X-Stream: A Flexible, Adaptive Video Transformer
for Privacy-Preserving Video Stream Analytics

Dou Feng! Lin Wang?

Shutong Chen?

1

Lingching Tung! Fangming Liu*%

'National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, China

2Paderborn University, Germany

Abstract—Video stream analytics (VSA) systems fuel many
exciting applications that facilitate people’s lives, but also raise
critical concerns about exposing too much individuals’ privacy. To
alleviate these concerns, various frameworks have been presented
to enhance the privacy of VSA systems. Yet, existing solutions suf-
fer two limitations: (1) being scenario-customized, thus limiting
the generality of adapting to multifarious scenarios, (2) requiring
complex, imperative programming, and tedious process, thus
largely reducing the usability of such systems. In this paper,
we present X-Stream, a privacy-preserving video transformer
that achieves flexibility and efficiency for a large variety of
VSA tasks. X-Stream features three major novel designs: (1) a
declarative query interface that provides a simple yet expressive
interface for users to describe both their privacy protection and
content exposure requirements, (2) an adaptation mechanism
that dynamically selects the most suitable privacy-preserving
techniques and their parameters based on the current video
context, and (3) an efficient execution engine that incorporates
optimizations for multi-task deduplication and inter-frame infer-
ence. We implement X-Stream and evaluate it with representative
VSA tasks and public video datasets. The results show that X-
Stream achieves significantly improved privacy protection quality
and performance over the state-of-the-art, while being simple to
use.

Index Terms—video privacy, privacy preservation, video
stream analytics, declarative query language

I. INTRODUCTION

High-resolution surveillance cameras are now pervasive [1],
deployed throughout city streets, schools, and private places
for safeguarding. To take advantage of these cameras, sev-
eral video analytics frameworks have been proposed [2]-
[5], ranging from object detection to tracking, e.g., traffic
monitoring and abnormal events detection. Typically, a video
stream analytics (VSA) system deploys cameras and analyzes
the video streams produced by these cameras for different
purposes. The video streams for analytics may need to be
exposed to entities without permission to access the sensitive
information contained in the video streams. For example, at an
airport, the infrastructure team may want to leverage VSA to

“The corresponding author is Fangming Liu (fangminghk @ gmail.com).

This work was supported in part by National Key Research & Development
(R&D) Plan under grant 2022YFB4501703, the Major Key Project of PCL
under Grant PCL2022A05, and the High-level Talent Program of Guangxi
University under Grant A3070051017. Lin Wang was supported in part by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
— Project-ID 210487104 - SFB 1053.

3Guangxi University, China

4Peng Cheng Laboratory, China

detect crowds for better planning, while sensitive information
(e.g., human face) is only accessible by the security team
for safety-related analytics tasks. Without credible privacy
protection, VSA systems are hard to be widely useful due
to continuous criticism on their privacy implications. The EU
and some cities in the US have even banned facial recognition
systems in public areas while waiting for proper solutions [6],
[7].

To address the privacy concern, researchers have proposed
several mechanisms for transforming raw videos from cam-
eras into privacy-protected versions, maintaining usability for
basic analytics tasks [8]-[12]. These mechanisms use vari-
ous privacy-preserving techniques, including encryption [12],
detection-Rol-based inpainting [13], [14], image-processing-
based filtering (e.g., blurring and pixelating), Generative Ad-
versarial Network (GAN)-based cartooning [8], and face de-
identification [10], [15], [16]. However, these mechanisms
fall short for at least the following three reasons in general:
(1) Developers need full knowledge of these privacy-preserving
techniques to choose the right one for a specific use case.
(2) They rely on one static privacy-preserving technique,
lacking generality to adapt to dynamic scenarios. (3) All these
mechanisms require complex, imperative programming across
low-level libraries such as OpenCV, Pytorch, and dlib [17],
which leads to a tedious and error-prone development process.
These factors largely limit the usability of these privacy
protection mechanisms for VSA.

In this paper, we propose X-Stream—a flexible, adaptive
video transformer for privacy-preserving VSA, requiring min-
imal developer efforts. X-Stream introduces PriQL, a declar-
ative query language extending SQL with PROTECT and
EXPOSE keywords. Developers can specify content protection
or exposure requirements for analytics in familiar SQL terms,
allowing them to focus on video transformation logic rather
than the detailed properties of privacy-preserving techniques.
X-Stream features a runtime system translating PriQL queries
into dataflow graphs with various video operators to meet the
protection and exposure requirements and system performance
through spatial and temporal redundancy. X-Stream introduces
new designs to address the following three main challenges in
the runtime system.

How to construct the dataflow graph? PriQL queries only
specify the privacy protection goals at a high level, without

details regarding what privacy-preserving techniques to use
and how to combine them if multiple techniques are needed.
To close the gap, X-Stream classifies the target video content
(for protection or exposure) into different types. X-Stream
keeps a repository of video operators tailored for protecting
the content of each type. So far, X-Stream supports three types
namely object, background, and motion; more can be added in
the future. By parsing PriQL queries, X-Stream identifies the
target content types and selects the appropriate video operators
from the corresponding repository. X-Stream then constructs
a dataflow graph composing these operators, according to the
requirements specified in the queries.

How to enable context-aware adaptation? Unlike current
methods employing static privacy-preserving techniques for
specific VSA tasks, X-Stream adopts an adaptive approach
where the privacy-preserving technique together with its pa-
rameters are continuously adapted according to the video
context. This is inspired by the observation that different
privacy-preserving techniques perform differently in terms of
protection quality and computational complexity under varying
contexts and there is no one-size-fits-all technique that per-
forms well under all possible contexts. To this end, X-Stream
introduces a context analyzer generating protection quality and
performance information for video operators under the current
context. The content analyzer also provides frame information
to determine the operators’ parameters for video processing.
The runtime system uses this information to choose the best
video operators when constructing the dataflow graphs.

How to achieve efficient execution? To achieve efficient
execution of the video operators for multiple PriQL queries,
X-Stream leverages both spatial and temporal redundancy
to reduce the computation needed for video transformation.
More specifically, X-Stream merges the same video opera-
tors from different dataflow graphs generated for different
PriQL queries if these queries also share the same input
video stream. This can significantly reduce the number of
video operators in scenarios where multiple VSA tasks with
different privacy-protection requirements need to be performed
with the same input video. Additionally, exploiting temporal
correlations among video frames, X-Stream employs a random
sampling technique to process only those frames with differ-
ences exceeding a predefined threshold to reduce the number
of processing frames. These optimizations can largely improve
the resource efficiency of the X-Stream runtime system.

We have implemented X-Stream in Python, and evaluated
its performance via privacy analysis and comprehensive ex-
periments. X-Stream can be used for a variety of scenarios,
e.g., traffic surveillance and indoor monitoring. The privacy-
enhanced videos generated by X-Stream can outperform those
generated by all the baseline systems in our thorough ex-
periments. Compared with the unmodified raw videos, the
protected videos also achieve a comparable VSA performance
(w.r.t. analytics quality) in two typical VSA tasks.

In summary, we make the following contributions: After
introducing the background on privacy-preserving VSA and
motivations for our work in Section II, we

« present X-Stream, a novel video transformer for privacy-
preserving VSA with built-in usability, flexibility, and
efficiency (Section III and Section IV).

o design a declarative query language, PirQL, which ex-
tends SQL with two keywords to allow expressing privacy
protection requirements for video transformation with
familiar SQL syntax (Section IV-A).

o present a method to map the PriQL parsing results to
the most suitable privacy-preserving techniques for each
identified video content type adaptively, based on the
video context (Section IV-C).

« propose performance optimizations that leverage spatial
and temporal correlations to avoid redundant computa-
tions (Section V).

o implement X-Stream and evaluate it on two commonly-
seen VSA tasks (Section VII). The results show that X-
Stream outperforms the state-of-the-art systems.

II. BACKGROUND AND MOTIVATION
A. Privacy-Preserving Video Analytics

In Section I, we highlighted the trade-off between privacy
protection and intelligibility maximization in Video Source
Analytics (VSA). Video owners share sources with sub-
scribers for analytics tasks like pedestrian counting, creating
a dilemma. Privacy protection requires concealing sensitive
information, while analytics demands maximum exposure of
scenes and objects for enhanced utility. For instance, protecting
personal identity (e.g., face and dressing) while fully exposing
the body outline ensures accurate pedestrian counting. Tradi-
tional methods like encryption may compromise intelligibility,
proving inadequate for VSA.

The intelligibility of the video frame indicates how much
the visual information is retained, i.e., it suggests precision
loss when we do the video analytics tasks. The higher the
intelligibility of the frame is, the less precision the tasks lose.

Existing privacy-preserving systems for video analytics fall
into two categories: detection-based ROI (region of interest)
protection and global protection. The detection-based ROI
protection [10], [13] employs a detection model to locate the
ROIs and denature the ROIs with some common methods,
e.g., face de-identification and inpainting. And the global
protection [8], [18], [19] applies an effect to the whole
video frame without content-aware techniques, e.g., GAN-
based cartoonlization, image filtering. The techniques adopted
by these systems are numerous and complicated, including tra-
ditional computer vision (e.g., OpenCV library), convolution
neural network (CNN), GAN, etc. These techniques show their
special advantages in different video analytics tasks.

B. Motivation for X-Stream

a) Application-specific privacy protection: Surveillance
cameras are widely deployed in our daily life, ranging from
streets to rooms. The analytics tasks vary in different scenarios,
for example, deploying cameras in elder people’s houses aims
to alarm at the first time they fall; cameras in the street are
used to detect illegally parked vehicles. These analytics tasks

1.0 -e- 275500 40950
: —¥— 100800 -4-- 26420
08 -#- 89380 -e-- 7000

3400

Confidence
o
o

0.4
*-0-0 ¢
0.2
0 20 40 60 80 100
g
Fig. 1. The detection confidence variation under different o
—8— Blurring
60 Pixelating
a
o 40
£
£
20
0

0 50 100 150 200
Parameter (o/Kernel Size)

Fig. 2. The runtime of the blurring and pixelating.

need different information from videos, and at the same time,
they are required to protect different privacy information.

Application-specific privacy protection is often cumbersome
due to varying privacy-preserving targets from scene to scene.
For instance, in outdoor scenarios, individuals may be reluctant
to expose their license plates, a potential identity reveal. The
conventional approach is manual blurring of the target area.
However, in indoor settings like private rooms, concerns may
shift to decor and sensitive personal effects, rendering manual
methods inefficient. Unfortunately, there’s no one-size-fits-all
solution to fulfill diverse privacy protection needs, requiring
developers to delve into video processing libraries and differ-
ent privacy protection methods. Our aim is to offer developers
or users seeking privacy protection for video analytics tasks a
flexible API that can safeguard and expose information based
on their specific requirements.

b) The impact of dynamic video content on privacy
protection: Besides the application-specific requirement, the
video source in VSA is also dynamic. The dynamic video
content brings a new challenge to the privacy protection.
Video content varies from frame to frame, which affects
the efficiency of privacy protection and even makes some
techniques lose efficacy. We take Gaussian blur [20], a widely
used privacy protection technique, as an example. The key
parameter o in Gaussian blur® controls the sharpness: the
higher o is, the more blurry the frame is, and hence the less
information it contains. We apply Gaussian blur in different
o to frames that show objects with different sizes, and detect
the object in the blurry frames. Figure 1 illustrates the con-
fidence of object detection under different object sizes as o
increases. We find that when o reaches 40, the small object
is undetectable while the large object can be detected easily

*To blur pixels in the frame, Gaussian blur filters each pixel using the
weighted average of the group of pixels surrounding the target. The weight
is calculated by Gaussian distribution and o is the standard deviation which
determines the effect of surrounding pixels on the target pixel’s value.

with high confidence. If we all adopt the highest parameters to
protect the objects, in the extreme blacken the objects out, we
may lose the intelligibility of the objects. For example, we just
want to protect human faces, but the overwhelming blurring
takes the information of person away, and thus the person
becomes unrecognizable. There are some other techniques
whose utility is affected by parameters, such as mosaic and
cartoonlization [21]. The results motivate that the privacy
protection techniques should be fine-tuned according to the
dynamic video content.

Additionally, the advantage of dynamically changing key
parameters and switching protection methods is that the system
can adapt to changeable and complex video content and per-
fectly protect privacy at any time. Moreover, in scenarios with
low privacy exposure risk, adopting lighter privacy protection
methods can significantly conserve computing resources, en-
hancing efficiency. As shown in Figure 2, when the blurring
parameter is low, the overhead is comparable to pixelating.
However, with a high parameter, the overhead is unacceptable
for the real-time privacy protection requirement. Given that
blurring preserves more information than pixelating, the pref-
erence is for blurring when the overhead is manageable. This
necessitates method switching to mitigate system overhead, a
feature overlooked in previous works.

III. SYSTEM OVERVIEW
A. Overview

The X-Stream architecture, depicted in Figure 3, comprises
four key components: PriQL Parser, Content Analyzer,
Methods Mapper, and Protector. The PriQL Parser trans-
forms the owner’s PriQL sentence requirements (discussed in
Sec. IV-A) into a dictionary format. Content Analyzer analyzes
the video content according to the video features, and filters
which video frames to be processed. Methods Mapper breaks
users’ requirements by the protection dimension (introduced in
Section IV-C) and maps the dictionary-form requirement to a
DAG of protection methods for each filtered frame, consider-
ing the dynamic video content. Protector renders video frames
according to the DAG and produces the protected video. In
case of simultaneous tasks, Protector merges common DAG
parts to enhance processing speed.

The multi-task privacy-preserving video transformer works
as follows. Consider a traffic video showing cars and pedes-
trians whose privacy should all be protected. There are two
tasks in this video, i.e., pedestrian counting and car counting.
To ensure intelligibility, the owner should expose the body
outline and protect the face for the pedestrian counting task,
and for the car counting task, the owner should expose the
car outline and protect the license. In the beginning, based
on the requirements, the owner inputs the PriQL sentences
(as shown in Figure 5) to X-Stream. PriQL Parser parses the
two PriQL sentences and outputs the dictionary-form require-
ments, including video sources, protection list, and expose
list. The Content Analyzer captures the features from the
source video, such as the pixel difference between consecutive
frames, to help Methods Mapper decide the suitable protection

Content

Methods Mapper

Protector

— il

8-
"' Analyzer
Dimension-
Sampler based Map
PriQaL1 \
) PriQL Parser
PriQL 2

Constructer

Protected video 1

— il

Protected video 2

Fig. 3. System architecture of X-Stream.

SELECT * expr definition

FROM src_video_name expr := elem [and expr]

[WHERE [timestampl, timestamp2]] elem := dim='item'

PROTECT expr [, ...] dim := [object | motion | background]
[EXPOSE expr [,...]]1 item :=[A -Zaz0-9]+

Fig. 4. The syntax of PriQL.

SELECT *

FROM crossroad.mp4

WHERE timestamp = [0, 20]
PROTECTobject = ‘license plate’
EXPOSE object = ‘car’

SELECT *

FROM cafe.mp4

WHERE timestamp = [0, 20]
PROTECT object = ‘face’
EXPOSE object = ‘person’

Fig. 5. Examples of PriQL.

method with appropriate parameters. To speed up the video
stream transforming, Content Analyzer also decides which
video frames should be processed. Then, Methods Mapper
constructs one processing DAG for each filtered frame for each
requirement and merges all DAGs to improve time efficiency.
As shown in Figure 3, for Frame 1, DAG of PriQL 1 contains
cartooning (C), detection (D), and pixelating (P), while DAG
of PriQL 2 consists of cartooning (C), detection (D), and
blurring (B). Protector produces two protected videos accord-
ing to the merged DAG where the common methods, i.e.,
cartooning and detection, are only processed once. By sharing
the intermediate result in DAGs, the transforming cost for the
multi-task requirements can be reduced significantly.

IV. KEY DESIGN

A. PriQL

To address the tedious and complicated privacy protection
issue, we introduce PriQL, an SQL-like language for gener-
ating the privacy-preserving video stream. Video owners who
are familiar with SQL can easily generate privacy-enhanced
videos by writing familiar PriQL sentences. PriQL frees video
owners from learning tedious and obscure computer vision
libraries and complicated privacy protection methods. They
only need to focus on the requirement of privacy protection
and intelligibility of video streams.

a) PriQL language syntax: Figure 4 shows the PriQL
syntax. The object of SELECT is the video stream, and
WHERE restricts the time interval of the video which will be
shared to subscribers. PriQL supports owners’ requirements
of privacy protection and intelligibility by extending SQL
with two keywords: PROTECT and EXPOSE, where PROTECT
allows owners to describe their requirements of privacy pro-
tection, and EXPOSE allows owners to point out the preserved
information for VSA tasks. The detail of expr in the PROTECT
and EXPOSE syntax is shown in Figure 4. We next provide
the motivation behind each additional piece of syntax.

First, the PROTECT keyword allows owners to customize
the privacy-protected content, while the EXPOSE keyword
ensures the video frame is still eligible for the VSA tasks
after applying the protection. If PriQL is without EXPOSE
keywords, we can use encryption to protect all the information
in the video stream and achieve the protection goal. However,
the protected video is unqualified for VSA tasks due to the
lack of intelligibility.

Second, there is a natural trade-off between protecting
privacy and providing intelligibility, as the former seeks to
conceal information in the video while the latter requires
exposing certain information for VSA. Section IV-D will
discuss the parameter fine-tuning approach to improving the
intelligibility while ensuring privacy protection.

Third, according to our observations and the settings in
the state-of-the-art, there are three key dimensions of privacy
information, i.e., the object in the scene, motion information,
and background. To endow PriQL with the ability to describe
these privacy dimensions, we design the expr with three-
dim words: object, motion, and background, as depicted in
Figure 4. Using these words and their combinations, we can
express multifarious protection requirements. For example, we
can write object='person’, background=’True’
to protect the indoor decoration and person identity. And
if we want to protect the motion information, we can use
motion='True’.

Lastly, owners are able to describe their exposure re-
quirement by EXPOSE keyword. The format basically forms
the same as PROTECT keyword. If owners want to send
the video to do the car counting task, they can write
EXPOSE object='car’ to inform our system that cars
in the scene need to be exposed. Note that when there are
conflicts between protection and exposure, we prefer to protect
rather than expose since our system’s primary objective is
privacy-preserving. As to how to deal with the preference,
we will introduce it in the next subsection.

b) PriQL sentence examples: Figure 5 shows two con-
crete examples to explain how the requirements can be written
in PriQL The details are given in Section IV-A.

B. Content Analyzer

The video content is crucial for privacy protection, as
discussed in Section II-B. To take advantage of the video
content, we design a content analyzer that is dedicated to
extracting the key features from video frames. Specifically,
Context Analyzer should capture the motion-related features,
such as pixel difference between consecutive frames [22], to

(a) Detection before protection

(b) Detection after protection

Fig. 6. Protection interferes the detection result.

estimate objects’ speed of motion and help Methods Mapper to
employ motion protection. Moreover, the pixel size of objects
also needs to be extracted for fine-tuning parameters of some
protection methods, as discussed in Section IV-D in detail.

C. Methods Mapper

As mentioned in Section IV-A, we design PriQL to shed
light on three dimensions of privacy protection. To cooperate
with PriQL and enable the protection, we design a powerful
content-aware Methods Mapper, which exploits owners’ pri-
vacy requirements described in PriQL sentence and content
of video frames to generate an efficient processing DAG with
video operators (i.e., single protection method).

a) Protection dimensions: As discussed in Section IV-A,
the key dimensions of privacy protection are objects in the
scene, motion information, and background. These dimen-
sions are orthogonal for privacy protection, making it hard
to use a single protection method to conceal two of them.
For example, detection-based methods are efficient for ob-
ject protection, such as inpainting which detects ROIs and
denatures them. However, these methods have poor perfor-
mance on the background protection since the background
(e.g., the indoor decoration) is hard to detect. Additionally,
the detection-based method cannot handle gait detection, i.e.,
recognize persons’ identification by their walk pattern. We thus
need a new solution for protecting motion information. To
this end, we propose a dimension-aware protection scheme.
Thanks to PriQL, Methods Mapper can easily divide owners’
requirements into different dimensions.

b) Protecting objects: Object protection requires the
detection-based method, such as YOLOvS [23] and Mask R-
CNN [24]. Given a series of objects that need to be protected,
we need to detect all the ROIs where objects are located.

After locating objects in the video frame, we need to dena-
ture them for privacy protection. Considering the class, size,
and location of the object, different denaturing methods should
be taken on different targets. X-Stream takes into account three
common denaturing methods, i.e., blurring, pixelating (i.e.,
mosaic), and black-out (i.e., directly blackening the object).
As discussed in Section II, the intelligibility of the frame
varies with the parameter setting in these methods. Method
Mappers determines the denaturing methods with fine-tuned
parameters for each object, whose details will be discussed in
the following Section IV-D.

c) Protecting background: We use cartooning, a repre-
sentative filter-based method, to protect the background. Given
a video frame, cartooning first applies the bilateral filter [25],
an edge-preserving smoothing filter, to reduce color numbers.
Cartooning then performs K-means algorithm [26] to cluster
the histogram of the image and recolors the image with
clustered pixels. Lastly, cartooning applies the contour finding
algorithm [27] to enrich the video frame with more lines.

We adjust the number of clusters, which is denoted as k, in
the K-means algorithm. In general, the more clusters K-means
has, the more vivid the frame is, and the more privacy would
be disclosed. By using the adaptive algorithm [26], Methods
Mapper can choose the optimal %k for K-means automatically.

d) Protecting motion: We find that filtering frames from
the video stream can make people’s motion discontinuous,
which provides the opportunity for motion protection. It is
noted that frame filtering has little influence on VSA tasks.
That is because consecutive frames are relatively identical
within a very short time interval in general. Consider the
subscriber wants to count pedestrians from a surveillance video
recorded in a square. If we sample the raw video from 30 FPS
down to 5 FPS, only the perceptive quality of the video is
degraded rather than the intelligibility of the people counting
since the people movement can still be captured generally.

Methods Mapper utilizes the random sampling technique to
protect motion information. More specifically, the technique
adjusts the sampling rate according to the object’s speed of
motion and selects the random number of frames in a certain
time interval. The speed of motion is measured by the frame
difference [28] using the OpenCV library.

e) Exposure: PriQL provides owners an interface to
describe objects and other dimension information which video
owners want to expose just like the keyword PROTECT. Since
the EXPOSE keyword is identical with PROTECT, the scheme
behind the exposure is similar to the protection. Specifically,
we should first detect the objects that need to be exposed, and
then try to preserve them in video frames. However, object
protection and exposure are always tangled. Protecting one
object may sometimes have an effect on the intelligibility of
other objects that need to be exposed. As shown in Figure 6,
two persons in the original video frame can be well detected,
while the persons vanished when we use the black-out method
to protect cars in the scene. To balance the tradeoff between
protecting privacy and preserving intelligibility, we propose
two empirical approaches as follows.

First, as a privacy-enhancement system, X-Stream should
provide privacy protection as the top priority. That is, when
video owners require to protect certain objects, X-Stream must
guarantee these objects will not be revealed. To preserve the
intelligibility of the video analytics task, the protection method
needs to have a limited effect on other objects related to the
analytics. To this end, we design a parameters tuning approach
to maximize the intelligibility of objects that owners need to
expose, which will be demonstrated in the next Section IV-D.

Second, objects need to be protected and exposed sometimes
are overlapping in some scenarios (as shown in Figure 6).

* Profile Value
1 — Fitting Curve

N o ©
o o o

Threshold o

N
o

*

*

*

0 10 20 30 40 50 60
Pixel Size (x10%)

Fig. 7. The relationship between the pixel size and threshold o.

In this case, Methods Mapper will adopt a mild protection
method, like cartooning, to the object that needs to be exposed,
which guarantees privacy at the expense of limited degradation
of intelligibility.

D. Parameter Tuning

To provide object protection with blurring at the highest
quality, we first capture the threshold of o under different
pixel sizes of objects, as shown in Figure 7. The mathematical
relationship estimated by the curve fitting is illustrated by the
green line in Figure 7. The expression of the fitting curve is
given by & = 0.1694 x p4658 where p indicates the pixel
size of the object, o is the estimated minimum parameter in
the blurring satisfying the requirement of privacy protection.
To further ensure privacy protection, we need to introduce a
bias 6 that is more appropriate in this case to the fitting curve
and present the threshold of o as T, =6 + 6.

We note that it is impractical and inefficient to aggressively
increase o. As discussed in Section II, the processing time
of the blurring increases as o. Although the blurring has
little effect on the intelligibility and owns comparable privacy-
preserving performance, its overhead is still excessive when
the parameter o gets higher. To balance the tradeoff between
time efficiency and privacy-preserving performance, Methods
Mapper will switch to pixelating for object protection if the
estimated threshold of o exceeds 90.

Different protection methods show distinct system overhead.
We use blurring, pixelating, and cartooning, respectively, to
process a 40-second video stream with 30 FPS. Figure 2 com-
pares the total processing time of the blurring and pixelating.
The minimum time consumption of cartooning is around 0.45
seconds per frame, which is much slower than the other two
methods, so we omit this result in the figure. The results show
that blurring is more time-consuming than pixelating when its
parameter o gets higher (i.e., the protection gets stronger).

V. OPTIMIZATION
A. Inter-frame Inference and Tracking

As discussed in Section IV-C, object protection and ex-
posure should first detect objects that need to be concealed
or exposed. However, existing object detection models still
cannot provide the optimal accuracy over a large number of
object classes [29]. Inevitably, these objects will be exposed
or concealed accidentally in some video frames if the object
detection model fails to detect them.

We present the inter-frame inference to avoid privacy expo-
sure or intelligibility degradation due to the detection failure.
For the video stream, the object location in consecutive frames
will not change significantly in a short time (e.g., within
100 ms) [30]. Hence, the inter-frame inference can estimate
the object’s location in the current frame using the detection
results in prior frames. To this end, we combine the detector
with the object tracking approach [31]. More specifically, we
search the bounding boxes in the frame ¢ + 1 (denoted as
candidate object) locate around the box of the target object
in the frame i. If there is a candidate object satisfying that
the overlapped area of the candidate and the target object
(in terms of the intersection over union) or their distance are
within thresholds, we consider that the target object in the
frame ¢ + 1 is detected. Otherwise, the target object is lost by
the detector and the object tracker will be issued to estimate
the bounding box in the frame ¢+ 1. The estimation result will
also be recorded for the next inter-frame inference process.

For the object tracker, it is non-trivial to judge whether a
target object is lost by the detector or just moves out of the
scene. To this end, we utilize the relative motion direction and
the relative location of the target object to help track the object
efficiently. Specifically, we derive the relative motion direction
by calculating the distance between the centroids of bounding
boxes in consecutive frames. As the object near the frame
border is more likely to move out of the scene, the tracker
should mainly focus on their relative motion direction. Take a
target object located in the rightmost corner as an example. If
the detector fails to capture it and the relative motion direction
is right, we then assume this object is away from the scene
and will not issue the tracker. Otherwise, if the relative motion
direction is opposite, the tracker should be issued to conceal
privacy or preserve intelligibility. In this case, if the tracker
also fails to track the target, this object is regarded as moving
away.

B. Spatial and Temporal Correlations

X-Stream incorporates the spatial correlation between two
users’ requirements to reduce the system overhead, as dis-
cussed in Section III. In general, if two or more requirements
over the same video stream are specified X-stream, we first
generate DAGs for each requirement and identify the common
parts (i.e., video operators) of the DAGs. Then the protector
merges the DAGs and processes the common cells just once
time for saving time. The distinct parts are processed as usual.
The resource utilization and time efficiency can be further
improved by dynamic resource configuration [32], [33], DNN
partitioning [34], [35], parallel processing [36], [37], workload
management [38], transfer learning [39], etc., which we leave
to future work.

From our observation, the frames of video streams souring
from surveillance cameras have a strong spatial correlation
since the frames within a short time are identical. Exploiting
this feature, we present a sampling technique in Section IV-C
to protect the motion information, which can also be used to
reduce the system overhead. Considering a 40-second video

with 30 frames per second (FPS), if we take every single frame
as the key frame and transform it, the processing time is about
480 seconds running on our machine (configuration is shown
in Section VI. There are a variety of redundant frames because
of the high similarity of the consecutive frames. Thus, we
sample the video based on the motion in frames. When the
motion is fast in the frame, the sampling rate is high. If the
motion is slow in the frame, the sampling rate decreases. When
we apply the sampling technique to the video, the processing
time reduces to 16 seconds as shown in Figure 9(b).

VI. IMPLEMENTATION

a) Hardware: We deploy our system X-Stream on a
high-end machine with two 26-core Intel® Xeon® Platinum
8269CY CPUs, DRAMs of 190 GB in total, and an Nvidia®
RTX 6000 GPU with 24 GB VRAM.

b) Software: We implement X-Stream in Python 3.7
and use PyTorch v1.9.1 for training and evaluating. We use
YOLOVS with weights YOLOVSs as the backbone detection
model, and adopt the facenet [40] as the face detection model.
Since the YOLOVS cannot label the license plate, we further
train our license plate detection model using YOLOvVS and
the dataset from Kaggle [41]. The model achieves comparable
accuracy with the pretrained YOLO model.

We use OpenCV to process video frames. We use the regular
expression to parse the PriQL queries in Python, and save the
query elements into a dictionary for further processing. We
employ cartooning [21] to protect the background information,
and use the random-sampling technique to protect the motion
information. Blurring and pixelating for protecting objects are
implemented with OpenCV.

X-Stream presents video owners with an API in either
command line format or embedded format. The command
line format API allows owners to transform video streams
into protected videos that fulfill their privacy requirements by
running the application we present on Linux. The embedded
format allows owners to embed our function into their own ap-
plications using the PirQL sentence when they are developing
applications.

VII. EVALUATION
A. Datasets

We evaluate the system using video streams from the
following two sources:

« BDD - the Berkeley DeepDrive dataset [42] consists of
1,100 hours of videos recorded by dashboard cameras on
motor vehicles at 30 FPS. Each video spans 40 seconds
with HD (1280x720) resolution, including day and night
scenes from urban to rural.

e« YOUTUBE - HD (1280x720) video streams from
YouTube which are shot by surveillance cameras on a
campus, cafe, or street at 30 FPS.

B. Baselines

We compare our solution with four baseline approaches and
their enhanced variants for video transformation:

a) Cartoon: We incorporate the PECAM [8] as one
of our baselines. PECAM employs a GAN to generate the
cartoonlized video frames to protect privacy, i.e., it takes the
cartoon effect to the whole video frame. For simplicity, we use
the OpenCV to cartoonlize the whole video frame which has
the same effect as the PECAM without any detection model.
The cartoonlized method is the same as the methods we use
to protect background information in X-Stream, and the detail
of the implementation can be found in Section IV-C.

b) Blurring: Technically, the method uses the detection
model (e.g., YOLOVS) to locate privacy-sensitive objects that
reside in the pre-defined list, and then overlap each privacy-
sensitive object with an irrelevant avatar.

c) Pixelating: Pixelating (a.k.a. mosaic) is a frequently-
used privacy-preserving method. As manually pixelating
privacy-sensitive objects is tedious and cumbersome, we em-
ploy a detection model to help detect the privacy-sensitive
objects and then we pixelate the areas where the objects reside
with a 6x6 pixel kernel. The value of a pixel is calculated
using weighted mean from the surrounding pixel blocks in
the size of 6x6.

d) Blackout: For this method, there exists an inevitable
tradeoff between privacy protection and intelligibility preser-
vation, since the privacy-sensitive objects can only be totally
blackened. During the experiments, we just blacken the area
where the user-defined privacy-sensitive objects exist.

C. VSA Tasks and Metrics

a) VSA tasks: To illustrate that X-Stream achieves both
privacy protection and intelligibility preservation of video
streams, the evaluation considers two common VSA tasks, i.e.,
object detection and background extraction.

We categorize videos from the dataset into indoor and
outdoor scenarios, tailoring VSA tasks based on owners’
preferences. Outdoor videos typically capture intersections,
crossroads, and streets. In this setting, the video owner priori-
tizes protecting license plates while exposing cars for counting.
The PriQL sentence appears in the left part of Figure 5. Indoor
scenarios feature locations like restaurants, banks, salons, and
pharmacies. Here, the owner conceals faces and exposes body
figures for people counting. The PriQL sentence is found in
the right part of Figure 5. Additionally, we address background
extraction tasks [43] for both scenarios, using the same PriQL
sentences as for object detection.

b) Metrics: We utilize the license recognition algo-
rithm [44] and face detection model [40] to assess privacy
enhancement in outdoor and indoor scenarios, respectively.
The exposure frequency, defined as the ratio of detected
licenses (faces) to the total licenses (faces) in the video stream,
serves as a metric for privacy performance. A lower exposure
frequency indicates better privacy enhancement. The F1 score
is employed to evaluate VSA task performance and quantify
the preserved intelligibility of each approach.

D. Privacy Protection and Intelligibility Preservation

a) Privacy loss: Privacy loss depends on the number
of wrongly exposed privacy-sensitive objects that we care

—&— X-Stream -@ Cartoon

—- Blurring

Blackout ~ —#— Pixelating

-
o
S

1.0
2 indoor
] 3 outdoor

@
o

0.8+

67.72

68.01

o
o
!

0.6
w
a
o

IS
o
!

0.4+

N
o
!

0.2+

Privacy exposure frequency(%)

0.060.29

0.0 -

Cartoon 0.0

X-Stream

Blurring 0.2 0.4

Methods

Blackout Pixelating

(a) Privacy Preserving.

(b) F1 score of the car detection task.

1.0
0.8
0.6 1
w
a
[}
0.4

0.2

0.0
0.6 0.8 1.0 0.0

F1 F1

T T
0.6 0.8

(c) F1 score of the human detection task.

Fig. 8. Privacy protection and intelligibility preserving under different video scenarios.

1.0 20
—*— X-Stream bl 80 { WEE X-Stream
0.8 -#- Cartoon // O mmm Cartoon
- Blurring ‘/ g 151 — 604 = Blurring
o "
N 0.6 Blackout ’ra :%J E Pixelating
¥~ Pixelating P & 104 2
g e o) 3 10 £ 40
0.44 ° / g
’,, :/,JJ g 3
L 2 s 201
0.2 g
e
0.0 T T T T 0- -
0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8 9 2 4 6 8 10
F1 The Number of Tasks The Number of Tasks

(a) F1 score of the background extraction task.

(b) Multi-tasks amortized expense.

(c) Multi-tasks runtime under different methods.

Fig. 9. The performance under the background extraction task and X-Stream system overhead.

about. For outdoor scenarios, video owners would like to
protect license plates when transforming their traffic surveil-
lance videos. Figure 8(a) compares the exposure frequency
of license plates in the car counting task over X-Stream and
baseline approaches. The results show that X-Stream yields
the best performance as compared to all baselines. Specifically,
compared with the cartoon and pixelating, X-Stream achieves
up to 200x fewer exposure times over five video streams. For
the indoor scenario, the privacy-sensitive object switches to
the human face as declared in the PriQL sentence in Figure 5.
As illustrated in Figure 8(a), X-Stream just exposes 0.06% of
the total 8660 faces in five indoor videos.

We also find that the cartoon shows poor performance espe-
cially when protecting license plates in the outdoor scenario,
since the cartoon is hard to deal with the case that the privacy-
sensitive object covers a large area of the scene. When the
object size is large, the protected license plates and human
faces can be recognized, and hence the cartoon is invalid. X-
Stream addresses this issue by dynamically tuning parameters.
The blurring is also not ready for the privacy-preserving
requirement since it highly relies on the performance of the
object detection model. The failure of object detection will
lead to the exposure of privacy-sensitive objects. X-Stream
alleviates this problem by introducing the inter-frame inference
approach, which will be illustrated in Section VII-F in detail.
In short, X-Stream outperforms all baselines.

b) Intelligibility preserving: We first focus on the per-
formance of intelligibility preserving for the object detection
tasks. Figure 8(a) and Figure 8(c) show the F1 score achieved
by the car counting task in the outdoor scenario and the human
counting task in the indoor scenario, respectively. The results
show that the protected videos transformed by X-Stream
achieve the best F1 score. The preservation of intelligibility
is derived from two features that have been introduced in

our system. The first one is that we take the users’ exposure
requirement into account, and when the exposure areas have
no effect on the privacy loss, we take the specific area of the
raw frame to replace the protected one. The second feature is
our fine-tuning parameter techniques. The lowest parameters
of methods can preserve the intelligibility of frames as much
as possible from the experimental results. We also note that the
blackout performs the worse among X-Stream and all baseline
approaches. That is because the blackout just blackens the
whole car and person out for privacy protection, and leaves
no information for detection.

We also investigate the intelligibility preservation for the
background extraction tasks which are used to remove the
background of video frames for further processing such as
activity recognition [45]. Figure 9(a) depicts the F1 score for
background subtraction in the outdoor scenarios. We observe
that X-Stream achieves the best intelligibility preservation. It is
worth noting that the pixelating method has relatively similar
performance to X-Stream, which however, is at the expense
of high privacy loss, as illustrated in Figure 8(a).

E. System Overhead

X-Stream leverages the multi-task merging to speed up
the video transforming. We evaluate the system overhead of
X-Streamunder multiple PriQL requirements on one video
stream. We consider a group of tasks that all need to protect
the background and license plates in a traffic video that spans
40 seconds with 30 FPS. Figure 9(b) shows the amortized
time cost of transforming videos for multiple tasks. We find
that when there is only one PriQL requirement, it takes about
17.5 seconds for video transforming. When there are 5 PriQL
requirements for this video stream, the amortized time reduces
to around 5 seconds, i.e., the amortized system overhead
decreases by more than 2x. More PriQL requirements are

Framei

Frame i+1 without tracking

After frame i+1 with tracking

Fig. 10. An example of two consecutive video frames under a detection failure.

involved, and less amortized expense will be incurred. When
there are 9 concurrent PriQL requirements, the amortized time
is close to 2.5s, whose speed-up rate is 7x. It is also worth
noting that the time cost of handling one PriQL requirement
is less than the video’s time duration, indicating the great time
efficiency and thus the practicality of X-Stream.

We further compare the system overhead among X-Stream
and all baseline approaches. Here, X-Stream transforms
5 videos from the BDD dataset considering the same PriQL re-
quirements. The averaging transforming time is shown in Fig-
ure 9(c). When there is only one PriQL requirement, X-Stream
takes more time to process videos since it utilizes several
methods for privacy protection and intelligibility preservation.
As the number of concurrent VSA tasks increases, X-Stream
only brings limited marginal overhead while the overhead of
baselines grows proportionally. In short, by taking advantage
of spatial and temporal redundancy, X-Stream achieves a great
time efficiency compared with baseline approaches.

We profile the memory expense when running multiple
tasks. The results show that even when the 9 tasks run at the
same time, the load and store memory expense is no more than
10 MB, which is lightweight and can be deployed in practice.

F. Gain from Tracking

X-Stream leverages object detection to protect privacy-
sensitive objects and preserve intelligibility. As discussed in
Section V-A, the failure of object detection will lead to privacy
leakage. To this end, we design the inter-frame inference
and tracking to ensure the efficiency of X-Stream when the
object detection fails. Figure 10 illustrates an example of two
consecutive video frames under detection failure. We can find
that the license plate in the frame 7 is protected since the object
detection model works well. However, the frame ¢ + 1 may
expose the identity of this car because of the exposed license
plate. When utilizing the inter-frame inference and tracking
technique, the location of the license plate in the frame 7 + 1
can be tracked accurately although the detection fails, avoiding
the privacy issue efficiently.

VIII. RELATED WORK

A variety of works have been proposed, whose techniques
are diverse from each other [8], [13], [15]. PECAM takes
a GAN-based cartoon transformer as the privacy-preserving
method [8]. Hassan et al. use CNNSs to detect the sensitive
objects they pre-defined and cover the objects with cartoon
avatars [13]. Li et al. combine CNN and GAN to generate fake

human faces, which are used to obfuscate human beings and
neural network detection models [15]. The techniques behind
these systems are overwhelming and complicated. Unlike prior
works, X-Stream provides video owners an API to describe
their privacy and exposure needs and leave the annoying
protection methods to our powerful back-end of the system.
We also take the dynamical parameters tuning into account,
which none of the prior works have considered.

Recent work has also focused on obfuscating video streams
against computer vision rather than human beings to reduce
privacy leakage [18], [19]. Fawkes [19] trains an obfusca-
tion mechanism, which injects the original video frame into
the training process. However, the training process is time-
consuming and compute-intensive, which hurts the usability
of the system. This obfuscated video may also be unsuitable
for human viewing. Liu et al. transform the video frames to a
special form, which cannot be understood by humans, while is
comprehensible for the neural network [18]. This method also
cannot support the video review. X-Stream works with off-
the-shelf object detectors and provides human-viewable video
streams that are usable by unmodified applications.

Declarative query languages are commonly used in video
data query systems [9], [46], [47], which provide a versatile
interface for users to query video data. Kang et al. present a
SQL-like language to query video segments [46]. However,
the target is a video database, not live video streams as we
consider in this paper. With Privid [9], users can use the
language the authors design to obtain the results in text form
from the target video. X-Stream incorporates the advantages
of declarative query languages, and extends the SQL with a
set of new keywords to fulfill our design requirements.

IX. CONCLUSION

X-Stream is a video stream analytics privacy enhancement
system with a declarative query language, PriQL. The PriQL
provides video owners an interface to describe their privacy
protection and exposure requirements. X-Stream parses the
PriQL sentence and produces a processing DAG to trans-
form the video streams. X-Stream also dynamically adapts
the DAG based on the real-time video context information.
The output of X-Stream can be directly taken as inputs by
various existing VSA tasks with privacy protection. To further
improve the performance, we present two key techniques, i.e.,
multi-task combination and inter-frame inference. Our results
confirm that X-Stream can preserve the users’ privacy and the
intelligibility of VSA tasks, while being easy to use.

[1]

[2]

[3]

[4]

[5]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]
[24]

REFERENCES

“Surveillance cameras are everywhere. and they’re only going to get
more ubiquitous.” 2020, https://crimereads.com/surveillance-cameras-
are-everywhere-and-theyre-only-going-to-get-more-ubiquitous/.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in USENIX NSDI 2017, 2017, pp. 377-392.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018. 1EEE, 2018, pp. 1421-1429.

V. Nigade, P. Bauszat, H. E. Bal, and L. Wang, “Jellyfish: Timely
inference serving for dynamic edge networks,” in IEEE RTSS 2022,
Houston, TX, USA, Dec. 5-8, 2022. 1EEE, 2022, pp. 277-290.

V. Nigade, L. Wang, and H. E. Bal, “Clownfish: Edge and cloud
symbiosis for video stream analytics,” in IEEE/ACM SEC 2020, San
Jose, CA, USA, November 12-14, 2020. 1EEE, 2020, pp. 55-69.

“EU makes move to ban use of facial recogni-
tion systems,” 2020, https://sciencebusiness.net/news/
eu-makes-move-ban-use-facial-recognition-systems.

“San francisco is first us city to ban facial recognition,” 2019, https:
/Iwww.bbc.com/news/technology-48276660.

H. Wu, X. Tian, M. Li, Y. Liu, G. Ananthanarayanan, F. Xu, and
S. Zhong, “PECAM: privacy-enhanced video streaming and analytics
via securely-reversible transformation,” in ACM MobiCom 2021, New
Orleans, Louisiana, USA, October 25-29, 2021. ACM, 2021, pp. 229—
241.

F. Cangialosi, N. Agarwal, V. Arun, J. Jiang, S. Narayana, A. Sarwate,
and R. Netravali, “Privid: Practical, privacy-preserving video analytics
queries,” CoRR, vol. abs/2106.12083, 2021.

0. Gafni, L. Wolf, and Y. Taigman, “Live face de-identification in video,”
in IEEE/CVF ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019. 1EEE, 2019, pp. 9377-9386.

H. Yu, J. Lim, K. Kim, and S. Lee, “Pinto: Enabling video privacy
for commodity iot cameras,” in ACM SIGSAC CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. ACM, 2018, pp. 1089-1101.

M. Ra, R. Govindan, and A. Ortega, “P3: toward privacy-preserving
photo sharing,” in USENIX NSDI 2013, Lombard, IL, USA, April 2-5,
2013. USENIX Association, 2013, pp. 515-528.

R. Hasan, P. Shaffer, D. Crandall, E. T. Apu Kapadia et al., “Cartooning
for enhanced privacy in lifelogging and streaming videos,” in IEEE/CVF
CVPRW 2017, Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 29-38.
Q. Sun, L. Ma, S. J. Oh, L. V. Gool, B. Schiele, and M. Fritz, “Natural
and effective obfuscation by head inpainting,” in JEEE CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation
/ IEEE, 2018, pp. 5050-5059.

T. Li and L. Lin, “Anonymousnet: Natural face de-identification with
measurable privacy,” in IEEE CVPR Workshops 2019, Long Beach, CA,
USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019,
pp. 56-65.

M. Maximov, I. Elezi, and L. Leal-Taixé, “CIAGAN: conditional identity
anonymization generative adversarial networks,” in IEEE/CVF CVPR
2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation
/ IEEE, 2020, pp. 5446-5455.

“dlib c++ library,” 2019, http://dlib.net/.

S. Liu, J. Du, A. Shrivastava, and L. Zhong, “Privacy adversarial
network: representation learning for mobile data privacy,” ACM IMWUT,
vol. 3, no. 4, pp. 1-18, 2019.

S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao,
“Fawkes: Protecting privacy against unauthorized deep learning models,”
in USENIX Security 2020, August 12-14, 2020. USENIX Association,
2020, pp. 1589-1604.

“Gaussian blur,” 2021, https://en.wikipedia.org/wiki/Gaussian_blur.
“Cartoonizer,” 2021, https://github.com/lutianming/cartoonizer.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,
“Reducto: On-camera filtering for resource-efficient real-time video
analytics,” in ACM SIGCOMM 2020, Virtual Event, USA, August 10-
14, 2020. ACM, 2020, pp. 359-376.

“yolov5,” 2021, https://github.com/ultralytics/yolov5.

K. He, G. Gkioxari, P. Dolldr, and R. B. Girshick, “Mask R-CNN,” in
IEEE ICCV 2017, Venice, Italy, October 22-29, 2017. 1EEE, 2017, pp.
2980-2988.

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in I[EEE ICCV 1998, Bombay, India, January 4-7, 1998. 1EEE,
1998, pp. 839-846.

G. Hamerly and C. Elkan, “Learning the k in k-means,” Advances in
neural information processing systems, vol. 16, pp. 281-288, 2004.

S. Suzuki and K. Abe, “Topological structural analysis of digitized
binary images by border following,” Computer vision, graphics, and
image processing, vol. 30, no. 1, pp. 32-46, 1985.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in ACM SenSys 2015, 2015, pp. 155-168.

Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang,
L. Dong, F. Wei, and B. Guo, “Swin transformer V2: scaling up capacity
and resolution,” in [EEE/CVF CVPR 2022, New Orleans, LA, USA, June
18-24, 2022. 1EEE, 2022, pp. 11999-12 009.

B. Feng, Y. Wang, G. Li, Y. Xie, and Y. Ding, “Palleon: A runtime
system for efficient video processing toward dynamic class skew,” in
USENIX ATC 2021, 2021, pp. 427-441.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed track-
ing with kernelized correlation filters,” IEEE transactions on pattern
analysis and machine intelligence, vol. 37, no. 3, pp. 583-596, 2014.
Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in IEEE INFOCOM
2022, Virtual conference, May 2-5, 2022. 1EEE, 2022, pp. 1868-1877.
F. Xu, J. Xu, J. Chen, L. Chen, R. Shang, Z. Zhou, and F. Liu, “igniter:
Interference-aware GPU resource provisioning for predictable DNN
inference in the cloud,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 3, pp. 812-827, 2023.

J. Wu, L. Wang, Q. Jin, and F. Liu, “Graft: Efficient inference serving for
hybrid deep learning with slo guarantees via dnn re-alignment,” /[EEE
Transactions on Parallel and Distributed Systems, pp. 1-18, 2023.

J. Wu, L. Wang, Q. Pei, X. Cui, F. Liu, and T. Yang, “Hitdl: High-
throughput deep learning inference at the hybrid mobile edge,” IEEE
Trans. Parallel Distributed Syst., vol. 33, no. 10, pp. 4499-4514, 2022.
W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaudhuri,
and Y. Zhang, “Elf: accelerate high-resolution mobile deep vision
with content-aware parallel offloading,” in ACM MobiCom 2021, New
Orleans, Louisiana, USA, October 25-29, 2021. ACM, 2021, pp. 201-
214.

A. Chen, F. Xu, Y. Dong, L. Chen, Z. Zhou, and F. Liu, “Opara:
Exploring operator parallelism for expediting dnn inference on gpus,”
in CCF CCFSys, Nanchang, China, August 4-5 2023. CCF, 2023.

Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “Asyfunc: A high-
performance and resource-efficient serverless inference system via asym-
metric functions,” in ACM SoCC 2023, Santa Cruz, CA, USA, 30
October 2023 - 1 November 2023. ACM, 2023, pp. 324-340.

Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-task
transfer learning: Model and practice with data-driven task allocation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 6,
pp. 1357-1371, 2020.

“facenet-pytorch,” 2021, https://github.com/timesler/facenet-pytorch.
“Kaggle Dataset: Car License Plate Detection,” 2021, https://www.
kaggle.com/andrewmvd/car-plate-detection.

H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in IEEE CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017. 1EEE, 2017, pp. 3530-3538.

O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background
subtraction algorithm for video sequences,” IEEE Transactions on Image
processing, vol. 20, no. 6, pp. 1709-1724, 2010.

“baidu open ai: ocr cars for plate,” 2021, https://ai.baidu.com/tech/ocr_
cars/plate.

B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Background
subtraction in real applications: Challenges, current models and future
directions,” Computer Science Review, vol. 35, p. 100204, 2020.

D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Optimizing declarative
aggregation and limit queries for neural network-based video analytics,”
Proc. VLDB Endow., vol. 13, no. 4, pp. 533-546, 2019.

F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh,
H. Balakrishnan, M. J. Cafarella, T. Kraska, and S. Madden, “MIRIS:
fast object track queries in video,” in ACM SIGMOD 2020, Portland,
OR, USA, June 14-19, 2020. ACM, 2020, pp. 1907-1921.

