies. In order to accelerate the
training speed and achieve better training e�ect, we adjust various
parameters such as learning rate � and the number of time slots per
episode. As a result, the reward converges at about 1,600 episodes
with 24 nodes, and at about 8,500 and 9,800 episodes with 50 and 100
nodes respectively. Consequently, NFVdeep converges fast in the
training procedure; as the number of server nodes grows, NFVdeep
takes more episodes to converge.

Runtime cost: To illustrate the runtime cost of each scheme,
we compare the average runtime of NFVdeep in a time slot with
other methods as the number of server nodes |V | ranging from 24 to
500. In particular, we build a local TensorFlow to support full CPU
utilization. As shown in Fig. 6, the runtime of the three schemes
are nearly the same when the number of server nodes is no more
than 100. As the number of server nodes increases, NFVdeep always
achieves the lowest runtime within 5 ms. In summary, NFVdeep
can respond rapidly to arriving requests and is more time-e�cient
than other approaches in large network scales.

Total reward: We explore the average total reward of NFVdeep
as compared with the state-of-the-art methods. Fig. 7 plots the
results with 2,000 time slots each episode as |V | ranges from 24 to
500. As a result, NFVdeep is the only method whose total reward is
always above the baseline, which achieves averagely 33.29% more
rewards than GPLL. Fig. 8 also shows that NFVdeep always achieves
the highest reward in a 100-node network as time slots moves
from 1,000 to 6,000 in an episode, whose rewards are averagely
18.68% more than GPLL. In summary, NFVdeep always achieves
the maximal reward as compared with other methods.
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Figure 9: The average total
throughput with di�erent
number of nodes.
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Figure 10: The average total
throughput with di�erent time
slots each episode.
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Figure 11: The average total
operation cost of di�erent
schemes.
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eration cost with di�erent time
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Total throughput: We compare the total throughput of ac-
cepted requests of NFVdeep with other methods. Fig. 9 plots the
results with 2,000 time slots each episode and Fig. 10 plots the re-
sults for a 100-node network with time slots ranging from 1,000 to
6,000 in an episode. As shown in Fig. 9, NFVdeep’s total through-
put is always above the baseline as |V | ranges from 24 to 500. The
trend of this performance metric is similar as the total reward, with
32.59% improvement as compared with GPLL. Fig. 10 also shows
that NFVdeep always achieves the most total throughput as the
time slot moves on. In conclusion, NFVdeep achieves up to 32.59%
more total throughput than other methods with di�erent numbers
of servers or in a long range of time slots.

Operation cost: Finally, the total operation costs of occupied
servers are plotted in Fig. 11 and Fig. 12. Fig. 11 plots the results
with 2,000 time slots each episode as |V | ranges from 24 to 500,
and Fig. 12 plots the results for a 100-node network with time slots
ranging from 1,000 to 6,000 in an episode. Fig. 11 shows that the
operation cost of Bayes is lower than NGSP when the number of
servers is above 50, while GPLL’s operation cost grows signi�cantly
as the number of server nodes increases. NFVdeep’s operation cost
is a little bit higher than the baseline with 24 server nodes, but it
is always lower than the baseline as the number of server nodes
scales from 50 to 500. Fig. 12 illustrates the same results as the time
slot moves on. The operation costs of NFVdeep and Bayes are at
the same level, which are both less than the baseline, while GPLL
is averagely 2.6⇥ of the baseline. Compared with other state-of-
the-art methods, NFVdeep achieves the highest pro�ts and reduces
averagely 9.62% operation cost.

6 CONCLUSION
In this paper, we study the online SFC deployment problem in NFV
systems. We �rstly introduce a Markov decision process model to
capture the dynamic network state transitions caused by stochas-
tically arriving requests. In order to jointly minimize the oper-
ation cost of NFV providers and maximize the total throughput
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of requests, we propose NFVdeep, an adaptive, online, deep rein-
forcement learning approach to automatically deploy SFCs in large,
frequently transferred network state space. Speci�cally, we use a
serialization-and-backtracking method to deal with the large dis-
crete action space and a policy gradient based method to improve
the training e�ciency and convergence to optimality. Extensive
experimental results demonstrate that NFVdeep converges fast with
di�erent network scales and can respond within 5 ms to arriving
requests with di�erent QoS requirements. As compared with the
state-of-the-art approaches, NFVdeep always achieves the high-
est total rewards with 32.59% higher total throughput of accepted
requests and 33.29% lower operation cost on average.
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