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Abstract—The Internet of Things (IoT) ecosystem generates
vast amounts of multimodal data from heterogeneous sources
such as sensors, cameras, and microphones. As edge intelligence
continues to evolve, IoT devices have progressed from simple
data collection units to nodes capable of executing complex
computational tasks. This evolution necessitates the adoption of
distributed learning strategies to effectively handle multimodal
data in an IoT environment. Furthermore, the real-time nature
of data collection and limited local storage on edge devices
in IoT call for an online learning paradigm. To address these
challenges, we introduce the concept of Multimodal Online
Federated Learning (MMO-FL), a novel framework designed
for dynamic and decentralized multimodal learning in IoT envi-
ronments. Building on this framework, we further account for
the inherent instability of edge devices, which frequently results
in missing modalities during the learning process. We conduct
a comprehensive theoretical analysis under both complete and
missing modality scenarios, providing insights into the perfor-
mance degradation caused by missing modalities. To mitigate the
impact of modality missing, we propose the Prototypical Modality
Mitigation (PMM) algorithm, which leverages prototype learning
to effectively compensate for missing modalities. Experimental
results on two multimodal datasets further demonstrate the
superior performance of PMM compared to benchmarks.

Index terms— Federated Learning, Multimodal Learning,
Online Learning, Internet of Thing, Modality Missing.

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) [1]
has led to an unprecedented surge in data generated by a
multitude of interconnected devices, including smart home
appliances [2], wearable health monitors [3]], and industry
sensors [4]. To enable intelligent services and applications
across the IoT ecosystem, artificial intelligence techniques,
particularly machine learning and deep learning, has become
a fundamental tool for model training on large-scale IoT data.
Traditionally, such training has been performed in centralized
cloud platforms or data centers. However, this centralized
paradigm faces significant challenges as both the scale of
IoT data and the number of IoT devices continue to expand.
Transferring large volumes of raw data to centralized servers
imposes significant demands on network bandwidth and leads
to substantial communication overhead, rendering it imprac-
tical for latency-sensitive applications such as autonomous
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driving [5] and real-time healthcare monitoring [6]]. Addition-
ally, uploading sensitive user data to the cloud raises serious
privacy concerns [[7]. With the gradual evolution of IoT devices
from mere data collectors to intelligent edge nodes, there is
increasing potential to harness their computational capabilities
to address the scalability and efficiency challenges of massive
IoT deployments. In this context, federated learning (FL) [8]]
has emerged as a promising distributed learning paradigm.
FL enables collaborative model training across devices while
keeping raw data local, offering a cost-effective and privacy-
preserving alternative to traditional centralized learning. By
significantly reducing data transmission and ensuring local
data privacy, FL presents a natural and scalable solution for
deploying learning tasks in IoT environments.

Conventional FL frameworks for IoT have primarily been
designed for unimodal data. However, in practice, IoT envi-
ronments are inherently multimodal, involving a diverse range
of sensors that generate data across multiple modalities [9],
such as images from cameras, audio from microphones, and
structured text or signals from various sensors. This rich mul-
timodal data provides a more comprehensive and informative
representation. To address this reality, multimodal federated
learning (MFL) [10] has emerged as a natural extension of
FL, aiming to enable collaborative learning across distributed
multimodal data sources. A typical approach in MFL involves
deploying modality-specific encoder networks, each tailored
to a particular data type, to extract meaningful feature repre-
sentations from high-dimensional raw inputs. These features
are then fused and passed through a head encoder, usually
composed of deep neural network (DNN) layers followed by
a softmax classifier, to produce the final prediction.
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Fig. 1: IoT-Based MMO-FL with Modality Missing

While traditional MFL has primarily focused on offline
settings with fixed datasets, real-world IoT applications are



inherently dynamic. IoT devices operate continuously, gen-
erating streaming data in real time, which makes online
learning a more realistic paradigm. Due to the instability
failures of IoT sensors, certain modalities may be missing
during data collection, introducing additional challenges to
the learning process. Missing modalities can significantly
impair performance by disrupting the alignment and fusion
of complementary information from different sources. This
degradation weakens the model’s ability to capture cross-
modal correlations and reduces generalization, particularly in
dynamic and resource-constrained IoT settings. To address
these issues, we introduce the concept of Multimodal Online
Federated Learning (MMO-FL) and investigate solutions for
handling modality missing in this scenario. An overview of the
MMO-FL framework with missing modalities is illustrated in
Fig. [I] Given the resource constraints of edge devices in IoT,
conventional modality reconstruction techniques, such as those
relying on transformers [11]] or large pre-trained models [12]
are often computationally prohibitive. Therefore, it becomes
critical to develop efficient modality mitigation strategies that
are compatible with the limited computational capabilities
of edge devices and constrained communication capacity of
IoT networks, enabling robust and scalable deployment in
IoT scenarios. Our primary contributions are summarized as
follows:

1) We introduce the concept of MMO-FL, designed for IoT
scenarios to address the challenges of FL with multimodal
and streaming data. Building upon this foundation, we
further investigate the problem of missing modalities, a
prevalent issue in IoT environments caused by sensor
instability and intermittent data acquisition failures.

2) We provide an in-depth theoretical analysis of MMO-
FL, investigating the dynamics of online learning and
multimodal learning within the FL framework. In partic-
ular, we compare the scenarios with and without missing
modalities, highlighting their differences in terms of
regret bounds.

3) To address the modality missing problem, we propose
the Prototypical Modality Mitigation (PMM) algorithm,
specifically designed to handle missing modality data
in MMO-FL. Inspired by prototype learning, PMM is
tailored to support dynamic data streams by enabling ef-
fective construction and substitution of modality-specific
prototypes throughout the learning process.

4) We evaluate the proposed PMM algorithm within the
MMO-FL framework using two multimodal datasets:
UCI-HAR and MVSA-Single. Experimental results
demonstrate that PMM consistently outperforms baseline
methods in effectively addressing the missing modality
problem, achieving superior overall learning performance.

The rest of this paper is organized as follows. Section II
reviews related work on Online FL, MFL, and Prototype FL.
Section III presents the system model and problem formula-
tion. In Section IV, we describe the workflow of MMO-FL
in the presence of missing modalities. Section V provides a
theoretical regret analysis of the MMO-FL framework. Section
VI details the proposed PMM algorithm. Experimental results

are discussed in Section VII. Finally, Section VIII concludes
the paper.

II. RELATED WORK
A. Online Federated Learning

Online learning is designed to process data sequentially
and update models incrementally, making it well-suited for
applications involving continuously arriving data and the need
for real-time model adaptation [|13]]. These methods offer com-
putational efficiency and eliminate the requirement of having
access to the full dataset in advance, rendering them particu-
larly suitable for memory-constrained IoT environments. In the
context of FL, online federated learning (OFL) has emerged
as a promising paradigm that extends online learning princi-
ples to distributed networks of decentralized learners [[14]. A
distinguishing feature of OFL, compared to traditional offline
FL, is its emphasis on minimizing long-term cumulative regret
rather than static optimization objectives during local updates.
Although OFL remains relatively underexplored, several no-
table studies have recently advanced the field. For instance,
[15] proposes a communication-efficient OFL algorithm that
balances reduced communication overhead with strong learn-
ing performance. Similarly, [[16] introduces FedOMD, an OFL
method designed for uncertain environments, capable of han-
dling streaming data without relying on assumptions about loss
function distributions. While these works focus primarily on
the horizontal federated learning (HFL) setting, [|17]] explores
the vertical federated learning (VFL) context, proposing an on-
line VFL framework tailored to cooperative spectrum sensing
and achieving sublinear regret. Further extending to real-world
industrial applications, [4]] addresses challenges such as noise
interference and device heterogeneity in online VFL systems.
However, all the aforementioned approaches are limited to
unimodal online federated learning. In practice, multimodal
data is pervasive in IoT applications, where information from
diverse types of sensors must be jointly leveraged. To bridge
this gap, this work pioneers the study of MMO-FL, with the
goal of enhancing the robustness and applicability of online
federated learning in complex, multimodal IoT environments.

B. Multimodal Federated Learning

MFL aims to train task-relevant models on multimodal
data distributed across multiple clients, thereby enabling the
effective utilization of diverse data sources. With the growing
interest in MFL, a variety of algorithms have been proposed
to address its unique challenges and improve learning perfor-
mance. One prominent challenge is modality heterogeneity,
where different clients possess access to varying subsets of
modalities. This inconsistency complicates model aggregation
and hampers effective knowledge sharing. Several studies,
such as [18]-[20], have explored strategies for heterogeneous
modality fusion to address this issue. Another critical chal-
lenge involves optimizing modality selection for training under
constrained computational and communication resources. To
tackle this, [21] proposes MPriorityFed, an adaptive resource
allocation framework that improves computational efficiency
by prioritizing modality encoders based on their relevance and



training requirements. Beyond above two challenges, a partic-
ularly pressing challenge in MFL is maintaining robust perfor-
mance in the presence of missing modalities [22]. Missing data
can result from incomplete data collection [23]], sensor failures
[24], or privacy restrictions [22], all of which degrade the
effectiveness of conventional MFL frameworks. For example,
[25]] introduces a cluster-enhanced method that utilizes feature
clustering to address missing modalities in brain imaging anal-
ysis, while [26] proposes the MFCPL framework, which lever-
ages cross-modal prototypes to enhance knowledge transfer
at both modality-shared and modality-specific levels. Despite
these advancements, existing approaches are predominantly
designed for offline learning scenarios with static datasets.
They fail to address the challenges of online learning settings,
where data arrives sequentially and models must adapt in real
time. To bridge this gap, our work focuses on developing
effective modality mitigation algorithms specifically tailored
for MMO-FL, aiming to mitigate the impact of missing
modalities in dynamic and distributed IoT scenarios.

C. Prototype Federated Learning

Prototype Federated Learning (PFL) has emerged as a
promising solution for addressing data heterogeneity and per-
sonalization challenges in FL scenario. Unlike conventional
FL approaches that rely on aggregating model parameters or
gradients, PFL focuses on exchanging class-level prototypes,
which are representative feature embeddings of data classes,
between clients and the central server. This prototype-sharing
strategy enhances communication efficiency and improves
model robustness, particularly under non-IID data distributions
[27]-[30]. For instance, FedProto [28]] proposes a framework
where clients compute local class prototypes and send them to
the server, which aggregates them into global prototypes and
redistributes them. This process helps align local updates with
global objectives and alleviates the negative impact of data het-
erogeneity. Extending this concept, FedGPD [31]] incorporates
knowledge distillation, using global prototypes as distilled
information to guide local training. This method eliminates the
dependency on public proxy datasets and enhances generaliza-
tion across clients with diverse data distributions. Furthermore,
FedGMKD [27] advances prototype learning by modeling pro-
totype features using Gaussian Mixture Models and applying
discrepancy-aware aggregation, which dynamically weights
client contributions based on both data quality and quantity,
resulting in improved global performance under heterogeneous
conditions. Beyond tackling heterogeneity, recent studies have
demonstrated that prototype learning is also effective for ad-
dressing modality missing problems, especially in centralized
learning scenarios [32], [33] and some distributed learning
scenarios [34]. However, existing PFL research is confined to
offline learning, with limited exploration of online learning,
particularly in OFL contexts. OFL introduces unique chal-
lenges such as streaming data and non-stationary distributions,
which require new adaptations of prototype-based strategies.
Addressing the modality missing problem through prototype
learning within the context of MMO-FL remains an open and
important direction for future research.

III. SYSTEM MODEL

Before presenting the details of the system model, we
provide a summary of the key notations in Table [I| and the
abbreviations used throughout this work in Table

TABLE I: Key Notations

Symbol Semantics

K The number of clients

M The number of modalities

T The number of global rounds

N The number of data samples collected by client
E The number of local iterations

C The number of classes

om The modality encoder

0O The head encoder

n The learning rate

Z The feature extractor

C) The overall model

St The set of clients without modality missing

k

Gt The overall gradient
,6’}; The proportion of available modalities
pi"m The temporal global prototype
ﬁi’m The consistent global prototype
Pt The consistent global prototype collection
A The ratio of modality missing occurs
« The Non-IID level

Consider an IoT-based smart factory scenario consisting of
a cloud server and K workstations, each acting as a client.
Each workstation is equipped with a diverse set of sensors
to monitor factory conditions across multiple modalities at
different locations, including vision sensors, acoustic sensors,
and temperature and humidity sensors, as illustrated in Fig.
Additionally, given the real-time data collection from these
sensors, the objective is to enable cooperative training across
the clients on a unified global model using multimodal stream-
ing data. This setting forms the foundational structure of the
MMO-FL problem. During the training process, the sensors
at each client continuously collect new multimodal data over
time, with the timeline divided into discrete periods, denoted
as t = 1,2,...,7. For simplicity, each time period is also
treated as a global round.

TABLE II: Key Abbreviations

Acronyms Full terms
IoT Internet of Things
MFL Multimodal Federated Learning
DNN Deep Neural Network

MMO-FL  Multimodal Online Federated Learning

HFL Horizontal Federated Learning
VFL Vertical Federated Learning
OFL Online Federated Learning
PFL Prototype Federated Learning
PMM Prototypical Modality Mitigation
OPC Online Prototypes Construction
OPS Online Prototypes Substitution

In each global round ¢, each client k& € K collects the
current local training dataset consisting of N data sam-
ples from M modalities with no missing modalities. The

dataset is denoted as D! = (Xt’1 XE’Q,...,XZ’M;Y,;&) =
{(m}iln, xffn, . n Moyt n)} . Here, 2™ " represents the
mth th

modality data of the n sample in client k collected



at global round ¢, and y} , denotes the corresponding label.

We also define Dt = 2521 D}, as overall dataset aggregated
across all clients at global round ¢. Without loss of generality,
we assume that each client k collects exactly N training
samples per global round ¢.

In the MMO-FL, the overall model that needs to be trained
by each client and aggregated at the server is divided into two
components: the modality encoders 0, ..., 6", which extract
the feature-level information from the raw data, and the head
encoder §°, which integrates these features to generate the final
prediction. Each modality encoder 6" may adopt a distinct
architecture tailored to the characteristics of the corresponding
modality. Using modality-specific feature extractors allows
each network to learn features tailored to its respective data
type, thereby enhancing the quality of the learned represen-
tations. The feature vector for the m'" modality of client k
at round ¢, extracted by modality encoder 8™, is denoted as
ZI™ = ™(X,™). The header encoder §° then synthesizes
the outputs ZZ’m from each modality encoder to fulfill the final
learning objective. Based on these definitions, the loss function
for the collective training dataset at round ¢ is expressed as
follows:

F,(0,D!) = ;{ZK:ft (00 (Z,ﬁ:l, o Z,QM) ,Y,j) (1)
k=1

where © = {6°,0%,...,6M} represents the overall model.
The term 6° Z,tc’l, . .,ZZ’M denotes the predicted labels
through head encoder, and f; is the loss function that measures
the discrepancy between the predicted labels and the actual
labels. It is important to note that the above loss function
corresponds to a single global round.

Since the training process is based on dynamically collected
real-time data rather than a static dataset, adopting an online
learning paradigm is essential. Let the overall model at each
global round be represented as ©! ..., ©T. The learning
regret, Regp is defined to quantify the gap between the
cumulative loss incurred by the learner and the cumulative
loss of an optimal fixed model in hindsight. Specifically:

T T
Reg; = » F(04D") - ) F (05D )
t=1 t=1
Where ©* = argming Zthl F,(©;D") represents the op-
timal fixed model selected in hindsight. Our objective is to
minimize the learning regret, which equates to minimizing
the cumulative loss. Importantly, if the learning regret grows
sublinearly with respect to 7, it indicates that the online
learning algorithm can progressively reduce the training loss
asymptotically.

The fixed optimal strategy in hindsight refers to an idealized
solution determined by a centralized entity with complete prior
knowledge of all per-round loss functions. In our problem,
achieving such an optimal strategy would require access to
future information, including the entirety of the streaming
datasets collected in subsequent rounds. However, due to the
stochastic and unpredictable nature of real-time data collec-
tion, this information is inherently unavailable in practice.

Consequently, the full loss functions are not known in advance
and evolve dynamically over time. Therefore, regret just serves
as a metric to quantify the performance gap between the
proposed algorithm and the theoretical optimal strategy in
our theoretical analysis. For experimental validation, we will
evaluate the effectiveness of our algorithm using practical
metrics such as test accuracy.

IV. THE WORKFLOW OF MMO-FL WITH MISSING
MODALITIES

In this section, we present the overall workflow of the
MMO-FL framework and analyze the challenges introduced by
missing modalities during the learning process. This discussion
serves as the foundation for the subsequent theoretical analysis
and the development of algorithms aimed at mitigating the
impact of modality missing. We place particular emphasis on
highlighting the distinctions between MMO-FL and conven-
tional unimodal FL approaches.

MMO-FL builds upon the HFL framework, where each
client collects independent data samples and the server is
responsible for aggregating the global model. In conventional
HFL, clients share the same feature space but have different
sample spaces. However, in the case of missing modalities, the
feature space across clients may not remain consistent during
the whole learning process due to the presence of modality
missing, differing from the standard HFL framework. During
each global round ¢ € T, where 7 = {0,1,2,...,T — 1},
all clients execute a fixed number of local training iterations,
represented by the parameter F. The index 7 = 0,1, 2, ..., F'is
used to track these local iterations. Then each global round ¢
consists of a sequence of coordinated steps carried out across
clients and the server. A visual illustration of the timeline for
a single global round is provided in Fig. 2]
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Fig. 2: The time diagram of MMO-FL in one global round

1) Client - New Data Collect: At the beginning of each
global round ¢, each client k collects new local training data
D,tc, utilizing the available set of modalities M?, determined
by the operational status of the sensors on the client. Due to
the inherent instability of edge devices in IoT environments,
some sensors on clients may fail to collect new data during
certain global rounds, leading to the appearance of modality
missing. For convenience, we define M¢ = M\ M as the set
of missing modalities for client k at global round ¢. Unlike the
traditional modality missing issue in offline learning settings,



where the absence of a specific modality remains consistent
throughout the training process, the online setting introduces
variability, with the missing modalities for a client potentially
changing between global rounds. This dynamic nature adds
an additional layer of complexity to the learning process
and renders conventional solutions designed for static offline
scenarios ineffective.

2) Client - Local Model Update: Each client k uses the
current global model O, provided by the server, as the initial
model to train a new local model based on the current collected
training dataset D% . Each client performs E iterations of online
gradient descent (OGD) using the full training dataset. The
model update rule varies depending on whether the client has
access to all modalities or is experiencing modality missing.
For clarity, we define the set S; as the set of clients with
complete modality availability in global round ¢, while the
remaining clients, denoted by K\S;, represent those with
missing modalities. Here, \ denotes exclusion.

For Full Modality Client: In this case, the data collected
by client k£ € S; includes all modalities M, allowing the client
to utilize the complete local dataset for OGD updates. Each
modality data is processed through its respective modality
encoder, and the final result is produced by the head encoder.
In each global round, the client performs E local training
iterations, following the update process described by the
following equations:

0," =o'
oy =0y -Gy, Vr=1,..,E
et =o” 3)

Here, G| = VF,(0}", D}) represents the gradient computed
on the current local dataset containing all modalities, and 7
denotes the corresponding learning rate.

For Missing Modality Client: In this case, the data col-
lected by client k£ € K\S; contains missing modalities with
modalities set M caused by the failure of data collection
from the corresponding type of sensors. Consequently, the
client can only perform local updates using the partial modality
dataset D!, = D!\ {X}i’m,} et The available modalities
are processed through their corresponding modality encoders,
and the final output is generated by the head encoder. The
client also executes E local training iteration, following the
update procedure detailed in the equations below:

@7]?0 — @t
LT Z BT — G, Ve =1, B
oLl — L @

Here, we denote the gradient computed on the current local
dataset with missing modalities as:

6 =[@) @) @) e

where

trm _ {vat(@gT,D,g) if me M, ©)

0 otherwise

To highlight the impact of missing modality data on the
model, ©4™ is used to denote local models with the impact of
missing modalities. In this case, the parameters corresponding
to the absent modalities remain unchanged, as they cannot be
updated due to the failure in data collection and the absence
of corresponding gradient updates.

3) Client - Local Model Upload: Each client will upload
the corresponding local model to the server after finishing the
E iterations of local model update. For clients k& € S; with
full modalities, the client will upload the local model @’ijl
trained using data from all modalities. For clients k& € K\S;
with missing modalities, the client will upload the local
model (:)7,5:“1, which has been trained using available data
with partial modalities. In the subsequent discussion, we also
slightly abuse the notation (:)';‘CJrl to also represent the local
model obtained after applying a mitigation strategy for missing
modalities. It is important to note that this model is inherently
different from the one trained using complete modality data.

4) Server - Global Model Update: The server updates
the global model by using the local model updates from the
clients, as given by the following equation:

1 -
ottl — = Z oL 4+ Z oLt 7
kES, keK\S,

The server then broadcasts the updated global model to all
clients for the next global round. This process continues until
the pre-set total number of global rounds is reached.

From the above MMO-FL workflow, it is evident that
a central challenge introduced by modality missing lies in
designing an effective mitigation strategy. The objective is to
ensure that the model updated using reconstructed modalities
closely approximates the one trained with complete modality
data, ie., Ot — @1 In the following, we first provide a
detailed theoretical analysis to quantify the impact of modality
missing on the regret bound of MMO-FL. Building on these
insights, we then introduce the Prototypical Modality Mitiga-
tion algorithm, which is designed to effectively alleviate the
adverse effects of missing modalities.

V. THEORETICAL ANALYSIS

In this section, we provide a comprehensive regret analysis
of the proposed MMO-FL algorithm. The theoretical analysis
of MMO-FL presents several additional challenges compared
to traditional single-modal offline FL. First, the online learn-
ing setting necessitates evaluating long-term cumulative loss
Reg rather than focusing solely on convergence at a single
round. Second, the multimodal nature of the problem requires
separate consideration of the feature models associated with
each modality, making it inappropriate to treat the local model
as a unified whole. As a result, new proof techniques and
additional assumptions are required to adequately capture
these complexities. We will conduct the regret analysis in
three steps. First, we will examine the regret bound for the
case where the local iteration is £ = 1 without the impact
of modality missing. Next, we will extend the analysis to the
scenario where the local iteration is £ > 1. Finally, we will



explore the regret bound when £ > 1 while accounting for
the impact of modality missing.

A. MMO-FL with local iteration EE = 1 and without modality
missing

To facilitate our analysis, we first introduce several addi-
tional definitions. After applying some basic transformations
to the global model update equation above, we derive an
alternative form of the global model update equation for the
case where the local iteration is £ = 1 and no modality is
missing, as follows:

®t+1 Z Gk; (8)
where GZ represents the gradient of the local overall model
for client k& across all M modalities, given by:

T T 7
t t,0 t,1 t,M
ot = |(e1') (er) (o)
©))
Subsequently, we will introduce the assumptions that are
standard for analyzing online convex optimization, as refer-
enced in [35]. Several of these assumptions are defined at the

modality level to align with the specific requirements of our
multimodal parameter formulation.

(e

Assumption 1. For any DY, the loss function F;(©;D?) is
convex with respect to © and differentiable.

Assumption 2. The loss function is L-Lipschitz contin-

uous, the partial derivatives for each modality satisfies:
2

IV F(©)]” < L2

Assumption [I] ensures the convexity of the function, en-
abling us to leverage the properties of convex optimization.
Assumption [2] constrains the magnitude of the loss function’s
partial derivatives at the modality level. These assumptions are
standard in theoretical analyses and are often approximately
satisfied in practice through the use of convex surrogate
losses and gradient normalization techniques. Based on these
assumptions, we can derive the following Theorem

Theorem 1. Under Assumption 1-2, MMO-FL with local
iterations E2 = 1 and excluding the impact of modality missing,
achieves the following regret bound:

T K T K
Regr = ZZEt [F.(6%D})] — ZZFt 0*;D})

t=1 k=1 t=1 k=1
K||e'—e*|* nrr( +1)L?
_K[e -6 Tk 1) o
2n 2
Proof. The proof can be found in Appendix A. O

According to Theorem by setting = O(1/VT),
the MMO-FL can achieve a sublinear regret bound over T’
time rounds, specifically O(v/T). A sublinear regret bound
indicates that the average regret per round, defined as the
regret divided by the number of rounds, approaches zero as
the number of rounds increases indefinitely. This suggests that
the algorithm progressively refines its performance by learning
from its errors.

B. MMO-FL with local iterations E > 1 and without modality
missing

In this section, we extend the proof to the case where the
local iteration £ > 1 and no modality is missing. Following a
similar transformations approach, we derive the global model
update equation as follows:

&

K
®t+10 (__)to %Z (11)

k=171

0

where GZ’T denotes the gradient of the local overall model
for client k£ across all M modalities for round ¢ and local
iteration 7. Due to the presence of multiple local iterations
E > 1, we introduce two additional assumptions to support
the regret analysis of this case.

Assumption 3. The partial derivatives, corresponding to the
consistent loss function, fulfills the following condition:

t,1’ t, T
|6 -6

t, 7’ t,T
< H@k -6y

where 7' and T indicate that they correspond to different local
iterations.

For the purposes of subsequent theoretical analysis, we
consider a D-dimensional vector for each modality in both
the overall gradient and model. We define an arbitrary vector
element d € [1, D] in overall gradient for modality m as G},
and similarly, the arbitrary vector element d € [1, D] in overall
model for modality m is denoted as ©}” ;. Including the head
encoder m = 0, each overall gradient and model consists of
a total of (M + 1)D vector elements.

Assumption 4. The arbitrary vector element d in the overall

model @Zfd for any modality m is bounded by: ’@Zfd‘ <o.

Assumption [3|ensures that the variation in the partial deriva-
tives is confined within a specific range, which aligns with the
model variation over two different local iterations that maintain
a consistent loss function. This approach effectively utilizes
the concept of smoothness. Lastly, Assumption 4| specifies
the permissible range for any vector element in the overall
model. These assumptions are commonly adopted to facilitate
convergence analysis and align with practical training settings,
where consecutive model updates are guided by corresponding
gradients and model parameters are constrained within a
bounded range. Then we obtain the following Theorem

Theorem 2. Under Assumption 1-4, MMO-FL with local
iterations £ > 1 and excluding the impact of modality missing,
achieves the following regret bound:

T K T K

Regr =Y > E [F(0%:D})] = > > F(0%D})
t=1 k=1 t=1 k=1

_ K| e " yTKEM +1)1?

= onE 2

+2nTDEK (M +1)%*¢poL (12)

Proof. The proof can be found in Appendix C. O



According to Theorem [2, by setting n = O(1/v/T), the
MMO-FL can also achieve a sublinear regret rate O(v/T).
However, in contrast to Theorem |1} the regret bound includes
an additional term resulting from the presence of multiple local
iterations. In the following analysis, we will consider the effect
of modality missing.

C. MMO-FL with local iterations E > 1 and modality missing

In this section, we extend the proof to the more complex
and common scenario where the local iteration £ > 1 and
modality missing is present. We derive the global model update
equation as follows:

9t+1 0

=t — (13)

where (N}Z’T represents the gradient of the local overall model
for client k& with partial modalities M, at round ¢ and local
iteration 7. Obviously, M # M} holds for most of the time.

Since each client may have a different modality state in
each global round, we introduce an additional assumption to
constrain the maximum upper bound of modality missing.
suppose we define 3} = L\Q/i"ll as the proportion of available
modalities for client & at round ¢ relative to the total number

of modalities.

Assumption 5. For any client k at any global round t,
the minimum number of available modalities is bounded as
follows: B > j3, where 3 is a constant between [0, 1].

Assumption [5] guarantees the most extreme case of modality
missing, ensuring that no client will experience a complete
lack of modal data at any global round, which would otherwise
prevent training. This assumption is reasonable in practical set-
tings, as partial modality data is generally available throughout
the training process, thus ensuring a minimal condition for
effective learning. With the above assumptions in place, we
can derive the following Theorem

Theorem 3. Under Assumption 1-5, MMO-FL with local
iterations F > 1 and including the impact of modality missing,
achieves the following regret bound:

T K T K
Regr = ZZEt [Ft(@t’oépfig)] - ZZFt (©7; Df

t=1 k=1 t=1 k=1
Koo e
< — —28)nTK (M + 1)L?
< oE + (5 =28)TK(M +1)
2 M+ 1)TDKoL
b T DKM + 1201 + 2L =0 ;I JTDKo
(14)

Proof. The proof can be found in Appendix E. O

Based on Theorem 3, by choosing the learning rate as
n = O(1//T), MMO-FL with missing modality can achieve
a regret bound of O(v/T+T(1—3)) over T time rounds. Our
analysis reveals that the term O(T(1 — /3)), which accounts
for the missing modality, plays a crucial role in determining
whether a sublinear regret bound can be achieved. Notably, if

we set § = 1, meaning no modality is missing for any client
in any round, MMO-FL clearly achieves a regret bound of
O(VT). However, in practical IoT environments where device
stability cannot always be guaranteed, this term cannot be
entirely eliminated. This occurs because missing data for a
specific modality prevents the corresponding partial gradient
from being updated. Consequently, the most effective way to
mitigate the impact of missing modalities is to approximate
the absent modal information. In the following section, we in-
troduce the Prototypical Modality Mitigation algorithm, which
is specifically designed to address this problem.

VI. PROTOTYPICAL MODALITY MITIGATION ALGORITHM

In this section, we present the details of the Prototypical
Modality Mitigation algorithm (PMM). As discussed in the
previous section, the regret bound of MMO-FL with miss-
ing modalities is influenced by the modality missing ratio.
However, since the occurrence of missing modalities is often
unpredictable and uncontrollable in real-world IoT settings, it
becomes essential to mitigate their impact. A natural approach
is to reconstruct or approximate the missing modalities during
training process. Drawing inspiration from prototype learning,
we identify prototypes as an effective solution to address this
challenge, as they encapsulate the underlying semantics of
each class and can serve as reliable substitutes for absent
modality data.

Algorithm 1 Prototypical Modality Mitigation Algorithm

1. fort=1,2,....,T—1do

2 Client Side:

3 for k=1,2,.... K do

4 if Client with full modalities (k € St) then

5 Calculates the local prototype pk via Eq.
6: Integrates and uploads the pk’C to server.
7 else

8 Downloads and utilizes the collection P?.
9 Builds the representations Z}i’m via Eq.
10: Utilizes the Z,i’m for class prediction.

11: end if

12: end for

13: Server Side:

14: Collects the local prototype pZ’ZL from clients.

15: Calculates the p’™ via Eq. |16
16: Updates the pL™ via Eq.

17: Broadcasts the Pt to all clients.
18: end for

The proposed PMM algorithm is detailed in Algorithm [I]
and comprises two key components: Online Prototypes Con-
struction (OPC), which builds prototypes based on dynamic
data during the MMO-FL learning process, and Online Proto-
types Substitution (OPS), which utilizes these prototypes for
real-time modality mitigation in clients experiencing missing
modalities. The detailed flowchart of the PPM algorithm
is illustrated in Fig. The subsequent sections provide a
comprehensive explanation of each component.
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Fig. 3: Illustration of PMM: Online Prototypes Construction (OPC) involves generating prototypes from continuously evolving

data throughout the MMO-FL learning process, ensuring a

dynamic representation of each modality. Online Prototypes

Substitution (OPS), on the other hand, leverages these prototypes to compensate for missing modalities in real-time, enabling
effective modality reconstruction for clients encountering incomplete modality data.

A. Online Prototypes Construction

The OPC process runs concurrently within each global
round. We define ¢ € {1,...,C} as the label classes. Ac-
cordingly, X};’Cn represents the set of training sample of class
¢ and modality m, collected by client k at global round ¢.
The local prototype is then defined as the average value of the
features extracted by the modality encoder:

m 1 m m
p?,c = t,m Z 0 (mg,n) (15)
|Xk;,c |

nGN’(y}iyn:c)

To ensure fairness among prototypes for different modali-
ties, we introduce two additional rules: (1) Local prototypes
across different modalities should follow a uniform structure,
ensuring that the extracted features Hm(xfc”;) from modality
encoders remain consistent, despite differences in the original
data structures of each modality. By processing data through
these encoders, the extracted features from various modalities
can be structurally aligned. (2) Local prototypes across modal-
ities should be normalized to maintain a consistent magnitude,
ensuring fair comparability and stability throughout the learn-
ing process.

After each training round, each client generates local proto-
types for each modality and transmits them to the server. After
receiving the local prototypes for each modality, the server
creates a temporal global prototype for modality m and class
c at global round ¢ as follows:

t,m
Z Pc

keS,

1
t,mzi 16
De S, (16)

Given the nature of online learning, data bias may arise,
and the collected data may not encompass all classes in

every global round. To address this issue, it is essential to
maintain a persistent global prototype that accurately captures
the semantic representation of each class for every modality
across rounds. We define the persistent global prototype for
modality m and class ¢ at global round ¢ as follows:

(t —1)pt—tm 4 phm
t

~t,m

The persistent global prototype p.™ is continuously updated
and stored on the server, ensuring its availability for supporting
the OPS process.

=t.m

b =

a7

B. Online Prototypes Substitution

In this phase, the client performs prototype substitution
to address missing modalities problem. After updating the
persistent global prototype, the server organizes them by
modality to create the persistent global prototype collection,
denoted as Pt, defined as follows:

—t,1 ~t,1 —t,1
pl pc pC
Pt __ —t,m =, —t,m
Pr=1m e Pé (18)
—_t,M ~t, M _t,M
1 c P

Next, the server distributes this global prototype collection to
all clients. When a client detects that a certain modality is
missing due to uncollected data, it generates the correspond-
ing virtual feature representations for the missing modality.
This reconstruction is performed by leveraging the received
global prototypes in conjunction with the class distribution



inferred from the available modality data, as formulated in the
following equation:

—t,m

Ftom | —t,m _tm
Zy " = [pC(k,l)""pC(k,n)""pc(k,N)] 19)

Here, ﬁi’{;n) denotes the persistent global prototype of modal-
ity m, corresponding to the class label of the n-th data
sample from client k£ at global round . When modality m is
absent in the current global round, the corresponding feature
representations are synthesized using the persistent global
prototypes. Subsequently, the predicted labels are obtained
through the head encoder as 6° (Zp',... . Zp™ ... Z}™M).

This is then followed by the standard execution of the MMO-
FL process, as introduced in the previous section. Although
the PMM algorithm introduces some additional computational
and communication overhead, its design keeps these costs
minimal. First, the computation in the PMM algorithm pri-
marily involves local prototype construction on the client side
and global prototype updates on the server side. The local
construction relies on the existing feature extractor, and the
global updates impose minimal computational burden on the
server. Communication in PMM mainly consists of uploading
and downloading prototypes. Since prototypes are typically
much smaller than full model parameters, this process does
not introduce significant communication overhead. To account
for potential overhead and additional considerations introduced
by the implementation of the PMM algorithm, we present
the following three additional remarks to further refine our
proposed algorithm.

Remark 1 (Prototype Approximation): From the perspec-
tive of the law of large numbers, a feature extractor based
on persistent global prototypes can effectively represent the
feature extractor for missing modalities. As the number of pro-
totypes increases, the representation of each modality becomes
more accurate. The law of large numbers [36] suggests that as
the sample size grows, the sample mean approaches the true
mean of the population. Similarly, in feature extraction, using a
larger number of prototypes captures the diverse characteristics
of the data, reducing potential bias or distortion that could
occur with a limited set of prototypes. By integrating more
prototypes, the system can better approximate the feature
distribution of the missing modality, compensating for missing
information by leveraging the overall trends and patterns
derived from the larger dataset.

Remark 2 (Quantized Upload): Since the persistent global
prototype in the OPS phase serves as an approximate com-
pensation mechanism, the precision of this substitution may
not be highly sensitive and precise. Therefore, to further
reduce communication overhead, quantization technique can
be applied when transmitting the persistent global prototype
collection. Similar quantization techniques are adopted in the
field of FL [37] to reduce the communication overhead. In
our experiments, we will also investigate the impact of this
strategy on overall learning performance.

Remark 3 (Delayed Update): Given the robustness of
online learning and the approximate nature of prototype substi-
tution, the OPC process does not need to be executed in every
global round. This design choice helps reduce both compu-

tational cost and communication overhead. Accordingly, the
persistent global prototype collection used in the OPS phase
can be a previously stored version rather than one updated in
the current round. It is important to note that the updates refer
specifically to the persistent global prototype, while the data
continues to be updated according to the MMO-FL framework
and is not influenced by the delayed update mechanism. A
similar delayed update strategy is also employed in FL [38]
to reduce the computational overhead. In our experiments,
we further investigate the impact of this strategy on overall
learning performance.

VII. EXPERIMENT

In this section, we will experimentally evaluate the per-
formance of the MMO-FL algorithm. The experiments were
conducted on an Ubuntu 18.04 machine equipped with an Intel
Core i17-10700KF 3.8GHz CPU and a GeForce RTX 3070
GPU. The detailed experimental settings are provided below.

A. Datasets

To simulate MMO-FL in IoT scenarios, we will use
two real-world multi-modal datasets, UCI-HAR and MVSA-
Single. Detailed descriptions of both datasets are provided
below.

UCI-HAR: The UCI-HAR dataset is a widely recognized
resource for human activity recognition research. It includes
10299 data samples collected from 30 participants (average
age: 24) engaging in six activities (six classes): walking,
walking upstairs, walking downstairs, sitting, standing, and
lying down. These activities were recorded using smartphone
sensors, specifically accelerometers and gyroscopes, which
capture three-dimensional motion data. The sensors sampled
data at 50 Hz, producing 128 readings per sensor axis within
each time window. This dataset is utilized in our experiments
to analyze sensor-based human activity recognition using
three-dimensional motion data.

MYVSA-Single: The MVSA-Single dataset is tailored for
multimodal sentiment analysis research, focusing on the in-
tegration of textual and visual cues from social media. It
comprises 5,129 image-text pairs, where each sample consists
of a single image accompanied by corresponding textual
content. Each pair is annotated with one of three sentiment
labels: Positive, Neutral, or Negative, reflecting the emotional
tone jointly conveyed by the image and text.

Both of the original datasets are static and designed for
offline learning. To align with the requirements of online
learning, they must be transformed into dynamic datasets. The
transformation process is described in detail in the following.

B. Online Data Generation

In the experiment, operating within an online learning
scenario requires the training dataset to be dynamic, with
data collected at the start of each global round. To ensure
sufficient data samples for good training performance, we
collect the initial dataset at the beginning of the training
process. Considering the differences in dataset types and sizes,



distinct online data generation details are used for the UCI-
HAR and MVSA-Single datasets.

UCI-HAR: For the UCI-HAR dataset, training involves a
total of five clients. Initially, each client is assigned 2000 data
samples drawn according to a Dirichlet distribution with a
non-IID (independent and identically distributed) degree o,
representing the client’s long-term data source. In subsequent
global rounds, each client maintains an online local dataset of
500 samples. At every round, 20 new samples are drawn from
the long-term data source and appended to the local dataset,
while the oldest 20 samples are simultaneously removed. This
real-time update mechanism ensures that the local datasets
evolve dynamically, satisfying the settings of online learning.

MYVSA-Single: For the MVSA-Single dataset, the training
process is distributed across five clients. Initially, each client
is allocated 1,500 data samples drawn from a Dirichlet dis-
tribution with a non-IID parameter «, simulating the client’s
long-term data source. In subsequent global rounds, each
client maintains an online local dataset consisting of 800
samples. At every round, 20 new samples are drawn from
the long-term data source and added to the local dataset,
while the oldest 20 samples are removed. This streaming
update mechanism ensures that each client’s dataset evolves
continuously over time, thereby aligning with the requirements
of online learning.

Modality Missing Simulation: To ensure consistency and
clearly isolate the impact of missing modalities, we simulate
missing modalities by assuming that all clients simultaneously
experience the absence of a specific modality within the
same global round. This design choice avoids the confound-
ing effects that would arise if different clients experienced
different missing modalities across rounds, which would oth-
erwise complicate the evaluation of modality-level influence
on learning performance. Given that all datasets used in this
study contain only two modalities, we simulate the missing
of one modality at a time. Additionally, we define A\ as the
ratio of global rounds in which modality missing occurs to
the total number of rounds. In subsequent experiments, we
control the value of \ to systematically investigate the effect
of the frequency of modality missing on learning performance.

C. Model Details

In the following, we detail the model architectures and key
parameters used in our experiments, presented separately for
the two datasets.

UCI-HAR: The dataset includes two distinct modalities:
accelerometer and gyroscope signals, necessitating the use
of modality-specific encoder models. For the accelerometer
data, we use a CNN-based model as the encoder. This model
consists of five convolutional layers and one fully connected
layer. For the gyroscope data, we use an LSTM-based model
with one LSTM layer and one fully connected layer. Both
encoders generate a 128-dimensional feature representation.
The shared header model is implemented using two fully
connected layers. The learning rate is 0.1, with a decay factor
of 0.95 until it reaches 0.001.

MYVSA-Single: The dataset includes two distinct modalities:
text and image data, also need modality-specific encoder

models. For the image data, a four-layer CNN is utilized, with
a modified output layer designed to produce a 128-dimensional
feature vector. For text data, a two-layer LSTM network
is employed, also generating a 128-dimensional output. The
modality-specific features are subsequently processed by a
shared header model consisting of two fully connected layers.
The learning rate is 0.01, with a decay factor of 0.99 until it
reaches 0.001.

D. Benchmarks

In our experiments, we employ several benchmarks for
performance comparison. Our work is the first to investigate
the problem of modality missing in a multimodal online
federated learning setting. Therefore, existing methods devel-
oped for handling modality missing in traditional centralized
offline multimodal training are not directly applicable for
performance comparisons in our scenario. This is primarily
due to the additional challenges introduced by the dynamic
nature of online learning and the distribution heterogeneity
inherent in federated training. To address this gap, we adopt
several benchmarks for performance comparison, including
a setting where all modalities are present, a setting where
missing modalities are left unhandled, and a simple baseline
that addresses missing modalities through zero-filling. Detailed
descriptions of the benchmarks are provided as following.

Full Modality (FM). In this ideal scenario, all clients are
presumed to collect data across all modalities through their
respective sensors, ensuring that no modalities are missing in
any global round.

Partial Modality (PM). In this scenario, the failure of
certain sensors during some global rounds may prevent the
collection of specific modal data. Consequently, the client is
trained using only the remaining available modalities.

Zero Filling (ZF). In this scenario, certain sensors may fail
during some global rounds, resulting in the inability to collect
specific modal data. To address this issue, a straightforward
baseline approach of zero-filling is employed to substitute for
the missing modalities with zero-valued representations.

Based on the simulation setup described above, we present
the following experimental results.

E. Simulation Results

In this section, we present the experimental results of MMO-
FL. We begin with a comparative analysis of the proposed
PMM algorithm against several benchmarks, evaluating overall
learning performance. To further validate the effectiveness of
PMM, we conduct four ablation studies. First, we investigate
the effect of varying the modality missing rate on learning
performance. Second, we study the effect of different Non-IID
level setting. Third, we evaluate the performance implications
and communication efficiency gained through the use of
quantized prototype uploads. Final, we examine the impact
of the delayed update strategy, assessing both its influence on
performance and its potential for reducing communication and
computational overhead. All simulation results are averaged
over 10 random runs.
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Fig. 4: Performance comparison of proposed algorithm and
benchmarks with modality missing.

Performance Comparison. We begin by evaluating the
learning performance of the proposed PMM algorithm com-
pared to benchmarks in the presence of missing modalities
within the MMO-FL scenario. The test accuracy comparison
between PMM and benchmarks are shown in Fig. f(a) and
Fig. b) based on UCI-HAR dataset with configuration [A =
0.5, & = 10] and MVSA-Single dataset with [A = 0.5, = 1],
respectively. Based on the above figures, we get several
key observations. First, we observe that PMM significantly
outperforms both the PM and ZF benchmarks in terms of
test accuracy. Remarkably, PMM even achieves performance
superior to the FM setting in both cases, indicating that the
prototypes generated by PMM not only compensate for the
missing modalities but also serve as robust substitutes that
enhance overall learning. Second, we observe that the ZF
yields better performance than the PM case, suggesting that
explicitly preserving the structure of the missing modality even
with zero-filled inputs can be more beneficial than entirely
omitting the modality during training. Third, we observe
that the performance of PMM improves over time, initially
lagging behind the FM but eventually surpassing it in the later
stages. This behavior highlights the effectiveness of the PMM,
which incrementally refines prototype representations over
time. As training progresses, these prototypes become more
representative of each class and modality, enabling them to
guide the learning process more effectively than raw modality
data. This also explains why PMM underperforms FM in the
early stages on both datasets but ultimately outperforms it as
training continues.

Building on the performance comparison results presented
above, which demonstrate the effectiveness of the proposed
PMM algorithm in the MMO-FL setting, we now proceed with
a series of ablation studies to analyze the specific impact of
key parameters on learning performance.
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Fig. 5: Performance comparison of proposed algorithm with
different modality missing rate.

Impact of Modality Missing Rate. In this part, we will
explore the effects with the modality missing rate A on learning
performance. The results for the UCI-HAR and MVSA-Single
datasets are presented in Fig. [5[a) and Fig. [5[b), respectively.
Several key observations can be made: First, a smaller value
of A consistently leads to better learning performance. This
improvement is attributed to two factors. On one hand, a
lower missing rate results in more rounds where the persistent
global prototypes can be accurately updated, allowing them to
better represent the underlying modality distributions. On the
other hand, fewer occurrences of missing modalities naturally
reduce information loss during training, thereby enhancing
performance. Second, when A = 0.7, corresponding to a
high frequency of missing modalities, we observe a significant
performance drop in both datasets. This indicates that the
frequency of modality absence plays a critical role in deter-
mining model effectiveness, and excessive modality missing
can severely degrade learning performance.
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Fig. 6: Performance comparison of proposed algorithm with
different Non-IID level.

Impact of Non-IID Level. In this part, we will explore
the effects with the Non-IID level « on learning performance.
The corresponding are illustrated in Fig. [6fa) and Fig. [f[b),
respectively. Here, a larger value of « indicates a lower degree
of data heterogeneity. As expected, we observe that increasing
« leads to improved learning performance in both datasets,
which aligns with the well-established understanding of Non-
IID effects in conventional FL. Interestingly, we also observe
that the impact of o on performance is less pronounced than
that of the modality missing rate A. This suggests that the use
of prototype-based compensation in PMM may help alleviate
the adverse effects of data heterogeneity, thereby maintaining
robust performance across varying degrees of Non-IID.

Next, we evaluate the efficiency of the proposed PMM
algorithm by examining the quantized upload and the delayed
update strategies, which were previously introduced in the
remarks of the PMM algorithm section.

Impact of Quantized Upload. In this part, we investigate
the impact of applying quantization to local prototype dur-
ing the PMM upload process as a means to further reduce
communication overhead. Specifically, we adopt an uniform
scalar quantizer. The parameter b denotes the number of bits
per component used for compression, when quantization is
not applied, b = 32, corresponding to full-precision trans-
mission. Applying quantization with b bits yields a total
of 20 quantization levels. We evaluate the effect of varying
b € [2,4] on learning performance. The results, as illustrated
in Fig. [/(a) and Fig. [/[b) by round, and Fig. [/(c) and
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Fig. 7. Performance comparison of proposed algorithm with
different level of quantization.

Fig.[7(d) by communication cost, reveal the trade-off between
model performance and communication efficiency that with
the effect of quantization. As expected, larger values of b
lead to improved performance but incur higher communication
costs. Importantly, we observe that the prototypes do not
require high precision to be effective. As a result, quantization
introduces only a minor reduction in learning performance,
while significantly lowering communication overhead. This
demonstrates that PMM can be efficiently integrated into the
MMO-FL framework without introducing substantial commu-
nication burden.
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Impact of Delayed Update. In this section, we evaluate the

impact of applying delayed updates to the PMM algorithm. We
investigate the impact of different update intervals by varying

the frequency of updates with interval values of [0, 2, 4], where
a modality must accumulate the corresponding number of
occurrences before triggering an update. The experimental
results based on the UCI-HAR and MVSA-Single datasets
are shown in Fig. Bfa) and Fig. [B(b). Our findings show
that while delayed updates lead to a moderate decrease in
performance, the PMM algorithm still maintains satisfactory
learning outcomes. Additionally, In Fig. [B[c) and Fig. [§(d), we
report the corresponding computation cost. Here, “times” in
the x-axis labels refers to the number of computations, which
closely aligns with communication cost since communication
is only triggered after computation. These results highlight
an inherent trade-off: updating at every round yields the
best performance but incurs higher resource consumption,
whereas adopting delayed updates reduce computational and
communication overhead at the cost of slight performance
degradation. This makes delayed updating a compelling option
in resource-constrained environments.

Through the series of experiments presented above, we have
thoroughly evaluated the performance of the proposed PMM
algorithm in comparison to benchmarks, as well as examined
its scalability across various settings.

VIII. CONCLUSION

In this work, we propose the MMO-FL framework to
address the challenges of distributed cooperative learning over
real-time multimodal data in IoT environments with edge
intelligence devices. Recognizing the instability of modality-
specific sensors during continuous data collection, we ex-
plicitly consider and tackle the problem of modality missing
throughout the learning process. To mitigate its impact, we
introduce the PMM algorithm, which leverages prototype
learning to effectively reconstruct and compensate for missing
modal information. The proposed approach is supported by
rigorous theoretical analysis and validated through extensive
experiments. In future work, we aim to integrate real-time IoT
multimodal data and develop practical testbeds to evaluate and
enhance the MMO-FL framework. These efforts will further
facilitate its deployment in real-world IoT applications.
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