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Abstract—The computing frontier is moving from centralized
mega datacenters towards distributed cloudlets at the network
edge. We argue that cloudlets are well-suited for participation
in Emergency Demand Response (EDR) programs due to their
enormous energy consumption and flexible workload distribu-
tion, while existing EDR mechanisms for clouds and colocation
datacenters are not suitable for cloudlets. We propose a novel
online market mechanism, EdgeEDR, to incentivize cloudlets to
participate in EDR, featuring multiple cloudlet-specific designs.
At a high level, we observe that cloudlet operators can dynami-
cally switch on/off entire cloudlets to compensate for the energy
reduction required by the power grid. We formulate a long-term
social cost minimization problem and decompose it into a series
of one-round procurement auctions. In each auction instance,
we propose to let the cloudlet tenants bid with cost functions of
their service quality degradation tolerance, and let the cloudlet
operator choose the service quality, allocate the workload, and
shut down the cloudlets. Via rigorous analysis, we exhibit that our
bidding policy is individually rational and truthful; our workload
distribution algorithm has near-optimal performance in each
auction; and our overall online algorithm achieves a provable
competitive ratio. We further confirm the performance of our
mechanism through extensive trace-driven simulations.

I. INTRODUCTION

Cloudlets are the key infrastructures to realizing the promise
of edge computing [1], [2]. Often in the forms of small data
centers, machine rooms, and server clusters, cloudlets can
provide low latency, service redundancy, and data privacy
to end users from the Internet edge such as metro stations,
enterprise premises, cellular towers, and WiFi neighborhoods.
Due to the massive existence, a network of cloudlets consume
significant energy from the power grid; moreover, the wide
distribution of cloudlets contributes to more flexibility in their
workload management. These characteristics make cloudlets
well-suited for participation in Emergency Demand Response
(EDR) programs to help the power grid maintain stability,
reliability, and security [3]–[5]. In a typical EDR program,
at certain times such as the peak hours when the grid is under
pressure, it sends signals to the participants in terms of power
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caps or energy reduction goals, and in response the participants
mandatorily reduce their energy consumption and also receive
financial rewards as contracted from the grid.

Similar to an Infrastructure-as-a-Service (IaaS) cloud, not
all resources of an IaaS cloudlet are controlled by a single
party—the cloudlet facilities/hardware (e.g., servers) and the
cloudlet software (e.g., virtual machines) are often operated
by the cloudlet operator and the tenants (i.e., service providers
who provide services to end users), respectively. This creates
the so-called “split incentives” hurdle [3], [6]. For the EDR to
work, both the cloudlet operator and the tenants would need
to participate. However, tenants often have no motivation to
join, because their concerns are not about reducing energy but
about obtaining software resources guaranteed by the cloudlet
via paying usage fees to the cloudlet operator. This hurdle also
exists in “colocation” data centers, where tenants own and run
their servers, together with virtual machines and services.

Many efforts have been devoted to designing mechanisms to
address split incentives for demand response; however, existing
solutions have limitations, and are unsuitable for cloudlets.
First, they lack flexibility in procurements and are restrictive
in adapting to the changing market conditions. Auction-based
mechanisms procure tenants’ bids of fixed commitments [3]
while rewards-based mechanisms set reward rates and accept
tenants’ offers obliviously [7], [8]. Second, they mostly assume
tenants to reduce their workload to reduce power consump-
tion [6], [9] rather than manage tenants’ workload them-
selves, while cloudlet tenants often provide end-user-facing
services and are concerned about reducing workload. The only
workload-aware mechanism known to us explores temporal
flexibility for batch jobs [4], [5], which does not match the type
of workload of cloudlets with spacial flexibility for workload
distribution. Third, they primarily rely on costly, environment-
unfriendly, diesel-powered generators to compensate for the
energy reduction required by the grid. As EDR becomes more
frequent [4], the current reward from the grid may not suffice
to cover the generation cost; operators are actually cutting the
power infrastructure investment by down-sizing the capacity of
generators, which could compromise the EDR capability [9].
Thus, it is intriguing to seek other methods to compensate for
energy reduction.

For cloudlets, we make two key observations. Our first
observation is that a mechanism for cloudlets can explore
flexible service quality degradation without rejecting work-
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Fig. 1. An example of the cloudlet network.

load. As in Fig. 1, cloudlets are often connected to one
another via local area networks [10], with network delay
usually one order of magnitude smaller than the remote clouds.
Therefore, end user requests can be moved and processed at
locations different from where they originate with moderate
additional delay. A procurement-auction-based mechanism, for
example, can let each tenant bid with a cost function of
the delay degradation tolerance and let the operator choose
the desired delay quality for each tenant and distribute the
workload in the cloudlet network accordingly. Inspired by
divisible-goods auctions with finite-capacity suppliers [11],
this design achieves adaptability in procurements; compared to
other methods such as “supply functions”, it is also function-
based, but allows further adaptability by requiring no unified
market clearing price [9], [12].

Our next observation is that the cloudlet operator can switch
off entire cloudlets to compensate for energy reduction [13].
Non-IT appliances (e.g., cooling and lighting) can consume
33%⇠ 52% of the total energy of a cloudlet of up to 500
servers [14]; thus, moving workloads around to empty entire
cloudlets and shutting them down can eliminate the consider-
able non-IT energy. However, switching on and off cloudlets
frequently can incur considerable “switching” penalty such
as start-up delay, system oscillation, and hardware wear-and-
tear [13], [15], [16], which may hurt the power saving benefit.
Thus, the operator needs to carefully strike the balance be-
tween energy reduction and the switching cost for conducting
online auctions with no information about the future available.

In this paper, to the best of our knowledge, we propose the
first online auction mechanism — EdgeEDR, specifically for
performing EDR at the edge. Our proposal features a set of
unique designs for cloudlets to meet the split incentives, the
adaptability, and the greenness requirements. Based on our
observations, we make multiple contributions:

We build models to capture the cloudlet operator’s and
the tenants’ costs, design online procurement auctions, and
formulate the long-term social cost minimization problem.
Particularly, the cloudlet operator has the switching cost in-
curred by the dynamic control of cloudlets, in addition to
cloudlets’ maintenance cost and the possible cost of local
power generation. Assuming truthfulness of bidding, our on-
line auction mechanism at each time slot solicits a bid from
each tenant in the form of a cost function based on the tenant’s
tolerance range for any additional delay incurred and a per-
unit delay penalty within that range. We minimize the long-

term social cost as a mixed-integer nonlinear program, subject
to cloudlet capacities, EDR demand satisfaction, and service
delay tolerance.

We design an online algorithmic framework, EdgeEDR, to
solve our social cost minimization problem and also a procure-
ment auction mechanism to ensure individual rationality and
truthful bids. Our online algorithm framework solves the one-
shot NP-hard problem at each time slot using a primal-dual-
based, polynomial-time approximation algorithm, obtains a
near-optimal cloudlets switching solution, and then postpones
cloudlets switching as required by the near optimum for avoid-
ing excessive switching cost. We rigorously prove that the
social cost over time incurred by EdgeEDR is no greater than
a parameterized constant (i.e., the competitive ratio) times the
offline optimal social cost in the worst case. Our procurement
auction mechanism provably guarantees individual rationality
and truthfulness by following the “bid-monotonic” and the
“critical” sufficient conditions.

We finally conduct extensive evaluations using real-world
data traces. We simulate a real EDR event in 2014 and use
London’s underground network to simulate the edge system
consisting of APs and cloudlets. The results show that the
auction-based EdgeEDR has a high effectiveness in improving
long-term social welfare of both the cloudlet operator and
tenants in EDR event. Moreover, EdgeEDR achieves more
than 50% saving in local generation power compared to no
tenant-incentive EDR mechanism. A small-scale simulation
also indicates a great empirical competitive performance of
EdgeEDR.

II. MODEL AND PROBLEM FORMULATION

System Settings. We consider a system that consists of a
set of distributed heterogenous cloudlets N = {0, 1, ..., N}
which are connected to each other through a wireline backhaul,
a set of tenants or service providers M = {0, 1, ...,M}
who operate and provide services to end users, and a set of
Access Points (APs) S = {0, 1, ..., S} via which end users can
access the services deployed at any cloudlet in the system.
We denote the capacity of cloudlet k as Rk, 8k 2 N . We
represent the time horizon with multiple continuous time slots
as T = {0, 1, ..., T}. We use a binary variable x

t
k to indicate

whether the cloudlet k is active (xt
k = 1) or not (xt

k = 0)
at time slot t, 8t 2 T . We denote the workload originated
from end users via AP i, 8i 2 S towards service provider
j, 8j 2 M at time slot t by �

t
ij , and denote the maximum

delay �
t
ij can tolerate by D

t
ij . The cloudlet operator of this

IaaS cloudlet system, as discussed in Sec. I, determines the
distribution of the workload of each service provider. We use
a binary variable y

t
jik to indicate whether the workload �

t
ij

is allocated to cloudlet k (ytjik = 1) or not (ytjik = 0).
Without loss of generality, we assume each service provider
operates only one service, as multiple services can be treated
as multiple “virtual” service providers correspondingly; for the
ease of management, we also assume the end users’ workload
from any AP i for any service j at one time slot is processed
at one and only one cloudlet.



TABLE I
LIST OF NOTATIONS

Notations Description

M # of service providers
N # of cloudlets
S # of APs
T # of time slots
Dt

ij maximum delay tolerance of workload �t
ij

P t
EDR EDR requirement at time slot t
p fuel cost of the local generator for one-unit power
xt
k cloudlet k is active at time slot t or not

ytjik workload �t
ij is allocated to cloudlet k or not

ztij delay degradation of workload �t
ij

rtij payment to workload �t
ij

�t
ij workload originated via AP i to service provider j at t

atijk value evaluation of allocating workload �t
ij to cloudlet k

✓tij maximum delay degradation workload �t
ij can tolerate

ctij per-unit delay penalty when the delay exceeds Dt
ij

ut
g # of local generation

↵k start-up cost of activating the cloudlet k
& maintaining cost of one active cloudlet
etk power consumption of cloudlet k at time slot t

dtijk
the difference between delay tolerance Dt

ij and propagation
delay from AP i to cloudlet k

When an EDR event bursts, based on the agreement signed
between the cloudlet operator and the utility (e.g., PJM [17]),
the cloudlet operator should cut down a certain level of its
own power demand from the utility. When receiving the
EDR signal, the cloudlet operator can shed energy in two
ways: consolidating workload to shut down cloudlets while
guaranteeing service quality, and using local generation.

Auction Design. As illustrated in Fig. 2, at the beginning of
the time slot t within the EDR frame, the operator, who acts
as the auctioneer, solicits a bid from each service provider.
Then, in addition to the workload �

t
ij and the delay toler-

ance D
t
ij , service provider j voluntarily submits a service

quality reduction bid as {(✓tij , ctij)|i 2 S}, where ✓
t
ij is

the maximum delay degradation that service provider j can
tolerate for end user workload originated from AP i, and c

t
ij

is the per-unit delay penalty when the delay exceeds D
t
ij .

After receiving the bids, the operator determines the cloudlet
activation status {xt

k|k 2 N} and the workload distribution
{ytjik|i 2 S, j 2 M, k 2 N}, notifies the winning bids and
payments {(ztij , rtij)|i 2 S, j 2 M}, and sets the amount of
local generation u

t
g . In this work, we assume each cloudlet

is equipped with local generators which can fully support
the cloudlet’s power demand. For simplicity, we regard these
generators as a large virtual generator and we only consider
the total amount of generation. The objective of EdgeEDR is
to meet the EDR requirement with the long-term minimum
social operational cost which consists of the operational costs
of both the operator and the service provider.

Operational Cost of the Cloudlet Operator. The operator’s
total operational cost consists of the following components: 1)
the local generation cost of pu

t
g , where p is the fuel cost of
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Fig. 2. An illustration of our auction mechanism in one round.

the local generator for one-unit power; 2) the switching cost
of
P

k ↵k[xt
k�x

t�1
k ]+, where [·]+ = max{0, ·}, and ↵k is the

start-up cost of activating the cloudlet k; 3) the maintenance
cost for active cloudlets of &

P
k x

t
k, where & is the sunk cost

of maintaining one active cloudlet at one time slot; 4) the
payment of

P
i

P
j r

t
ij to service providers.

Operational Cost of Service Providers. The operational cost
of service provider j is

P
i(fij(z

t
ij)� r

t
ij �

P
k a

t
ijky

t
jik). For

the end user workload submitted from AP i, rtij is the payment
received from the operator; atijk indicates service provider j’s
evaluation of the value of allocating such workload to cloudlet
k, which could capture the varying levels of service reliability
for different workload distribution, for example; fij(ztij) is the
penalty function of the delay violation z

t
ij :

fij(z
t
ij) =

(
ctijz

t
ij , ztij 6 ✓tij

+1, ztij > ✓tij
.

Problem Formulation. Having the operational costs of the
cloudlet operator and the service providers, we formulate the
social cost minimization (or the social welfare maximization,
equivalently [18]) problem to determine the workload distri-
bution, the activation status of each cloudlet, the delay degra-
dation of each service, and the amount of local generation,
where the payments of the operator and the service providers
cancel one another:

max
X

t

�X

i

X

j

X

k

aijky
t
jik �

X

i

X

j

fij(z
t
ij)�

put
g � &

X

k

xt
k �

X

k

↵k[x
t
k � xt�1

k ]+
�

(1)

s.t.
X

i

X

j

�t
ijy

t
jik 6 Rkx

t
k, 8k 2 N , 8t 2 T (1a)

X

k

etk 6 P t
EDR + ut

g, 8t 2 T (1b)

X

k

dtijky
t
jik 6 ztij , 8i 2 M, 8j 2 M, 8t 2 T (1c)

X

k

yt
jik 6 1, 8i 2 S, 8j 2 M, 8t 2 T (1d)

yt
jik 2 {0, 1}, 8i 2 S, 8j 2 M, 8k 2 N , 8t 2 T (1e)

0 6 ztij 6 ✓tij , 8i 2 S, 8j 2 M, 8t 2 T (1f)
ut
g > 0, 8t 2 T (1g)

For clarity, the important notations are listed in Table I.
Here, the power consumption of cloudlet k is represented by
e
t
k = (LkP

k
idlex

t
k + (P k

peak � Pidle)
P

i

P
j �

t
ijy

t
jik) · PUEk,

where PUEk refers to the power usage effectiveness (PUE)



of cloudlet k, Lk is the number of servers in cloudlet k, and
P

k
idle and P

k
peak denote the server’s power in the idle and the

peak utilization, respectively. For simplicity, we reformulate
e
t
k as e

t
k = �k

P
i

P
j �

t
ijy

t
jik + �kx

t
k, where �k = (P k

peak �
Pidle)PUEk and �k = LkP

k
idlePUEk. In the constraint (1c),

d
t
ijk = max{0, lik �D

t
ij}, where lik is the propagation delay

from AP i to cloudlet k. dtijk denotes the difference between
the delay tolerance D

t
ij and the propagation delay from AP

i to cloudlet k, and d
t
ijk = 0 indicates the propagation delay

between i and k is within the delay tolerance D
t
ij . Note that in

this paper, we only consider that different workload allocation
schemes affect the propagation latency between the end user
and the cloudlet. For the future work, the effect of workload
allocation on the computation time, which is caused by the
different computation power of heterogeneous cloudlets, will
be taken into account.

In problem (1), the constraint (1a) ensures that when the
cloudlet k is active, k’s resource utilization is under its
capacity; if k is switched off, any workload cannot be allocated
to it. The constraint (1b) guarantees that the total power
demand does not exceed the sum of the EDR power cap and
the local generation. The constraints (1c) and (1f) guarantee
that the delay degradation does not exceed the bound ✓

t
ij . The

constraint (1d) and constraint (1e) guarantee that workload is
allocated to at most one cloudlet. Later in Sec. III, we will
show that the workload is indeed ensured to be allocated to
one and only one cloudlet by the algorithm design.

Algorithmic Challenges. Solving the social welfare maxi-
mization problem in an online manner is highly challenging.
Although the cloudlet operator can switch off cloudlets for en-
ergy saving, high switching cost may be incurred by frequent
cloudlet activations. Without knowledge of the future inputs, it
is nontrivial for the cloudlet operator to determine the cloudlet
activation status at each time slot, because a decision at a time
slot will influence the switching cost between that time slot and
its next time slot; as the next time slot has not yet arrived, it
is not easy to make a good decision for the current time slot.
Note that the problem (1) subsumes a case of z

t
ij = 0 and

u
t
g = 0, 8i 2 S , 8j 2 M, 8t 2 T , where it reduces to a NP-

hard multi-dimensional knapsack problem [19]. So even in the
offline scenario where all the inputs are known in advance, the
problem is still NP-hard in general. To guarantee individually
rational and truthful bidding, we would need to leverage the
Vickrey-Clark-Groves (VCG) auctions; however, such NP-
hardness makes the direct utilization of VCG impossible, as
it requires the social welfare maximization in one round to be
solved in polynomial time [3].

To overcome such challenges and design a computationally
efficient mechanism, we divide the social welfare into two
parts: 1) the switching cost of C

t
SC =

P
k ↵k[xt

k � x
t�1
k ]+,

the only term that is coupled over time, depending on the past
cloudlet activation status xt�1 and the current status xt; 2)
the non-switching welfare of W t

�SC =
P

i

P
j

P
k a

t
ijky

t
jik�P

i

P
j fij(z

t
ij) � pu

t
g � &

P
k x

t
k which can be obtained at

each time slot t independently if the activation status xt

is given. Leveraging the separation of social welfare, we
first study the workload allocation and winner determination
problem at each round with given cloudlet activation status
xt. A primal-dual-based approximation algorithm for the one-
shot problem is proposed in Sec. III. Based on the one-shot
solution, in Sec. IV, we further present an online algorithm
that decomposes the long-term social welfare maximization
problem into a series of one-round problems. Both algorithms
are in polynomial time.

III. ALGORITHM FOR ONE-ROUND AUCTION

A. Primal-Dual-Based Algorithm Design

In this section, we focus on the one-shot problem at a single
time slot based on the assumption that the cloudlet activation
status xt is given. As obtaining the optimal non-switching
welfare W

t
�SC is NP-hard, instead of pursuing an optimal

solution, we propose a primal-dual-based algorithm to obtain
an efficient approximate solution within polynomial time.

For simplicity of the presentation, in the following, we omit
the time index t of all the parameters and the variables. We
reformulate the problem as follows:

max
X

i

X

j

X

k

aijkyjik �
X

i

X

j

fij(zij)� g(u) (2)

s.t.
X

i

X

j

�ijyjik 6 Rkxk, 8k 2 N (2a)

X

i

X

j

X

k

�k�ijyjik 6 u (2b)

X

k

dijkyjik 6 zij , 8i 2 M, 8j 2 M (2c)

X

k

yjik 6 1, 8i 2 S, 8j 2 M (2d)

yjik 2 {0, 1}, 8i 2 S, 8j 2 M, 8k 2 N (2e)
u, zij > 0, 8i 2 S, 8j 2 M (2f)

Note that since the cloudlet activation status x is given, the
maintenance cost &

P
k xk is a constant and thus omitted. We

also reformulate the local generation cost:

g(u) =

(
0, u 6 P 0

EDR

p(u� P 0
EDR), u > P 0

EDR
,

and replace (1b) by (2b), where P
0
EDR = PEDR �

P
k �kxk

and u is the active power caused by workload allocation. When
u 6 P

0
EDR, i.e., the active power demand is no larger than the

EDR cap minus idle power consumption, the local generation
cost is zero; otherwise, when u > P

0
EDR, the extra power has

to be met by the local generation.
By relaxing the binary variables yjik to the continuous

non-negative variables and introducing the dual variables µk,
', ⇠ij , and ⇢ij for the constraints (2a)-(2d), respectively, we
obtain the dual problem [20] of the relaxed problem (2):

min
X

k

Rkxkµk +
X

i

X

j

⇢ij +
X

i

X

j

f⇤
ij(⇠ij) + g⇤(') (3)

s.t. ⇢ij > aijk � (�ijµk + dijk⇠ij + �k�ij'),

8i 2 S, j 2 M, k 2 N (3a)
µk,', ⇠ij , ⇢ij > 0 (3b)



where f
⇤
ij(⇠ij) and g

⇤(') are the Fenchel conjugates [20],
[21] of the functions fij(zij) and g(u), respectively:

f⇤
ij(⇠ij) = sup

zij>0
{zij⇠ij � fij(zij)} =

(
✓ij(⇠ij � cij), ⇠tij > cij
0, ⇠tij 6 cij

,

g⇤(') = sup
u>0

{u'� g(u)} =

8
><

>:

'P 0
EDR, u 6 P 0

EDR

pP 0
EDR, u > P 0

EDR and ' 6 p

+1, u > P 0
EDR and ' > p

.

Following the idea of primal-dual optimization, yjik remains
zero unless its corresponding dual constraint (3a) becomes
tight. We let ⇢ij be the greater quantity between 0 and the
right hand side of constraint (3a):

⇢ij = max{0,max
k

{aijk � (�ijµk + dijk⇠ij + �k�ij')}}. (4)

When ⇢ij > 0, the operator allocates the workload �ij to the
cloudlet k which maximizes the right hand side of (3a), i.e.,
k = argmax{aijk � (�ijµk + dijk⇠ij + �k�ij')}; otherwise,
the workload �ij will not be allocated, which, however, will
not actually happen as described below.

The principle of the proposed approximation algorithm is
as follows: If we interpret the dual variable µk as the per-
unit resource price of cloudlet k, ⇠ij as the per-unit delay
penalty, and ' as the per-unit local generation cost, then the
term �ijµk + dijk⇠ij + �k�ij' can be regarded as the total
cost caused by allocating workload �ij to cloudlet k, and the
right hand side of (3a) can be regarded as the social utility
of this allocation. As defined in Sec. II, cij is the per-unit
penalty when the delay exceeds the delay tolerance Dij and p

is the fuel cost of local generation, then we let ⇠ij = cij

and ' = p. Given that as cloudlets are heterogenous, the
resource price µ may vary from one cloudlet to another. µk can
be set following historical processing statistics, and it should
be bounded by µk < mini,j{(aijk � dijkcij)/�ij � �kp}
to guarantee that every unit of end user workload can be
processed. Based on this idea, the workload allocation and
winner determination algorithm ensures that the workload �ij

is processed with maximum social utility and hence guarantees
the social welfare maximization.

Algorithm 1 illustrates the one-round auction framework. In
Line 1, O is the set of winners, Q is the set of unallocated
workload, !k presents the resource utilization of cloudlet k,
Nij indicates the candidate cloudlets where workload �ij can
be allocated, and ⇢ijk = aijk � (�ijµk + dijk⇠ij + �k�ij').
Line 3 and Lines 5-6 determine the workload allocation
yjik and winner’s delay penalty dijkcij based on the above
rationale. After that, Lines 3-4 and Lines 7-9 calculate the
payment to the winner, whose effectiveness is proved in the
later Theorem 3. And then, Lines 10-13 update the cloudlet
k
⇤’s resource utilization !k⇤ , the active power consumption

u, the workload allocation index (i⇤, j⇤, k⇤), and the set of
unallocated workload Q, respectively.

B. Performance Analysis
Theorem 1. Algorithm 1 generates a feasible solution to both
the problem (2) and the problem (3) in polynomial time.

Algorithm 1 The workload allocation and winner determina-
tion framework

1: Initialize: zij = 0, yjik = 0, rij = 0, and u = 0; O = ;,
Q = {(i, j)|i 2 S, j 2 M}, Nij = {k|dijk 6 ✓ij},
!k = 0, ⇠ij = cij , ' = p, 8i 2 S , 8j 2 M, 8k 2 N ;

2: while Q 6= ; do
3: (i⇤, j⇤, k⇤) = argmax{⇢ijk|!k +�ij 6 Rkxk, (i, j) 2

Q, k 2 Nij};
4: (i�, j�, k�) = argmax{⇢ijk|!k+�ij 6 Rkxk, (i, j) 2

Q, k 2 Nij \ {k⇤ 2 Ni⇤j⇤}};
5: yj⇤i⇤k⇤ = 1;
6: zi⇤j⇤ = di⇤j⇤k⇤ ;
7: if zi⇤j⇤ > 0 do
8: ri⇤j⇤ = ci⇤j⇤di⇤j⇤k⇤ + ⇢i⇤j⇤k⇤ � ⇢i�j�z� ;
9: end if

10: !k⇤ = !k⇤ + �i⇤j⇤ ;
11: u = u+ �k⇤�i⇤j⇤

12: O = O [ (i⇤, j⇤, k⇤);
13: Q = Q \ (i⇤, j⇤);

end while
14: W�SC =

P
i

P
j

P
k aijkyjik�

P
i

P
j fij(zij)�g(u)�

&
P

k xk;

Theorem 2. Algorithm 1 is a �
��1 -approximation algorithm to

the problem (2), i.e., the social welfare obtained by Algorithm
1 is at least ��1

� times the optimal social welfare in the
problem (2), where 1

� =
P

k Rkxkµk+pP 0
EDRP

k Rkxkµk+pP 0
EDR+

P
i

P
j ⇢min

and
⇢min = mini,j,k{aijk � (�ijµk + dijk⇠ij + �k�ij')|�ij 6
Rkxk, dijk 6 ✓ij , i 2 S, j 2 M, k 2 N}.

Theorem 3. The proposed procurement auction mechanism
achieves individual rationality and truthfulness.

Due to the page limit, we provide the proofs of Theorems
1, 2, and 3 in the Appendix of our technical report [22].

IV. ONLINE ALGORITHM FOR LONG-TERM PROBLEM

A. Online Algorithm Design

In this section, we present an online algorithm to determine
the cloudlet activation state to achieve the long-term social
welfare maximization, based on the one-shot solution from
Algorithm 1 at each time slot.

Due to the lack of a priori knowledge, the operator should
be careful about the control of cloudlets at each time slot.
One solution is to pursue only the long-term optimum non-
switching welfare by obtaining the maximum non-switching
value among all possible cloudlet statuses at each time slot.
However, this solution is hard to accomplish, and may result in
aggressive switching of cloudlets and thus hurt the long-term
social welfare. First, there are totally 2N possible cloudlet
statuses combinations in the edge system consisting of N

heterogenous cloudlets, which makes obtaining the optimum
solution at one time slot computationally prohibitive. More-
over, even if one has the optimal solution, not considering
the switching cost can lead to the result that, for example,
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Fig. 3. An illustration of our online framework.

the local optimal solution suggests to shut down and then
activate a cloudlet, while better long-term solutions may let
this cloudlet remain activated to save the switching cost over
time.

We propose an online algorithm for obtaining cost-efficient
solutions while avoiding aggressive cloudlet switching, as
shown in Algorithm 2 with a component shown in Algorithm
3. The principle is as follows. In Algorithm 3, we obtain a
near-optimal cloudlet activation status. And then in Algorithm
2, we postpone the cloudlet switching required by the near-
optimal solution, until the surplus (i.e., the cumulative non-
switching welfare) exceeds the switching cost obviously or
until there is no feasible solution with the unchanged activation
state. Given that Algorithm 1, as a component of Algorithm
2 and Algorithm 3, is used to obtain the workload allocation
and winner determination with corresponding non-switching
welfare when the cloudlet status is given.

Fig. 3 shows the illustration of the proposed online frame-
work. We first describe how to obtain a near-optimal solution
in Algorithm 3. Assume the last switching time slot before the
current t is t̂. Based on the formulation (2), given the previous
cloudlet activation state xt�1 = xt̂ (step (1) in Fig. 3),
there are four possible variations in cloudlet status xt by
which we may achieve a higher non-switching welfare W

t
�SC :

1) Closing cloudlets with lower power efficiency to reduce
active power of allocating workload and total static power of
cloudlets; 2) Closing cloudlets with less allocated workload to
cut down static power while ensure limited utility decrease;
3) Opening cloudlets with higher “reliability” to increase the
utility of allocated workload; 4) Opening cloudlets with less
propagation delay to other connected cloudlets to reduce the
possible delay penalty. As indicated by step (2) in Fig. 3 and
Lines 1 to 5 in Algorithm 3, we compare the non-switching
welfare obtained by above variations in cloudlet status and
choose the status with highest non-switching welfare, denoted
by x̃t, as the near-optimal solution. And the switching cost
caused by cloudlet switching is C̃

t
SC(x̃

t
,xt̂).

In Algorithm 2, at time slot t, we compare the cumulative
non-switching welfare from t̂ to t � 1,

Pt�1
⌧=t̂ W

⌧
�SC , with

the switching cost C̃
t
SC(x̃

t
,xt̂) obtained by Algorithm 3: ifPt�1

⌧=t̂ W
⌧
�SC exceeds  times C̃

t
SC(x̃

t
,xt̂) or there is no

feasible solution with the status xt̂, we will vary the cloudlet

activation status from xt̂ to x̃t; otherwise, the activation state
is unchanged at time slot t. After deciding the cloudlet status
xt, the corresponding non-switching welfare W

t
�SC as well as

workload allocation and winner determination can be obtained
by Algorithm 1. The above process is indicated by step (3) and
(4) in Fig. 3 and Lines 6 to 15 in Algorithm 2.

Algorithm 2 The Online Algorithm Framework
1: Define: t = 1, t̂ = 0, �W = 0;
2: while t 6 T do
3: Service providers submit requests {(�t

ij , D
t
ij)|i 2 S, j 2

M} bids {(✓tij , ctij)|i 2 S, j 2 M};
4: Obtain W

t
�SC(x

t̂
,yt

, zt
, rt, ut) by Algorithm 1;

5: Obtain C̃
t
SC(x̃

t
,xt̂) and W̃

t
�SC(x̃

t
, ỹt

, z̃t
, r̃t, ũt) by

Algorithm 3;
6: if �W > C̃

t
SC(x̃

t
,xt̂) or W

t
�SC(x

t̂
,yt

, zt
, rt, ut) =

�1 then
7: xt = x̃t;
8: W

t
�SC(x

t
,yt

, zt
, rt, ut) = W̃

t
�SC(x̃

t
, ỹt

, z̃t
, r̃t, ũt);

9: �W = W
t
�SC(x

t
,yt

, zt
, rt, ut);

10: t̂ = t;
11: else
12: xt = xt̂;
13: W

t
�SC(x

t
,yt

, zt
, rt, ut) = W

t
�SC(x

t̂
,yt

,yt
, rt, ut);

14: �W = �W +W
t
�SC(x

t
,yt

, zt
, rt, ut);

15: end if
16: The operator notifies the winning bids zt and payments

rt, allocates workload according to yt, and sets the
amount of local generation according to u

t;
17: t = t+ 1;
18: end while

Algorithm 3 Obtain W̃
t
�SC(x̃

t
, ỹt

, z̃t
, ũ

t) and C̃
t
SC(x̃

t
,xt̂)

1: Close the active cloudlet in xt̂ one by one accord-
ing to the descending order of �k, calculate the non-
switching welfare by Algorithm 1, and obtain the max-
imum W

t
�SC,�(x

t
� ,y

t
� , z

t
� , r

t
� , u

t
�);

2: Close the active cloudlet in xt̂ one by one according
to the ascending order of

P
i

P
j y

t�1
jik , calculate the

non-switching welfare by Algorithm 1, and obtain the
maximum W

t
�SC,y(x

t
y,y

t
y, z

t
y, r

t
y, u

t
y);

3: Open the closed cloudlet in xt̂ one by one according
to the descending order of

P
i

P
j a

t
ijk, calculate the

non-switching welfare by Algorithm 1, and obtain the
maximum W

t
�SC,a(x

t
a,y

t
a, z

t
a, r

t
a, u

t
a);

4: Open the closed cloudlet in xt̂ one by one according to
the ascending order of

P
i

P
j dijk, calculate the non-

switching welfare by Algorithm 1, and obtain the max-
imum W

t
�SC,d(x

t
d,y

t
d, z

t
d, r

t
d, u

t
d);

5: Select the maximum from the above four non-switching
welfare, which is indicated by W̃

t
�SC(x̃

t
, ỹt

, z̃t
, r̃t, ũt);

6: C̃
t
SC(x̃

t
,xt̂) =

P
k ↵k[x̃t

k � x
t̂
k];



B. Performance Analysis
We first provide a sketched proof to the truthfulness of

EdgeEDR. As given by Theorem 3, the proposed one-round
procurement auction mechanism is truthful with a given
cloudlet activation status. The status is determined based on
bids in Algorithm 2 and is only known to the cloudlet oper-
ator, which makes EdgeEDR with the one-round mechanism
truthful [18].

The time complexities of Algorithm 2 and Algorithm 3 are
analyzed as follows. For Algorithm 3, each of the Lines 1
to 4 runs at most N times. Given that Algorithm 1’s time
complexity is O(S2

M
2
N), the complexity of Algorithm 3

is O(S2
M

2
N

2). For Algorithm 2, the while loop in Line
2 runs T times, and the complexities of Lines 4 and 5
are O(S2

M
2
N) and O(S2

M
2
N

2), respectively. In summary,
Algorithm 2’s time complexity is O(TS2

M
2
N

2).

Theorem 4. The online algorithm gives a 
(�1)✏ · ( �

��1 )
2-

competitive solution to the social welfare maximization prob-
lem, i.e., the social welfare obtained by Algorithm 2 is at least
(�1)✏

 · (��1
� )2 times the offline optimal social welfare, where

✏ = mint2T
minxt,yt,zt,ut W t

�SC(xt,yt,zt,ut)

maxxt,yt,zt,ut W t
�SC(xt,yt,zt,ut) , and �

��1 is the
approximation ratio of Algorithm 1.

Proof. In Algorithm 2, Line 5 guarantees that the switching
cost at time slot t is at most 1

 times the non-switching
welfare incurred within time frame [t̂, t � 1], where t̂ is the
last time slot of cloudlet activation state switching before t. In
the worst case, over the whole time frame T , the cloudlet
activation status x switches in each time frame, we havePT

⌧=1 C
⌧
SC 6 1



PT
⌧=1 W

⌧
�SC . Hence we have

PT
⌧=1 W

⌧ =PT
⌧=1 W

⌧
�SC �

PT
⌧=1 C

⌧
SC > (1 � 1

 )
PT

⌧=1 W
⌧
�SC . Let

W̄
t denote the offline optimal social welfare at time slot t,

and ✏ be the minimum ratio of the smallest non-switching
welfare to the largest non-switching welfare at each time
slot, i.e., ✏ = mint2T

minxt,yt,zt,ut W t
�SC(xt,yt,zt,ut)

maxxt,yt,zt,ut W t
�SC(xt,yt,zt,ut) . Note

that W
t
�SC given by Algorithm 1 is at least ��1

� times
the optimal non-switching welfare W

⇤t
�SC . Hence ✏

⇤ =

mint2T
minxt,yt,zt,ut W⇤t

�SC(xt,yt,zt,ut)

maxxt,yt,zt,ut W⇤t
�SC(xt,yt,zt,ut) 6 �

��1✏. And we have

TX

⌧=1

W ⌧ > (1� 1

)

TX

⌧=1

W ⌧
�SC > (

� � 1
�

)2✏(1� 1

)

TX

⌧=1

W̄ ⌧
�SC

> (
� � 1
�

)2✏(1� 1

)

TX

⌧=1

W̄ ⌧ .

As obtaining the exact maximum and minimum non-
switching welfare is computationally prohibitive, here we
propose a rough estimate of the competitive ratio. Ac-
cording to the formulation of non-switching welfare,
W

t
�SC(x

t
,yt

, zt
, u

t) is bounded by [
P

i

P
j mink{atijk} �

p(P t
max�P

t
EDR)�

P
i

P
j c

t
ij✓

t
ij ,
P

i

P
j maxk{atijk}], where

P
t
max is the power consumption of the case that all cloudlets

are active and the workload are allocated to those most
power-consuming cloudlets. And hence the competitive ratio is
bounded by

⇥
1, �2

(�1)(��1)2 mint2T
��P

i

P
j mink{atijk}�

p(P t
max�P

t
EDR)�

P
i

P
j c

t
ij✓

t
ij

�
/
P

i

P
j maxk{atijk}

 ⇤
. In

the following section, the simulation results in Fig. 6 show an
efficient empirical competitive ratio of our solution.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup
We simulate an edge system where the cloudlet operator

owns 40 distributed cloudlets serving 80 service providers and
each cloudlet is attached to an AP. We assume the cloudlets
are located at London’s 40 underground stations with heavy
passenger traffic, and the geographical distance between any
two stations is used to approximate the propagation delay
between the attached cloudlets [13]. We assume servers are all
homogeneous; each server can process 25 requests at one time
slot. We divide the sum of entire edge system’s peak workload
by the number of cloudlets, and randomly scale it from 0.8⇥
to 1.2⇥ to generate cloudlets’ capacity. The cloudlet’s PUE
ranges from 1.3 to 2 randomly, and the idle and peak power
of a server is 100 W and 300 W, respectively. The diesel price
for local generation is set to 0.8 $/kWh [23], [24].

We utilize the dynamic passenger numbers at a station to
represent the total amount of workload submitted from that
station (i.e., AP), and the amount of request for each service
is assigned randomly. The reliability of workload allocation is
set to be one order of magnitude larger than the per-unit delay
penalty. And the resource price of each cloudlet is generated
referring to Sec. III-A. The delay tolerance of request is set
according to the mean propagation delay between cloudlets.
And the delay degradation tolerance submitted by service
provider follows a uniform distribution between 60% delay
tolerance to 100% delay tolerance. We vary the weight of the
switching cost,  in online framework, and the per-unit delay
penalty to obtain a spectrum of results, hence we do not give
the concrete metric here.

According to a real EDR event from the service region of
PJM on Jan. 4, 2014 [25], we set the length of one time slot to
15 minutes and the total length of EDR event is 28 time slots.
The EDR signal requires the edge system to reduce 25% of the
edge system’s peak IT power consumption, which is reported
as a reasonable setting in EDR event without significant impact
to participant’s operation [5], [26].

To validate EdgeEDR’s effectiveness, we compare its per-
formance with following benchmark algorithms: 1) The online
no auction, for which the operator does not motivate service
providers to reduce QoS requirement; 2) The online greedy
and auction, for which the operator directly varies the cloudlet
status when the near-optimal social welfare is larger than
that in previous status. We also compare EdgeEDR with the
optimum algorithm where the one-shot problem is exactly
obtained by CVX [27] with Gurobi [28]: 1) The online MIP
optimum. 2) The offline optimum, for which we search all of
possible cloudlet activation statuses at each time slot to obtain
the optimum solution. As the optimum has to be obtained
with worse time complexity, we only conduct the optimum
framework simulation in small-scale scenario. For simplicity,
all the values (except for results in Fig. 9) are normalized with
respect to it achieved by EdgeEDR.
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B. Evaluation Results
Fig. 4 compares the normalized social welfare obtained by

EdgeEDR and that obtained by two online benchmarks, as
the weight on the switching cost increases. First, compared
to the online no auction benchmark where the operator joins
to EDR only by workload allocation and local generation, we
find that the auction-based EdgeEDR has a better efficiency
in improving the social welfare of both the cloudlet operator
and tenants in EDR events. Compared to the online greedy
framework, as EdgeEDR effectively avoids aggressive cloudlet
statuses switching and corresponding high switching cost, it
achieves a great effectiveness in improving long-term social
welfare even if the future information is unknown. When the
switching cost increases, the excessive decrease in long-term
social welfare can also be avoided by EdgeEDR.

Fig. 5 compares the normalized social welfare achieved by
EdgeEDR with that achieved by the online no auction bench-
mark, as the weight on  increases.  is used to compare the
value of cumulative non-switching welfare and switching cost,
and determine whether the cloudlet activation state should be
switched or not at each time slot. The results indicate that
in EdgeEDR,  should be set carefully. A higher  hurts
the social welfare since it may delay the necessary switch
of cloudlet activation state and cause lower non-switching
welfare; while frequent activation state switching caused by
a lower  may bring in excessive switching cost.

Fig. 6 illustrates the normalized social welfare obtained
by EdgeEDR, the online MIP benchmark, and the offline
optimum, respectively, in a small-scale scenario. We find that
the empirical competitive ratio of EdgeEDR is within 3.5⇠5.6.
When the one-shot problem at each time slot can be solved
exactly, EdgeEDR shows a great empirical performance, which
indicates that the efficiency of primal-dual-based algorithm
for workload allocation and winner determination is the main
reason for the performance gap between EdgeEDR and the
offline optimum in the small-scale scenario.

Fig. 7 and Fig. 8 present the normalized average utility of
service providers, i.e., the winning service provider’s payment
minuses the delay penalty as the per-unit delay penalty cost cij
increases and as the delay degradation tolerance ✓ij increases,
respectively. We find in Fig. 7 that in general, increasing per-
unit delay penalty leads to a decline in tenant’s utility. This is
because high per-unit delay penalty decreases the social utility
of workload allocation ⇢ij . Fig. 8 indicates that, when relaxing
the delay degradation tolerance, there are more candidate
cloudlets for allocating workload with QoS guarantee and
the social utility achieved by workload allocation can be
larger, and hence the relaxation of delay degradation tolerance
improves the tenant’s utility.

Fig. 9 shows the power of the entire edge system within
EDR event. We find that in the computation low time,
EdgeEDR and other benchmarks all perform well in power
shedding; while in the computation peak period, EdgeEDR
achieves the best power efficiency. EdgeEDR saves about
54.1% to 57.2% local generated power, indicating that
cloudlets’ participation in the EDR programs with the auction-
based EdgeEDR ensures the “greenness” compared to other
EDR mechanisms.

VI. RELATED WORK

There exist many studies on improving the power efficiency
and achieving power cost saving in datacenters, such as
workload management [29]–[31] and datacenter heat harvest-
ing [32]. In this section, we summarize very closely-related
existing work only. Ren et. al. [6] is among the first to study
the colocation data center (referred to as “colo” henceforth)
demand response scenario, where they propose a simple
reverse auction to meet the energy reduction requirement.
Zhang et. al. [3] also design a reverse auction, introducing
local generators to help meet the energy reduction target and
VCG-based machanisms to guarantee truthful bidding. Chen
et. al. [9] design a pricing mechanism based on supply function



biddings to extract load reductions from tenants in demand
response periods. Sun et. al. [4], [5] investigate two cases
of demand response in geo-distributed colos with deferrable
batch jobs, and propose online multi-round auctions while
determining when to execute each job. Tran et. al. [8] and
Islam et. al. [7] may be among the few that do not use auctions
but reward-based mechanisms to issue rewards in exchange for
tenants’ energy reductions.

Our research in this paper differs from all the above existing
work in multiple aspects. First, we do “online” reverse auctions
for multiple demand response frames. All existing research,
except [4], [5], [7], uses a one-round, static auction which does
not explore the temporal connection between different demand
response frames. Second, we manage (i.e., distribute) tenants’
workload explicitly and adjust service quality based on the
operator’s needs. Previous mechanisms, except [4], [5], do not
manage tenants’ workload and are limited by tenants’ fixed
offers. Third, we are the first to explore the lever of switching
on/off entire cloudlets, while considering the switching cost
over time, to compensate for the energy reduction requirement.
This is particularly a feature that may be possible for cloudlets
only. Existing research mainly target large-scale clouds and
data centers [33] that cannot be usually switched off entirely.

VII. CONCLUSION

We study the emergency demand response for distributed
cloudlets. While designing a series of procurement auctions to
address the operator-tenant split incentives, in our mechanism,
we focus on enabling the operator to directly distribute tenants’
workload across cloudlets in order to gain more flexibility in
the procurement of tenants’ bids and to adapt to the changing
market conditions. We are also the first to propose to let the
operator switch on/off entire cloudlets to compensate for the
energy reduction requirement while dynamically striking the
balance between the energy saving benefit and the incurred
switching cost. We propose an online algorithm, which adopts
a polynomial-time approximation algorithm in each auction,
with provable performance guarantees and validated practical
superiority compared to existing methods.
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