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MORPHLING: EXPLOITING JOB RECONFIGURABILITY FOR DEEP LEARNING
CLUSTER SCHEDULING

ABSTRACT
The era of large deep learning models has led to advanced training strategies such as 3D parallelism and the
ZeRO series. These strategies enable various (re-)configurable execution plans, each with remarkably different
requirements of multiple resource types. Existing cluster scheduling systems, however, treat such reconfigurable
training jobs as black boxes: they rely on users to choose execution plans statically, and then allocate resources
without considering the chosen plans and their resource requirements. This approach results in mismatches
between execution plans and resources, causing suboptimal training performance and cluster utilization.

We introduce Morphling, a cluster scheduling system for deep learning training that exploits the reconfigurability
to improve job performance and cluster efficiency. Morphling incorporates the job execution planning as a new
dimension in cluster scheduling, by continuously reconfiguring jobs’ execution plans and tuning multi-resource
allocations across jobs jointly. Such a co-optimization is navigated by a performance model that understands the
diverse resource requirements and performance characteristics of different jobs and execution plans. Morphling
exploits such a model to make performance-aware scheduling decisions to maximize cluster throughput while
providing performance guarantees to individual jobs. Evaluations on a 64-GPU high-performance training cluster
show that Morphling improves average job completion time and makespan by up to 3.2× and 1.4×, respectively,
compared against state-of-the-art systems. The source code of Morphling is publicly available at https:
//github.com/AlibabaPAI/reconfigurable-dl-scheduler/tree/mlsys25-artifact.

1 INTRODUCTION

With the dominance of Transformer architectures (Vaswani
et al., 2017) in terms of model performance across a variety
of applications, deep learning (DL) has recently entered an
era characterized by exponentially increasing model sizes,
which further escalates training resource (e.g., GPU) re-
quirements (Radford et al., 2019; Liu et al., 2021; Devlin
et al., 2019). To facilitate efficient large-scale DL training,
organizations such as Microsoft (Jeon et al., 2019) and Al-
ibaba (Weng et al., 2022) have built multi-tenant shared
GPU clusters, thereby improving resource utilization.
Numerous research efforts have been devoted to optimizing
job execution plans for large model training. For instance,
several studies concentrate on partitioning operators and ten-
sors to attain better performance (Zheng et al., 2022; Unger
et al., 2022; Jia et al., 2022), while others focus on optimiz-
ing GPU memory usage by eliminating duplicate states (Ra-
jbhandari et al., 2020), recomputing activation (Chen et al.,
2016), and offloading (Ren et al., 2021; Rajbhandari et al.,
2021). These cutting-edge techniques have proven to be
effective in improving the performance of DL jobs on dedi-
cated resources. However, they fall short in dynamic shared
clusters, where resource availability vary significantly dur-
ing job training (Weng et al., 2022). This is mainly because
the training paradigm follows a compile-and-run approach.
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Figure 1. Overview of Morphling. Its fundamental capability lies
in leveraging white-box execution plans to enable job reconfigura-
tion and cluster-level throughput optimization. Job execution plans
(e.g., TP, PP, GC) are elaborated in Sec. 2.1.

Specifically, an execution plan is pre-compiled at job launch
time and then runs iteratively until completion on fixed allo-
cated resources. Such an approach fundamentally impedes
the possibility of exploiting resource dynamics efficiently.
From a cluster management standpoint, DL training jobs
typically request a predetermined amount of resources and
must wait the availability of all resources due to the gang-
scheduling requirement (Jeon et al., 2019; Weng et al., 2022).
To reduce the job queuing delay, several recent studies have
proposed elastic resource scheduling for distributed data-

https://github.com/AlibabaPAI/reconfigurable-dl-scheduler/tree/mlsys25-artifact
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler/tree/mlsys25-artifact
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parallel jobs (Hwang et al., 2021; Qiao et al., 2021; Li et al.,
2023). However, the cluster scheduler only scales the num-
ber of training workers without considering the execution
plan, resulting in two constraints arising from the DL re-
source characteristics implicit in the job execution plans.
First, different execution plans come with diverse resource
requirements. Despite the primary concern about the num-
ber of GPUs, these plans also impact the multi-resource
requirements (i.e., GPU, CPU, memory, network). For ex-
ample, switching from tensor parallelism (Shoeybi et al.,
2019) to ZeRO-Offload (Ren et al., 2021) effectively reduces
the demand for GPUs, but incurs higher memory consump-
tion in exchange. Second, there is no single execution plan
that can be considered as optimal under all GPU resource
allocations. As evidenced by Fig. 3b, ZeRO-DP (Rajbhan-
dari et al., 2020) is the best plan given eight GPUs when
training the GPT-2 model, while tensor model parallelism
and ZeRO-Offload are the best for four GPUs and one GPU,
respectively. Such two observations above imply an inter-
esting interplay between a training job’s execution plan and
the resource allocation to it. Specifically, given a limited
amount of available resources, it is possible to adapt the
execution plan to the resource by choosing a plan whose
multi-resource demand matches the available resources the
best. On the other hand, when resources are abundant, it is
also possible to adapt the resource allocation to the plan by
choosing a plan that exhibits the best performance, and then
allocating resources according to the demand of that plan.
Unfortunately, such an opportunity above is largely over-
looked in current DL training clusters, where the decisions
for execution plans and resource allocations are made sep-
arately. The execution plans are chosen by users statically,
without the knowledge about the dynamics of cluster re-
sources, prohibiting reconfiguration of the plan from adapt-
ing to the resources. Meanwhile, the resource allocations
are either following user-specified requirements or tuned by
cluster schedulers. Users typically do not have the knowl-
edge or profiling expertise to understand the resource de-
mands of the plans they choose. Current cluster schedulers,
on the other hand, even have no information about job’s
execution plans. Either way, it is difficult to optimize the
resource allocations according to the execution plans.
We introduce Morphling, a novel cluster scheduling system
that exploits the reconfigurability of DL training to bridge
the gap between intra-job execution planning and inter-job
resource scheduling. As illustrated in Fig. 1, unlike con-
ventional schedulers that treat DL jobs as pre-defined static
execution plans, Morphling performs a white-box approach
to co-optimize cluster resources and training strategies of
jobs dynamically through execution plan reconfiguration.
Such a design enables Morphling to continuously reconfig-
ure the execution plans for individual jobs and reallocate
multi-dimensional resources across jobs co-adaptively.

To help Morphling understand the multi-resource de-
mands of various execution plans, we establish a resource-
performance model for a series of widely-used training
strategies to characterize their fine-grained behaviors care-
fully. With such a model, Morphling predicts the perfor-
mance of each job with any combinations of the execution
plan and resource allocation. Guided by such performance
predictions, Morphling further employs a performance-
aware scheduling policy to search for optimized execution
plans efficiently for each job while adjusting the multi-
resource allocations across jobs, with the aim of maximiz-
ing cluster throughput while guaranteeing the service level
agreement (SLA) to individual jobs.
We evaluate Morphling on a 64-GPU cluster to show the ad-
vantages of the reconfiguration and job-plan-aware schedul-
ing policy. Trace evaluations show that Morphling preserves
the SLA guarantees for jobs and improves the average job
completion time by up to 3.2× compared to state-of-the-
art DL cluster schedulers (Sia (Jayaram Subramanya et al.,
2023), Synergy (Mohan et al., 2022), and AntMan (Xiao
et al., 2020)).
The contributions of this paper are summarized as follows.

• We reveal the diverse multi-resource requirements of var-
ious training strategies and identify the interplay between
execution plans and resource allocations for DL training.

• We propose a system architecture to embrace job plan
reconfiguration as a new dimension in cluster scheduling.

• We design a performance model and a scheduling policy
to maximize job performance and cluster throughput by
co-optimizing execution plans and resource allocations.

• We implement and evaluate Morphling to show its advan-
tages over reconfigurability-agnostic systems.

2 BACKGROUND AND MOTIVATION

2.1 Large Model Training in GPU Clusters
DL training often involves millions of iterations, each called
a mini-batch. A mini-batch has three phases. Firstly, cur-
rent model scores are calculated using a DAG of operators,
known as a forward pass. Secondly, a loss error is back-
propagated to generate gradients, called a backward pass.
Finally, model parameters are updated using an optimizer.
For distributed GPU training, data parallelism (DP) uses
multiple workers each executing the full model with a subset
of a mini-batch, and synchronizes gradients across work-
ers after the backward pass (Li et al., 2020), which causes
significant network and GPU memory overhead for large
models. 3D parallelism can address this, which combines
tensor model parallelism (TP) (Shoeybi et al., 2019; Wang
et al., 2019) and pipeline parallelism (PP) (Narayanan et al.,
2019; Huang et al., 2019) with DP. Tensor model paral-
lelism partitions the computation of a specific operator in
non-batch axes across GPUs. Pipeline parallelism groups
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type for GPT-2 using various training
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est value (8 GPUs, 10 CPUs, 3.2 GB
memory, and 30 GB/s bandwidth).
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Figure 3. Throughput variation using various execution plans with changing resource limits.
The first hour is using 4 servers with 8 A800 GPUs for each, and the second hour is using 4
servers with 4 A800 GPUs. The rest are using a 4-A800 server. TP+DP/PP means using TP
inside nodes and DP/PP across nodes. Megatron 3D adopts a feasible TP+PP configuration
such that each partition fits in a GPU, then scaling out using DP.

model operators into stages and places them on different
GPUs. It then splits a mini-batch into a number of micro-
batches for forward-backward computation across GPUs.
The degrees of the three parallelism (DP/TP/PP sizes, i.e.,
number of model replicas/model partitions/pipeline stages)
are either specified by users (Shoeybi et al., 2019; Rasley
et al., 2020) or automated (Zheng et al., 2022; Unger et al.,
2022; Jia et al., 2022) to efficiently scale the training on
trillions of parameters over hundreds or thousands of GPUs.
Other techniques focuses on saving GPU memory consump-
tion. Gradient accumulation (GA) (Keskar et al., 2017)
divides a mini-batch into micro-batches and aggregates
gradients locally before global synchronization. Gradient
checkpointing (GC) (Chen et al., 2016) saves a subset of the
intermediate results (i.e., activations) and recomputes miss-
ing activations on-demand in backward passes to reduce
GPU memory. ZeRO-DP (Rajbhandari et al., 2020) dedu-
plicates redundant states (i.e., optimizer states, gradients,
and weight parameters) of DP by slicing them across all
GPUs1. ZeRO-Offload (Ren et al., 2021) keeps the forward-
backward pass in GPU, offloads the gradients and states to
host memory, and updates the parameters using CPUs.
To submit a job to a GPU cluster, users need to specify the
required multi-dimensional resources for a worker, and the
number of workers for distributed jobs (Weng et al., 2022;
Mohan et al., 2022). For instance, a typical distributed
training job can request 2 workers, each with 8 GPUs, 16
CPUs, and 100 GB memory. Cluster scheduler launches
jobs at the availability of all resources (Jeon et al., 2019).
For DP jobs, the support of GPU training elasticity (Qiao
et al., 2021; Li et al., 2023) has been explored, by scaling
the number of training workers during the execution of jobs.

1There are several ZeRO-DP variants, and we refer to ZeRO-2
by default.

2.2 Opportunity and Challenge
Opportunity: diverse multi-resource demands of differ-
ent execution plans. The application of training strategies
above can produce diverse execution plans for model train-
ing. A notable variance exists in the resource types and
quantities required for these plans. Fig. 2 shows the re-
source consumption for training a GPT-2 model with the
minimum A800 GPUs with a global batch size of 16. Un-
der a similar number of GPUs, ZeRO-Offload uses the most
CPU and memory resources for parameter updates and states
offloading, while TP uses more bandwidth for heavier com-
munication, but only half of the CPUs and memory.
Despite the diverse resource demands of execution plans,
there exist significant gaps between the execution planning
of training jobs and resource allocation in shared GPU clus-
ters. Cluster schedulers perceive DL training jobs as black-
box tasks with fixed resource requirements, disregarding the
variability in resource demands of various execution plans.
On the other hand, job’s execution plans are often decided
manually or automatically before training. This approach
assumes that the cluster is dedicated and exclusive, which
does not hold in shared clusters where resource supply is
dynamic and unknown to users (Weng et al., 2022; 2023).
This mismatch leads to suboptimal job execution. When
resources are limited, jobs may be delayed due to excessive
resource requests or run with degraded performance due to
the mismatch between the resources and the requirement
of its execution plan. Conversely, when resources are over-
abundant, jobs may not fully utilize them due to the fixed
resource request or the inefficient execution plan.
This presents great opportunities for cluster schedulers to
leverage the reconfiguration capabilities of DL jobs. Jobs
can adapt to dynamic multi-resource availability with effi-
cient training strategies properly, while cluster schedulers
could transparently view the job execution plans and re-
source demands to optimize scheduling decisions, improv-
ing cluster efficiency and expediting job completion.
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Challenge: complex performance characteristics of
model-plan-resource combinations. We conduct two
motivating experiments towards a deeper understanding of
the performance characteristics of different models and exe-
cution plans. We first train a RoBERTa model with multiple
plans and change the limit of a certain resource type in each
stage. Fig. 3a shows that the performance of the plans and
their relative rankings vary across stages. In the first three
stages, where GPUs and bandwidth are abundant, the best
plans are ZeRO-DP due to its reduction in the optimizer
time, which scales favorably with the increased number of
GPUs for the model state partitioning. With GPUs reduced
to 1 in the fourth stage, ZeRO-DP performs worse with
increased optimizer time, making DP+GA the new best.
Fig. 3b shows the same process with a larger model, T5,
for comparison. In the initial two stages, where the GPUs
are distributed, the best plans are 3D parallelism with dif-
ferent DP/TP/PP sizes. This is because the performance is
constrained by the bandwidth limits across nodes, thus de-
pending on the communication volume under different 3D
parallelism configurations. With a single server in the third
stage, TP+DP+GC becomes the best plan with its modest
recomputation overhead when the GPU memory is limited.
With GPU reduced to 1 in the fourth stage, ZeRO-Offload is
the only plan that can still continue the training with the use
of CPUs and memory. In the final stage, we further limit the
memory to 10 GB, which makes ZeRO-Offload fail.
We also observe that the execution plans exhibit different
performance characteristics with a different model. For
example, ZeRO-Offload nearly always performs the worst
on RoBERTa, while this is not the case for T5. Moreover, the
two models show different sensitivity to different execution
plans. The max performance gap between plans in the same
stage is up to 1.7× for T5 and 2.7× for RoBERTa, showing
different levels of benefits from reconfiguration.

Summary. The observations above show the complex per-
formance characteristics of different combinations of mod-
els, plans, and resources: each single job can have varying
best plans with changing resource availability; moreover,
different jobs also exhibit different sensitivity to changing re-
source and execution plans. Such complexity is determined
inherently by the heterogeneous model structures, diverse
training behaviors of the plans, and their different resource
usage patterns. The scheduler needs to understand such
performance characteristics to derive high-quality resource
allocations and execution plans. However, it is nearly impos-
sible to enumerate every combination for real performance,
considering the intractable search space of models, plans,
and especially the multiple types of resources in a large
cluster. This motivates a performance-modeling approach to
predict the performance of various plans and resources for a
job with limited sampled configurations for measurement.
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Figure 4. Morphling architecture and scheduling workflow.

3 SYSTEM OVERVIEW

Going beyond the traditional responsibility of allocating
resources to incoming jobs, Morphling also manages job
execution planning. It continuously adjusts resource alloca-
tion and reconfigures execution plans jointly for all running
jobs. As shown in Fig. 4, Morphling operates in three main
phases: First, profiling and performance modeling for new
model types (➀); second, allocating resources and choosing
execution plans for each job with a scheduling policy (➁);
and finally, launching new jobs (➂) or reconfiguring running
jobs (➃) per the scheduling decision.
Morphling supports widely-used execution plans including
(1) Megatron-style 3D parallelism (DP/TP/PP) (Shoeybi
et al., 2019; Narayanan et al., 2021), (2) ZeRO-DP (Rajb-
handari et al., 2020) and ZeRO-Offload (Ren et al., 2021)
based on DP, (3) gradient accumulation (Keskar et al., 2017)
or checkpointing (Chen et al., 2016) (GA/GC). Morphling
can reconfigure jobs by switching among different types of
execution plans; for 3D parallelism, in particular, Morphling
also supports changing the DP/TP/PP size. Morphling keeps
the global batch size of a job unchanged during reconfigura-
tion, thus not affecting the training convergence.
Morphling establishes a performance model for reconfig-
urable DL training (Sec. 4) to enable performance-aware
scheduling. The model captures the fine-grained behaviors
of various training strategies, and the impact of resource
variations on their performance. It is fitted for each DL
model using a few sampled performance points under sev-
eral configurations (i.e., execution plans and resources).
Once fitted, the model can predict the performance with
other unseen configurations. The model is continuously
updated with real training metrics to fix potential prediction
errors and can be reused across jobs with the same model
architecture but possibly different hyper-parameters.
Morphling is designed for shared clusters where resources
are shared among multiple tenants, each with a certain
resource quota. Similar to existing systems, Morphling
classifies jobs into two categories (Wu et al., 2023; Zhao
et al., 2020). First is guaranteed jobs that consume cer-
tain amounts of resource quotas. Second is best-effort jobs
that use free cluster resources opportunistically, and can
be preempted anytime. Morphling follows the high-level
principle of ensuring SLA for guaranteed jobs while improv-
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Figure 5. Simplified illustration of the performance model. Note
that the overlapping of the parts only means the overlapping of
their time spans; the real execution is not necessarily overlapped,
which depends on the specific strategy.

ing resource utilization with best-effort jobs. It redefines
conventional scheduling goals by incorporating the new
scheduling dimension of execution planning. The first goal
of Morphling is to provide performance guarantees, with
continuous reconfigurations, by ensuring that the perfor-
mance of guaranteed jobs is at least as good as with the
user-specified resources and execution plan. The new defini-
tion of SLA allows Morphling to deliver the same or better
performance with even fewer resources by identifying better
execution plans. The saved resources can further benefit
other jobs. With such SLA guarantees, Morphling can fur-
ther co-optimize the resource allocation and the execution
planning for each job to maximize cluster throughput, i.e.,
the aggregated performance of all jobs (for both guaranteed
and best-effort jobs). Morphling continuously tunes the re-
source allocation and execution plan for every job (Sec. 5),
based on the performance predictions leveraging the perfor-
mance model, to achieve such a global optimization.

4 MODELING RECONFIGURABLE DL
TRAINING

Our performance model is aimed to predict the training
iteration time, Titer, and then calculate the throughput as
THROUGHPUT = b/Titer, where b is the global batch
size. Fig. 5 shows that Titer is generally comprised of:
Tfwd, the forward pass computation; Tbwd, backward pass
computation; Tcomm, network communication; Topt, opti-
mizer; and Toff , model states offloading. Titer is typically
not a sum of these parts, because they are usually over-
lapped with each other. The modeling considers different
combinations of strategies and resource allocations. More
mathematical modeling details are deferred to Appendix A.

Modeling different strategies. To differentiate different
strategies, we quantify the computation volume for Tfwd,
Tbwd, and Topt, and the communication volume for Tcomm

and Toff for each of them. The performance model includes
configuration parameters for different strategies, such as a
for the number of accumulation steps in gradient accumula-
tion and m for the number of micro-batches in pipeline par-
allelism. It also uses fittable parameters to capture strategy-
specific behaviors, such as ksync for the overlapping degree
between Tbwd and Tcomm in data parallelism, and kopt off

for CPU computation efficiency in ZeRO-Offload.

Modeling multi-dimensional resources. We incorporate
multi-dimensional resources to our performance model, i.e.,
GPUs, CPUs, and environment-related constants, including
inter-node bandwidth, NVLink and PCIe. We consider the
number of GPUs when modeling all training parts in Fig. 5.
The modeling of Tfwd and Tbwd depend on the per-GPU
batch size, tensor shard size and layers for data, tensor, and
pipeline parallelism, respectively. For Topt and Toff in
TP/PP/ZeRO-series, the number of GPUs determines the
parameter size on each GPU, as these strategies partition the
model. Finally, for Tcomm, the number of GPUs impacts
the per-GPU communication volumes and frequency.
We also incorporate the number of CPUs into modeling
Topt for ZeRO-Offload, as it updates parameter partitions
directly on CPUs in parallel. The PCIe bandwidth affects
Toff for ZeRO-Offload, as it transfers partitioned gradi-
ents/parameters between CPU memory and GPUs. We also
consider inter-node bandwidth and NVLink when modeling
Tcomm. Specifically, we use the lowest bandwidth among
all GPU-pairs, i.e., NVLink for co-located GPUs and inter-
node bandwidth for GPUs across multiple nodes.

5 THE Morphling SCHEDULER

We will present how the scheduling policy achieves the goals
illustrated in Sec. 3. Morphling scheduler allocates multi-
resource (i.e., GPU, CPU, and memory), which is similar
to the multi-dimensional bin packing problem, known as
NP-hard. Our problem is more complex when incorporating
execution plan. Therefore, we design a heuristic policy.

Resource sensitivity curves. Morphling prioritizes jobs
that benefit the most from available resources to maxi-
mize cluster throughput. Morphling achieves this by build-
ing resource sensitivity curves based on the performance
model. These curves show how jobs’ performance varies
with changes in a certain resource type, while other types
remain fixed. The curves also take execution planning into
account, by only choosing the best plan and the performance
for each resource amount. Morphling searches for the best
execution plan for a job by enumerating the feasible plans
and the performance predictions. As shown in Fig. 6, the
curve only connects the highest points along the x-axis that
represent the best plans, and remains flat for invalid GPUs.
Resource sensitivity curves benefit Morphling’s scheduling
policy in two ways. First, the curves enable Morphling
to quickly pick the most sensitive jobs for allocation to
maximize total throughput. Second, the curves simplify
the scheduling algorithm to focus on the resource alloca-
tion with reduced complexity, while using curves to provide
corresponding best execution plans and performance predic-
tions. Such a separation is beneficial because the curves can
be computed in parallel or even prior to the scheduling, and
then cached for reuse, improving the policy efficiency.
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Figure 6. Resource (GPU) sensitivity curve of the GPT-2 model.
Each point represents the throughput using the given GPU(s) with a
certain execution plan. Only a few GPU numbers are valid (i.e., the
data points with non-zero job throughput), due to the partitioning
constraints of DP/TP/PP.

Scheduling algorithm design. To enforce performance
guarantee, Morphling in Algorithm 1 first searches for a
minimum resource demand for each guaranteed job (denoted
as minRes). The minimum demand is the fewest resources
(possibly with a better execution plan) needed to achieve
the performance of the original resource and plan. It also
ensures that at least one plan can be trained without failures
like GPU out-of-memory. The minimum demand should not
exceed the original in each dimension; if no such demand
is found, the original resource and plan will be used. For
best-effort jobs, the minimum is 0⃗.
Our policy (function Schedule) is triggered whenever
jobs are submitted or completed. It first schedules the queu-
ing jobs privileged to get scheduled immediately, i.e., the
guaranteed jobs whose resource demands are within the
tenant’s remaining quota (lines 2-3). We consider the quota
usage of each job as its minimum demand to ensure a feasi-
ble allocation. The policy then allocates resources, if any,
to either schedule more best-effort jobs or increase the allo-
cation of running jobs (lines 4-5). Morphling iterates over
the nodes in the cluster to find a placement for each job
(ScheduleJob). On each node, it searches for GPUs and
CPUs to satisfy (possibly part of) the job’s demand. If the
minimum demand is met, Morphling selects the best exe-
cution plan given the found placement (GetBestPlan).
Finally, Morphling allocates memory (AllocMem) per the
assigned plan’s estimate provided by the training framework
(lines 20-24). Note that we do not need to allocate memory
during the search as it does not affect the performance.
Morphling evaluates the gains of allocating resources to
different jobs according to the slopes of their resource sensi-
tivity curves. We define the slope, which is specific to each
resource type of different jobs, as the throughput change
per unit variation in the number of (pre-)allocated resources.
On each node, besides the free resources, Morphling is also
allowed to “shrink” other jobs to reclaim and reallocate
resources (lines 8-17). After that, Morphling records the
resource allocation results for the current scheduled job on
each node (lines 18-19). Specifically, Morphling always
shrinks the least sensitive job, i.e., the one with the lowest

Algorithm 1: Morphling Scheduling Policy
1 Function Schedule(jobs, cluster):
2 for j ∈ jobs.privileged do
3 j.res, j.placement, j.plan = ScheduleJob(j, cluster)

4 for j ∈ SortBySlope(jobs.bestEffort ∪ jobs.running) do
5 j.res, j.placement, j.plan = ScheduleJob(j, cluster)

6 Function ScheduleJob(j, cluster):
7 for n ∈ cluster.nodes do
8 j.res + = n.freeRes, nodeRes = n.freeRes

9 for resType ∈ {GPU,CPU} do
10 ĵ = GetLowestSlopeOverMinJob(n, resType)

11 if ĵ == null then
12 break

13 if j.res[resType] < j.minRes[resType] ||
14 j.slope(resType) > ĵ.slope(resType) then
15 ĵ.res− = ∆r, j.res+ = ∆r, nodeRes+ = ∆r

16 else
17 break

18 if nodeRes > 0⃗ then
19 j.placement.append({n, nodeRes})

20 if j.res >= j.minRes then
21 plan =GetBestPlan(j, j.placement)

22 success =AllocMem(j.res, plan)

23 if success then
24 return j.res, j.placement, plan

25 return null, null, null

slope (GetLowestSlopeOverMinJob, where “Over-
Min” means that the job must be over its own minimum
demand). Such a reallocation is permitted in two cases (line
14): (1) the job to shrink has a slope lower than the job to
schedule, thus the reallocation will increase total through-
put; or (2) the job to schedule has yet to reach its minimum
demand, then a reallocation that decreases total through-
put is also acceptable to meet the performance guarantee.
Morphling reallocates a unit of the resource (∆r) repeatedly
until further reallocation is not allowed. Shrinking a job to
0⃗ results in a preemption, which will return to the queue.
Similarly, when choosing best-effort or running jobs for
allocation, Morphling also prefers those with the highest
resource sensitivity curve slopes for the most throughput
improvement (SortBySlope at line 4). Considering mul-
tiple resource dimensions, here we do a greedy sort that
compares the slopes of GPUs and then CPUs. Unscheduled
guaranteed jobs do not need such a sort as they are chosen
with respect to the quotas.
Morphling supports distributed training by placing a job
on multiple nodes during the search. As our performance
model explicitly considers the inter-node bandwidth (Binter

in Table 5), the resource sensitivity curves can capture the
performance variation when jobs become distributed.
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6 IMPLEMENTATION

We implement a prototype of the Morphling scheduler on
Kubernetes (Burns et al., 2016) in Python. The scheduler
uses Kubernetes APIs to monitor pod creation, completion,
and cluster resource status. The lifecycle of training jobs
and pods is managed by Kubeflow (kub, [n. d.]). In each
scheduling round, the scheduler runs its scheduling policy
and applies the resultant allocations by (re-)launching jobs.
We use two popular PyTorch-based large-model training
frameworks, DeepSpeed (Rasley et al., 2020) and Mega-
tron (Shoeybi et al., 2019) (PyTorch 1.12, DeepSpeed 0.9.2,
and Megatron-DeepSpeed v2.4). With official launching
API in PyTorch, Morphling can (re-)configure training jobs
with different execution plans by modifying the launching
command slightly (without changing the model or the frame-
work codes). When re-launching a job, Morphling saves a
checkpoint before exiting, and then the job resumes from the
checkpoint after the restart. Morphling leverages the built-in
capability of DeepSpeed and Megatron to query parameter
size and estimate memory consumption. The online model
fitting module for inaccurate predictions is implemented as
a Python library imported into the training code. For CPU
resources, each training process is bound to the allocated
CPU cores, enhancing performance under ZeRO-Offload.
As for profiling, Morphling measures the bandwidths of
different link types, e.g., NVLink and PCIe.

7 EVALUATION

We evaluate Morphling using experiments on a 64-GPU
cluster and trace-driven simulations. The cluster is com-
prised of 8 servers, each with 8 NVIDIA A800 GPUs (80
GB), 96 vCPUs, 1, 600 GB memory, 400 GB/s NVLink
bandwidth, and 100 GB/s RDMA network bandwidth. We
use seven representative Transformer-based models of vari-
ous scales as listed in Table 1. Our key findings include:

• Morphling significantly improves job and cluster effi-
ciency in 64-GPU cluster, achieving up to 3.2× JCT gain
over state-of-the-art reconfigurability-agnostic systems.

• Morphling enforces the performance guarantees via job
reconfiguration, achieving 1.7× JCT gain for guaranteed
jobs compared to using exact resource guarantees.

• Morphling shows increasing JCT gains (from 2.6× to
3.4×) with larger proportions of large models, which
shows the potential of Morphling in the large-model era.

7.1 Performance Model Validation
We validate our performance model on seven deep learning
models in Table 1 using up to 64 A800 GPUs. For each
model, we fit the performance model with a minimum of
7 profiled data points. We then predict the performance
for 20 unseen configurations, i.e., 4 execution plans each
with 5 multi-resource allocations or placements. For mod-

Table 1. Transformer-based models used in our evaluation.
Model Size Dataset

ViT (Dosovitskiy et al., 2021) 86M ImageNet-1K (Deng et al., 2009)
RoBERTa (Liu et al., 2019) 355M WikiText-2 (Merity et al., 2016)
BERT (Devlin et al., 2019) 336M

Wikipedia (Foundation, [n. d.])T5 (Raffel et al., 2020) 1.2B
GPT-2 (Radford et al., 2019) 1.5B

LLaMA-2-7B (Touvron et al., 2023b) 7B
WuDaoCorpora (Yuan et al., 2021)

LLaMA-30B (Touvron et al., 2023a) 30B

Table 2. Models performance prediction errors(%). TP+PP: adjust-
ing TP/PP sizes with DP= 1; DP+TP+PP: adjusting DP with fixed
TP/PP sizes. “/” denotes the infeasible plan due to OOM.

Model avg. max. avg. max. avg. max. avg. max.

DP GC ZeRO-DP+GA ZeRO-Offload

ViT 3.63 6.83 2.59 6.19 4.23 6.67 3.00 8.32
RoBERTa 2.21 4.37 3.36 4.29 3.59 6.71 7.42 10.44

BERT 5.27 8.32 4.90 7.27 3.7 6.90 6.37 8.62

TP+PP DP+TP+PP ZeRO-DP+GA ZeRO-Offload+GC

T5 3.18 8.24 2.41 9.55 6.71 9.55 4.37 6.34
GPT-2 2.39 3.08 2.80 4.15 2.52 3.86 5.52 8.90

LLaMA-2-7B 1.90 2.90 4.70 9.45 / / 4.09 6.38
LLaMA-30B 4.29 8.52 6.15 9.69 / / / /

els with fewer than 1B parameters, we predict DP, GC,
ZeRO-DP+GA, and ZeRO-Offload using 1 to 8 GPUs. For
larger models, we also predict 3D parallelism with chang-
ing DP/TP/PP sizes using more GPUs. Table 2 shows the
average and maximum errors of the predictions for each
execution plan of each model. The average and maximum
errors are up to 7.4% and 10.4%, respectively, showing
good prediction quality. Morphling continuously fits the
model after a job is launched, further mitigating the errors.

7.2 Micro-benchmarks
Adapting to changing resource limits. In this experi-
ment, we train a LLaMA-2-7B model while continuously
decreasing the limits of available resources. As shown in
Fig. 7, although the best plans vary over time, Morphling al-
ways chooses the best. Firstly, the model is trained across 4
servers each with 8 A800 GPUs. Morphling chooses an op-
timal 3D-parallel configuration (DP=4, PP=2, TP=4), which
is even better than those found by other simple 3D paral-
lelism tuning strategies shown by the other lines in Fig. 7.
We then decrease the GPUs to 16 (4 ∗ 4) and 4, and Mor-
phling still uses the best 3D-parallel configurations. When
the number of GPUs is reduced to 1, the GPU memory esti-
mator in Morphling instructs to choose ZeRO-Offload, the
only feasible plan with only one GPU available. Upon shift-
ing to ZeRO-Offload, Morphling also increases the memory
allocation to satisfy its demand. Finally, we double the avail-
able CPU resources, and Morphling acquires 1.7× speedup
by allocating the CPUs to accelerate the parameter updates.

Maximizing throughput across jobs. To highlight Mor-
phling’s ability to maximize throughput considering jobs’
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Figure 7. Reconfiguration for a LLaMA-2-7B job by Morphling.
See the caption of Fig. 3 for the definitions of the plans.
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Figure 8. Throughput improvement across two jobs.

resource sensitivity, we compare it with a simple scheduler
that equally allocates resources across jobs. Both schedulers
can reconfigure execution plans. We submit a RoBERTa job
and a T5 job to a cluster of 4 A800 GPUs. To quantify the
total throughput of the jobs, we normalize the throughput
of each job as a factor of speedup improvement to a rigid
execution plan on 4 GPUs (Qiao et al., 2021). As shown in
Fig. 8, the simple scheduler allocates 2 GPUs to each job,
and reconfigures T5 and RoBERTa to use ZeRO-Offload
and ZeRO-DP, respectively, which results in a total speedup
of 0.78. In comparison, Morphling identifies that T5 bene-
fits more from additional GPUs than RoBERTa. Morphling
therefore allocates 3 GPUs to T5 and 1 GPU to RoBERTa,
and reconfigures them to use TP with GA and DP with GA,
respectively. This results in a total speedup of 1.44, with
85% performance improvement over the simple allocation.

Accuracy during reconfiguration. Morphling keeps the
global batch size unchanged during reconfiguration, ensur-
ing training accuracy is not affected by design. To validate
this, we compare the training losses of different resource
allocations and execution plans to that without reconfigura-
tion but with a different random seed, which represents an
acceptable range of accuracy variance due to randomness.
We train GPT-2 and BERT using 2/4/8 GPUs and LLaMA-
2-7B using 8 GPUs with different execution plans. Each
experiment trains for 3, 000 mini-batches. We choose one
of the resource-plan combinations as the accuracy baseline
and plot the relative difference curves of the others (i.e., GA
on 8 GPUs for GPT-2 and BERT, TP= 8 and PP= 1 for
LLaMA-2-7B). Curves denoted with “seed” use a different
random seed for a certain execution plan. As shown in Fig. 9,
the train losses of different resources/plans fluctuate mostly
within the range of changing random seeds. Table 3 shows
that the maximum loss differences of reconfiguration after
3, 000 mini-batches on train, validation, and test datasets
are always smaller than those of altering seeds, showing the
negligible impact on training accuracy of Morphling.
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Figure 9. Relative loss difference during reconfiguration.

Table 3. Maximum loss differences of reconfiguration (“Rcfg.”)
and changing random seeds (“Seed”).

Model
Train Validation Test

Rcfg. Seed Rcfg. Seed Rcfg. Seed

GPT-2 0.05 0.11 0.08 0.09 0.10 0.21
BERT 0.10 0.19 0.10 0.10 0.38 0.40

LLaMA-2-7B 0.08 0.37 0.07 0.41 0.10 0.11

7.3 Cluster Experiments
Methodology. We compare Morphling with three state-
of-the-art schedulers: (1) Sia (Jayaram Subramanya et al.,
2023), which tunes GPU numbers by adjusting the DP size2

and hyper-parameters to improve the “goodput”, i.e., to re-
duce the “time-to-accuracy”. (2) Synergy (Mohan et al.,
2022), which tunes CPU-memory allocation for GPU jobs
with fixed GPU numbers. (3) AntMan (Xiao et al., 2020),
a multi-tenant scheduler that provides the concepts of guar-
anteed and best-effort jobs similar to Morphling. We also
establish three variants of Morphling for a break-down com-
parison: (1) Morphling-E only reconfigures execution plans
with fixed resources. (2) Morphling-R only reallocates re-
sources with fixed execution plans. For 3D-parallel jobs,
Morphling-R uses the same approach of Sia that changes the
DP size when scaling GPUs. (3) Morphling-N does neither
of them, and only applies Morphling’s scheduling policy.
We construct synthetic traces by down-sampling the busiest
12 hours from the Microsoft (Jeon et al., 2019) GPU cluster
trace, proportionally to the cluster sizes. The sampled trace
contains 406 jobs, each with a submission time, number
of GPUs, and duration. For each job, we select a model
from Table 1 randomly. In case the original GPU number is
infeasible for the model, we use a feasible one and adjust
the duration to maintain the same GPU hours. For all sched-

2Despite the claim in their paper of supporting 3D parallelism,
Sia’s open-source artifact (Jayaram Subramanya et al., [n. d.]) only
supports pure DP jobs. Their evaluation tested 3D-parallel jobs
only with a small-scale simulation. Adding 3D-parallelism support
in Sia’s artifact is non-trivial; we implemented the claimed scaling
approach of Sia, i.e., scaling DP for 3D-parallel jobs, in another
baseline Morphling-R. In our experiments for Sia, if a model
cannot run using DP (even when ZeRO/GA/GC), the job fallbacks
to a feasible 3D-parallel plan with the resource scaling disabled.
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ulers except Sia, we translate the job duration to targeted
mini-batches using the measured model throughput with the
GPU number. For Sia, to meet its goal of reducing time-to-
accuracy, we assign a target evaluation accuracy to each job,
measured by running the model for the specified duration.
We build three variants of the sampled trace for different
scenarios. (1) Base trace, which randomly assigns an initial
execution plan to each job from all feasible plans given
the GPU number. For ViT, RoBERTa, BERT, and T5, we
disable TP and PP as they are mostly unnecessary for these
relatively small models. For the other models, we include
all the feasible 3D-parallel configurations in the candidate
plans. (2) Multi-tenant trace (MT), a multi-tenant version
of the base trace. This trace sets up two tenants, Tenant-A
with a quota of 64 GPUs, and Tenant-B with no quota, and
randomly dispatches jobs to them. Jobs from Tenant-A/B
are all guaranteed/best-effort, respectively. (3) Best-plan
trace (BP), which replaces the random execution plans in
the base trace with the best plans of the corresponding jobs
given the initial resource amounts.

End-to-end comparison. As shown in Table 4, Mor-
phling consistently achieves the shortest average and P99
job completion times (JCT) and makespan using different
traces. With the base trace, Morphling achieves up to 3.2×,
1.9×, and 1.4× improvement compared to Sia and Syn-
ergy on average JCT, P99 JCT, and makespan, respectively.
Sia, despite GPU scaling along the DP dimension, has lim-
ited support for advanced training strategies beyond DP. It
cannot scale 3D-parallel jobs with TP/PP; also, its perfor-
mance model cannot capture behaviors of ZeRO/GC, and ig-
nores multi-resource allocations beyond GPUs. Morphling
outperforms Sia by 2.6× in average JCT, highlighting the
advantage of Morphling’s full reconfigurability on a wide
range of execution plans and multiple resources. Morphling
also outperforms Synergy by 3.2× in average JCT because
Synergy does not consider execution planning during its
multi-resource allocation. With the best-plan (BP) trace, Sia
and Synergy perform better. Morphling still shows 1.9×
and 2.4× average JCT gains over Sia and Synergy, because
the assigned plan is the best only for the initial resource allo-
cation; Morphling can further reconfigure the plan together
with the resource scaling, showing the necessity of adapting
the execution plans to the resource variations.
We compare Morphling with AntMan using the multi-tenant
(MT) trace to evaluate SLA guarantees. Overall, Morphling
outperforms AntMan by 1.6× in average JCT and 1.3×
in makespan. The key difference is that AntMan guaran-
tees the requested resources, whereas Morphling guarantees
the corresponding performance during reconfiguration. For
guaranteed jobs, Morphling improves average JCT by 1.7×,
showing that Morphling not only guarantees, but also im-
proves their efficiency with better execution plans. Similarly,
Morphling shows 1.6× JCT gain for best-effort jobs.

Table 4. 64-GPU cluster experiments. “All”, “Guar.”, and “BE”
stand for all, guaranteed, and best-effort jobs, respectively.

Trace Scheduler
JCT (h) Makespan

(h)Avg. P99

Base

Morphling 0.96 (1×) 7.1(1×) 15.3 (1×)
Sia 2.5 (2.6×) 12.2 (1.7×) 18.8 (1.23×)

Synergy 3.1(3.23×) 13.5 (1.9×) 21.5 (1.4×)
Morphling-E 2.4 (2.5×) 10.9 (1.5×) 20.2 (1.32×)
Morphling-R 1.6 (1.67×) 9.9 (1.39×) 19.8 (1.29×)
Morphling-N 3.1 (3.23×) 12.8 (1.8×) 22 (1.44×)

BP
Morphling 0.96 (1×) 7.1(1×) 15.3 (1×)

Sia 1.8 (1.88×) 9 (1.27×) 16.5 (1.08×)
Synergy 2.3 (2.37×) 10.8 (1.5×) 20.5 (1.34×)

MT

Morphling
All 1.1 (1×) 11.4 (1×)

17.9 (1×)Guar. 0.85 (1×) 10.9 (1×)
BE 1.34 (1×) 11.8 (1×)

AntMan
All 1.75 (1.6×) 13.4 (1.2×)

19.6 (1.28×)Guar. 1.41 (1.65×) 11.7 (1.1×)
BE 2.1 (1.56×) 14.1 (1.2×)

Break-down study. We use the base trace to compare
Morphling to the three variants, Morphling-E/R/N, to un-
derstand the sources of improvements. As shown in Ta-
ble 4, Morphling-E and Morphling-R improve the average
JCT compared to Morphling-N by 1.3× and 1.9×, respec-
tively. This demonstrates that reconfiguring execution plans
and reallocating resources, are already powerful weapons
even used separately; however, the complete Morphling still
shows 2.5× and 1.7× extra improvements, further high-
lighting the necessity of combining them.

System overheads. For each job, the average time spent
on reconfiguration is 78 seconds, and the total reconfigu-
ration time accounts for 1% in total GPU hours across all
experiments. For each model in Table 4, workload profiling
only takes an average of 210 seconds to collect performance
values from 7 sampled tests on an 8-A800 server.

7.4 Simulations
We use simulations to evaluate Morphling with various set-
tings to identify factors affecting its behavior and perfor-
mance. We build a discrete-time cluster simulator, and use
real performance measurement to estimate the jobs execu-
tion time. We replayed cluster experiments in Sec. 7.3 with
the simulator and the max error of average JCT was 6.9%.

Performance with varying cluster load. We vary the
load of the traces with different down-sampling rates.
Fig. 10 shows the performance of Morphling and Synergy
with increasing load (1× corresponds to the original sam-
pling rate). Morphling consistently outperforms Synergy
under all loads, with up to 3.5× and 1.4× improvements
for JCT and makespan. In general, higher loads lead to
more gains of Morphling because the improvements are
accumulated across all queuing jobs.
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Figure 10. Performance vs. cluster load.
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Figure 11. Performance vs. proportion of large models.

Performance with varying model size distribution. The
job reconfigurability in Morphling enables even larger
ranges of resource availability feasible for training a model.
This property is especially beneficial for large models be-
cause they have the opportunity to start training earlier with
fewer GPUs. We compare the performance of Morphling
and Synergy with an increasing proportion of large mod-
els (LLaMA-2-7B and LLaMA-30B) in the trace. Fig. 11
shows that Morphling’s advantage keeps increasing with
more large models, with the JCT gain ranging from 2.6× to
3.4×. We view such increasing benefits with an increased
number of large models as a appreciated property of Mor-
phling, as this is exactly the developing trend today.

8 RELATED WORK

Parallelization strategies and optimizations. To facil-
itate large model training, tensor parallelism (Lepikhin
et al., 2021) and pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019) partition model across GPUs. Deep-
Speed (Rasley et al., 2020) and ZeRO series (Rajbhandari
et al., 2020; Ren et al., 2021; Rajbhandari et al., 2021) opti-
mize GPU memory usage by offloading weights, gradients
and optimizer states to main memory. Gradient checkpoint-
ing (Chen et al., 2016; Jain et al., 2020) trades recomputa-
tion for GPU memory. These techniques provide multiple
execution plan options for Morphling. Alpa (Zheng et al.,
2022) automates inter- and intra-operator parallelism for a
unified job execution plan. Unity (Unger et al., 2022) opti-
mizes the execution plan with parallel strategies and graph
substitutions. Whale (Jia et al., 2022) automatically decides
parallel strategies based on heterogeneous GPU capacities.
In these studies, the job plan is initially searched for and
executed statically. In contrast, Morphling unifies these
techniques for dynamic reconfiguration. Morphling builds a
model to evaluate job performance under varying resource
allocations (i.e., GPUs, CPUs, bandwidth), which helps
Morphling automatically choose the optimal execution plan.

Cluster scheduling. Cluster optimization has been ex-
tensively studied to improve cluster utilization (e.g., Gan-
diva (Xiao et al., 2018), AntMan (Xiao et al., 2020), Lu-
cid (Hu et al., 2023)), reduce job completion time (e.g.,
Tiresias (Gu et al., 2019), Optimus (Peng et al., 2018)),
and guarantee SLAs or fairness (e.g., HiveD (Zhao et al.,
2020), Themis (Mahajan et al., 2020)). Recent works (tor,
2023; Li et al., 2023; Gu et al., 2023) have further explored
elasticity in cluster scheduling. Sia (Jayaram Subramanya
et al., 2023) supports resource-adaptive and hybrid parallel
job configurations on heterogeneous GPUs. However, these
studies focus on data-parallel with static plans and scaling
with fixed data-parallel degrees. This fails to align with
recent LLM trends, which use advanced parallel strategies.
To enhance DL job performance and cluster efficiency,
multi-dimensional resources like host memory (Zhao et al.,
2023a), CPUs (Mohan et al., 2021; Zhao et al., 2023b),
and bandwidth (Xiao et al., 2018) are jointly considered
for scheduling. Allox (Le et al., 2020) leverages the re-
source sensitivity to schedule jobs between CPUs and
GPUs. Synergy (Mohan et al., 2022) performs resource-
sensitive scheduling instead of proportional GPU alloca-
tion. Muri (Zhao et al., 2022) optimizes DL job scheduling
through multi-resource interleaving. However, these works
treat DL jobs as black boxes when scheduling, overlook-
ing the opportunity to leverage multi-resource demands of
different execution plans. This is where Morphling excels.

Performance modeling and prediction. Habitat (Yu
et al., 2021) uses runtime data from one GPU to predict
performance on another. Pollux (Qiao et al., 2021) models
system throughput and statistical efficiency to predict scal-
ing performance. DNNPerf (Gao et al., 2023) uses graph
neural networks to predict GPU memory usage and iter-
ation time. Prior works focus on predicting performance
for single-GPU or data-parallel training, while Morphling
models for complex strategies across multiple resources.

9 CONCLUSION

Looking back at the evolution of training strategies, they
have always been adapted to different levels of resource
availability, from a single GPU to thousands, often lever-
aging auxiliary resources. Such execution adaptivity and
resource interchangeability are beneficial, yet unexplored, in
shared clusters with highly dynamic resources. Morphling,
the first system to unify the execution planning in cluster
scheduling, demonstrates the great potential via: comprehen-
sive performance modeling for strategies; a multi-resource
scheduling policy co-designed with execution planning; and
extensive evaluations showing the vastly improved job and
cluster efficiency. We hope Morphling can inspire future
advancements in both training strategies and scheduling
systems, to uncover more benefits from their connection.
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A MODELING RECONFIGURABLE DL
TRAINING

In this section, we will first model each of training parts in
Fig. 5, and then show how to combine them into Titer.
We denote each fittable parameter in our model as k plus
a certain subscript to distinguish it from other model- or
environment-related constants (summarized in Table 5).

A.1 Modeling Computation and Communication
Modeling Tfwd. The time for forward pass Tfwd under
3D parallelism can generally be obtained from profilers
provided by DL frameworks (e.g., in DeepSpeed) on a node
with a given global batch size. We scale up or down Tfwd

linearly to the actual per-GPU batch size for data parallelism,
and to per-GPU tensor shard size for tensor parallelism.
Besides, we have special treatments for the following two
strategies.
Pipeline Parallelism. PP averagely places the layers among
GPUs. When profiling with gp GPUs, the forward time
provided by the framework (denoted as tp) is usually the
time for a single GPU to process a micro-batch, with l/gp
layers placed on it, where l is the total number of layers.
The complete Tfwd for PP includes the time taken for the
first micro-batch to be processed sequentially on each GPU,
and that for all GPUs to serially process the other micro-
batches (Narayanan et al., 2019). Besides, Tfwd is linear
to the per-GPU number of layers. We then have Tfwd =
tp · gp/p · (m+ p− 1), where m and p are the numbers of
micro-batches and PP size, respectively.
Gradient Accumulation. GA aggregates per-GPU gradients
over multiple passes. Therefore, the total forward time is
Tfwd · a, where a is the number of accumulation steps.

Modeling Tbwd. Tbwd is the time for computing the gra-
dients during the backward pass. Transformer-based mod-
els are primarily comprised of matrix multiplication oper-
ations, where the time required for gradient computation
can be generally considered to be proportional to Tfwd, i.e.,
Tbwd = kbwd · Tfwd. An exception is gradient checkpoint-
ing (GC): GC recomputes activations during the backward
pass. The time cost for the extra computation is typically
equal to the time Tfwd (Chen et al., 2016). Therefore, when
GC is used, modeling the Tbwd requires adding the time
required for a forward pass.

Modeling Tcomm. The communication time Tcomm in-
volves those for data, tensor, and pipeline parallelisms. For
each part, Tcomm is in general estimated as Tcomm = V/B,
where V is the volume of the data to transfer between each
pair of GPUs and B is the corresponding bandwidth.
We discuss how to model B first. For each type of com-
munication (DP/TP/PP), we basically use the bottleneck
bandwidth of the GPUs involved in the communication, i.e.,

Table 5. Summary of performance model parameters.

Fittable kbwd, ksync, kopt, kopt off , koff , kswap, kconst

Job

Model s (seq), h (hidden), l (layers), P (param size)

Resources g (GPU), c (CPU)

Parallelism d, t, p (3D-parallel sizes, d · t · p = g)

Others b (batch size), m (micro-batch num), a (GA steps)

Environment Bintra, Binter, Bpcie

the lowest bandwidth among all pairs of GPUs. For example,
when all GPUs are co-located on the same node, the data
can be transferred via a high-speed connection like NVLink.
In this case, we use the intra-node bandwidth Bintra as B.
However, when the GPUs are spread on multiple nodes, the
communication is largely dominated by the bandwidth be-
tween nodes because the speed is much slower than NVLink.
Hence we use inter-node bandwidth Binter here. Note that
different types of communication may use different B val-
ues. For example, TP is typically restricted inside each node
while PP can be distributed across nodes (Narayanan et al.,
2021). In this case, TP and PP will use Bintra and Binter,
respectively. The values of Bintra and Binter are measured
on the cluster offline.
Next, we model the communication volume V for different
strategies respectively. When the parallelism size of any
dimension is 1, then the corresponding V is 0.
Data Parallelism. DP typically uses the ring AllReduce
algorithm to synchronize the gradients, where each model
replica sends and receives 2(d − 1)/d times gradients (d
being the DP size). The gradients generated during the entire
backward pass are approximately as large as the parameter
size. Considering that the gradients are partitioned and
synchronized in parallel across TP and PP partitions, we
have Vdp = P · 2(d − 1)/(d · t · p), where P is the total
parameter size, and t and p are TP and PP sizes, respectively.
This rule also applies to the ZeRO series as they are based
on DP.
Tensor Parallelism. The communication volume for TP
depends on the size of output tensor of a transformer layer,
which is b · s · h (Vaswani et al., 2017) when not sliced,
where b, h, and s represent the batch size, hidden size, and
sequence length, respectively. Each layer involves in total
4 communication operations in the forward and backward
passes (Shoeybi et al., 2019). Considering the output tensor
and the batch are partitioned by TP and DP, respectively, we
have Vtp = 4 ·2 · (t−1) ·b ·s ·h · l/(d · t) (this volume is not
divided by the PP size p because the TP communications
across pipeline stages are serialized).
Pipeline Parallelism. Micro-batches need to wait for the
communication from other pipeline stages after finishing
the forward/backward pass for the current micro-batch. The
communication volume for each micro-batch between each
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consecutive pair of devices is b/m ·s ·h. PP communication
is involved in both forward and backward passes, and the
tensors are partitioned by DP and TP along the batch size
and operator dimensions. We thus have Vpp = 2 · p · b · s ·
h/(d · t)3.

Combining computation and communication. As de-
picted in Fig. 5, it is possible to overlap the communication
with the forward/backward pass computation. We use an
intermediate variable Tcc to denote the combination of com-
putation and communication, which is calculated as follows.
3D parallelism. In 3D parallelism, the gradient synchro-
nization of DP can be overlapped with the backward pass,
whereas the communication for TP/PP cannot as it is on
the critical path. We use a function fk

overlap(Tx, Ty) pa-
rameterized by k to model the overlapping of two stages,
where the fittable parameter k represents the degree of
the overlapping. Here we use ksync for the overlapping
of DP and backward pass, thus we have Tcc = Tfwd +

f
ksync

overlap(Tbwd, Tcomm dp) + Tcomm tp + Tcomm pp, where
the three communication times are calculated using the rule
described above. To avoid distraction, we defer the detail of
fk
overlap to Sec. A.3.

Gradient Accumulation. When GA is used in DP, per-
GPU gradients are aggregated locally over a− 1 forward-
backward passes before being synchronized across all GPUs
during the ath pass. Therefore, the total backward propa-
gation spans a− 1 accumulation steps followed by the last
step overlapped with the synchronization, that is, Tcc =

a·Tfwd + (a− 1) · Tbwd + f
ksync

overlap(Tbwd, Tcomm dp).

A.2 Modeling Optimizer and Offloading
Modeling Topt. The optimizer time Topt depends on the
parameter size on each GPU, instead of the total parameter
size, as the parameters are updated in parallel. We discuss
each strategy as below.
3D parallelism or ZeRO-DP. 3D parallelism and ZeRO-DP
partition model parameters by the TP/PP size and DP size,
respectively, thus we have Topt = kopt · P/x, where x
represents t · p for 3D parallelism, and d for ZeRO-DP.
ZeRO-Offload. Beyond the partitioning, ZeRO-Offload up-
dates the partition each GPU owns directly on the CPU.
Thus, we add a new fittable parameter to represent the CPU
computation efficiency. Since CPU resources are used in
parallel to jointly compute a single weight update, increas-
ing the number of CPUs c can also improve Topt under

3We model the commonly used 1F1B strategy for
PP (Narayanan et al., 2019). This formula only considers
the micro-batches whose results are needed immediately by
the next pipeline stage. For some of the micro-batches in the
warm-up phase of 1F1B, the communication can be overlapped,
but the degree is hard to model. We assume that they are perfectly
overlapped.

ZeRO-Offload, that is, Topt = kopt off · P/(d · c).

Modeling Toff . Toff represents the time specifically re-
quired by ZeRO-Offload, which is taken by the communi-
cation between CPU and GPU. ZeRO-Offload offloads the
partitioned gradients to the CPU memory after computa-
tion and moves the parameter partitions back to the GPU
after the parameter update. The communication volume for
each data parallel GPU to the CPU is P/d without mixed
precision, thus we have Toff raw = P/(d ·Bpcie).
In ZeRO-Offload, the offloading is also overlapped with
the gradient synchronization and the optimizer step. We
use an intermediate variable Too to denote the combina-
tion of these parts. When using ZeRO-Offload, we have
Too = f

koff

overlap(Tcomm dp, Toff ) + f
kswap

overlap(Topt, Toff );
otherwise, we simply have Too = Topt.

A.3 Putting It All Together
Combining the discussion in previous sections, we model
the end-to-end iteration time as:

Titer = Tcc + Too + kconst (1)

where we use another fittable parameter kconst to denote
other constant overhead.

Modeling overlapping. We use the function
fk
overlap(Tx, Ty) to represent the total time spent by
x and y, considering the overlap between them. Taking
the overlapping of Tbwd and Tcomm as an example, if there
is no overlap in data parallelism, they are combined as
Tbwd + Tcomm. If there is a perfect overlap, it should be
max(Tbwd, Tcomm). A realistic value is somewhere in
between these two extremes. To capture the overlapping,
we borrow the definition from prior work (Qiao et al., 2021)

as fk
overlap(Tx, Ty) =

(
T k
x + T k

y

) 1
k . This formula has the

property that the total time equals Tx+Ty when k = 1, and
it smoothly transitions towards max(Tx, Ty) as k −→ ∞.

Continuous model fitting. The fittable parameters (listed
in Table 5) are fitted using throughput values collected from
several sampled test runs using different resource alloca-
tions and execution plans. To fit such a 7-tuple, we require at
least seven data points before scheduling corresponding jobs.
Considering that three parameters involve ZeRO-Offload
(kopt off , koff , kswap), the test runs should include three
using this strategy. We minimize the root mean squared log-
arithmic error (RMSLE) between Eq. (1) and the collected
data triples. The model can also be updated online using
metrics collected in real training runs when the prediction
error exceeds a threshold. By continuously updating the
model, Morphling could fix potential prediction errors and
the impact of such errors on scheduling decisions.



B. Artifact Appendix
B.1 Abstract
The artifact includes the source code and scripts to run the exper-
iments. It can validate the core functionalities of Morphling and
reproduce the main evaluation results of this paper.

B.2 Notes
Our experiments can be reproduced in two ways: artifact evalua-
tion (referred to as ’artifact’ hereafter) and real GPU cluster exper-
iments (referred to as ’real experiments’ hereafter). For the artifact,
we have pre-collected performance values for all transformer mod-
els in Table 1 under various resource amounts and execution plans
in a 64-GPU cluster setup. Based on the data, we can quickly vali-
date Morphling’s core functionalities without requiring GPUs.

For the real experiments, they require access to a 64-A800 GPU
cluster, which incurs significant costs and also demands lengthy
runtimes to complete. As a result, we do not recommend this
approach. However, for those who are interested, we have provided
detailed instructions for both approaches below and on GitHub.

It is worth emphasizing that both methods use the same code
for implementing the core function of Morphling. We believe the
artifact is sufficient to validate Morphling’s capabilities.

B.3 Artifact check-list
• Algorithm: A new scheduling algorithm is used for reconfigurable

scheduling.

• Program: Seven deep learning training workloads, such as ResNet,
GPT-2, are used as benchmarks.

• Model: For artifacts, we only need the configurations of these models
and have been included in the code. For real experiments, you will
need to download their checkpoints from https://huggingface.
co/models.

• Data set: Only for real experiments. They need to be downloaded from
https://huggingface.co/datasets.

• Run-time environment: The artifact is designed to run in a Docker
container, making it OS-agnostic. Root access is not required, but
Docker must be installed and configured. The real experiments need
more support like Kubernetes and training frameworks.

• Hardware: Artifact: CPUs. Real experiments: 64-A800 GPU cluster.

• Execution: Only for real experiments. They need profiling for new
models. The overhead can be found in Section 7.3.

• Metrics: For each job: iteration time and throughput. For cluster
experiment: average job completion time and makespan.

• Output: Standard console output (stdout)/log files/figures/tables.

• Experiments: README, scripts, IPython/Jupyter notebook are used.
See Github for more details.

• How much disk space required (approximately)?: Artifact: 1GB.
Real experiment: 800GB.

• How much time is needed to prepare workflow (approximately)?:
Artifact: 30 minutes. Real experiment: 1 day.

• How much time is needed to complete experiments (approxi-
mately)?: Artifact: 2 hours. Real experiment: 9 days.

• Publicly available?:
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler/
tree/mlsys25-artifact.

• Code licenses (if publicly available)?: Apache-2.0

• Data licenses (if publicly available)?: Apache-2.0

• Archived (provide DOI): 10.5281/zenodo.14991392

B.4 Description
B.4.1 How delivered
The artifact repository can be obtained from Github. To get the Morphling
artifact, run:

git clone https :// github.com/AlibabaPAI/
reconfigurable -dl -scheduler.git

cd reconfigurable -dl-scheduler
git checkout mlsys25 -artifact

B.4.2 Hardware dependencies
Artifact: CPUs.

Real experiment: A cluster comprised of 8 servers, each with 8 NVIDIA
A800 GPUs (80 GB), 96 vCPUs, 1600 GB memory, 400 GB/s NVLink
bandwidth, and 100 GB/s RDMA network bandwidth.

B.4.3 Software dependencies
Artifact: Docker container. You can pull the Docker images we prepared or
setup the containers by yourself using Dockerfile we provided.

Real experiment: Kubernetes, Kubeflow, PyTorch 1.12, DeepSpeed
0.9.2, and Megatron-DeepSpeed v2.4.

B.5 Installation
Here, we provide a brief introduction to the artifact installation. For more
details, see https://github.com/AlibabaPAI/reconfigurable-dl-scheduler/
tree/mlsys25-artifact.

You can pull the container as:

docker pull zzxy180318/morphling -
artifact:mlsys25ae

You can also setup the containers by yourself using Dockerfile:

docker build -t morphling:mlsys25ae .

Finally, launch the Docker images as follows:

docker run -tid --name morphling -artifact
morphling:mlsys25ae

docker exec -it morphling -artifact /bin/bash

B.6 Experiment workflow
Here, we provide a brief overview of the artifact workflow. For detailed
steps on how it is implemented and executed, please visit Github.

To validate the performance model of Morphling, we use seven models
listed in Table 1 to evaluate prediction errors (Table 2). To assess Mor-
phling’s reconfigurabilities, we train the LLaMA-2-7B under different re-
source limits and evaluate the training performance using Morphling (Fig-
ure 7).

To demonstrate Morphling’s ability to maximize the throughput across
jobs, we submit RoBERTa and T5 models to a 4-GPU cluster and compare
the overall performance to a simple scheduler (Figure 8). To ensure that
Morphling preserves training accuracy, we profile the training loss across
3,000 mini-batches under different execution plans and compare it to the
loss with randomized seeds (Figure 9).

Finally, to highlight Morphling’s ability to optimize cluster scheduling
by maximizing throughput while maintaining job performance, we use
three different traces (each consisting of 406 jobs) and schedule them by
Morphling onto a 64-GPU cluster (Table 3).

B.7 Evaluation and expected result
Here, we only discuss the expected result of artifact. For the performance
model validation and micro-benchmarks, the number of resources and mod-
els involved is relatively small. Therefore, the artifact results are nearly
identical to those reported in the paper. However, for cluster experiments,
the longer experiment runtime introduces unavoidable factors that may af-
fect the experiment results, such as network fluctuations and restart delays.

While these factors have been accounted for in the artifact, it is impos-
sible to precisely predict their impact. As a result, cluster experiments may
exhibit some variation in the results. As shown in Section 7.4, we consider
a mean variation of up to 6.9% to be acceptable.
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