
InferCool: Enhancing AI Inference Cooling through
Transparent, Non-Intrusive Task Reassignment

Qiangyu Pei

Huazhong University of Science

and Technology

Wuhan, China

peiqiangyu@hust.edu.cn

Lin Wang

Paderborn University

Paderborn, Germany

lin.wang@uni-paderborn.de

Dong Zhang

Inspur Data Co., Ltd.

Jinan, China

Bingheng Yan

Inspur Data Co., Ltd.

Jinan, China

Chen Yu

Huazhong University of Science

and Technology

Wuhan, China

yuchen@hust.edu.cn

Fangming Liu
∗

Huazhong University of Science

and Technology

Peng Cheng Laboratory

Wuhan, China

fangminghk@gmail.com

ABSTRACT
The increasing power consumption of AI inference in mod-

ern datacenters has escalated cooling demands significantly,

necessitating the adoption of potent cooling approaches like

water cooling. Unlike traditional cloud workloads, AI infer-

ence has unique characteristics that create substantial gaps in

achieving optimal cooling efficiency. In this work, we present

the first comprehensive measurement study of AI inference

cooling across various models within an industrial-ready

scheduling framework, highlighting significant inefficien-

cies and their causes. To fill the gap while following the

fundamental requirements of cooling systems, we explore a

new opportunity presented by modern Multi-Instance GPU-

enabled inference serving, where the scheduling dimension

is naturally orthogonal to the cooling dimension. Building

on this insight, we develop InferCool, a cooling middleware

designed to enhance cooling efficiency for inference serv-

ing through transparent, non-intrusive task reassignment.
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It includes a streamlined power and temperature prediction

approach and a thermal-aware, adaptive application deploy-

ment and request scheduling mechanism. Real-world exper-

iments on a water-cooled testbed and a three-node cluster

demonstrate that InferCool can reduce the maximum GPU

temperature by 5℃ across eight A100 GPUs, equivalent to

cooling energy savings of about 20%. Importantly, InferCool

requires no modifications to existing cooling infrastructures

and is compatible with existing scheduling systems.
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1 INTRODUCTION
Recent years have witnessed a growing demand for pow-

erful datacenters, especially in the era of large language

models (LLMs). It was announced by NVIDIA at the end

of 2022, that it would collaborate with Microsoft to build

a powerful AI supercomputer equipped with tens of thou-

sands of A100 and H100 GPUs for the model training and

inference serving [32]. However, more powerful servers and
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Figure 1: Cooling mechanisms of conventional, state-of-the-art, and InferCool-based systems.

hardware also bring higher power demands. In particular,

the thermal design power of the A100, H100, and the latest

B200 GPUs has reached 400 W, 700 W, and 1 kW, respec-

tively, remarkably higher than previous GPU generations

with around 200∼300 W consumption. It was reported that

a simple ChatGPT query consumes almost 10× the electric-

ity of a usual Google search [44]. Moreover, AI datacenters,

which currently account for about 4% of America’s power

consumption, could see their share soar to 25% by 2030 [44].

Among the energy consumed by datacenters, the cool-

ing infrastructure is a predominant factor of non-IT equip-

ment [19], accounting for up to 30% of total datacenter energy.

This proportion can rise to nearly half in edge datacenters

that house many high-powered GPUs to support real-time,

compute-intensive services like AI inference [39]. Within an

inference serving system, a single model typically cannot sat-

urate a GPU’s capacity, prompting cloud providers to deploy

multiple models on a single GPU using GPU-sharing tech-

nologies such as Multi-Process Service (MPS) [35] and Multi-

Instance GPU (MIG) [31]. Through fine-grained GPU sharing,

the increased utilization and power consumption will inten-

sify the demand for cooling at the same time. Meanwhile, as

presented later in Section 3, the unique characteristics of AI

inference can cause power levels to fluctuate rapidly, thereby

widening the gap to achieving optimal cooling efficiency.

While there have been numerous studies aimed at enhanc-

ing the cooling efficiency of datacenters, none have specif-

ically addressed the unique demands of AI workloads. We

divide them into two categories: (1) developing new cooling

architectures at the infrastructure level, including changing

cooling approaches and adding new components [17–19, 39,

46, 47], and (2) applying thermal-aware workload scheduling

integrated with power throttling and/or cooling control at

the server and platform levels [1, 5, 7, 29, 30, 42, 47, 50].When

applied to AI datacenters, they can exhibit significant limita-

tions in satisfying the two fundamental requirements of the

cooling system—reliability and extensibility—simultaneously

in practice, which are especially essential to inference serving

systemswith strict and various performance requirements. In

particular, studies in the second category develop their own

schedulers from scratch to realize cooling-aware workload

scheduling. Those schedulers not only lack many necessary

features like resource scaling and task migration [3], but

also cannot be easily integrated into existing widely-used

scheduling frameworks. For many legacy and colocation dat-

acenters, it is also costly and even impracticable to adopt

newly proposed cooling architectures.

To maintain both reliability and extensibility while achiev-

ing high cooling efficiency in AI datacenters for inference

serving, we explore a new opportunity presented by MIG-

enabled inference serving, a growing trend today [25]. Specif-

ically, previous GPU-sharing methods like MPS tie both

scheduling and cooling units to each GPU entity, often caus-

ing cooling optimization to contradict scheduling require-

ments. Our experiments on inference serving indicate that

even a load-balancing scheduling strategy can lead to severe

thermal imbalances. In contrast, with the modern MIG-based

GPU-sharing method, the cooling unit remains at the hard-

ware level while scheduling occurs at the partition level

— MIG partitions can be regarded as a series of logically

individual, smaller GPUs on top of physical GPU entities.

Leveraging this property, the cooling optimization becomes

orthogonal to following scheduling requirements in MIG-

enabled systems, allowing for task reassignment to balance

thermal distribution and improve cooling efficiency without

impacting application performance. For example, reassigning

a task from a partition on a hot GPU component to another

partition with the same size but on a cooler component is un-

likely to cause any performance implications due to resource

contention, but can achieve better thermal distribution.

To fully exploit the opportunity, we develop a temperature-

oriented middleware called InferCool to enhance Inference

Cooling through transparent, non-intrusive task reassign-
ment. As illustrated in Figure 1, state-of-the-art coolingmech-

anisms are intrusive to either the underlying cooling infras-

tructures (impacting reliability) or the top-level scheduling

systems (impacting extensibility). In contrast, InferCool in-

tegrates seamlessly with widely-adopted, practice-proven

cooling architectures and scheduling frameworks, requir-

ing no modifications to existing inference scheduling strate-

gies. During application deployment and request scheduling,

InferCool will reassign tasks in a cooling-friendly manner
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while satisfying the original deployment and scheduling re-

quirements. We summarize our contributions as follows.

• We conduct a systematic study of AI inference cool-

ing and highlight the challenges of efficiently cooling

inference workloads given their unique characteristics.

• Without compromising the requirements of the cool-

ing system, we identify a new opportunity for cooling

MIG-enabled co-located inference workloads and pro-

pose a temperature-oriented task-reassignment mid-

dleware named InferCool, which can operate without

affecting application performance or requiring modifi-

cations to the underlying infrastructure.

• We model the power and temperature dynamics of

GPUs when co-locating multiple inference workloads.

Based on empirical studies, we develop a precise and

efficient power and temperature prediction approach,

which supports the design of a lightweight, thermal-

aware application deployment and request scheduling

mechanism to optimize cooling efficiency.

• We evaluate InferCool on a water-cooled testbed and

a three-node cluster, using a real-world request arrival

dataset and a wide range of inference models. The

experimental results show that, compared to vanilla

Kubernetes, InferCool can reduce cooling energy con-

sumption by up to 20% without being intrusive.

2 BACKGROUND
In this section, we first introduce the latest Multi-instance

GPU technology for inference co-location. Then, we present

the background of water cooling systems and summarize

their key requirements.

2.1 MIG-enabled Inference Serving
The MIG technology was first introduced in NVIDIA’s Am-

pere architecture GPUs in 2020 and has been incorporated

into all subsequent generations. Recent AI datacenters from

enterprises like Microsoft [32] and Meta [21], have all been

equipped with powerful, MIG-supported GPUs like the A100

and H100. As suggested by NVIDIA [28], MIG technology

is promising to improve GPU utilization by enabling the

colocation of multiple tasks, especially for inference work-

loads that typically cannot saturate a GPU. Unlike previous

software-level GPU-sharingmethods,MIG provides full isola-

tion between different slices (also referred to as “partitions”),

as it partitions not only compute resources (i.e., streaming

multiprocessor (SM)) but also memory resources (e.g., mem-

ory, cache, and bandwidth) [31]. Therefore, there is almost

no performance interference between partitions, as demon-

strated by prior research [25] and our experimental results

from the first two rows in Table 1. The cloud platform and

Table 1: Processing and energy efficiency of AI infer-
ence on different partitions (BERT-large as an example)

Used partition /
partitioning plan

Batch
size

Avg. inference
latency (ms)

Inference
throughput

Avg. energy
per request (J)*

1 / 7 × 1g.5gb 1 14.86 67 0.426

7 / 7 × 1g.5gb 1 14.98 7 × 67 0.373

1 / 1 × 7g.40gb 1 10.50 95 0.414

1 / 1 × 7g.40gb 17
#

13.40 1269 0.106

* The energy values exclude idle energy consumption.

#
The batch size is set to the maximum value that ensures the inference latency

does not exceed that on the 1g.5gb partition.

applications are now agnostic to GPU entities and instead

recognize each GPU partition as an individual, smaller GPU.

Taking the A100 40GB GPU as an example, there are

five available partition sizes, including 1g.5gb, 2g.10gb,
3g.20gb, 4g.20gb, and 7g.40gb. In these notations, the pre-

fix (e.g., 1g, 2g) and suffix (e.g., 5gb, 10gb) denote the amounts

of compute and memory resources, respectively. These sizes

can be combined to form 19 configurable partitioning plans,

with a total size not exceeding 7g.40gb [33], e.g., 1×3g.20gb+
1×2g.10gb+2×1g.5gb. For AI inference processing, differ-
ent partition sizes can produce varying processing efficiency

(e.g., latency & throughput) and energy efficiency, as evi-

denced by the first, third, and fourth rows in Table 1. In

particular, by allowing for larger batch sizes, larger parti-

tions can significantly reduce inference energy consumption.

Moreover, for a specific partitioning plan, when multiple

partitions execute inference simultaneously, the energy effi-

ciency generally increases due to higher resource utilization,

while the processing efficiency remains unaffected due to

full isolation, as evidenced by the first two rows in Table 1.

Through fine-grained sharing of GPU resources when

serving compute-intensive AI inference on powerful GPUs,

both resource utilization and power consumption increase,

which in turn raises thermal intensity, making it difficult for

air cooling to dissipate heat efficiently. In a stress test on

an A100 GPU in our local workstation placed in a room at

around 20℃, when using a customized fan, the GPU encoun-

tered automated power capping and its temperature reached

over 80℃. By comparison, when we replaced the fan with a

cold plate for water cooling, the GPU works well, and its tem-

perature is only around 53℃ when the water temperature is

maintained at 30℃. To deliver adequate cooling capacity for

high-powered hardware, water cooling offers an appealing

solution, which has been adopted by NVIDIA in its latest

rack-scale product as well [37].

2.2 Water Cooling System
Figure 2 illustrates a representative water cooling architec-

ture for heterogeneous hardware. Specifically, the cooling

water in the secondary loop is pumped from the water tank

into every server. Each hardware component in the server
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Figure 2: The water cooling architecture in datacenters.

is attached to a cold plate, where the cooling water flows

through and absorbs the heat generated by the correspond-

ing component. In some server designs [20], the cooling

water passes through multiple components along the same

path, causing the water to warm up before reaching sub-

sequent components. When the water exits the servers, it

becomes hot and releases heat into the primary loop via a

heat exchanger. The water in the primary loop then gets

chilled by a chiller and/or cooling tower. To ensure that all

hardware components operate below their safe operating

temperatures, the required cooling capacity (i.e., the chilled

water temperature) in each adaptation period depends on the

highest cooling demand of all the components, characterized

by their maximum reachable temperature [19, 39].

As the cooling system plays a critical role in maintaining a

suitable hardware temperature in datacenters, we emphasize

that it needs to satisfy the following requirements.

(1) Reliability: A reliable cooling system is essential for

maintaining the functionality of the entire datacenter.

Lower reliability increases the likelihood of datacenter

outages, which can be detrimental to many mission-

critical real-time inference applications. According to

a study by Vertiv [48], the cost of a cooling-related

downtime reaches an average of $554,000.

(2) Extensibility: On top of reliability, the cooling sys-

tem should be able to work seamlessly with any cluster

schedulers and accommodate any workloads with spe-

cific scheduling requirements. Additionally, it should

be capable of adapting to any changing needs, such as

hardware upgrades and load intensity variations.

(3) Efficiency: As discussed in Section 1, the cooling sys-

tem contributes significantly to datacenter energy, par-

ticularly in supporting power-hungry AI applications.

Pursuing optimal cooling efficiency is the ultimate goal

on the way to datacenter sustainability.

While water cooling shows promise for supporting AI

workloads, significant cooling capacity waste remains due to

the unique characteristics of AI inference. In the following,

we offer the first detailed analysis of AI inference from a

cooling perspective and derive several valuable insights for

optimizing cooling efficiency.

3 COOLING PERSPECTIVE OF AI
INFERENCE

In this section, we first analyze the unique characteristics

of AI inference and their potential impact on cooling effi-

ciency. Then, we conduct a measurement study to reveal

the cooling impacts of AI inference. Finally, with a focus

on the requirements of cooling systems, we highlight the

opportunity to enhance cooling efficiency for MIG-enabled

inference serving.

3.1 Key Characteristics of AI Inference
First, we summarize four key characteristics of AI inference

applications that significantly impact cooling efficiency.

(1) Strict performance requirements: AI inference ap-
plications typically demand high end-to-end perfor-

mance due to their interactive nature. For example,

on a popular local life services platform, about 86.2%

of the over 600 deployed ML models are expected to

deliver responses within 50 ms [49]. According to a

recent report, every 100 ms delay in response time can

cause a 1% decline in revenue [27].

(2) Intensive computing demands:The size of recent AI
models has grown significantly. For example, the GPT-

2 model contains 1.5B parameters [41] and requires

3400 GFLOPs [10], while the GPT-3 model grows by

more than 100× [10]. Such surging computing demand

also brings a heavy burden on power supply as well

as cooling.

(3) Stochastic request arrivals:Recent studies have high-
lighted the bursty and intermittent nature of inference

requests [2, 40, 49]. These requests can vary widely

in application type (e.g., image recognition, chat), size

(e.g., batch size, input length), and resource demand

(e.g., requiring a larger partition size for lower latency),

causing significantly different power usage behaviors.

(4) Short duration: Given the real-time demands and in-

termittent request arrivals, AI inference executions are

generally short-lived, lasting from tens of milliseconds

to several seconds. Once a request is finished and no

new requests arrive, the resources can be idle at low

power levels.

The above characteristics lead to high while significantly

fluctuating hardware power consumption, resulting in severe

thermal imbalance both spatially and temporally.
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3.2 Cooling Impacts of AI inference
Next, we go deeper into the cooling impacts of AI inference

through extensive experiments. In particular, we define three

terms to measure power usage patterns and their effects on

hardware temperature.

• Individual intensity: The average power usage and
maximum hardware temperature rise during a single
inference execution. It depends on themodel type, batch

size, as well as the hardware partitioning plan
1
.

• Cumulative intensity: The average power usage and
maximum hardware temperature rise over a period of

consecutive inference executions. This usually happens

when the system is overloaded. It depends on the hard-

ware partitioning plan, model type, batch size, and the

number of inference executions.

• Intensity distribution: The power usage pattern and

maximum hardware temperature rise over a period of

intermittent inference executions. This happens when
requests arrive stochastically and the resources are

underutilized. It depends on the hardware partitioning

plan, model type, batch size, the number of inference

executions, and request arrival pattern.

We select ten popular AI models from both the CV and

NLP domains, ranging in size from XS to XL, and conduct

various measurements on a water-cooled, MIG-enabled A100

GPU
2
. Due to space constraints, we present results for six

models in each figure, including ResNet-152 (S), YOLOv8x (L),

Diffusion (XL), BERT-large (S), GPT2-xl (L), and Gemma-2b

(XL), with results for all ten models available in a supplemen-

tary file [38]. There are two exceptions in the experimental

settings: (1) For batch sizes of 8 and 16, the Diffusion model

uses batch sizes of only 1 and 2, respectively, to maintain ac-

ceptable inference latency, and (2) For the partitioning plan

of one and seven 1g.5gb partitions, the Gemma-2b model

is placed on one and three 2g.10gb partitions, respectively,
due to its high memory requirements. In all figures, the pink-

shaded period denotes the tested phase.

3.2.1 Experiment #1 on general behaviors of the individual
and cumulative intensities. First, we evaluate how the individ-

ual intensity and cumulative intensity are influenced by the

three basic factors: model type, batch size, and the number

of inference executions. We fix the partition size to 7g.40gb.
From Figure 3, we can draw three interesting observations:

❶ Despite being power-intensive, a single inference
execution can have little influence on GPU temper-
ature. For example, as shown in Figures 3a and 3b, while

YOLOv8x at bs=16 and Diffusion can cause obvious GPU

1
We currently do not consider the impact of input length, whose impact on

the hardware power and temperature is similar to that of batch size.

2
Details on the models and experimental setup are provided in Section 6.1.

(a) Running inference only once (bs = 8)

(b) Running inference only once (bs = 16)

(c) Running inference continuously for 10 seconds (bs = 8)

Figure 3: The GPU power and temperature variations
under different individual and cumulative intensities.

temperature rises, for most models—even LLMs like Gemma-

2b with high inference time—the GPU temperature rises

by no more than 2℃. ❷ Due to the short-lived nature
of inference, the GPU temperature is influenced not
only by power consumption but also by the duration
of inference executions. Existing studies [19, 39] assume a

one-to-one relationship between the power and temperature,

which we find does not hold for inference workloads any-

more. For example, as shown in Figure 3b, although Diffusion

consumes slightly less average power than YOLOv8x, its fi-

nal maximum GPU temperature is 8℃ higher; in Figure 3c,

when YOLOv8x performs inferences continuously, the GPU

temperature keeps growing and stabilizes at 47∼48℃, while

a single execution in Figure 3a only causes the temperature

to rise to 34℃. ❸ Models with a high individual intensity,
however, can exhibit a low cumulative intensity. For
example, in Figures 3a and 3b, Gemma-2b shows a higher

individual intensity than ResNet-152 and BERT-large, but in

Figure 3c, we can find that ResNet-152 and BERT-large show

much higher cumulative intensities, with maximum temper-

atures 4℃ and 5℃ higher than Gemma-2b, respectively.

3.2.2 Experiment #2 on the intensity distribution under dif-
ferent request arrival patterns. Second, we evaluate how the

intensity distribution is influenced by the request arrival

pattern. We fix the partition size to 7g.40gb. For each model,

we send the same total number of requests under different

arrival patterns. From Figure 4, we can draw the following
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(a) Uniform request arrival: after each inference execution,
stopping for twice the inference time (bs = 8)

(b) Bursty request arrival: for every 2 seconds of inference
executions, stopping for 4 seconds (bs = 8)

Figure 4: The GPU power and temperature variations
under different intensity distributions.

notable observation:❹As fluctuations in request arrivals
increase, the intensity distribution becomes more dis-
persed, significantly raising the maximum GPU tem-
perature even though the average power consumption
remains unchanged. For example, the temperature rise for

YOLOv8x under the bursty arrival pattern nearly doubles

compared to the uniform arrival pattern—from 7℃ to 13℃.

3.2.3 Experiment #3 on the cumulative intensity and inten-
sity distribution under different GPU partitioning plans. Third,
we evaluate how the cumulative intensity and intensity dis-

tribution are influenced by the GPU partitioning plan. For

each model, we send the same total number of requests un-

der different partitioning plans. From Figure 5, we have two

notable observations: ❺ Different partitions generally
exhibit similar cumulative intensities for most models
when the request size remains the same. On the one

hand, smaller partitions may show slightly lower energy ef-

ficiency, as evidenced in Table 1, resulting in higher average

power usage than larger partitions. On the other hand, on

larger partitions with more available resources and shorter

inference times, the short-lived characteristic can cause more

significant power fluctuations and temperature surges. As

a result, ❻ for compute-intensive models, larger parti-
tions can exhibit much higher cumulative intensities
than smaller partitions. As two exceptions—YOLOv8x and
Diffusion, when deployed on a 7g.40gb partition with more

available resources, the temperature rise grows from 4℃ to

7℃ and 4℃ to 15℃, respectively.

Accordingly, we can infer that when the load is light

and GPUs are largely underutilized (e.g., only reaching the

maximum supported throughput of one of the smaller par-

titions), the intensity distribution under larger partitions

(a) Smaller partition: one 1g.5gb partition (bs = 16)

(b) Larger partition: one 7g.40gb partition (bs = 16)

Figure 5: The GPU power and temperature variations
under different cumulative intensities influenced by
GPU partitioning plans.

(a) Smaller partition: bs = 1 on seven 1g.5gb partitions

(b) Larger partition: Adaptive bs on one 7g.40gb partition

Figure 6: The GPU power and temperature variations
under different cumulative intensities influenced by
GPU partitioning plans and batch sizes.

would be more sensitive to request arrival patterns. However,

since smaller partitions can significantly improve inference

throughput, as indicated in Table 1, we also observe that

❼ when the load is high (e.g., reaching the maximum
supported throughput of larger partitions), the inten-
sity distribution under multiple smaller partitions be-
come more sensitive to request arrival patterns, and
the cumulative intensity can be much higher due to in-
creased GPU utilization. The results for running inference
on seven 1g.5gb partitions simultaneously under different

arrival patterns and under full load, are available in [38].

As evidenced in Table 1, larger partitions can achieve

higher energy efficiency by allowing for larger batch sizes

within a fixed time budget. Here, we set the batch size on the

7g.40gb partition to the maximum value that ensures the

inference latency does not exceed that on a 1g.5gb partition.
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Similarly, we send the same total amount of requests under

different partitioning plans. For the non-bottleneck partition-

ing plan, we send requests uniformly. From Figure 6, we can

draw a useful observation in comparison to Obs. (5) and (6):

❽ Larger partitions can exhibit lower cumulative in-
tensities by batching requests into larger groups. This
is because batching can improve both processing and energy

efficiency. As seen across all the six models, both the average

GPU power and maximum GPU temperature decrease, with

the latter reducing by an average of 3℃ and up to 8℃.

3.2.4 Experiment #4 on a representative scheduling frame-
work. Finally, to show how existing scheduling frameworks

behave in terms of thermal distribution, we conduct a trace-

driven experiment on the Kubernetes framework [22]. Specif-

ically, we configure a small cluster with two worker nodes,

each equipped with four A100 GPUs. Each GPU is parti-

tioned as 3 × 1g.5gb + 2 × 2g.10gb. We select four models:

SSD300-VGG16, YOLOv8x, Diffusion-v1.5, and Gemma-2b.

The latter two models, due to their high memory require-

ments, are deployed exclusively on each 2g.10gb partition,
while the former two are deployed on each 1g.5gb partition.
We use a trace from Twitter [4] to generate user requests

and select a period from 9:00 to 9:30 where the requests per

second (RPS) fluctuates in a large range from about 35 to

120, as plotted in Figure 7. Figure 8 shows the power and

temperature variations across four GPUs on Node #01 during

the 30 minutes. The types and quantities of models deployed

on each GPU are indicated below each GPU’s power pattern.

As we can see, there exhibit significant power and temper-

ature differences among the four GPUs. For example, GPU

#03 experiences a maximum temperature of 54℃, while GPU

#02 remains no more than 44℃, highlighting the significant

thermal imbalance of inference workloads on Kubernetes.

Based on the above measurement study and the cooling

mechanism discussed in Section 2.2, we conclude that the

thermal imbalance arises from three major aspects as follows.

(1) Model heterogeneity: AI models differ in size and

computational demands, resulting in different levels of

heat generation. The size of GPU partitions that hold

these models further affects heat intensity.

(2) Request heterogeneity: Batched requests differ in

size (e.g., batch size, input length, image size), and a

sequence of requests forms distinct arrival patterns,

both of which result in varying heat intensity. For

different models, the relationship between request size

and power usage also varies.

(3) Cooling non-identity: As water flows through com-

ponents along each cooling channel in servers, the

downstream component tend to be hotter than the

upstream one. This temperature rise depends on the

power consumption of the preceding component.
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Figure 7: RPS variations from 9:00 to 9:30 of the trace.

Figure 8: The GPU power and temperature variations
when processing inference requests on Kubernetes.

In summary, AI inference workloads make the hardware

power and temperature fluctuate severely both spatially and

temporally, while existing cluster schedulers are cooling-

unaware, leaving a large gap towards optimal cooling effi-

ciency. Moreover, the impact of AI inference on cooling is

highly complex—the hardware temperature is significantly

influenced by many factors: model type, partition size, batch

size, request arrival pattern, and physical layout of GPUs.

To optimize AI inference cooling, we must comprehensively

account for these key factors and the above three aspects.

3.3 Opportunity for Cooling Awareness
As discussed in Section 1, existing studies on improving

cooling efficiency face significant limitations in maintain-

ing both reliability and extensibility. By comparison, we

explore a new opportunity for achieving efficient cooling

in MIG-enabled AI inference serving. As illustrated in Fig-

ure 9a, previous GPU-sharing methods, including spatial and

temporal sharing via GPU virtualization and MPS technolo-

gies, treat the entire GPU component as the scheduling unit,

which is the same as the cooling unit. If the cooling-unaware

cluster scheduler makes a decision that leads to thermal im-

balance, it is highly challenging to realize thermal balance

without affecting scheduling requirements, since any adjust-

ments would inevitably impact application performance due

to changes in resource contentions [53]. However, as shown

in Figure 9b, with MIG-enabled AI inference, the cooling still

occurs at each individual GPU component, but the schedul-

ing unit shifts to the partitions on all GPUs, independent of
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Figure 9: MIG-enabled GPU-sharing presents a new
opportunity to decouple cooling and scheduling.

the physical entity, thus decoupled from the cooling unit. In

the MIG-enabled Kubernetes platform we set up, the sched-

uler interacts only with the MIG partitions instead of the

GPU components on each node. In this scenario, when the

scheduler makes a decision that causes thermal imbalance,

we can reassign application pods between hotter and cooler

GPUs within the same partition pool, while preserving the

original scheduling requirements and runtime performance.

Despite the potential for achieving thermal balance in

a non-intrusive manner, two key challenges must be ad-

dressed to fully leverage this opportunity. First, given the

unpredictable nature of runtime request arrivals, we need to

accurately assess the power and temperature impacts of each

application, as well as those of co-located applications and

concurrent requests, on each GPU entity in real time. Sec-

ond, due to the huge search space for application co-location

plans, wemust make the optimal application deployment and

request scheduling decisions with minimal overhead, while

ensuring ease of use and compatibility with existing cluster

schedulers. To this end, we propose a lightweight cooling

middleware designed to tackle these challenges, contributing

to greener AI inference serving.

4 MIDDLEWARE ARCHITECTURE
In this section, we formally propose InferCool, a thermal-

aware cooling middleware for AI inference serving.

4.1 SystemWorkflow
Figure 10 shows the system overview of InferCool. It consists

of three major parts: the bottom cooling system, the middle

hardware pool consisting of many water-cooled, partitioned

GPUs, and the top scheduling system. InferCool operates

between the physical infrastructure and top-level schedulers

(i.e., existing cluster schedulers like Kubernetes [22]), as out-

lined by the green rectangle. It manages thermal distribution

and GPU temperatures through three main processes: ap-

plication deployment and re-deployment at the application

level, request scheduling at the request level, and cooling ad-

justment at the cooling level. Application-level management
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Figure 10: Middleware architecture of InferCool.

plays a fundamental role in thermal balancing, while request-

level management enables subsequent dynamic adjustments.

Cooling-level management interacts with both application-

and request-level management and directly regulates the

cooling system. In the following, we detail the workflow of

each management level.

Application-level management. When InferCool re-

ceives an application deployment command (including initial

deployment and runtime scaling in/out) from the top-level

scheduler, it first analyzes the deployment requirements (e.g.,

affinity) specified by the scheduler and generates a list of

candidate components that satisfy the requirements. Then,

InferCool forecasts the power and temperature effects of

each application based on the model metadata and historical

request arrival patterns, while the temperature effects on the

GPU entity are also influenced by other co-located applica-

tions. Finally, InferCool chooses the optimal candidates for

all application pods aiming to minimize the maximum GPU

temperature in the next adaptation period (e.g., Model_A→
GPU1_P1). Note that only when the top-level scheduler sends

a deployment command will InferCool decide a new physical

location with thermal awareness. This generally does not

impact runtime application performance, as the new decision

will only be a partition with the same configuration.
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Request-level management.When InferCool receives

a request-scheduling command from the top-level scheduler,

it first analyzes the scheduling requirements (e.g., hardware

type, partition size) and request size and obtains a list of

lightly loaded partitions as candidates. Then, InferCool esti-

mates the power and temperature effects of processing the

request on each partition based on the model metadata and

the request size, while the temperature effects on the GPU en-

tity are influenced by other concurrent requests on the same

GPU. Finally, InferCool chooses the optimal partition candi-

date that minimizes the maximum GPU temperature before

the request can complete (e.g., Request_1→ GPU1_P2).
Cooling-levelmanagement. InferCool collects real-time

temperature data from all GPUs (e.g., GPU1 = 60℃) for making

application- and request-level decisions. In each adaptation

period, based on the forecasted maximum reachable hard-

ware temperature, InferCool adjusts the water temperature

(e.g., Water = 40℃) to save cooling energy while ensuring

that all hardware operates below its predefined safe oper-

ating temperature (SOT) [13, 19, 39]. In rare cases where

InferCool detects that a hardware component’s temperature

exceeds the SOT, it will immediately lower the water temper-

ature and enforce thermal-aware request scheduling until

the temperature drops below the SOT again.

By enabling differentmodules, InferCool offers three levels

of task reassignment for datacenter operators to choose from.

Higher levels offer greater cooling energy savings but may

have a slight impact on runtime application performance.

(1) Level 1: Application deployment only. The top-

level scheduler specifies the number of pods to be

deployed for each application, the partition size for

each pod, as well as other deployment requirements,

such as affinity. InferCool then generates a thermal-

aware deployment plan without violating any of these

requirements. Notably, this reassignment level does

not impact runtime application performance.

(2) Level 2: Application deployment and re-deployment.
As the system operates, applications may run smoothly

without the need for frequent scaling in or out. How-

ever, thermal imbalances can arise as the request ar-

rival patterns of different applications gradually change.

In such cases, InferCool will perform runtime applica-

tion re-deployment (i.e., live migration [15]) of some

heat-intensive pods to balance the thermal distribution.

This process occurs infrequently after thermal-aware

application deployment, and workload fluctuations do

not directly affect spatial temperature disparities.

(3) Level 3: Application deployment, re-deployment,
and request scheduling. Typically, top-level sched-
ulers implement their own request scheduling strate-

gies that determine which pod should process each

� �
application name: ResNet -152
reassignment level: 1

constraint NodeAntiAffinity {
Node 005;
Node 010;

}

constraint PodAffinity {
Pod YOLOv8x;

}

application name: BERT -large
reassignment level: 2

constraint NodeAffinity {
Node 005 -010;

}

constraint PodAntiAffinity {
Pod BERT -small;
Pod GPT2 -xl;

}� �
(a) Permanent requirement
specs in the global list

� �
application name: ResNet -152
reassignment level: 1

constraint NodeAntiAffinity {
Node 005;
Node 010;

}

constraint PodAffinity {
Pod Diffusion -v1.5;

}� �
(b) Temporary requirement
spec by each application

� �
application name: BERT -large
reassignment level: 3
batch size: 8
input length: 50� �
(c) Temporary requirement
spec by each request

Figure 11: Examples of command interfaces.

request. However, in certain cases, applications may

not have strict performance requirements and prior-

itize cost reduction (e.g., during off-peak periods or

during hot days). InferCool provides this capability

by enabling performance- and thermal-aware request

scheduling, given that an application typically deploys

multiple pods across different physical GPUs.

The top-level scheduler can select one of the above three

reassignment levels
3
and specify deployment requirements

through a series of command interfaces. In the following, we

will detail how the scheduler interacts with InferCool.

4.2 Command Interface
InferCool maintains a global list that records the reas-

signment level used by each application, along with the de-

ployment requirements — physical deployment constraints.

InferCool currently supports four common deployment con-

straints for MIG-enabled inference serving: NodeAffinity,
NodeAntiAffinity, PodAffinity, and PodAntiAffinity,
which are widely supported by existing schedulers [6, 23].

Figure 11a shows an example of the global list. If no GPU par-

titions can satisfy all the constraints, InferCool will attempt

to satisfy them one by one. By default, the reassignment level

is set to 1 to avoid any potential performance impact, and the

list can be updated by the top-level scheduler at any time.

Each time the top-level scheduler sends an application

deployment command, specifying the number of pods to

scale in or out and their partition sizes, it can also specify a

temporary reassignment level and deployment constraints

that take higher priority than those in the global list, but are

3
In addition to the three thermal-aware levels, setting the level to zero will

completely disable InferCool for specific uncommon scenarios.
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valid for this deployment only. Figure 11b shows an example

of the deployment command, where the ResNet-152 model

adjusts its PodAffinity so that it will be scheduled to a

GPU where the Diffusion-v1.5 model resides. For a request

scheduling command, InferCool generally adheres to the

application’s original request scheduling strategies, such as

percentile latency guarantees and throughput maximization,

when the reassignment flag in the global list is set to 1 or 2.

InferCool will perform thermal-aware request scheduling in

two cases. (a) The reassignment flag is set to 3 in the global

list: InferCool will make its own scheduling decisions for all

requests. (b) The scheduling command specifies a temporary

reassignment level of 3: InferCool will enable thermal-aware

scheduling only for that specific request. Figure 11c shows

an example.

5 MODULE DESIGN
In this section, we detail the lightweight design of each

module, including the power and temperature prediction

approach and thermal-aware application (re-)deployment

and request scheduling mechanism.

5.1 Power Model
Before making any thermal-aware decisions, InferCool needs

to predict the power usage of all partitions on each GPU.

Let 𝐺𝑖 be the 𝑖-th GPU, 𝑀 𝑗 be the 𝑗-th model (𝑀 𝑗 ∈ 𝐺𝑖
if 𝑀 𝑗 running on 𝐺𝑖 ), and |𝐺𝑖 | be the number of models

running on 𝐺𝑖 . 𝑃
𝑆
represents the static power when the

GPU is idle which is irrelevant to the workload. 𝑃𝐷
𝑗,𝑘,𝑏

and

𝑃 𝑗,𝑘,𝑏 represent the average dynamic power and average total

power, respectively, for running 𝑀 𝑗 with a batch size of 𝑏

on a partition of size 𝑘 , with all other partitions on the GPU

remaining idle. 𝑃𝐺𝑖
represents the power consumption of

the 𝑖-th GPU 𝐺𝑖 . Both 𝑃
𝑆
and 𝑃 𝑗,𝑘,𝑏 are fixed and can be

directly measured in advance. Our objective is to estimate

𝑃𝐺𝑖
for arbitrary model combinations running on𝐺𝑖 together.

According to our measurements, 𝑃𝐺𝑖
generally follows the

principle of linear superposition:

𝑃𝐺𝑖 = 𝑃𝑆 +
∑︁

𝑗, 𝑀𝑗 ∈𝐺𝑖

𝑃𝐷
𝑗,𝑘,𝑏

=
∑︁

𝑗, 𝑀𝑗 ∈𝐺𝑖

𝑃 𝑗,𝑘,𝑏 − (|𝐺𝑖 | − 1) · 𝑃𝑆 , (1)

where 𝑃 𝑗,𝑘,𝑏 = 𝑃𝑆 + 𝑃𝐷
𝑗,𝑘,𝑏

.

By measuring 𝑃𝐺𝑖
and 𝑃 𝑗,𝑘,𝑏 , we can calculate the value

of 𝑃𝑆 , which we find is slightly different from the ground-

truth value of 𝑃𝑆 = 46.7 W when the GPU is in the idle

state. Figure 12 shows the relationship between 𝑃𝑆 and 𝑃𝐺𝑖

as the number of partitions running inference tasks increases

under two different GPU partitioning plans. To address this

discrepancy, we replace 𝑃𝑆 with the compensated power
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(a) The GPU partitioning plan is 7 × 1g.5gb
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(b) The GPU partitioning plan is 1 × 1g.5gb + 3 × 2g.10gb

Figure 12: The “static power” is related to the GPU
partitioning plan and total GPU power.

𝑃𝑆𝑖 , which is modeled as a function of 𝑃𝐺𝑖
under a given

partitioning plan:

𝑃𝑆𝑖 = 𝑓

(
𝑃𝐺𝑖

)
. (2)

Table 2 presents the fitting results for 𝑃𝑆𝑖 across four selected

partitioning plans. These results imply two interesting phe-

nomena: (a) Higher hardware utilization may negatively im-

pact dynamic energy consumption, and the gains in overall

energy efficiency from increased utilization diminish, and

(b) Finer-grained partitioning plans generally result in higher

energy efficiency, even when the hardware utilization and

GPU power are comparable to those under coarser-grained

partitioning plans. Based on these fitting results, for a col-

lected dataset of 1,500 samples (comprising different numbers

of partitions used, various model combinations, and different

batch sizes) for each partitioning plan, the average estimation

errors of GPU power are 1.06%, 1.37%, 1.62%, and 1.79%, for

the four listed partitioning plans, respectively. Notably, when

directly using the fixed value of 𝑃𝑆 , the estimation errors are

as high as 8.58%, 6.97%, 4.81%, and 2.92%, respectively.

Table 2: The fitting results of 𝑃𝑆𝑖

GPU partitioning plan Quadratic fitting result
7 × 1g.5gb 𝑃𝑆𝑖 = −0.000061 · (𝑃𝐺𝑖 )2 + 0.0177 · 𝑃𝐺𝑖 + 50.01

5 × 1g.5gb + 1 × 2g.10gb 𝑃𝑆𝑖 = −0.000030 · (𝑃𝐺𝑖 )2 + 0.0033 · 𝑃𝐺𝑖 + 51.02
3 × 1g.5gb + 2 × 2g.10gb 𝑃𝑆𝑖 = −0.000034 · (𝑃𝐺𝑖 )2 + 0.0050 · 𝑃𝐺𝑖 + 49.99
1 × 1g.5gb + 3 × 2g.10gb 𝑃𝑆𝑖 = −0.000078 · (𝑃𝐺𝑖 )2 + 0.0177 · 𝑃𝐺𝑖 + 47.83

5.2 Temperature Model
Then, based on the estimated GPU power, InferCool needs to

predict temperature variations over time, as the temperature

varies asynchronously with the power.

We first derive the relationship between power and tem-

perature at steady states. Let 𝑃
𝐺𝑖

steady
be the steady-state power

of the 𝑖-th GPU𝐺𝑖 , corresponding to a steady-state GPU tem-

perature𝑇
𝐺𝑖

steady
. The cooling water temperature is maintained
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Figure 13: Two key steps for thermal-aware applica-
tion deployment. The red pentagrams indicate the fore-
casted maximum reachable temperature of each GPU.

at 𝑇𝑤 . Based on Newton’s law of cooling, we have:

𝑃
𝐺𝑖

steady
= ℎ𝐴(𝑇𝐺𝑖

steady
−𝑇𝑤), (3)

whereℎ and𝐴 denote the convective heat transfer coefficient

and the contact area between the GPU component and the

cooling water, respectively, and can be viewed as constants.

When the GPU power changes to a new value 𝑃
𝐺𝑖

steady
′ , the

GPU will eventually reach a new steady-state temperature

𝑇
𝐺𝑖

steady
′ , and they follow the same relationship as in Equation 3.

Although the power fluctuates in real-time, the temper-

ature changes comparatively much slower. For short-lived

AI inference workloads, however, the GPU temperature typ-

ically cannot reach a steady state before its power changes

significantly again, as discussed in Section 3.2. Now we de-

rive the temperature change over time𝑇 (𝑡) when the power

changes to 𝑃
𝐺𝑖

steady
′ , which can be described by Newton’s law

of cooling and the law of conservation of energy:

𝑑𝑄
loss

𝑑𝑡
= ℎ𝐴(𝑇 (𝑡) −𝑇𝑤), (4)

𝑑𝑄
absorb

𝑑𝑡
=𝑚𝑐

𝑑𝑇 (𝑡)
𝑑𝑡

, (5)

where𝑚 and 𝑐 are the mass and the specific heat capacity

of the GPU, respectively, and can be viewed as constants.

𝑑𝑄loss

𝑑𝑡
and

𝑑𝑄absorb

𝑑𝑡
denotes the rate of heat loss to the water

and heat absorbed by the GPU component, respectively, and

their sum is equal to the current GPU power 𝑃
𝐺𝑖

steady
′ :

𝑃
𝐺𝑖

steady
′ =

𝑑𝑄
loss

𝑑𝑡
+ 𝑑𝑄absorb

𝑑𝑡
. (6)

Combining Equations 4, 5, and 6, we have:

𝑑𝑇 (𝑡)
𝑑𝑡

=

𝑃
𝐺𝑖

steady
′

𝑚𝑐
− ℎ𝐴
𝑚𝑐
(𝑇 (𝑡) −𝑇𝑤) . (7)

By solving this first-order linear differential equation and

using the initial condition 𝑇 (0) = 𝑇0 and final condition

𝑇
𝐺𝑖

steady
′ = 𝑇𝑤 +

𝑃
𝐺𝑖
steady

′

ℎ𝐴
with Equation 3, we can get:

𝑇 (𝑡) = (𝑇0 −𝑇𝐺𝑖

steady
′ )𝑒−𝛼𝑡 +𝑇𝐺𝑖

steady
′ , (8)

where 𝛼 = ℎ𝐴
𝑚𝑐

.

For intermittent inference executions, to get the transient

GPU temperature𝑇 (𝑡) at any time before the power changes

largely again, we need to estimate the value of ℎ𝐴 for cal-

culating 𝑇
𝐺𝑖

steady
′ with Equation 3, as well as 𝛼 . We conduct

measurements by setting the GPU at different power levels

and tuning it from one to another, and obtain the values of

ℎ𝐴 and 𝛼 for the 40GB A100 GPU as 13 and 0.51, respectively.

5.3 Thermal-Aware Application
Deployment and Redeployment

Based on the power and temperature models, when the top-

level scheduler sends an application deployment command,

InferCool will decides on an optimal deployment plan that

leads to the lowest maximum GPU temperature across the

cluster, thereby achieving thermal balance and allowing for

a higher coolant temperature. Figure 13 illustrates the two

key steps for generating an optimal deployment plan. Focus-

ing on accurate temperature prediction while maintaining

a lightweight design, two main challenges arise, which are

described as follows.

First, in Step ①, which involves forecasting the power and

temperature effects of each partition, while the model type
and partition size can be determined before deployment, the
specific request arrival pattern is unpredictable [2]. Consider
two extreme cases: (a) When the RPS is high, e.g., approach-

ing the maximum throughput supported by each pod, the

maximum temperature is primarily influenced by the cu-

mulative intensity owing to a high likelihood of receiving

many large-sized requests in a short period. (b) When the

RPS is very low, the maximum temperature becomes de-

pendent on the individual intensity, with long idle intervals

between adjacent requests. However, it is costly to estimate

the temperature effects under various possible patterns for

each application. Second, in Step ②, despite knowing the

temperature effects of every partition from Step ①, forecast-

ing the maximum reachable temperature of the entire GPU

component remains challenging, as the cumulative effects of
these partitions on the entire GPU’s temperature variations are
highly coupled. One possible solution may be exhaustively

estimating the temperature effects of every possible model

combination, but its complexity is 𝑂 ( |𝑀 |𝐾 ) with |𝑀 | pods
and a maximum of 𝐾 partitions on a GPU.

We draw two key observations to tackle the above chal-

lenges. First, we observe that under a given average request

rate and distribution (e.g., Poisson or Gamma), the temper-
ature distribution generally remains stable despite varia-

tions in specific patterns. Second, we find that, according to

Equations 1, 3, and 8, the sum of the temperature increases
(i.e., temperature values relative to the idle-state GPU tem-

perature) across all partitions is approximately equal to the

overall temperature increase of the GPU component (Due
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Table 3: Notations

Symbol Definition
𝑀 The set of application pods to be deployed

𝑁 The set of available GPUs

𝑚 𝑗𝑖 Binary variable where𝑚 𝑗𝑖 = 1 if the 𝑗-th pod is deployed

on the 𝑖-th GPU, and𝑚 𝑗𝑖 = 0 otherwise

𝑘 𝑗 Required partition size of the 𝑗-th pod

𝐾 Resource capacity of each GPU. For A100, 𝐾 = 7 (i.e., 7g)

L(𝑇𝑗 ) Distribution of the temperature increase for the 𝑗-th pod

𝑇𝐺𝑖 The temperature rise of the downstream 𝑖-th GPU caused

by the rise in water temp. flowing from the upstream one

to space constraints, we provide a proof for this in [38]).

Hence, at Step ① in Figure 13, we propose using the Monte-

Carlo method to obtain the temperature distribution, which

integrates various runtime factors while maintaining low

complexity, as detailed in Algorithm 1. As the Monte-Carlo

simulation can provide a precise forecast of the temperature

distribution, InferCool only requires a single simulation for

each pod configuration (including application type, hardware

type, and partition size).

After obtaining the distributions of temperature in-
creases from the Monte-Carlo simulations, we can describe

the initial pod deployment process as a mixed-integer linear

programming (MILP) problem. Table 3 lists all the variables

and their definitions. The goal is equivalently transformed

into deploying all |𝑀 | pods onto |𝑁 | GPUs such that the total
resource demands on any GPU do not exceed its capacity,

and the expected maximum temperature increase across all

GPUs is minimized. We define 𝑍 as max𝑖

(∑ |𝑀 |
𝑗=1
𝑚 𝑗𝑖 · L(𝑇𝑗 )

)
,

and the problem can be formulated as follows:

min 𝑍 (9)

s.t.

|𝑁 |∑︁
𝑖=1

𝑚 𝑗𝑖 = 1, ∀𝑗 ∈ {1, 2, . . . , |𝑀 |}, (10)

𝑚 𝑗𝑖 ∈ {0, 1}, ∀𝑗 ∈ {1, 2, . . . , |𝑀 |},∀𝑖 ∈ {1, 2, . . . , |𝑁 |}, (11)

|𝑀 |∑︁
𝑗=1

𝑚 𝑗𝑖 · 𝑘 𝑗 ≤ 𝐾, ∀𝑖 ∈ {1, 2, . . . , |𝑁 |}, (12)

𝑇𝐺𝑖 +
|𝑀 |∑︁
𝑗=1

𝑚 𝑗𝑖 · L(𝑇𝑗 ) ≤ 𝑍, ∀𝑖 ∈ {1, 2, . . . , |𝑁 |}. (13)

Equation 10 denotes whether the pod𝑀 𝑗 is deployed to𝐺𝑖 or

not, while Equation 11 guarantees that each pod is deployed

to one and only one partition. Equation 12 ensures that the

total required partition size of all pods on a GPU does not

exceed its capacity. Equation 13 means that the expected

maximum temperature increase across all GPUs is 𝑍 . As

listed in Table 3, we estimate the value of 𝑇𝐺𝑖 by assuming

that this thermal-aware deployment will finally result in a

uniform temperature distribution, with the measured rela-

tionship between the water temperature increase and GPU

power given by Δ𝑇𝑤 = 0.0174 · 𝑃𝐺 + 0.2425.

Algorithm 1Monte-Carlo simulation for each pod

1: Parameters:Water temperature𝑇𝑤 , idle GPU power 𝑃𝑆 , batch

size 𝑏, inference time 𝑡𝑏 , average inference power 𝑃𝑏 , historical

average arrival interval of requests 𝜆, the constant 𝛼 = ℎ𝐴
𝑚𝑐 ;

2: Compute the steady-state temperatures at 𝑃𝑆 and 𝑃𝑏 with Equa-

tion 3: 𝑇0 ← 𝑇𝑤 + 𝑃
𝑆

ℎ𝐴
and 𝑇𝑏 ← 𝑇𝑤 + 𝑃𝑏

ℎ𝐴
;

3: for each simulation do
4: Initialize current time 𝑡 ← 0, temperature 𝑇curr ← 𝑇0;

5: Generate a sequence of request arrival time with exponential

distribution: 𝑡next ← 𝑡next + Exponential(𝜆);
6: while 𝑡 < simulation_time do
7: if 𝑡 < 𝑡next then // in idle state
8: Δ𝑡 ← 𝑡next − 𝑡 , 𝑇curr ← 𝑇0 + (𝑇curr − 𝑇0)𝑒−𝛼Δ𝑡 ,

𝑡 ← 𝑡 + Δ𝑡 ; // update temperature and time
9: else // in running state
10: Set 𝑏 based on the historical batch size distribution;

11: 𝑇curr ← 𝑇𝑏 + (𝑇curr −𝑇𝑏 )𝑒−𝛼𝑡𝑏 , 𝑡 ← 𝑡 + 𝑡𝑏 ;

To convert the distribution of temperature increase L(𝑇𝑗 )
into a calculable upper bound, we notice that the proba-

bility of all pods on a GPU reaching their maximum tem-

peratures simultaneously depends on the RPS and reassign-

ment level. Thus, we use the following rules to determine

the value: (a) At level 1 or 2, further thermal regulation

through request scheduling is not allowed. When the RPS

is high, the actual maximum temperature is closer to the

estimated median value. Conversely, when the RPS is low,

the maximum temperature depends more on the individ-

ual intensity and deviates significantly from the median

value. Therefore, we choose a percentile value calculated as(
1 −min

(
1, RPS

Throughput
max

))
× 40 + 60, which ranges in [60, 100]

and decreases as RPS increases. (b) At level 3, further thermal

balancing is allowed through request scheduling, resulting

in smoother temperature variations. Therefore, we choose

a lower value, i.e., the 60th percentile of the distribution.

Note that to accommodate the deployment constraints listed

in Section 4.2, L(𝑇𝑗 ) can be replaced with a GPU-related

variable L(𝑇𝑗,𝑖 ), where setting L(𝑇𝑗,𝑖 ) to 0 or +∞ indicates

Affinity or AntiAffinity of𝑀 𝑗 with 𝐺𝑖 , respectively.

InferCool performs application redeployment at runtime

if the assignment level is set above 1. Specifically, when

InferCool detects that the temperature variance across all

GPUs exceeds a predefined threshold, it will migrate some

heat-intensive pods, characterized by their converted tem-

perature increase values, from the hottest GPUs to cooler

ones, until the variance drops below the threshold. To miti-

gate migration overhead, InferCool first attempts to move

these pods to each idle partition of the same size on cooler

GPUs. If no such partition is available, InferCool will swap

these heat-intensive pods with other light-loaded pods that

have a lower temperature increase value on cooler GPUs.
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5.4 Thermal-Aware Request Scheduling
As discussed in Section 3, inference executions are often

short-lived, and the GPU temperature varies much more

slowly than its power consumption. That is to say, each sin-

gle inference execution has a limited impact on the future.

Therefore, InferCool employs a greedy strategy to schedule

requests, while balancing them among partitions serving the

same application by avoiding long queuing time on colder

GPUs. Algorithm 2 presents the scheduling details. Specif-

ically, InferCool first attempts to find an idle partition to

process the request. If no idle partition is available, it sorts

non-idle partitions by queue length and filters out the half

with the longest queues. Next, for every remaining candidate

partition, it predicts the power changes before the request

can be completed. To simplify this process, InferCool uses

average power over each small time slice (e.g., 500 ms) in-

stead of instantaneous power, as the resulting temperature

changes are nearly the same. Then, InferCool estimates the

temperature changes in each time slice using Equation 8

until it determines that the request can be completed. Finally,

InferCool selects the partition that results in the lowest max-

imum GPU temperature and assigns the request.

6 EVALUATION
In this section, we conduct extensive experiments to evalu-

ate InferCool. We begin with the evaluation setup and then

present the evaluation results. Finally, we discuss the appli-

cability of InferCool in real-world datacenters.

6.1 Evaluation Setup
Experimental environment. We deploy InferCool within

Kubernetes on one master node and two worker nodes at

CloudLab [12]. The node specifications are listed in Table 4.

Since the cloud servers are air-cooled and we cannot control

their cooling system, we set up a local water-cooled testbed

with one 40GB A100 GPU, as shown in Figure 14, with its

specifications also detailed in Table 4. Specifically, we collect

inference scheduling data from the cloud servers and replay

the scheduling results from each cloud GPU on the local

GPU to gather water-cooling data, including GPU power

and temperature. As the maximum power consumption of

our local PCIe-version GPU is about 260∼270 W, to ensure

performance consistency between the cloud GPUs and lo-

cal GPU, we fix their clock frequency at 1350 MHz, slightly

lower than the maximum frequency of 1410 MHz. The wa-

ter temperature and flow rate are maintained at 30℃ and

90 L/h throughout the experiments, with the idle-state GPU

temperature at around 33℃.

Implementation. We develop InferCool as a middleware

service running within the Kubernetes cluster [22], compris-

ing about 1k lines of Python code. The top-level scheduler

Algorithm 2 Thermal-aware request scheduling

1: Input: Application index 𝑗 , partition size 𝑘 , batch size 𝑏, infer-

ence time 𝑡 𝑗,𝑘,𝑏 , average power consumption 𝑃 𝑗,𝑘,𝑏 ;

2: Output: Selected partition 𝑅 for the request;

3: Initialize 𝑇 ← +∞, 𝑅 ← null;

4: function EvaluatePartition(𝑅)

5: Predict the maximum GPU temperature 𝑇𝐺 before the re-

quest can be completed using Equations 1, 3, and 8;

6: if 𝑇𝐺 < 𝑇 then
7: 𝑇 ← 𝑇𝐺 , 𝑅 ← 𝑅;

8: for each idle partition 𝑅 do // Choosing idle partitions first
9: EvaluatePartition(𝑅);

10: if 𝑅 ≠ null then
11: return 𝑅;
12: for each non-idle partition 𝑅 filtered by their queue lengths do

// Prioritizing partitions with short queue lengths
13: EvaluatePartition(𝑅);

14: return 𝑅;

Table 4: Node specifications

Item Master node Worker node Local workstation

CPU
Two Intel(R) Xeon(R)

E5-2660 v3 10-core

CPUs at 2.60 GHz

Two AMD EPYC 7413

24-core CPUs at

2.65 GHz

One Intel(R) Core(TM)

i9-10940X 14-core

CPU at 3.30 GHz

Memory 160 GB 512 GB 128 GB

GPU N/A

Four air-cooled

NVIDIA 40GB A100

SXM4 GPUs

One water-cooled

NVIDIA 40GB A100

SXM4 to PCIe GPU

System
and Soft-
ware

Ubuntu 20.04, NVIDIA driver 550.54, Kubernetes 1.28, Docker 23.0.1,

CUDA 11.6, cuDNN 8.9.7, PyTorch 1.13.1

Figure 14: Our water-cooled testbed.

can send the application deployment command to InferCool

via HTTP requests. InferCool is responsible for parsing and

maintaining the global list recording deployment require-

ments, as well as handling temporary specifications. When

the reassignment level is set to 0, the system will automati-

cally bypass all core modules of InferCool except for the tem-

perature monitoring and cooling adjustment modules. When

the reassignment level is set to 1 or 2, it only bypasses the

request scheduling module. InferCool manages pods through

the Kubernetes Python client, and collects MIG information

and monitors runtime GPU powers and temperatures with

the NVIDIA GPU Operator [34] and DCGM tools [36].
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AI inferenceworkloads.We select ten popular open-source

AImodels from the torchvision package andHugging Face [16],

covering both the CV and NLP domains, with sizes ranging

from XS to XL. These models include DenseNet-121 (XS),

ResNet-152 (S), SSD300-VGG16 (M), YOLOv8x (L), Diffusion-

v1.5 (XL), BERT-base (XS), BERT-large (S), Flan-T5-large (M),

GPT2-xl (L), and Gemma-2b (XL). To generate inference re-

quests, we select a real-world dataset from Twitter [4], which

is widely used in previous work [2, 40, 52]. This dataset con-

tains arrival interval information of tweets for sentiment

analysis. We select a subset spanning the time period from

9:00 to 9:30, which covers a wide range of RPS variations

during the day, as plotted earlier in Figure 7. Since the dataset

does not contain information on application type and batch

size, we randomly assign these attributes to each request

(bs ∈ [1, 16]), using the request index as the seed to ensure

consistency across multiple tests.

Cooling metric. The cooling energy savings come chiefly

from increasing the supply water temperature, while the

maximum allowable water temperature is determined by the

peak hardware temperature across all servers and compo-

nents, as discussed in Section 2.2. Therefore, a lower maxi-

mum reachable hardware temperature allows for a higher wa-

ter temperature and thus reduces cooling energy consump-

tion. Previous literature shows that every 1℃ increase in

water temperature can save about 4% of cooling energy [13].

Hence, we use the maximum GPU temperature across the

cluster in each adaptation period (e.g., 5 minutes) as the key

metric for evaluating cooling efficiency.

6.2 Main Performance
First, we evaluate the main performance of InferCool com-

pared to the vanilla Kubernetes framework. We consider a

typical water cooling architecture, where GPUs #01 and #03

are positioned downstream of GPUs #02 and #04, respectively.

Figure 15 shows the GPU power and temperature variations

when InferCool is enabled with the reassignment level set

at 1 or 3. Comparing this with the results from vanilla Ku-

bernetes shown earlier in Figure 8, we observe a significant

reduction in the maximum GPU temperature. Specifically,

as plotted in Figure 15a, with the reassignment level set to

1 (where Kubernetes still manages request scheduling), the

maximum GPU temperature drops from 54℃ to 50℃, and

the average temperature variance decreases from 18.93 to

6.23. Intuitively, both the YOLOv8x and Diffusion-v1.5 mod-

els generally consume more power and generate more heat

than SSD300-VGG16 and Gemma-2b, as presented in Sec-

tion 3.2. Additionally, GPUs #01 and #03 tend to run hotter

than GPUs #02 and #04 because GPU #01 (#03) receives wa-

ter already warmed by GPU #02 (#04). In particular, we find

that when the GPU runs at 250 W, the water temperature

(a) At reassignment level = 1

(b) At reassignment level = 3

Figure 15: The GPU power and temperature variations
with InferCool enabled on Kubernetes.

rise can reach 4.7℃. Furthermore, as plotted in Figure 15b,

with the reassignment level set to 3 (where InferCool han-

dles request scheduling), the maximum GPU temperature is

reduced further to 49℃ by balancing thermals at runtime,

and the average temperature variance drops significantly to

2.46. According to the manual [13], the overall temperature

reduction of 5℃ can save about 20% of cooling energy.

Thanks to the lightweight design presented in Section 5,

the runtime overhead introduced by InferCool is minimal.

First, the Monte-Carlo simulation for each pod configuration

is configured to run for 50 ms, for balancing the trade-off be-

tween temperature distribution convergence and simulation

overhead, which is negligible compared to the subsequent

pod-deployment phase. Second, based on the simulated tem-

perature distribution for all pods, generating an optimal

initial pod-deployment plan with the MILP solver takes only

hundreds of milliseconds to several seconds. Note that this

initial pod-deployment process occurs infrequently, such as

when applications are first launched or when there are sig-

nificant workload changes, and subsequent pod-deployment

decisions only involves the Monte-Carlo simulation. Third,
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Table 5: Adaptability of InferCool to various scenarios

Platform
The max. GPU temperature (℃) in each adaptation period (min.)

(The lower, the better)
0∼5 5∼10 10∼15 15∼20 20∼25 25∼30

Partitioning plan: 7 × 1g.5gb, Trace: original trace,
Models: DenseNet-121 (8) + SSD300-VGG16 (8) + YOLOv8x (8) + Diffusion-v1.5 (8)

+ BERT-base (8) + BERT-large (8) + GPT2-xl (8)

Kubernetes 37.8 37.7 37.7 38.2 37.7 38.2

InferCool (1) 37.3 38.2 37.6 37.3 39.0 38.6

InferCool (3) 36.9 37.0 37.4 36.9 37.7 37.6

Partitioning plan: 7 × 1g.5gb, Trace: scaled up by 11.8×,
Models: DenseNet-121 (8) + SSD300-VGG16 (8) + YOLOv8x (8) + Diffusion-v1.5 (8)

+ BERT-base (8) + BERT-large (8) + GPT2-xl (8)

Kubernetes 49.5 50.3 51.0 49.9 51.6 53.3

InferCool (1) 47.7 48.4 47.8 48.3 50.7 52.4

InferCool (3) 47.8 48.0 49.4 48.7 49.3 49.6

Partitioning plan: 2 × 2g.10gb + 1 × 3g.20gb, Trace: scaled up by 3.3×,
Models: Diffusion-v1.5 (4) + BERT-large (8) + Flan-T5-large (8) + Gemma-2b (4)

Kubernetes 46.9 48.3 48.5 46.3 48.3 48.4

InferCool (1) 45.0 46.0 46.0 44.7 46.3 47.3

InferCool (3) 44.4 44.7 43.7 43.7 45.1 45.9

Partitioning plan: 1 × 1g.5gb + 3 × 2g.10gb, Trace: scaled up by 5.1×,
Models: ResNet-152 (4) + YOLOv8x (4) + Diffusion-v1.5 (12) + GPT2-xl (12)

Kubernetes 52.0 51.4 50.5 51.9 53.1 53.8

InferCool (1) 48.5 47.3 47.6 47.7 48.8 49.8

InferCool (3) 46.1 45.1 45.9 45.9 48.4 48.7
* The idle-state GPU temperature is around 33℃.

the runtime re-deployment process involves live migration

of heat-intensive pods. Depending on the threshold for as-

sessing thermal imbalance, this process typically happens

infrequently (e.g., every 10,000 requests), and can decrease

to a very low frequency if top-level schedulers actively scale

pods in and out as workloads fluctuate. With the method

proposed in [15], the migration overhead can be reduced to

less than 100 ms. Finally, thermal-aware request scheduling

involves estimating temperature variations and selecting an

optimal pod for each request, which takes only 1.6 ms on

average, insignificant compared to the original serving time,

which ranges from tens of milliseconds to several seconds.

6.3 Adaptability to Various Scenarios
To evaluate how the application deployment and request

scheduling modules adapt to various scenarios, we consider

different GPU partitioning plans, model combinations, and

request arrival rates by scaling up the original trace to ap-

proach the maximum supported throughput of each model.

The request ratio for each model is set proportional to its

maximum supported throughput. Table 5 presents the max-

imum GPU temperatures (converted from those under air

cooling) under vanilla Kubernetes and InferCool at different

reassignment levels. The reassignment level is denoted by

the number following the name of InferCool. Each experi-

ment heading includes the partitioning plan, trace details

(either original or scaled), and model combinations, with the

number of pods for each model shown following the model

name. Across the four settings, InferCool reduces the maxi-

mum GPU temperature by up to 6.3℃. As we can see, as the

arrival rate and the proportion of large models increase, the

GPU temperatures are getting higher, leading tomore serious

thermal imbalances, where InferCool brings more significant

temperature reductions. For example, in the last three heat-

intensive scenarios, which better represent future trends,

InferCool (at reassignment level 3) reduces the maximum

temperature increase in each period from 17.3℃ to 13.7℃ on

average, translating into cooling energy savings of about

14.4% [13]. Note that InferCool achieves this without sacri-

ficing reliability or extensibility and remains non-intrusive

to existing cooling infrastructures and scheduling systems.

6.4 Applicability in Real-World Datacenters
The above evaluation results demonstrate impressive perfor-

mance of InferCool in improving cooling efficiency. However,

two important considerations should be noted for real-world

deployment. (1) The GPU temperature reduction results are

based on a small-scale testbed. When applied to large-scale,

real-world datacenters, additional factors must be considered,

e.g., the changeable ambient environment, thermal influence

from other jobs in co-located datacenters, and the presence of

other kinds of workloads in addition to inference, all of which

can increase the complexity of task reassignment. (2) The

cooling energy savings are estimated for general cases based

on the relationship between the coefficient of performance

(COP) of chillers and chilled water temperature, as described

in [13]. However, the actual potential for energy savings can

vary from datacenter to datacenter, depending on the cooling

environment (e.g., ambient conditions, cooling load, and the

type and size of the chiller), and can be characterized by how

the COP of chillers changes with different water temperature

set-points in specific environments.

On the other hand, InferCool may offer even greater ben-

efits in real-world datacenters. In our experimental settings,

there are only eight GPUs in total, each with a power limit of

just 260∼270 W. As the scale of datacenters and the diversity

of deployed models grow, the thermal imbalance is likely to

become more significant [19], which brings a greater oppor-

tunity for thermal-aware task reassignment. Additionally,

as modern GPUs adopted in datacenters are getting more

power-intensive, e.g., 1 kW per B200 GPU, the thermal issues

are also expected to intensify in the near future.

7 RELATEDWORK
Co-located inference serving. As the computing power

of modern GPUs grows, to fully utilize their capabilities for

inference serving, many studies focus on co-locatingmultiple

models using various GPU-sharing methods, including time

sharing [8, 43, 45, 51] and space sharing with customized
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Table 6: Existing software-based cooling-aware approaches are difficult to integrate with cluster schedulers

Study Main method Cooling optimization objective Placement outcome Handling of
application requirements

MACEEC [7]

Task scheduling + Cooling control (air

flow rate and air supply temperature)

Minimizing total energy while

avoiding overheating

Physically: a specific server

Satisfying the required amount

of resources (soft guarantee)

DeepEE [42]

Task scheduling + Cooling control

(airflow rate)

Minimizing PUE while avoiding

overheating

Physically: a specific server Balancing the load

VMT [47]

Job scheduling in a cluster utilizing

phase change materials

Reducing peak cooling load

Physically: a particular server

in a subset

No consideration

ATAC [50]

Hardware control (power capping) +

Cooling control (supply air temperature)

Minimizing cooling energy while

avoiding overheating

Physically: a server in a subset

with sufficient power quota

No consideration

JETC [5]

CPU scheduling & Memory page

migration + Cooling control (fan speed)

Minimizing memory and cooling

energy while avoiding overheating

Physically: a specific CPU and

memory module

No consideration

Moore et

al. [30]

Workload placement (hardware power

states)

Minimizing cooling energy

Physically: a server in a subset

with a specific power state

No consideration

memorymanagement [51], MPS [8, 9, 11], andMIG [9, 25, 26].

Romero et al. [43] develop an automated inference serving

system that supports many key features, including time-

sharing of resources. However, with the time-sharingmethod

only, many AI models still cannot saturate the entire GPU,

and there can be heavy context-switching overhead. Choi

et al. [8] combines both time and space sharing to further

boost resource efficiency when serving multiple AI models.

As compared with previous GPU-sharing methods, mod-

ernMIG technology provides each application with exclusive

access to a GPU slice by partitioning the GPU at the hard-

ware level [31]. Li et al. [24] offer a detailed characterization

of performance and energy behaviors of AI inference onMIG

slices. They further propose a lightweight, dynamic partition-

ing technique to improve inference performance [25] and

even achieve carbon reduction through adaptively selecting

MIG slices and model variants [26]. Although current MIG

technology has its limitations, e.g., supporting only fixed

partition sizes and having relatively high re-partitioning

overhead [25], it achieves a good balance between high re-

source efficiency and predictable performance, with the latter

being crucial for mission-critical inference applications [14].

Orthogonal to existing MIG-based studies on inference per-

formance, we explore the new opportunity of improving

cooling efficiency without being intrusive to both existing

scheduling systems and cooling infrastructures.

Datacenter cooling. As energy consumption of datacenters

grows rapidly and cooling systems account for a significant

portion of non-IT energy use, researchers are increasingly

focusing on improving cooling efficiency. In addition to de-

veloping new cooling architectures [17–19, 39, 46, 47], which

are often intrusive to existing infrastructures and involve sub-

stantial costs, many software-based approaches have been

proposed, including thermal-aware workload scheduling,

power throttling, and/or cooling control [1, 5, 7, 29, 30, 42, 47,

50]. Table 6 summarizes some closely related work. Although

these approaches can effectively reduce cooling energy con-

sumption, they show significant limitations in compatibility

with existing cluster schedulers and in handling original

application requirements, as they rely on developing cus-

tom schedulers for cooling optimization. Motivated by this

practical concern, InferCool digs out the unique opportunity

presented by MIG-enabled inference serving, where sched-

uling and cooling dimensions are orthogonal. Through its

lightweight middleware design, InferCool achieves impres-

sive cooling energy reduction without being intrusive.

8 CONCLUSION
Today, with the rapid growth of AI-centric applications like

ChatGPT, many companies have heavily invested in build-

ing AI datacenters, where inference serving has become a

crucial and prominent cloud workload. However, the sub-

stantial energy consumption of AI has also raised concerns,

particularly as cooling energy can even rival IT energy con-

sumption in managing the significant heat generated by AI

workloads. Our measurement study systematically examines

the cooling impacts of AI inference workloads, presenting

a novel perspective on the challenges of achieving efficient

cooling while adhering to the requirements of cooling sys-

tems. To address these challenges, we propose InferCool, a

flexible cooling middleware designed for MIG-enabled AI

inference serving, featuring transparent and non-intrusive

task reassignment. We implement InferCool as an easy-to-

use Kubernetes service that can also be easily extended to

other scheduling frameworks. Extensive experiments on a

water-cooled testbed and a three-node cloud platform show

that InferCool can lower the maximum GPU temperature by

5℃, resulting in about 20% savings in cooling energy.
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