
Retention-Aware Container Caching for Serverless
Edge Computing

Li Pan1 Lin Wang2,3 Shutong Chen1 Fangming Liu⇤1
1National Engineering Research Center for Big Data Technology and System,

Key Laboratory of Services Computing Technology and System, Ministry of Education,
School of Computer Science and Technology, Huazhong University of Science and Technology, China

2VU Amsterdam, The Netherlands 3TU Darmstadt, Germany

Abstract—Serverless edge computing adopts an event-based
model where Internet-of-Things (IoT) services are executed in
lightweight containers only when requested, leading to signif-
icantly improved edge resource utilization. Unfortunately, the
startup latency of containers degrades the responsiveness of
IoT services dramatically. Container caching, while masking this
latency, requires retaining resources thus compromising resource
efficiency. In this paper, we study the retention-aware container
caching problem in serverless edge computing. We leverage
the distributed and heterogeneous nature of edge platforms
and propose to optimize container caching jointly with request
distribution. We reveal step by step that this joint optimization
problem can be mapped to the classic ski-rental problem. We
first present an online competitive algorithm for a special case
where request distribution and container caching are based on
a set of carefully designed probability distribution functions.
Based on this algorithm, we propose an online algorithm called
O-RDC for the general case, which incorporates the resource
capacity and network latency by opportunistically distributing
requests. We conduct extensive experiments to examine the
performance of the proposed algorithms with both synthetic and
real-world serverless computing traces. Our results show that O-
RDC outperforms existing caching strategies of current serverless
computing platforms by up to 94.5% in terms of the overall
system cost.

Index Terms—edge computing, serverless computing, container
caching, ski-rental problem

I. INTRODUCTION

With the accelerated penetration of Internet-of-Things (IoT)
services in contexts such as smart cities and smart facto-
ries [1], cloud computing, the norm of the traditional com-
puting paradigm, has shown its clear limitations and has
been evolving towards a more distributed form called edge
computing [2], [3], [4], [5]. With edge computing a general
computing platform is constructed, where computing/storage
resources are distributed at the network edge, in close prox-
imity of the end devices for IoT services. As a result, reliable
network connections with high bandwidth and low latency

*The corresponding author is Fangming Liu (fangminghk@gmail.com).
This work is supported by Huawei, by National Key Research & De-

velopment (R&D) Plan under grant 2017YFB1001703, by NSFC under
grant 61722206 and 61761136014, and by National Program for Support
of Top-notch Young Professionals in National Program for Special Support
of Eminent Professionals. Lin Wang is supported partially by the German
Research Foundation (DFG) Collaborative Research Center (CRC) 1053 –
MAKI subproject B2.

can be established between IoT devices and edge computing
platforms, allowing IoT services to be hosted in a seamless
and transparent fashion.

Unlike cloud computing where abundant computing re-
sources are centralized at huge data centers, edge computing
relies on a large number of distributed computing nodes (co-
located at wireless access points for example), each equipped
with limited computing capability [2]. This difference brings
up questions over the suitable service model for edge com-
puting. As many IoT services follow periodical/intermittent
request patterns [6], reservating resources at the granularity of
virtual machines as done in infrastructure-as-a-service (IaaS)
will lead to considerable potential resource waste, deteriorating
the resource limitation of edge nodes. On the other hand,
software-as-a-service (SaaS) achieves finer-grained resource
provisioning, but at the cost of programmability.

Serverless computing is a service model originally proposed
for the cloud [7]. Serverless computing enables high elasticity
of cloud resources, as apposed to IaaS, by following an event-
based model, while still retaining the high programmability of
the cloud as apposed to SaaS. With serverless computing, an
IoT service, when deployed, is encapsulated in a lightweight
container and is invoked only when triggered by an event
requesting the service. The container is destroyed when the
processing of the event is completed and the resources allo-
cated to the container are released. Popular implementations
of serverless computing are mostly focused on function-as-a-
service (FaaS) such as AWS Lambda [8]. This trend has also
been extended to the edge and serverless edge computing has
received some initial attentions recently [9], [10], [11].

One fundamental challenge in serverless edge computing
is the startup latency incurred by cold-starting the container
upon a triggering event. As shown in Table 7 in [7], the cold-
start latency of a Node.js-based function on current serverless
platforms including AWS, Google, and Azure varies from few
hundred milliseconds to a few seconds. Meanwhile, many IoT
services perform only short computation when triggered, e.g.,
more than half of the functions execute for less than one
second on average in Azure [12], so that the high cold-start
latency is detrimental. While several techniques for accelerat-
ing the cold start of containers have been discussed [13], [14],
such latency is still non-negligible.

The cold-start latency can be masked effectively by con-

λ

λλ

λ

Non-cached
container (cold start)

Cached container
(warm start)

Request
distribution

λλ λλ λ
λ

λ
Startup Run

Run λλ
Container
caching

Cached

Destroyed

Fig. 1. Container caching jointly with request distribution for optimizing
system efficiency in serverless edge computing.

tainer caching, i.e., keeping the container instance alive in
memory after serving a request to avoid cold start for later
requests. Reusing a cached container (referred to as warm
start) for the next triggered call for the same IoT service can
reduce the startup latency by at least an order of magnitude [7].
However, container caching is not free: First, container caching
requires resource occupation, degrading resource utilization
and thus violating the key elasticity premise of serverless
computing where resources should be occupied only when
necessary [15]. Second, memory media is still relatively ex-
pensive and the memory lifetime, usually measured by the P/E
cycle endurance, is extended exponentially with the decrease
of data retention time [16]. Larger memory capacity is required
if retaining more data in memory, which increases the energy
consumption of the edge node [17]. Therefore, deciding the
keep-alive time for a container leads to the tradeoff between
average startup latency and resource utilization, which has to
be examined carefully but has been overlooked in the literature
so far.

In this paper, we investigate the container caching problem
in serverless edge computing. Our main idea is to leverage
the flexibility provided by the distributed and heterogeneous
nature of edge computing platforms and study the problem
of container caching jointly with request distribution (C2RD).
As illustrated in Figure 1, when requests are distributed to
the cached container, the container will serve these requests
with a warm start. Instead, the non-cached container will incur
a cold start before providing service. After all requests are
completed, container must be destroyed or cached in memory.
More specifically, we aim to make informed decisions on
both distributing service requests to appropriate edge nodes
and caching containers on these edge nodes. Our goal is to
achieve optimal system efficiency defined by a combination
of startup latency and resource utilization. C2RD concerns
online decision making over time without a priori information
on service request arrivals. To the best of our knowledge, we
are among the first to study this joint optimization problem in
serverless edge computing.

The C2RD problem is nontrivial mainly due to the following
challenges: (1) Edge nodes are distributed and heteroge-
neous, resulting in varying startup latencies and container
caching costs in terms of resource occupation on different
edge nodes. Therefore, different nodes may prefer different

container caching strategies. (2) Retention-aware container
caching decisions have to be made a priori without knowing
the future request arrival pattern. (3) Request distribution is
hard in nature and this becomes even worse when intertwined
with container caching on edge nodes. All these contribute to
the extraordinary complexity of C2RD.

Prior research falls short of fully addressing the above
challenges. Many works have focused on request distribution
and/or service placement in edge computing [18], [19], [20],
[21], [22], [23], [24], without considering service caching.
Studies on content caching usually assume retention non-
awareness [25], [26], meaning that caching the content incurs
no cost. Retention-aware content caching in wireless networks
have also been discussed in [27], [28], [29]. However, content
caching has a fundamental difference to our problem that
cached content can serve multiple requests simultaneously
while a cached container can only serve one request at a
time, rendering these solutions inapplicable. Most recently,
Shahrad et al. characterize the serverless workload and propose
a hybrid histogram policy for caching (keep-alive) serverless
functions [12]. However, their focus is on central clouds and
does not consider the heterogeneity of the distributed edge
environment.

Overall, this paper makes the following contributions:

• We provide a comprehensive model to capture C2RD
and formulate it with an integer linear program. Our
model characterizes all the aforementioned challenges
and features tradeoffs between startup latency cost and
container retention cost in the objective function. We also
present complexity analysis to C2RD, where we show
that C2RD is NP-hard even in a simplified form.

• We reveal step by step that special cases of C2RD can be
mapped to the classic ski-rental problem. We start from
the simplest case where we assume a single edge node,
serial request arrivals, and no resource capacity limits on
edge nodes, and show that the problem can be treated
equivalently to the classic ski-rental problem. We further
show that concurrent request arrivals can be handled as
a set of separate problem instances with serial request
arrivals. We finally show that the multi-node case can
be transformed into a modified version of the multi-shop
ski-rental problem and we present an online competitive
algorithm named RDC with performance guarantee.

• Based on the competitive algorithm, we propose an online
algorithm called O-RDC with theoretically proved worst-
case performance bound for the original C2RD problem,
where we introduce opportunistic behaviors to the request
distribution process in response to resource capacities and
network latencies between edge nodes.

• We carry out extensive experiments based on both syn-
thetic and real-world (Azure) datasets. We demonstrate
that our algorithm outperforms the state-of-the-art con-
tainer caching strategies used in current serverless com-
puting systems, including fixed caching and warm queue,
by up to 94.5% in terms of the overall system cost.

II. THE MODEL

We provide the system model and problem formulation in
this section. Important notations are listed in Table I.

A. System Model

We consider an edge computing system consisting of a
number of edge nodes dispersed in multiple geographical
zones, serving different IoT services. Here, the zone is an area
with practical usages, such as enterprise campus, residential
area or business area, an example of multiple zones is given
in the following Sec. V-A and Figure 3. All the edge nodes in
the system are connected by a network. We assume that edge
nodes in a zone are interconnected by a local area network and
thus, the communication latency between them is negligible.
Each edge node serves as a network gateway as well as a
computing facility for peripheral IoT devices. We denote the
set of edge nodes in the system by N = {1, ..., N}. Each
edge node n is equipped with a certain amount of hardware
resources (e.g., memory) denoted by Un. We consider the case
where the system works in a time-slotted fashion within a
large time span T = {1, ..., T} and a time slot is denoted by
t 2 T . We assume requests can be served within one time
slot, which is in consistent with general service management
frameworks [22], [30].

All the edge nodes in the system receive service requests
of different types from IoT devices that are attached to the
edge nodes. A central controller is in charge of distributing
requests to appropriate edge nodes for handling in the sys-
tem. We denote the set of request types in the system by
K = {1, ...,K}. The number of requests of type k 2 K that are
generated at edge node n in time slot t is given by �

n
k,t 2 Z+

0 .
All edge nodes follow the serverless computing paradigm,
where they handle requests distributed to them in an event-
based manner. Upon the arrival of a request of a new type
k 2 K, the edge node instantiates a container encapsulating
the corresponding IoT service and handles the request with
the container. A container of type k demands uk amount of
hardware resources. As discussed, the container instantiation
process typically incurs a considerable delay, known as the
startup latency, before the container can actually serve the
request. Once the processing of the request is completed, it
is decided whether the container should be destroyed imme-
diately or be cached for later requests of the same type. If a
request is served by a cached container, the startup latency is
considered negligible. We denote the number of requests of
type k distributed to edge node n in time slot t by m

n
k,t. The

number of requests of type k generated at edge node n1 and
distributed to edge node n2 in time slot t is given by m

n1!n2
k,t .

We have m
n
k,t =

P
n02N m

n0!n
k,t .

B. Cost Model

We consider two categories of costs that are critical to the
performance of the system: service latency cost and container
retention cost. The service latency cost is composed of two
parts: network communication cost and container instantiation

TABLE I
LIST OF NOTATIONS

Symbol Definition

N Set of edge nodes
K Set of service types
T Set of time slots
Un Hardware resource capacity of node n
uk Hardware resource demand of a type-k container

l(n1, n2) Communication cost between nodes n1 and n2
dnk Container instantiation cost of type k on node n
rnk Container retention cost of type k on node n
�n
k,t Number of type-k requests generated at node n at time t

mn
k,t Number of type-k requests distributed to node n at time t

mn1!n2
k,t Number of type-k requests distributed from n1 to n2

ank,t Number of cached type-k containers on node n before t
ynk,t Number of type-k containers to be destroyed after serving

requests on node n after t

cost, which are all proportional to the actual latency. The
container retention cost is proportional to the retention time.

We denote the communication cost between two edge nodes
n1 and n2 by l(n1, n2) � 0, which is proportional to the
network communication latency, and l(n1, n2) > 0 if n1 and
n2 locate in different zones. The total network communication
cost for all requests in time slot t is given by

P
k2K

P
n1,n22N l(n1, n2)m

n1!n2
k,t . (1)

The container instantiation cost for serving a request depends
on the state of the container as discussed. Denote the number
of containers of type k that are active at the beginning of time
slot t (i.e., cached from last time slot) on edge node n by a

n
k,t

and the cost of instantiating a container of type k on node
n by d

n
k . The total container instantiation cost for serving all

requests in time slot t is given by
P

k2K
P

n2N max{mn
k,t � a

n
k,t, 0}dnk , (2)

meaning that only the requests that are not served by cached
containers will incur container instantiation costs. Overall, the
service latency cost can be expressed as C

L
t = (1)+ (2). The

container retention cost interprets the hardware resource price
paid for caching a container (i.e., maintaining its active state),
which is proportional to the container retention time. The total
retention cost for all the cached containers at t is given by

C
R
t =

P
k2K

P
n2N a

n
k,tr

n
k , where

a
n
k,t = max{ank,t�1,m

n
k,t�1}� y

n
k,t�1,

(3)

r
n
k is the price for caching a container of type k on node n for

a time slot duration, and y
n
k,t�1 is the number of containers

to be destroyed after serving requests on node n at the end
of time slot t � 1. As discussed in Sec. I, container caching
affects the resource utilization, resource attrition rate, and
energy consumption. Hence, rnk can be set according to the
resource occupation of the type-k container and the hardware
specification of node n.

The total cost of the system is a sum of the service latency
cost and container retention cost:

Ct = C
L
t + ↵C

R
t . (4)

The parameter ↵ can be used to tune the tradeoff between
the two types of cost. Note that ↵rnk d

n
k should always be

followed and we will focus on this case in the rest of the paper;
otherwise, caching containers will cost more than instantiating
containers, making container caching unhelpful.

C. Problem Formulation
Our problem is to make two decisions: request distribution

(which node to handle a request, i.e., mn1!n2
k,t) and container

caching (how many containers of each type to be destroyed on
each node in each time slot, denoted by y

n
k,t). The objective is

to minimize the total cost Ct over time. The problem can be
formally formulated with the following integer linear program:

(P1) min
XT

t=1
Ct

s.t.
P

k2Kuk max{ank,t,mn
k,t} Un, 8n, 8t,

P
n02Nm

n!n0

k,t = �
n
k,t, 8k, 8n, 8t,

y
n
k,t 2

⇥
0,max{ank,t,mn

k,t}
⇤
, 8k, 8n, 8t.

(5)

The first constraint ensures that the hardware resource limit
is respected on every node. The second constraint states that
every request will be distributed to exactly one node. The last
constraint restricts that the number of destroyed containers is
no more than the number of already instantiated containers.
The problem is hard in nature and we prove that

Theorem 1. The simplified C2RD problem is NP-hard.

Due to the page limit, we provide the proof in the Appendix
of our technical report [31].

III. ALGORITHMS FOR SPECIAL CASES

In this section, we first tackle the problem in some special
cases, from which we gain insights for designing our algorithm
for the general case. All the special cases discussed in this
section assume that the hardware resource capacity constraint
is relaxed and all the nodes (if more than one) are in the same
zone (i.e., the network latency is omitted because edge nodes
are interconnected by a local area network). We start from the
simplest case with only one node receiving serial requests in
the system. We then expand to cases with concurrent requests
per service type and further with multiple nodes. We finally
provide an online algorithm and rigorously prove its optimality
under these special cases. The proposed optimal online algo-
rithm provides insights for designing the heuristic algorithm
for the general case where hardware resource constraint and
multiple zones are considered, which will be discussed in the
following Sec. IV. The algorithm for the general case deviates
from the optimal solution only under a few extreme conditions.

A. Single Node Serial Requests
We consider there exists only one node receiving serial

requests in the system. In a single time slot, there is at most
one request of the same type arriving and the arrival of requests
is completely random. In this case, request distribution is
irrelevant and decisions for caching containers of different
types are decoupled since we omit the resource capacity

Fig. 2. Mapping of the single node serial requests container caching problem
to the ski-rental problem.

constraints. We focus on a single container type and show that
this problem can be mapped to the classic ski-rental problem.

Assume in time slot t we receive a request and there is no
cached container to serve it. A container is thus instantiated
to process the request. Upon completion, we have to make a
decision on whether we should cache the container or destroy
it. If we knew that there would be another request arriving
before or in time slot t+d

n
k/↵r

n
k , the optimal decision would

be to cache the container; otherwise, the decision is to destroy
the container immediately after processing the current request.
Unfortunately, such information about request arrivals cannot
be known a priori in most online scenarios.

The ski-rental problem describes such a scenario where
a skier is faced with a to-rent-or-to-buy struggle. Since the
suitable days for skiing is unknown, the skier has to choose
between renting a pair of skis or simply buying it. Assume
the cost of renting the ski is $A and the cost of buying it is
$B. The skier has to make the decision for the current skiing
season such that the total cost is minimized. We argue that

Theorem 2. The single node serial requests container caching
problem is equivalent to the ski-rental problem.

Proof. As shown in Figure 2, we can build a mapping between
the two problems as follows: The sequence of time slots are
separated into several ski-rental instances. When a container
has served a request, how to serve the next request is just
like a ski-rental instance which starts with A = ↵r

n
k and

B = d
n
k . The unpredictable time interval of next request is

just like the unknown suitable days for skiing. Each time slot
is mapped to a ski day. On the one hand, caching the container
corresponds to renting the ski, which incurs a cost of ↵rnk . On
the other hand, destroying the container corresponds to buying
the ski in the ski-rental problem, because when the container is
destroyed, an instantiation cost of dnk will have to be paid for
the next request anyway. Therefore, we can bring forward the
instantiation cost of the upcoming request to the point when we
destroy the container. Whenever a request arrives, the current
ski-rental instance ends and a new ski-rental instance begins
at the next time slot. This completes the proof.

There are in general two classes of online algorithms for the
ski-rental problem: deterministic and probabilistic [32], [33].
We use competitive ratio – the ratio between the objective of
a solution generated by the considered online algorithm and
the objective of the offline optimal solution (assuming perfect
knowledge about the future), to measure the performance of
an online algorithm.

B. Single Node Concurrent Requests
We now discuss the case with multiple requests of the

same type arriving in a time slot. Since the containers are
shared among all the requests of the same type, the caching
decisions for all the containers will be dependent on each
other if not handled appropriately. We propose to assign
decreasing priorities to the containers of the same type where
requests of the same type, upon their arrivals, are always
served by available containers with higher priorities. Thus,
the i-th request will be served by the container with the i-th
highest priority and the decisions for container caching will
be separated from each other. The results presented above will
apply directly.

C. Multiple Nodes Concurrent Requests
Now we consider a more general scenario where we assume

multiple nodes and allow multiple requests of the same type
to be processed by these nodes simultaneously. We show that
this problem can be transformed into a variant of the multi-
shop ski-rental problem [34]. Without loss of generality, we
assume all nodes are heterogeneous in hardware specification
and their processing capabilities differ from each other. One
observation is that a higher specification would provide lower
container instantiation cost, but the container retention cost
will be larger. Assume we have in total N nodes (with varying
specifications) in the system and the nodes are ranked in
an increasing order with respect to their specifications, the
following relationships follow for any service type k 2 K.

d
1
k > d

2
k > ... > d

N
k > 0, rNk > ... > r

1
k > 0. (6)

With request distribution, a new dimension of decision making
(i.e., distributing requests to appropriate nodes), is of rele-
vance. However, jointly making decisions for both request
distribution and container caching is non-trivial. To this end,
we propose an online algorithm by assigning each node
a probability density function. The request distribution and
container caching strategy will be based on this function. We
will show that by following our strategy the competitive ratio
of our online algorithm can be minimized in expectation.

Before we present the online strategy, we discuss the
optimal offline strategy and its total cost. We know that if the
request arrival time interval � 2 Z+ is pre-given, the optimal
offline decision can be easily made: If � > d

N
k /↵r

1
k, the

container should be destroyed immediately when the handling
of the previous request is completed and a new container is
instantiated for the next request after � time slots. The total
cost for this decision is d

N
k as the container retention cost

is zero. On the other hand, if 1 � < d
N
k /↵r

1
k, the optimal

decision is to cache the container during the whole � time slots,
but the optimal location of the container being cached cannot
be decided easily. Fortunately, we know that the optimal total
cost OPT (�) can be lower bounded by the total cost assuming
the node with the cheapest retention cost is used, i.e.,

OPT (�) �
(
↵r

1
k�, if 1 � d

N
k /↵r

1
k,

d
N
k , if � > d

N
k /↵r

1
k.

(7)

According to the case discussed in Section III-B, this result
can be directly extended to multiple concurrent requests of the
same type, since these requests can be treated separately. Note
that services of different types will be handled separately as
well, so index k can be set to any valid value in K and the same
analysis will apply. Without loss of generality, we assume k

is fixed to a certain value in the rest of this section.
Now let us discuss the online scenario where � is unknown

a priori. We denote by (n, x) the pair of decisions for request
distribution and container caching (i.e., a request with decision
pair (n, x) will be distributed to node n for processing and
the container for serving this request will be destroyed after
being cached for x time slots). We define a function pn(x) to
represent the probability that the decision pair (n, x) is chosen
for a request. Hence, we have

P
n2N

R1
0 pn(x)dx = 1. (8)

Let cn(x, �) denote the total cost for this request under the
decision pair (n, x). We know

cn(x, �) =

(
↵r

n
k �, if � x,

↵r
n
kx+ d

n
k , otherwise.

(9)

The expected total cost for handling a request under the
decision pair (n, x) can be expressed by

Cn(pn(x), �) =
R1
0 cn(x, �)pn(x)dx (10)

=
R �
0 (↵r

n
kx+ d

n
k)pn(x)dx+

R1
� ↵r

n
k �pn(x)dx.

The competitive ratio � of an algorithm based on strategy
(n, x) with function pn(x) is defined as

� = max
nX

n2N
Cn(pn(x), �)/OPT (�)

o
. (11)

Our goal is to find out a function p
⇤
n(x) such that the resulting

strategy (n, x) based on p
⇤
n(x) can minimize the worst-case

competitive ratio �.

(P4) min �

s.t.
X

n2N
Cn(pn(x), �)/OPT (�) �,

X

n2N

Z +1

0
pn(x)dx = 1,

x 2 Z, � 2 Z+
.

(12)

The following theorem provides the properties that p⇤n(x) has
to follow and sheds some light on how p

⇤
n(x) can be computed.

Theorem 3. The optimal request distribution and container
caching function p

⇤
n(x) satisfies the following properties:

p
⇤
n(x) =

(
'ne

x
✓n
k , if x 2 (bn+1, bn),

0, otherwise,
(13)

where ✓
n
k and 'n satisfy that

✓
n
k = d

n
k/↵r

n
k ,

'nd
n
ke

bn
✓n
k = 'n�1d

n�1
k e

bn

✓n�1
k , 8n 2 [2, N].

(14)

Algorithm 1: Optimal Probability Distributions (DIST)
1 DN 0
2 for n = N to 2 do
3 Compute Dn using equation (20)
4 Compute bn using equation (22)
5 '1 1
6 for n = 1 to N do
7 Compute 'n using equation (16)
8 !n

R bn
bn+1

pn(x)dx/'1

9 !
P

n2N !n

10 for n = N to 1 do
11 'n 'n/!

Algorithm 2: Random Distribution & Caching (RDC)
1 p⇤n(x) DIST(dnk ,↵r

n
k), 8k 2 K

2 for k 2 K do
3 �k,t

P
n2N �n

k,t

4 for n 2 N do
5 mn

k,t �k,t

R bn
bn+1

p⇤n(x)dx

6 if mn
k,t an

k,t then
7 Compute yn

k,t by an
k,t �mn

k,t and x⇤
n

8 an
k,t+1 an

k,t � yn
k,t

9 else
10 yn

k,t 0
11 an

k,t+1 mn
k,t

The range (bn+1, bn) represents the caching duration on node
n, where caching breakpoints bn satisfy that dNk /↵r

1
k = b1 �

b2 � ... � bN � bN+1 = 0. Solving problem P4 is equivalent
to computing caching breakpoints {b1, b2, ..., bN+1}.

The proof is presented in the Appendix of our technical
report [31].

The algorithm for computing the breakpoints and the opti-
mal probability functions p

⇤
n(x) is listed in Algorithm 1. Here

we introduce some equations that will be used in the algorithm.

Dn = 'n+1

'n
Dn+1 � ✓

n
k

�
e

bn+1
✓n
k � 1

�
+ 'n+1

'n
✓
n+1
k

�
e

bn+1

✓n+1
k � 1

�
,

(15)
where we have

'n+1

'n
=

d
n
k

d
n+1
k

�
e

bn+1
✓n
k

� bn+1

✓n+1
k

�
. (16)

Consequently, bn can be computed as

bn = ✓
n
k ln

✓
(dn�1

k r
n
k � d

n
kr

n�1
k) (1�Dn↵r

n
k/d

n
k)

dnk (r
n
k � r

n�1
k)

◆
. (17)

The probability distribution functions p
⇤
n(x) generated by

the DIST algorithm will be used for making request distri-
bution and container caching decisions and the competitive
ratio following these decisions will be minimized. For each
node n the approximate optimal decision for container caching
duration x

⇤
n can be computed as x

⇤
n = b(bn+1 + bn)/2c.

Our algorithm for optimal request distribution and container
caching in each time slot is listed in Algorithm 2. We distribute

requests to each node based on the probability computed byR bn
bn+1

p
⇤
n(x)dx. Once the requests are served, we decide which

containers to be destroyed. If the number of cached containers
is more than the number of generated requests in this time slot,
we destroy the containers that have been cached longer than x

⇤
n

time slots since last serving a request. This algorithm serves
as a fundamental component of our proposed online algorithm
described in the next section.

IV. OPPORTUNISTIC REQUEST DISTRIBUTION AND
CONTAINER CACHING FOR THE GENERAL CASE

Now we consider the general case where there exist multiple
geographical zones and each node has hardware resource
constraints. We denote the set of all zones by Z and the set
of nodes in zone z 2 Z by Nz . Requests generated in each
zone should all be served by the cached containers in that
zone if there are already enough cached containers; otherwise,
if requests cannot be fully handled in a zone by cached
containers, the nodes in neighbor zones with enough cached
containers will be employed, at the expense of extra network
communication cost. In our system, the communication cost
is among minimal and maximal instantiation cost of k types
of containers. Our algorithm for this problem is highly based
on the RDC algorithm for a single zone and follows an
opportunistic manner, as shown in Algorithm 3.

For a zone z where the number of requests generated in
the zone is smaller than the number of cached containers
(i.e.,

P
n2Nz

�
n
k,t

P
n2Nz

a
n
k,t), we distribute the requests

to each node based on the probability distribution functions
p
⇤
n(x). The extra cached containers can be used for requests

distributed from other zones.
For a zone z where the number of requests generated in

the zone is greater than the number of cached containers
(i.e.,

P
n2Nz

�
n
k,t >

P
n2Nz

a
n
k,t), we first use all the cached

containers in the zone to serve requests and distribute the
extra requests to neighbor zones which satisfy that the network
communication cost between the current zone and the neighbor
zone is smaller than the minimal container instantiation cost
in the current zone. In this case, the requests which are served
by small-size containers with smaller instantiation cost, would
have less chances to be served by containers in neighbor zones.
Therefore, we handle requests with small-size containers and
cache corresponding containers preferentially. After traversing
all the neighbor zones, if extra requests are not all handled
successfully, new containers have to be instantiated in the
current zone with instantiation cost anyway. If a node cannot
instantiate more containers due to resource constraints, another
node with minimal container instantiation cost will be chosen
to handle the requests.

Theorem 4. The time complexity of O-RDC is O(KZ
2
N

2).

The proof is provided in the Appendix of our technical
report [31].

Theorem 5. The worst-case cost for serving a type-k request
is bounded by max{(↵rnkx⇤

n + d
1
k)/↵r

1
k(x

⇤
n + 1)}, n 2 N .

Algorithm 3: Opportunistic RDC (O-RDC)
1 p⇤n(x) DIST(dnk ,↵r

n
k), 8k 2 K

2 for z 2 Z do
3 for k 2 K do
4 �k,t

P
n2Nz

�n
k,t

5 ak,t
P

n2Nz
an
k,t

6 if �k,t ak,t then
7 for n 2 Nz do
8 mn

k,t �k,t

R bn
bn+1

p⇤n(x)dx

9 Compute yn
k,t, an

k,t+1

10 else
11 for n 2 Nz do
12 for z0 2 Z and z0 6= z and n0 2 Nz0 do
13 Compute mn!n0

k,t

14 �k,t �k,t �mn!n0
k,t

15 for n 2 Nz do
16 mn

k,t �k,t

R bn
bn+1

p⇤n(x)dx

17 Compute yn
k,t, an

k,t+1

Proof. Firstly, we recall the offline optimal solution to serve
a type-k request. If we know the request arrival time interval
� 2 Z+, we can obtain the lower bound of total cost to serve
this request as:

OPT (�) �
(
↵r

1
k�, if 1 � d

N
k /↵r

1
k,

d
N
k , if � > d

N
k /↵r

1
k.

(18)

Then, we consider the maximum cost produced by O-RDC.
We cache the type-k container on node n for x⇤

n 2 [0, dNk /↵r
1
k]

time slots then destroy it. Thus, if the time interval � of type-
k request is less than x

⇤
n, the total cost consists of only the

retention cost ↵rnk �; otherwise, we destroy the container and
instantiate it when the request arrives and cannot be handled by
nodes in neighbor zones, so the total cost consists of retention
cost ↵rnkx

⇤
n and instantiation cost dnk .

With hardware resource constraints, sometimes the con-
tainer cannot be instantiated on node n. The worst case
happens when the container can only be instantiated with the
largest instantiation cost d1k on node 1. We formulate the total
cost of worst case as follows:

WORST (�) =

(
↵r

n
k �, if 1 � x

⇤
n,

↵r
n
kx

⇤
n + d

1
k, if � > x

⇤
n.

(19)

We define fk(�) as fk(�) = WORST (�)/OPT (�), thus
the maximum fk(�) is the worst-case competitive ratio. The
function of fk(�) is expressed as:

fk(�) =

(
r
n
k/r

1
k, if 1 � x

⇤
n,

(↵rnkx
⇤
n + d

1
k)/↵r

1
k�, if � > x

⇤
n.

(20)

If 1 � x
⇤
n, fk(�) is a constant function. If � > x

⇤
n,

fk(�) is the monotonically decreasing function, so we need
to compare the value fk(� = x

⇤
n + 1) with the value r

n
k/r

1
k.

When � = x
⇤
n + 1, fk(x⇤

n + 1) = (↵rnkx
⇤
n + d

1
k)/↵r

1
k(x

⇤
n +

Fig. 3. Graphical representation of the edge nodes and users in Melbourne
CBD area in the used dataset.

1). Obviously, (↵rnkx
⇤
n + d

1
k)/↵r

1
k(x

⇤
n + 1)� r

n
k/r

1
k = (d1k �

↵r
n
k)/↵r

1
k(x

⇤
n+1) > 0. Therefore, the maximum fk(�) would

be reached when � = x
⇤
n+1 and its value could be computed

by max{(↵rnkx⇤
n + d

1
k)/↵r

1
k(x

⇤
n + 1)}, n 2 N .

V. PERFORMANCE EVALUATION

In this section, we validate the performance of O-RDC with
trace-driven simulations and OpenWhisk implementation.

A. Simulation Setup

Dataset: We take advantage of the EUA dataset [35], which
contains 125 edge nodes and 816 users distributed in the area,
we divide this area into 15 zones and each zone contains
7 to 10 edge nodes, as shown in Figure 3. The network
latency between two zones in our model is measured by
the geographical distance which is computed by the zone’s
approximate center coordinates.
Request: We assume in our system there exist K = 50
types of requests. The corresponding container sizes are in
[20, 250] MB. The users within each zone will randomly
generate the requests and the generated requests conform to
the Zipf-� popularity law [29], [28]. Typically, the parameter
� is between 0.5 and 1.5. Furthermore, We use the Azure
dataset [12], which contains the invocations of functions across
14 days on Azure, to generate the request arrival pattern.
Edge node: We assume the system has 5 types of edge nodes,
where the CPU frequencies are in {2.4, 2.7, 3.0, 3.3, 3.6} GHz
and the allocated memory resources are randomly distributed
within [16, 24] GB.
Instantiation and retention cost: According to [13], we
assume the container instantiation cost d

n
k is inversely pro-

portional to the CPU frequency of node n and the container
retention cost rnk is proportional to the CPU frequency of node
n. The d

n
k and r

n
k are all proportional to the container size uk.

Number of users: To best simulate the resource constraints
in edge nodes, we assume the total number of users in our
simulation is 10⇥ or 20⇥ the users in the chosen dataset.
This creates a scenario where a single node cannot handle all
the distributed requests due to its limited memory capacity as
the number of users increases.

0.1x 0.5x 1x 2x 4x 6x
0

0.2

0.4

0.6
N

or
m

al
iz

ed
 T

ot
al

 C
os

t
O-RDC HIST FC WQ

(a) Zipf-� = 0.5

0.1x 0.5x 1x 2x 4x 6x
0

0.2

0.4

0.6

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

O-RDC HIST FC WQ

(b) Zipf-� = 1.0

0.1x 0.5x 1x 2x 4x 6x
0

0.2

0.4

0.6

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

O-RDC HIST FC WQ

(c) Zipf-� = 1.5

Fig. 4. Total cost with 10⇥ users.

0.1x 0.5x 1x 2x 4x 6x
0

0.5

1

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

O-RDC HIST FC WQ

(a) Zipf-� = 0.5

0.1x 0.5x 1x 2x 4x 6x
0

0.5

1

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

O-RDC HIST FC WQ

(b) Zipf-� = 1.0

0.1x 0.5x 1x 2x 4x 6x
0

0.5

1

N
or

m
al

iz
ed

 T
ot

al
 C

os
t

O-RDC HIST FC WQ

(c) Zipf-� = 1.5

Fig. 5. Total cost with 20⇥ users.

B. Performance Benchmark
• Histogram (HIST): This is the strategy proposed by [12].

The history arrival information of requests is used to
determine pre-warming and destroying containers.

• Fixed Caching (FC): This is the caching strategy widely
used in AWS Lambda [8]. An instantiated container will
be cached for a fixed long duration. Thus, using the
solution of classic ski-rental problem, we denote the
maximum d

n
k/↵r

n
k as the Fixed Caching (FC) for type-k

request, respectively.
• Warm Queue (WQ): This is the strategy proposed by

[36]. A warm queue, whose capacity equals the maximum
number of requests, is designed to cache containers.
When replacing cached containers, it uses the First In and
First Out strategy. This is a retention-unaware caching
strategy only considering how to replace containers.

Without loss of generality, the above two strategies dis-
tribute requests evenly to each node. We compare the total
cost accumulated across 1000 time slots.

C. Performance with Synthetic Trace
Overall performance summary: From Figure 4(a) to Fig-
ure 5(c), we can observe that O-RDC could receive obvious
better performance for reducing the total cost by up to 94.5%
compared with WQ. O-RDC could also outperform HIST and
FC by up to 71.7% and 53.6%, respectively.
Impact of parameter ↵: We set ↵ from 0.1 to 6. When ↵ is
greater than 6, the container retention cost ↵rnk becomes larger
than the container instantiation cost dnk , which implies caching
containers will always incur more cost than instantiating
containers so the container caching cannot provide any benefit.
From Figure 4 to Figure 5, we can observe that the value of ↵
has a noticeable impact on the overall system cost. O-RDC and
FC shorten their caching durations when ↵ increases, leading
to more times to instantiate containers and more retention
cost. HIST pre-warm and cache containers based on recent

TABLE II
REQUEST DISTRIBUTION PROBABILITY

Node Type 1 2 3 4 5

Probability 23.8% 15.2% 11% 8.3% 41.7%

request arrival pattern. WQ caches containers based only on
the number of repeated requests between two consecutive
time slots, which is not helpful in optimizing the total cost
across multiple time slots. That is why we observe a dramatic
increase in the total cost. The results under varying ↵ prove
the effectiveness and generality of O-RDC.
Impact of parameter �: We use the Zipf law to simulate
the request popularity and vary the Zipf skewness parameter
� from 0.5 to 1.5 [29], [28]. Observing from Figure 4 to
Figure 5, increasing � leads to decreased total cost by up to
21.1% for all baselines. As � increases, higher probability re-
quests will be generated more frequently and lower probability
requests become more sparse. For O-RDC, FC, and HIST,
the cached containers could serve more higher probability
requests with shorter request arrival intervals so as to reduce
the instantiation cost. For WQ, generating popular requests
more frequently increases the number of repeated requests
between two consecutive time slots, which correspondingly
reduces the container replacement times. This is why the
increase of � leads to similar declines in total cost for all
baselines. Results prove the effectiveness of O-RDC in most
scenarios where the requests conform to the Zipf law.
Impact of the number of users: We increase the number of
users in the dataset from 10⇥ to 20⇥ to explore the impact
of limited memory capacity on overall system cost. Results
from Figure 4 to Figure 5 show that O-RDC performs stably
and optimally even when doubling the number of users. The
total cost of O-RDC generally increases from 193% to 205%.
Although the significant increase of users could break the
optimal request distribution on the node, as shown in Table II,

0.0001x 0.0005x 0.001x 0.002x 0.004x
0

1

2

3

4

5

To
ta

l C
os

t (
m

s)

1010

Creating Cost
Retention Cost

O H F W
O H F W O H

H
H

F
F

F

O O
W

W

W

Fig. 6. Performance on Apache OpenWhisk.

O-R
DC-0.0001x

O-R
DC-0.0005x

O-R
DC-0.001x

O-R
DC-0.002x

O-R
DC-0.004x

HIST FC WQ

200

400

600

800

1000

1200

1400

C
o
ld

-s
ta

rt
 L

a
te

n
cy

 (
m

s)

0

0.2

0.4

0.6

0.8

1

C
o
ld

-s
ta

rt
 F

re
q

u
e
n
cy

Fig. 7. The cold-start latency and frequecy on O-RDC and baselines.

due to the memory resource constraints, O-RDC can still cache
the most used containers and timely destroy the idle containers.
This confirms that the performance of O-RDC is still bounded
when the optimal request distribution and container caching
cannot be realized due to the memory resource constraints.

D. Performance with Implementation in Apache OpenWhisk
In OpenWhisk, Controller routes actions invocations and

Invoker launches the containers to execute the actions [37]. We
modify these components (i.e., Controller and Invoker) to im-
plement O-RDC. We add the logic of request distribution into
the Controller and modify the unloading time of containers in
Invoker. We implement OpenWhisk on 3 servers with different
CPU frequencies (2.4GHz, 3.2GHz, 4.0GHz). The request
arrival pattern is simulated by Azure dataset [12]. We set
the Fixed Caching (FC) as 10-minute fixed keep-alive policy
which is used in several serverless computing platforms and set
each time slot as 1 second which is mostly used in serverless
computing platforms to figure out cost. We set instantiation
cost d

n
k and retention cost r

n
k as instantiation latency and

retention time, respectively. In this case, when ↵ 0.004,
the ↵r

n
k d

n
k will always follow. Figure 6 shows the total

time cost of our system under different retention parameter
↵, which has a same trend as simulation results. O-RDC
outperforms HIST by up to 35.2%, fixed 10-min keep-alive
policy by up to 51.4% and WQ by up to 36.7%, respectively.
Figure 7 shows the cold-start latency and frequency on O-RDC
and all baselines. We find that the median cold-start latency of
WQ is higher than O-RDC, HIST, and FC. That is because WQ
uses the First In and First Out strategy, which is different from
others who make decision based on the caching duration. The
results also show that when ↵ grows, the cold-start frequency
of O-RDC increases from 32.4% to 96.5% since it will destroy
containers more frequently to suppress the retention cost. The
cold-start frequency of all baselines keeps lower than 40%,

which results in a huge retention cost (see Figure 6). The
results further confirm the usability of our algorithms in the
real system.

VI. RELATED WORK

Request distribution and service placement in edge com-
puting: A lot of works have been carried out on request
distribution in edge computing. He et al. propose a joint ser-
vice placement and request scheduling algorithm to maximize
the number of served users in mobile edge computing under
resource constraints [21]. Later, they investigate a similar
problem by considering a two-time-scale framework to enable
system stability [22]. Closely related to [21], Poularakis et
al. propose an approximation algorithm based on the random-
ized rounding technique to maximize the number of served
users [23]. However, all these works focus on optimizations
in a single time slot. Our optimization problem spans across
multiple time slots. Service placement in edge computing has
also been extensively studied in [18], [19], [20], [30], [38],
[39], [40], [41], but not with service caching considered.
Content caching in edge computing: In edge computing
environments, content caching is of high importance as it
can significantly reduce the delay in content delivery if done
properly. Content caching has been widely studied for wire-
less/edge networks [27], [42], [43], [25], [26], mostly with
the target of reducing the content fetching time. For example,
Hou et al. present an online strategy for single node [25]
and Dehghan et al. consider the joint optimization of content
caching and request routing [26]. However, none of the above
consider the retention cost of cached content. While [28]
and [29] seem closely related to our problem as they also
study the tradeoff between content fetching time and cache
retention cost, content caching is fundamentally different from
container caching since cached content can serve multiple
requests simultaneously, while a cached container can serve
only one request at a time. This renders all the existing
solutions for content caching inapplicable. Furthermore, our
work contains request distribution strategies based on the
heterogeneous hardware specifications of edge nodes, which
has not been covered in the existing works.

VII. CONCLUSION

In this paper, we study the retention-aware container caching
problem in serverless edge computing, with the goal of op-
timizing system efficiency by container caching jointly with
request distribution. We show by analysis that this problem
is hard to solve even when being simplified. We reveal that
the problem in special cases can be mapped to the classic
ski-rental problem and we propose an online competitive
algorithm for these special cases. We further propose an
online algorithm for the general case considering resource
constraints and network latency. Extensive trace-driven sim-
ulations demonstrate the effectiveness of our algorithm on the
overall system cost.

REFERENCES

[1] A. I. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Communications Surveys and Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[2] M. Satyanarayanan and N. Davies, “Augmenting cognition through edge
computing,” IEEE Computer, vol. 52, no. 7, pp. 37–46, 2019.

[3] L. L. Peterson, T. E. Anderson, S. Katti, N. McKeown, G. M. Parulkar,
J. Rexford, M. Satyanarayanan, O. Sunay, and A. Vahdat, “Democratiz-
ing the network edge,” Computer Communication Review, vol. 49, no. 2,
pp. 31–36, 2019.

[4] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-task
transfer learning: Model and practice with data-driven task allocation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 6,
pp. 1357–1371, 2020.

[5] M. Li, Q. Zhang, and F. Liu, “Finedge: A dynamic cost-efficient
edge resource management platform for NFV network,” in IEEE/ACM
IWQoS. IEEE, 2020, pp. 1–10.

[6] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[7] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking be-
hind the curtains of serverless platforms,” in USENIX Annual Technical
Conference (ATC), 2018, pp. 133–146.

[8] “AWS Lambda,” https://aws.amazon.com/lambda/, 2019.
[9] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing:

extending serverless computing to the edge of the network,” in ACM
International Systems and Storage Conference (SYSTOR), 2017, p. 28:1.

[10] “Aliyun EdgeRoutine,” https://www.aliyun.com/activity/cdn/edgeroutine,
2020.

[11] “AWS Lambda@Edge,” https://aws.amazon.com/lambda/edge/, 2019.
[12] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,

E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in USENIX Annual Technical Conference (ATC),
2020, pp. 205–218.

[13] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and safer)
than your container,” in Symposium on Operating Systems Principles
(SOSP), 2017, pp. 218–233.

[14] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: towards high-performance serverless computing,”
in USENIX Annual Technical Conference (ATC), 2018, pp. 923–935.

[15] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A berkeley view on serverless computing,” CoRR, vol.
abs/1902.03383, 2019.

[16] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “WARM: improv-
ing NAND flash memory lifetime with write-hotness aware retention
management,” in IEEE Symposium on Mass Storage Systems and
Technologies (MSST), 2015, pp. 1–14.

[17] S. Lee, K.-D. Kang, H. Lee, H. Park, Y. Son, N. S. Kim, and D. Kim,
“Greendimm: Os-assisted dram power management for dram with a
sub-array granularity power-down state,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2021, pp. 131–142.

[18] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp.
1002–1016, 2017.

[19] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
IEEE Conference on Computer Communications (INFOCOM), 2018, pp.
468–476.

[20] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in IEEE
Conference on Computer Communications (INFOCOM), 2019, pp. 514–
522.

[21] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s
hard to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2018, pp. 365–
375.

[22] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-

intensive applications in edge clouds,” in IEEE Conference on Computer
Communications (INFOCOM), 2019, pp. 1279–1287.

[23] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint
service placement and request routing in multi-cell mobile edge com-
puting networks,” in IEEE Conference on Computer Communications
(INFOCOM), 2019, pp. 10–18.

[24] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “MOERA:
mobility-agnostic online resource allocation for edge computing,” IEEE
Trans. Mob. Comput., vol. 18, no. 8, pp. 1843–1856, 2019.

[25] I. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal algo-
rithm for online reconfiguration of edge-clouds,” in ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2016, pp. 291–300.

[26] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. K. Sitaraman, “On the complexity of optimal
request routing and content caching in heterogeneous cache networks,”
IEEE/ACM Trans. Netw., vol. 25, no. 3, pp. 1635–1648, 2017.

[27] J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mobile
networks with demand uncertainties,” IEEE/ACM Trans. Netw., vol. 24,
no. 5, pp. 2715–2727, 2016.

[28] S. Shukla and A. A. Abouzeid, “Proactive retention aware caching,”
in IEEE Conference on Computer Communications (INFOCOM), 2017,
pp. 1–9.

[29] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He,
“Proactive retention-aware caching with multi-path routing for wireless
edge networks,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp. 1286–1299, 2018.

[30] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE Conference on Computer Communications (INFOCOM), 2019,
pp. 1459–1467.

[31] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware
container caching for serverless edge computing,” Technical report.
[Online]. Available: https://fangmingliu.github.io/files/INFOCOM22-O-
RDC-TechnicalReport.pdf

[32] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Competi-
tive snoopy caching,” in Annual Symposium on Foundations of Computer
Science (FOCS), 1986, pp. 244–254.

[33] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. S. Owicki,
“Competitive randomized algorithms for non-uniform problems,” in
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1990, pp. 301–
309.

[34] L. Ai, X. Wu, L. Huang, L. Huang, P. Tang, and J. Li, “The multi-shop
ski rental problem,” in ACM SIGMETRICS, 2014, pp. 463–475.

[35] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, Optimal Edge User Allocation in Edge Computing with
Variable Sized Vector Bin Packing, 11 2018, pp. 230–245.

[36] M. G. McGrath and P. R. Brenner, “Serverless computing: Design,
implementation, and performance,” in IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW), 2017, pp. 405–
410.

[37] “Apache OpenWhisk,” https://openwhisk.apache.org/, 2019.
[38] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-aware vnf

deployment and migration for 5g network slice,” IEEE/ACM Transac-
tions on Networking, vol. 29, no. 5, pp. 2115–2128, 2021.

[39] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware vnf chain
deployment with efficient resource reuse at network edge,” in IEEE
Conference on Computer Communications (INFOCOM). IEEE, 2020,
pp. 267–276.

[40] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“Nfvdeep: Adaptive online service function chain deployment with deep
reinforcement learning,” in Proceedings of the International Symposium
on Quality of Service (IWQoS), 2019, pp. 1–10.

[41] S. Chen, L. Jiao, F. Liu, and L. Wang, “Edgedr: An online mechanism
design for demand response in edge clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 2, pp. 343–358, 2022.

[42] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,”
in IEEE International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 605–614.

[43] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism for
mobile edge caching,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 388–399.

