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Abstract—Colocation data centers (or colocations, for short)
are important participants in emergency demand response (EDR)
programs. One key challenge in colocations is that tenants control
their own servers, thus, may not coordinate to reduce their power
consumption. In this paper, we propose a joint truthful incentive
mechanism Co-Colo to encourage tenants joining EDR programs,
which includes a local optimization mechanism (LocalOpt) and
a global optimization mechanism (GlobalOpt). In LocalOpt, ten-
ants are motivated to improve the energy efficiency locally. In
GlobalOpt, tenants can request some public server resources to
improve the energy efficiency. By jointly considering the two
mechanisms, Co-Colo effectively reduces the energy-saving cost.
A (1 + ε)-approximation algorithm is proposed to obtain the
asymptotic optimal energy-saving scheme. We also consider a
special case when the public resources are sufficient, and design
a 2-approximation algorithm. Furthermore, the robustness of the
proposed algorithms are proved. Trace-driven simulations verify
the effectiveness and feasibility of Co-Colo.

I. INTRODUCTION

Large-scale data centers are power-hungry and the power
demand of them is flexible [1]. Thus, data centers can par-
ticipate in demand response (DR) programs, especially in
emergency demand response (EDR) programs [2]. EDR is
widely adopted to improve the fragile power infrastructure.
When some emergency events (e.g., extreme weathers) happen,
EDR providers inform all participants about a fixed energy-
saving target [3], and then the participants need to reduce the
energy consumption and achieve the energy-saving target.

One important kind of data centers, called colocation data
centers (or colocations, for short), develops rapidly in recent
years which accounts for 37.3% of total data centers [4].
Colocations help tenants build their private data centers by
providing professional infrastructure and service, and are often
located in metropolitan areas [5]. Due to the dense population,
high energy demand is incurred and the energy is frequently
insufficient in the metropolitan areas. Thus, it is necessary for
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colocations to participant in EDR programs to avoid energy
shortage and improve the stability of the power grid [6].

For achieving colocations’ EDR, we focus on how to
improve the energy efficiency of colocations. For traditional
data centers, energy efficiency technologies have been widely
investigated, which include server resource virtualization [7],
traffic engineering [8] and energy-efficient data center network
(DCN) [9]. In these works, all the facilities, e.g., servers and
infrastructure, are fully controlled by the data center operators.
However, in colocations, the servers are managed by the
tenants, which cannot be fully controlled by the colocation
operators. Therefore, these works, which focus on the energy
efficiency techniques of traditional data centers, are not feasi-
ble in colocations.

The special management pattern is considered in [10][11],
and called “uncoordinated relationship” issue, which includes
two aspects. Firstly, tenants lack of coordination with the colo-
cation operator to save energy. For some retail tenants, the en-
ergy is paid up in advance based on their peak demand. Thus,
if there is no benefits to the tenants, they have no incentive to
reduce the energy consumption. For some wholesale tenants,
they are charged based on their actual energy consumption,
which ensures that tenants prefer to use energy as needed for
saving cost. However, the tenants may not reduce the energy
consumption when the EDR happens. Thus, it is important to
incentivize tenants to coordinate with the colocation operator
to save energy. Secondly, tenants lack of coordination with
each other. By incentivizing the coordination among tenants,
the colocation operator can make the optimization decision
from a global view rather than relying on the local optimization
of each tenant. Thus, how to design an incentive mechanism
to encourage tenants to coordinate with each other is also a
crucial problem.

There have been some works considering the energy ef-
ficiency issue of colocations. In [5], the “split incentive”
issue in colocations was first considered, and an incentive
mechanism iCODE was proposed to incentivize tenants to join
the EDR programs. Some following works focused on how
to improve the incentive mechanism, e.g. Truth-DR [11] and
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FairDR [12]. A joint DR was discussed including economic
DR and emergency DR in [3]. A novel thermal-aware and cost
efficient mechanism TECH was proposed in [13]. A common
feature of the above works is that they all focused on how to
incentivize tenants to coordinate with the colocation operator.
However, in these works, the tenants work independently
without coordination with each other, which cannot achieve
good resource utilization and energy efficiency.

To solve the coordination issue among tenants, a novel
framework was proposed in [10]. The framework incentivizes
tenants to improve the utilization using some public resources.
However, two key problems were not solved in the frame-
work. One is that how to ensure the truthfulness of tenants’
information including the energy-saving targets and cost when
they request some public server resources to migrate their
workload. Moreover, it was assumed that the public server
resources can satisfy all the requests. Considering the limited
public resources, the assumption may not be practical.

A. Contributions

Different from existing techniques, we design a mechanism
that not only encourages the coordination between the tenants
and the colocation operator, but also encourages the coordina-
tion among different tenants in order to further improve the
resource utilization as well as reduce the energy consumption.
We summarize the major contributions as follows:

• To solve the “uncoordinated relationship” issue in coloca-
tions, we propose a joint incentive mechanism, called Co-
Colo (Coordinated Colocation). Meanwhile, we introduce
the working principle of Co-Colo, and also show its
advantages in terms of the energy efficiency and the
resource utilization.

• By discussing whether the public resources are sufficient
to satisfy tenants’ total resource demands, Co-Colo is
formulated as two different mathematical problems. For
these two problems, we develop a (1 + ε)-approximation
algorithm and a 2-approximation greedy algorithm, re-
spectively. Moreover, we explain the robustness of the
developed algorithms.

• For ensuring the truthfulness of the mechanism, we intro-
duce the Vickrey-Clarke-Groves (VCG) theory into Co-
Colo. We explain the feasibility of Co-Colo, and prove
the truthfulness of Co-Colo.

• We validate the efficiency of the proposed mechanism and
algorithms by simulations based on real workload traces.
It is shown that significant energy efficiency improvement
in colocations can be achieved by Co-Colo.

II. SYSTEM MODEL

The “uncoordinated relationship” issue causes that the tra-
ditional energy efficiency optimization methods are infeasible
in colocations. To improve the energy efficiency, it is necessary
to design effective incentive mechanisms. Thus, we propose a
joint incentive mechanism Co-Colo. When the EDR happens,
we first encourage tenants to optimize the energy efficiency of
their private servers independently. Because tenants can only
operate their own servers, the sub-mechanism is called the
local optimization mechanism (LocalOpt). Secondly, tenants
are allowed to request some public server resources to migrate
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Fig. 1. Framework of the joint incentive mechanism

some workload to further improve the energy efficiency. The
migrated workload can be globally optimized by the colocation
operator, thus, the sub-mechanism is called the global opti-
mization mechanism (GlobalOpt). In colocations, it is feasible
to provide some public resources to tenants. These public
resources include some colocations’ standby servers and cloud
resources (i.e., some cloud providers have deployed servers in
colocations such as Amazon and Google). The framework of
Co-Colo is shown in Fig. 1, where we assume that there are
n tenants. Then, by discussing whether the public resources
are sufficient to satisfy the demand of tenants, Co-Colo is
formulated as two mathematical problems.

A. Mechanism design

In this part, we will introduce LocalOpt and GlobalOpt in
detail, and show the advantages of Co-Colo.

1) LocalOpt: This mechanism is used to incentivize tenants
to reduce energy consumption by optimizing their own servers’
efficiency during the EDR period. In LocalOpt, tenants join
the EDR program by submitting biddings which include their
energy-saving targets and cost. In this mechanism, tenants can
be regarded as sellers and the operator is the buyer. Thus, it is a
typical auction pattern called the reverse auction [5]. For tenant
i, the energy-saving target and the declared cost are denoted
as ei and di. Therefore, in LocalOpt, tenant i’s bidding can be
expressed as bpi = (ei, di). Then, we use B = {bp1, b

p
2, ..., b

p
n}

to donate the set of bpi (i ∈ [1, n]).

2) GlobalOpt: In this mechanism, some public server re-
sources are provided and tenants can request them based on de-
mands. In GlobalOpt, tenants may further optimize their own
energy efficiency. For example, during the EDR period when
a task reaches and only needs one VM instance, keeping or
turning on a server will cause low utilization. However, if the
task is migrated to the public resources, the tenants can keep
a high utilization. Thus, GlobalOpt can help tenants improve
the utilization of the tenants. Moreover, when tenants migrate
some tasks to the public resources, the colocation operator
can globally optimize them to achieve higher utilization than
the local optimization. Thus, GlobalOpt can also improve the
global utilization of colocations.

In GlobalOpt, the capacity of the public resources is
measured based on its total number of VM instances G. For



tenant i, gi is used to denote the number of requested VM
instances. Tenant i’s cost includes two parts. The first part is
the energy-saving cost, which is denoted as ci. The second
part is the cost of requesting VM instances f costi , which can
be calculated by a cost function fi(gi). Meanwhile, si is used
to denote tenant i’s energy-saving target. Therefore, tenant i’s
bidding can be expressed as bci = (si, ci +f costi , gi). Then, we
use B′ = {bc1, bc2, ..., bcn} to denote the set of bci (i ∈ [1, n]).

3) Co-Colo: The incentive mechanisms LocalOpt and
GlobalOpt solve the “uncoordinated relationship” issue from
different views. By combining the two mechanisms, we pro-
pose a joint incentive mechanism Co-Colo. The objective of
LocalOpt is to minimize the total cost while satisfying the
energy-saving constraint. In GlobalOpt, an additional factor is
considered which is the limited public resources. Accordingly,
the colocation operator needs to select some of the tenants
to satisfy their resource requests, which direct influences the
total energy-saving and cost. Based on the function fi(gi),
we can map the VM instance demands to a part of tenants’
cost f costi . Then, the public resource allocation problem can
be translated to a cost optimization problem. Thus, the opti-
mization objective of GlobalOpt and LocalOpt can be unified,
which means that it is feasible and meaningful to combine
these two mechanisms.

Co-Colo has two main advantages compared with two
independent incentive mechanisms. Firstly, we show the cost-
effectiveness of Co-Colo. In LocalOpt, tenants improve the
utilization by integrating the local workload, and then turn
off idle servers for energy reduction. However, there may still
remain some low utilization servers. Thus, in GlobalOpt, we
allow the tenants to request a few public VM instances to
turn off them, Accordingly, we can avoid the energy waste
which is caused by the low utilization of servers. By combining
two mechanisms, tenants can make biddings based own their
local information, and the operator can make a decision by
taking some biddings based on its benefit and considering
the local as well as public resources utilization. Secondly,
Co-Colo can better improve the utilization. This is because
most tenants in colocations are small and medium companies,
and their workload types are relatively single. However, the
same type of workloads usually has the same main resource
(i.e., the main resource of a compute-intensive workload is
the CPU resources). This causes the low utilization of other
resources except the main resource. Based on Co-Colo, we can
integrate different types of workloads from all tenants in the
public resources, and improve the utilization of all resources.
Accordingly, Co-Colo can effectively improve the utilization
of colocations.

B. Mathematical models

In Co-Colo, our objective is to achieve the EDR energy-
saving requirement with the minimal cost. Meanwhile, E (E ∈
Q+) is used to denote the constraint of the amount of the
energy reduction. Besides, we also consider the limited number
of VM instances G (G ∈ N+) in the public resources. As
described in the previous section, tenants can bid for some
public resource for their own benefits, while they can also bid
for turning off their own servers and receive some rewards
from the operator. In Co-Colo, we will combine them in a
uniformed mathematical model. For each tenant, two biddings

are submitted to LocalOpt and GlobalOpt, respectively. It may
occur that it is better to accept only one bidding from one
tenant. Thus, in our models, two biddings from one tenant
can be selected independently. The mathematical problem of
Co-Colo can be formulated as:

(P1) min
xi,yi

n∑
i=1

dixi + (ci + f costi )yi (1)

s.t.
n∑

i=1

eixi + siyi ≥ E (2)

n∑
i=1

giyi ≤ G (3)

xi, yi = {0, 1} (4)
where xi and yi are binary variables indicating whether tenant
i’s bidding is selected. By solving (P1), we can obtain a set
of (xi, yi)(i ∈ [1, n]), which can minimize the total cost when
all constraints are satisfied. (P1) is a min-knapsack problem.
It is more complex than the classical min-knapsack problem
because of an additional constraint (P1)-(3). Compared with
the classical problem, obtaining a feasible solution of (P1)
with polynomial time cannot be achieved, because the process
of obtaining a feasible solution is still an NP-hard problem.

Except (P1), we also consider a simplified model (P2).
As stated earlier, not only the colocation operator’s standby
servers are a part of the public resources, but also some cloud
resources can be provided to the public resources. Thus, when
the colocation operator has enough resources, the constraint
(P1)-(3) can be ignored. (P2) is a classical min-knapsack
problem and is formulated as below:

(P2) min
xi,yi

n∑
i=1

dixi + (ci + f costi )yi (5)

s.t.
n∑

i=1

eixi + siyi ≥ E (6)

xi, yi = {0, 1} (7)

III. ALGORITHMS DESIGN

We design different algorithms to solve (P1) and (P2),
respectively. Meanwhile, we also analyse their theoretical per-
formance, and explain that the developed algorithms are robust,
which means that the solution obtained by our algorithms is no
worse than the solutions obtained when any bidding is deleted.

A. A (1 + ε)-approximation algorithm for (P1)

(P1) is a min-knapsack problem. It is NP-hard, and has an
additional constraint compared with the classical min-knapsack
problem, which means that (P1) is a more complex problem.
Thus, an algorithm, Algorithm 1 is developed to solve (P1).
Meanwhile, for considering the robustness guarantee, we de-
sign Algorithm 2 based on Algorithm 1. We use Topt to denote
the theoretical optimal cost of (P1), and assume that Tl and Tu
can satisfy Tl ≤ Topt ≤ Tu. Assume that (xi

′, yi
′)(i ∈ [1, n])

is a feasible solution of (P1), Tu can be expressed as Tu =
n∑

i=1

(dixi
′ + (ci + f costi )yi

′). Note that if it is difficult to find

a feasible solution, let Tu =
n∑

i=1

(di + (ci + f costi )). Then, Tl



is expressed as Tl = min
1≤i≤n

{di, ci + f costi }. We define

K =
εTl
2n

, (8)

where ε is a parameter which is related to the approxima-
tion ratio of Algorithm 1. Let di′ = ddi/Ke and ci

′ =
d(ci + f costi )/Ke. Correspondingly, bpi

′
= (ei, di

′) and bci
′ =

(si, ci
′, gi). Then, we formulate the dual problem of (P1) as

(P1
′):

(P1
′) max

xi,yi

n∑
i=1

eixi + siyi (9)

s.t.
n∑

i=1

di
′xi + ci

′yi ≤ T ′ (10)

n∑
i=1

giyi ≤ G (11)

xi, yi = {0, 1} (12)

where T ′ ∈ {
⌈
Tl

K

⌉
,
⌈
Tl

K

⌉
+ 1, ..., 2n+

n∑
i=1

(di
′xi
′ + ci

′yi
′)}.

To solve (P1
′), we adopt the dynamic programming (DP)

approach. At each state (k, t,G′), where k ∈ {0, 1, ...n}, t ∈
{0, 1, ..., T ′} and G′ ∈ {0, 1, ..., G}, we solve the following
sub-problem of (P1

′)

(P1
′′) max

xi,yi

k∑
i=1

eixi + siyi (13)

s.t.
n∑

i=1

di
′xi + ci

′yi ≤ t (14)

n∑
i=1

giyi ≤ G′ (15)

xi, yi = {0, 1} (16)
The corresponding optimal value of state (k, t,G′) is denoted
as OPT ′(k, t,G′). For the DP process, the initial state is
shown as below:{

OPT ′(k = 0, t ≥ 0, G′ ≥ 0) = 0
OPT ′(t < 0||G′ < 0) = −INF (17)

For the state transition equation, we should consider two
different cases. Firstly, when k ≤ n, we can get:

OPT ′(k, t,G′) = max{OPT ′(k − 1, t− dk′, G′) + ek,

OPT ′(k − 1, t, G′)}.
(18)

Secondly, when n < k ≤ 2n, we can get:

OPT ′(k, t,G′) = max{OPT ′(k − 1, t− ck−n′, G′ − gk−n)

+ sk−n, OPT
′(k − 1, t, G′)}.

(19)
Then, a mark function is defined to record whether a state has
been calculated in the DP process.

Mark(k, t,G′) =

{
1 calculated
0 otherwise

(20)

For each t ∈ T ′, we can get an optimal solution vector
−→
At

of (P1
′). Based on

−→
At, we can get the corresponding optimal

value OPT ′t. Considering the constraint (P1)-(2), if OPT ′t ≥

E is true if and only if t ≥ t(I) (t(I) ∈ T ′), we can get that−−−→
At(I) is the optimal solution vector of (P1

′) on the bidding
set I.

Then, Lemma 1 shows that
−−−→
Atopt is also the feasible

solution of (P1), where
−−−→
Atopt = {(x∗i , y∗i ) |i ∈ [1, n]}.

Lemma 1. If (P1) exists a feasible solution, it must be the
feasible solution of (P1

′).

Proof: Assuming that (P1) has a feasible solution

(xi
′, yi
′)(i ∈ [1, n]), we can get that

n∑
i=1

(eixi
′ + siyi

′) ≥ E

and
n∑

i=1

giyi
′ ≤ G are true. And because

n∑
i=1

(di
′xi
′ + ci

′yi
′) ∈

T ′, (xi
′, yi
′)(i ∈ [1, n]) is a feasible solution of (P1

′).

Next, we explain how to obtain K and prove
that the approximation ratio of Algorithm 1 is

(1 + ε). Let Topt =
n∑

i=1

(dix
opt
i + (ci + f costi )yopti ). If

Topt <
n∑

i=1

(K(di
′x∗i − 1) +K(ci

′y∗i − 1)), we can get that
n∑

i=1

(Kdi
′xopti +Kci

′yopti ) <
n∑

i=1

(Kdi
′x∗i +Kci

′y∗i ), which

means that (xopti , yopti ) is better than (x∗i , y
∗
i ) for (P1

′).
Because (x∗i , y

∗
i )(n ∈ [1, n]) is the optimal solution of (P1

′),

Topt <
n∑

i=1

(K(di
′x∗i − 1) +K(ci

′y∗i − 1)) is false. Thus, we

can get that

Topt ≥
n∑

i=1

(K(di
′x∗i − 1) +K(ci

′y∗i − 1))

= K

n∑
i=1

(di
′x∗i + ci

′y∗i )− 2Kn

≥
n∑

i=1

(dixi
∗ + (ci + f costi )yi

∗)− 2Kn.

Let 2Kn = εTl, and then we can get that
n∑

i=1

(dixi
∗ + (ci + f costi )yi

∗) ≤ Topt + εTl ≤ (1 + ε)Topt.

Thus, we get that K = εTl/(2n), and (1 + ε) is the
approximation ratio of Algorithm 1. Furthermore, because
topt = min{t(I), t(I\{bpi

′}), t(I\{bci
′})|i ∈ [1, n]}, we can

get that the approximation ratio of Algorithm 2 is also (1+ ε).

Then, we explain the robustness of Algorithm 2. I\{bpi
′}

denotes that bpi
′

(1 ≤ i ≤ n) is deleted from I, and I\{bci
′}

denotes that bci
′ (1 ≤ i ≤ n) is deleted from I. According to

Algorithm 2, we can get that topt ≤ t(I), topt ≤ t(I\{bpi
′})

and topt ≤ t(I\{bci
′}) are true. Thus, it can be obtained that

the sub-optimal value, which is calculated by Algorithm 2,
does not change when anyone bidding is deleted. Therefore,
the robustness of Algorithm 2 is guaranteed.

Finally, by analysing Algorithm 2, the time complexity

can be expressed as O(n · (2n · (2n +
n∑

i=1

(di
′x∗i + ci

′y∗i )))).

Because di′ = ddi/Ke and ci
′ = d(ci + f costi )/Ke, we can

get
n∑

i=1

(di
′x∗i + ci

′y∗i ) ≤ dTu/Ke+2n = d2nTu/(εTl)e+2n.



Replacing
n∑

i=1

(di
′x∗i + ci

′y∗i ) with d2nTu/(εTl)e + 2n, the

time complexity can be simplified as O(n3 dTu/(εTl)e).

Algorithm 1 A (1 + ε)-approximation algorithm for (P1)

1: Initialize Tu =
n∑

i=1

(dixi
′ + (ci + f costi )yi

′), Tl =

min
1≤i≤n

{di, ci + f costi } and K = εTl

2n .

2: Let di′ = ddi/Ke and ci′ = d(ci + f costi )/Ke.
3: Let T ′ = {

⌈
Tl

K

⌉
,
⌈
Tl

K

⌉
+ 1, ..., 2n+

n∑
i=1

(di
′xi
′ + ci

′yi
′)}.

4: Initialize OPT ′(k, t,G′). OPT ′(k = 0, t ≥ 0, G′ ≥ 0) =
0 and OPT ′(t < 0||G′ < 0) = −INF .

5: for all t ∈ T ′ do
6: for k = 1 to 2n do
7: if k ≤ n then
8: OPT ′(k, t,G′) = max{OPT ′(k−1, t−dk′, G′)+

ek, OPT
′(k − 1, t, G′)}.

9: end if
10: if k > n then
11: OPT ′(k, t,G′) = max{OPT ′(k − 1, t −

ck−n
′, G′ − gk−n) + sk−n, OPT

′(k − 1, t, G′)}.
12: end if
13: end for
14: Get an optimal solution vector

−→
At.

15: end for
16: for t =

⌈
Tl

K

⌉
to 2n+

n∑
i=1

(di
′xi
′ + ci

′yi
′) do

17: When t = t(I) (t(I) ∈ T ′), OPT ′t ≥ E.
18: Break.
19: end for
20: Thus, t(I) is the (1+ε)-approximation value of (P1), and

the corresponding solution vector is denoted as
−−−→
At(I).

Algorithm 2 The robustness guarantee of Algorithm 1

1: Based on Algorithm 1, we can calculate t(I\{bpi
′}) and

t(I\{bci
′}) (i ∈ [1, n]).

2: Let topt = min{t(I), t(I\{bpi
′}), t(I\{bci

′})|i ∈ [1, n]}.
3: Thus, we can get that topt is the sub-optimal value of (P1).

The corresponding solution vector is denoted as
−−−→
Atopt .

B. A 2-approximation greedy algorithm for (P2)

When ignoring the constraint G, (P1) can be simplified
as (P2), which is a classical min-knapsack problem. However,
in our system model, an additional constraint is to guarantee
the robustness of designed algorithms. Based on an existing
algorithm GR [14], which is described in Algorithm 3, a 2-
approximation ratio can be obtained. However, Algorithm 3
cannot be used here for the robustness of the solution and the
truthfulness of the mechanism. The reason is that in the process
deciding a bid’s truthfulness, it cannot guarantee a correct
decision by using Algorithm 3 for computing the minimum
cost because of its approximation nature. Thus an algorithm,
Algorithm 4, is developed to guarantee the robustness of the
algorithm and the truthfulness of the mechanism.

Firstly, because the constraint G is ignored in (P2), we do
not consider the parameter gi in bci . Thus, bci can be simplified

as b̃ci = (si, ci + f costi )(i ∈ [1, n]). We use (ai, bi)(i ∈ [1, n])
to denote (ei, di)(i ∈ [1, n]), and (ai, bi)(i ∈ [n + 1, 2n])
to denote (si, ci + f costi )(i ∈ [1, n]). The detail steps of the
algorithm is shown in Algorithm 3. Based on Algorithm 3,
we can get a 2-approximation value T 2

min(L,E) of (P2). We
use T 2 to denote the sub-optimal value of (P2), which can be
calculated by Algorithm 4. According to Algorithm 4, we can
get that T 2 ≤ T 2

min(L,E) and T 2 ≤ T 2
min(Li, E)(i ∈ [1, 2n])

are true. Thus, we can get two results: (1) The approximation
ratio of Algorithm 4 is also 2, (2) The robustness of Algorithm
4 can be guaranteed.

Algorithm 3 A 2-approximation greedy algorithm for (P2)

1: I ′′ = {(ai, bi)|1 ≤ i ≤ 2n}
2: Sort all elements in I ′′ by b1/a1 ≤ b2/a2 ≤ . . . ≤ bn/an.
3: Let L = (a1, a2, . . . , an). Li = L\{ai}.

4: Let k1 be the index for which
k1∑
i=1

ai < E ≤
k1+1∑
i=1

ai, then

getting a solution (a1, a2, . . . , ak1+1).
5: Let S1 = (a1, a2, . . . , ak1

), then S1 ∪ {ak1+1} is also a
solution.

6: If
k1∑
i=1

ai +aj ≥ E when j ∈ {k1 +2, . . . , k2−1}, all S1∪

{aj} is solutions. Let B1 = (ak1+1, ak1+2, . . . , ak2−1)

7: Assume that k2 is the first next index for which
k1∑
i=1

ai +

ak2 < E and k3 (k3 ≥ k2) is the index for which
k1∑
i=1

ai +
k3∑
k2

ai < E ≤
k1∑
i=1

ai +
k3+1∑
k2

ai, and set S2 =

(ak2
, ak2+1, . . . , ak3

), B2 = (ak3+1, ak3+2, . . . , ak4−1),
then S1 ∪ S2 ∪ {ak3+1} is also a solution.

8: Iterate 7 until all elements in I ′′ are traversed, and obtain
the 2-approximation value T 2

min(L,E) of (P2).

Algorithm 4 The robustness guarantee of Algorithm 3
1: Let T 2 = min{T 2

min(L,E), T 2
min(Li, E)|i ∈ [1, 2n]}.

2: T 2 is the sub-optimal value of (P2).

Then, we discuss the time complexity of Algorithm 4. In
Algorithm 3, the 2ed step is a quicksort, so its time complexity
is O(n log n). From the 4th step to the 8th step, the time
complexity of each step is O(n). Thus, the time complexity
of Algorithm 3 is O(n log n). In Algorithm 4, we need 2n
times of iterative calculation for T 2

min(Li, E)(i ∈ [1, 2n]).
Thus, the time complexity of Algorithm 4 can be expressed as
O(n log n+ 2n · n), which can be simplified as O(n2).

IV. TRUTHFUL AUCTION MECHANISM

In this section, we analyse the feasibility and truthfulness
of Co-Colo based on the VCG theory. The VCG theory is a
sealed-bid and truthful auction mechanism which can achieve a
socially-optimal solution [15]. When adopting the VCG theory,
tenants participate in the auction without knowing others’
biddings, and tenants’ actual benefits are decided by others’
biddings. Besides, it also can incentivize tenants to bid their
true valuations for obtaining more benefits. Before analysing,
three hypotheses are given as the precondition:



• Tenants are rational people who know own preference and
have clear understanding of their goals. Furthermore, they
can make choice independently which means that they are
not influenced by others in their bidding process.

• Tenants always make rational choices, which means that
random or experiential decisions do not exist when ten-
ants make decisions in the auction.

• Self-interest principle, which means that tenants always
participate in the auction for obtaining the maximal profit
and do not pay attention to others.

Besides, in Section III, we have explained that the developed
algorithms are robust. This feature guarantees that these algo-
rithms can satisfy the policy of the VCG theory.

Then, for Co-Colo, we discuss its pricing strategy, and
prove its feasibility and truthfulness. We use D to denote
the bidding set of Co-Colo, which can be expressed as D =
{b1, ..., b2n}, where bi = (mi, hi, g̃i). When i ∈ [1, n], let
mi = ei, hi = di and g̃i = 0. When i ∈ [n + 1, 2n], let
mi = si, hi = ci + f costi and g̃i = gi.

Based on the general problem (P1), we define that V E,G
D

is the (1 + ε)-approximation solution obtained by Algorithm
2. D\{bi} denotes that a bidding bi is deleted from D, just as
D\{bi} = {b1, ..., bi−1, bi+1, ..., bn}. Based on D\{bi}, (P1)’s
(1 + ε)-approximation solution is denoted as V E,G

D\{bi}, which
is obtained from Algorithm 1. Let p1i = V E,G

D\{bi} and p2i =

V E−mi,G−g̃i
D\{bi} , then tenant i’s market-clearing price1 pi can be

derived as:

pi = p1i − p2i = V E,G
D\{bi} − V

E−mi,G−g̃i
D\{bi} . (21)

htruei is defined as the truthful cost of bidding bi, and ui
denotes the utility of tenant i. To guarantee the feasibility of
Co-Colo, all tenants’ utility must be non-negative. Meanwhile,
to guarantee the truthfulness, we need to ensure that it is
impossible for any tenant to obtain higher utility by declaring
a false cost. Then, we provide two lemmas to prove the
feasibility and truthfulness of Co-Colo.

Lemma 2. In Co-Colo, if bidding bi is selected, ui ≥ 0.

Proof: For tenant i, the utility can be expressed as the
difference between the market-clearing price and the truthful
cost of bidding bi.

ui = pi − htruei

= V E,G
D\{bi} − (V E−mi,G−g̃i

D\{bi} + htruei ).
(22)

When bi is selected, by the algorithms, we can get

V E,G
D ≤ V E,G

D\{bi}. (23)

Meanwhile, because htruei is the truthful cost of tenant i, it
means that htruei ≤ hi is true. Thus, we can get

V E,G
D ≥ (V E−mi,G−g̃i

D\{bi} + htruei ). (24)

Thus, based on (23) and (24), we can get that ui = V E,G
D\{bi}−

(V E−mi,G−g̃i
D\{bi} + htruei ) ≥ 0. Thus, Lemma 2 is true.

1Market-clearing price is the real value of goods in the market.

TABLE I. SIMULATION PARAMETERS

Parameter Value

Number of servers for each tenant 10,000

Number of tenants 6

Static power consumption of each server P s 0.15 kW

Dynamic power consumption of each server Pd 0.1 kW

Electricity price pe 0.1 $/kWh

Energy-saving cost ps 5× 10−3 $/server

The average price of VM instance pvm 0.007 $

Physical machine Dell PowerEdge R730

(a) (b)

Fig. 2. 2(a) EDR energy reduction. 2(b) Workload traces.

Lemma 3. In Co-Colo, when tenant i declares a false cost
hfalsei , ui does not increase.

Proof: Firstly, if bi is not selected, tenant i’s utility is
always zero whether the declared cost is true or false. Thus,
in this case, Lemma 3 is true.

Secondly, if bi is selected, we assume that ui′ is the utility
when tenant i declares a false cost, so we can get

ui
′ = pi − hfalsei

= V E,G
D\{bi} − (V E−mi,G−g̃i

D\{bi} + hfalsei ).
(25)

Then, ∆ui is defined as the difference between ui and ui
′,

given as
∆ui = ui

′ − ui = htruei − hfalsei . (26)
According to the self-interest principle, the false cost cannot
be less than the truthful cost, just as dtruei ≤ dfalsei . Based on
(26), ∆ui is a negative value, i.e., ∆ui < 0, which means that
declaring a false cost cannot increase tenant i’ utility. Thus,
Lemma 3 is true.

V. EXPERIMENTS ANALYSIS AND PERFORMANCE
EVALUATION

In this section, we first describe the corresponding settings
about the simulations, and explain the data sources used in the
simulations. Based on the widely accepted settings [1][5][16]
and the real traces, our simulations are more convincing.
Secondly, combined with the theoretical analysis and the sim-
ulation results, we evaluate the performance of the proposed
algorithms. Then, we evaluate the effectiveness and feasibility
of Co-Colo based on the simulations.

A. Settings

Assume that a colocation has six tenants (denoted as Tenant
#1, Tenant #2, ... , and Tenant #6). For each tenant, it has
10,000 homogeneous servers, and the static power P s and the
dynamic power P d of one server are 0.1 kW and 0.15 kW



[5]. Because we focus on tenants’ energy efficiency and cost,
the PUE of the colocation would not affect our results. Thus,
the PUE would be ignored in the simulations. Above all, the
peak power of the colocation is 15 MW. Besides, we set the
electricity price pe as 0.1$/kWh, which means that tenants pay
0.1 $ for 1 kWh. Meanwhile, we measure the energy-saving
cost according to the server switching cost and the performance
loss cost, which is denoted as ps.

Energy reduction targets: The data of energy-saving tar-
gets comes from PJMs EDR on April 22, 2015 [17], and
the data is scaled down to 15% of the colocation’s maxi-
mum power for avoiding affecting normal operation [18]. The
energy-saving targets are shown in Fig. 2(a). There are eight
events from 6 am to 13 pm, and each event lasted one hour.

Workload: The workload traces, which come from “MSR”
and “Florida International University”, are from [1], and are
shown in Fig. 2(b). The workload traces are divided into six
sub-traces which are regraded as the workload of six tenants.

Tenants’ energy-saving and cost: In Co-Colo, we con-
sider that tenants optimize the energy efficiency by turning
off idle servers [16]. Meanwhile, we consider that different
tenants have their own bidding parameters, which are used to
distinguish tenants’ different expected cost. Tenant i’s bidding
parameter is denoted as αi. For LocalOpt, tenants need to
optimize their local servers’ utilization by integrating workload
and turning off idle servers. We use ni,P to denote the number
of turned off servers. Thus, the energy reduction of tenant i
is ei = ni,P · P s · T , where T = 1 hour is one EDR period.
For tenant i, di includes two parts. Firstly, the energy charge,
which is prepaid before the EDR, should be returned. Then,
the switching cost also a part of di. Thus, tenant i’s cost can
be expressed as di = ei · pe + ni,P · ps · αi. For GlobalOpt,
we assume that tenants request ni,vm VM instances to migrate
the workload of ni,C servers, and the utilization of each server
is denoted as ui,j . Then, the energy reduction of tenant i is

si =
ni,C∑
j=1

(ui,j · P d + P s). Compared with LocalOpt, the cost

of tenant i in GlobalOpt has an additional cost of requesting
VM instances. By analysing statistically seven different T2
instances from the Amazon EC2, we can obtain the average
price pvm of a VM instance. Thus, tenant i’s cost can be
expressed as ci +f costi = si ·pe +(ni,C ·ps +ni,vm ·pvm) ·αi.

B. Analysis and evaluation

TABLE II. COMPARISONS OF OVERALL PERFORMANCE AMONG
DIFFERENT ALGORITHMS

Approximation ratio Time complexity Generality

Algorithm 2 1 + ε O(n3
⌈

Tu
εTl

⌉
) high

Algorithm 4 2 n2 low

Branch-Bound 1 n2n high

1) Algorithm analysis: The theoretical performance of al-
gorithms is summarized in Table II. By comparison, we find
that the approximation ratio of 2 is better than Algorithm 4.
However, when considering the time complexity, Algorithm 4
is better than Algorithm 2. Besides, Algorithm 2 is a more
general algorithm than Algorithm 4. Thus, for the relatively
simple problem (P2), we use Algorithm 4 instead of Algorithm
2. Furthermore, except the above three features, we also show

(a) (b)

Fig. 3. Optimal cost comparison. 3(a) Co-Colo. 3(b) Only LocalOpt.

(a) (b)

Fig. 4. Social cost comparison. 4(a) Co-Colo. 4(b) Only LocalOpt.

Co-Colo
LocalOpt

(a)

Co-Colo
LocalOpt

(b)

Fig. 5. The cost comparison between Co-Colo and LocalOpt. 5(a) Optimal
cost. 5(b) Social cost.

that Algorithm 2 and Algorithm 4 both are robust, which
means that they can both satisfy the policy of the VCG theory.

The practical performance of algorithms is shown in Fig.
3 and Fig. 4. One control group is the branch and bound
(b-b) algorithm, which can get the optimum value with the
exponential time complexity. Because Algorithm 4 has the
same approximation ratio as GR, Algorithm 4 can be regard
as another control group. Firstly, we compare the optimal cost
values of three algorithms. From Fig. 3(a), we can find that the
performance of Algorithm 2 is close to the optimum value, and
better than Algorithm 4. Comparing Fig. 3(a) with Fig. 3(b),
we find that the optimal cost values of three algorithms have
no obvious fluctuations. However, Algorithm 2 shows more
obvious advantage than Algorithm 4 in Fig. 4. Comparing
the social cost values, Algorithm 2 always keeps the same
performance as the b-b algorithm in two different mechanisms.
On the contrary, the performance of Algorithm 4 fluctuates
obviously by comparing Fig. 4(a) with Fig. 4(b). It shows that
Algorithm 2 has higher stability than Algorithm 4.

2) Effectiveness of Co-Colo: We verify the effectiveness
of Co-Colo by comparing the optimal and social cost between
two different mechanisms, because the cost is the main opti-
mization objective for the colocation operator. There are two
reasons about selecting LocalOpt as the control group rather



(a) (b)

Fig. 6. Tenants’ benefits in Co-Colo. 6(a) Algorithm 2. 6(b) Algorithm 4.

than GlobalOpt. Firstly, considering the existing researches in
colocations, LocalOpt is adopted more widely to incentivize
tenants to optimize their own energy efficiency, which has
been shown in related works. Secondly, we analyse the energy-
saving cost of two mechanisms according to the system model
shown in Section II-A. Compared with GlobalOpt, when
ei = si, we can get that ni,p < ni,C . Besides, GlobalOpt
needs to consider an extra public resource cost f costi . Thus,
the energy-saving cost of GlobalOpt is higher than LocalOpt,
which means that LocalOpt is a better control group when
considering the cost.

In Fig. 5, we compare the optimal cost and the social
cost between Co-Colo and LocalOpt based on Algorithm 2.
Fig. 5(a) shows that two mechanisms can get the similar
optimal cost based on Algorithm 2. However, in Fig. 5(b), the
difference of two mechanisms becomes obvious. The results
explain that Co-Colo can reduce effectively the actual energy-
saving expense, and are also a proof for the performance of
Algorithm 2. Furthermore, Fig. 5(b) shows that Co-Colo can
obtain better effect with the high energy-saving targets. For
instance, Co-Colo has about 20% social cost improvement at
6 am, 10 am, 11 am and 12 am, and the value is about 5% at
8 am. At other time, two mechanisms have similar social cost.
It is because LocalOpt has achieved the optimal social cost
by synthesizing multiple factors, GlobalOpt is provisionally
ignored. The results accord with our mechanism design.

3) Feasibility of Co-Colo: Fig. 6 shows tenants’ benefits
when their biddings are selected in the EDR project. All
tenants’ benefits are non-negative based on two algorithms.
The results verify Lemma 2 proposed in Section IV. Further-
more, Fig. 6 explains that two proposed algorithms satisfy the
policy of the VCG theory. Comparing Fig. 6(a) with Fig. 6(b),
we also find that Algorithm 2 can reduce tenants’ benefits
more effectively on the premise of non-negative benefits. Fig.
6 explains the feasibility of Co-Colo, and also shows that
Algorithm 2 helps the colocation operator control effectively
the additional cost, which is used to incentivize tenants for
saving energy and guarantee the truthfulness of Co-Colo.

VI. CONCLUSION

Due to high energy consumption, colocations play an
irreplaceable role in the EDR program. By analysing the
special management pattern of colocations, we showed that
solving the “uncoordinated relationship” issue is the key to
improve the colocations’ energy efficiency. In this paper, we
firstly proposed a joint incentive mechanism Co-Colo. We
showed that it can better improve the energy efficiency and
resource utilization in colocations compared with LocalOpt

and GlobalOpt. Secondly, considering whether the public
resources are sufficient to satisfy tenants’ total demands, Co-
Colo was formulated as two problems. We designed a (1 + ε)-
approximation algorithm and a 2-approximation algorithm
to solve them, respectively. Meanwhile, we also explained
the robustness of proposed algorithms. Then, we proved the
feasibility and the truthfulness of Co-Colo. Finally, based on
the real traces, we evaluated the effectiveness of Co-Colo and
the performance of developed algorithms.
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