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Fig. 1. Visual results generated by NavCrafter. Given a single image, NavCrafter reconstructs 3D scenes from the camera-guided video
diffusion model.

Abstract— Creating flexible 3D scenes from a single image is
vital when direct 3D data acquisition is costly or impractical.
We introduce NavCrafter, a novel framework that explores 3D
scenes from a single image by synthesizing novel-view video
sequences with camera controllability and temporal-spatial
consistency. NavCrafter leverages video diffusion models to
capture rich 3D priors and adopts a geometry-aware expansion
strategy to progressively extend scene coverage. To enable
controllable multi-view synthesis, we introduce a multi-stage
camera control mechanism that conditions diffusion models
with diverse trajectories via dual-branch camera injection
and attention modulation. We further propose a collision-
aware camera trajectory planner and an enhanced 3D Gaus-
sian Splatting (3DGS) pipeline with depth-aligned supervision,
structural regularization and refinement. Extensive experiments
demonstrate that NavCrafter achieves state-of-the-art novel-
view synthesis under large viewpoint shifts and substantially
improves 3D reconstruction fidelity.

I. INTRODUCTION

Humans naturally perceive 3D structures from a single
image, effortlessly estimating depth, inferring spatial layouts,
and reasoning about occluded regions. Emulating this ability
in computational models—i.e., generating flexible 3D scenes
from sparse or even a single observation—has transformative
potential for domains where direct 3D capture is expensive
or infeasible, including filmmaking, VR/AR, robotics, and
social platforms.

Recent advances in learnable scene representations, such
as Neural Radiance Fields (NeRF) [1] and 3DGS [2], have
enabled photorealistic rendering of 3D scenes. However,
these methods typically require dense multi-view inputs,

severely limiting their applicability in scenarios with re-
stricted observations. A more practical yet challenging set-
ting involves synthesizing novel views (NVS) from a single
image, which requires comprehensive understanding of 3D
structure, appearance, semantics, and occlusion reasoning.

Generative models, especially diffusion models [3], [4],
provide principled solutions for novel-view synthesis (NVS).
Image-based methods [5], [6] often accumulate geometric
errors, while video-based models [7], [8] struggle with
dynamic content and weak camera supervision. Recent video
generation approaches [9], [10] achieve impressive realism
by learning distributions of real-world videos, yet their appli-
cation to NVS remains limited by two persistent challenges:
(1) controllability—explicit specification of camera motions
and scene composition; and (2) consistency—maintaining
spatio-temporal coherence across long sequences for reliable
3D reconstruction. Although some works attempt to address
these issues through fine-tuning with additional images, text
prompts, or camera parameters [8], [11], precise control of
complex trajectories and consistent synthesis under large
and rapid viewpoint changes remain unsolved, often leading
to geometric inconsistencies that degrade both 3DGS re-
construction quality and Structure-from-Motion (SfM) pose
estimation.

To overcome these limitations, we propose NavCrafter,
a framework for exploring 3D scenes from a single image
(Fig. 1). NavCrafter leverages rich 3D priors from video
diffusion models and employs a geometry-aware expansion
process to progressively integrate novel content into a global
scene structure. This design enables precise camera control,
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broad scene coverage, and high-fidelity 3D reconstruction.
Our contributions are summarized as follows:
• Controllable Novel View Synthesis: We propose a

multi-stage camera control architecture that incorporates
camera trajectories into video diffusion models via dual-
branch camera injection and attention modulation.

• Iterative View Synthesis with Collision-Aware Cam-
era Trajectory Planning: We present an iterative NVS
strategy with collision-aware camera trajectory plan-
ning, progressively extending the coverage of synthe-
sized views and reconstructed point clouds.

• Geometry-aware 3D Reconstruction: We enhance
the 3DGS reconstruction pipeline with depth-aligned
supervision, structural regularization and refinement to
improve geometric consistency.

Extensive experiments show that NavCrafter achieves
high-quality novel view synthesis under challenging view-
point changes and significantly improves downstream 3D
scene reconstruction.

II. RELATED WORK

A. Novel View Synthesis (NVS)

Generating novel views from a set of posed images has
been extensively studied [1], [2]. However, most methods
require dense input views and often produce severe artifacts
when extrapolating to extreme viewpoints. To mitigate these
limitations, several approaches introduced geometric priors
for regularization [12], [13], but their performance is sen-
sitive to noise in depth or normal estimates. Feedforward
models have been explored to directly predict novel views
from sparse inputs [14], yet they are constrained by the
scarcity of training data and struggle to generalize to unseen
domains and large viewpoint shifts.

With the rise of image and video generation models,
See3D [15] and CAT3D [16] introduced generative priors
to improve sparse-view NVS, though their per-scene opti-
mization remains computationally expensive. More recent
approaches utilize video diffusion models and global point
clouds to improve multi-view consistency [11], [17], but their
effectiveness depends on point cloud quality and remains
limited to narrow-scoped scenes.

B. Camera-Conditioned Video Diffusion Models

Camera-conditioned video diffusion models have recently
attracted growing attention [8], [9], [18]. Early works ex-
plored training-free conditioning strategies [19] or integrated
LoRA modules [20] into diffusion pipelines for limited forms
of camera control. Recent efforts, such as Gen3C [10], in-
corporated ControlNet-like conditioning with cross-attention
mechanisms, but due to high computational costs, pose
control was only applied at low-resolution stages in cas-
caded generators. Methods like DimensionX [21] achieved
basic control via multiple LoRA modules but struggled
with complex motions. Wonderland [22] and StarGen [23]
synthesize videos from a single view and trajectory but
cannot supplement existing 3D structures, limiting scene

coverage. Similarly, See3D [15] and ViewCrafter [17] can in-
paint missing perspectives but fail to handle large viewpoint
changes. In contrast, our method introduces a multi-stage
camera control mechanism directly into the video diffusion
backbone, enabling precise pose control while preserving
generation quality.

C. 3D Scene Generation
While object-level 3D generation [16] has made remark-

able progress, full-scene generation remains underexplored.
Early works [5], [24] combined monocular depth warping
with diffusion-based inpainting, but depth estimation errors
and per-view refinements often led to distortions and in-
consistent geometry. Others explored video diffusion models
coupled with point clouds [10], [17], which improved multi-
view consistency but remained constrained to narrow-range
scenes due to reliance on point cloud quality. Our work de-
parts from these approaches by explicitly embedding camera
control into the video diffusion backbone and coupling it
with a collision-aware camera trajectory planning strategy.
This enables progressive scene expansion and, together with
an enhanced 3DGS-based reconstruction pipeline, allows us
to generate wide-scope, high-fidelity 3D scenes from a single
image.

III. PRELIMINARIES

A. Video Diffusion Model
A diffusion model [3], [4] consists of a forward and

a denoising process. In the forward process, the diffusion
model gradually adds Gaussian noise to a clean image x0

from time 0 to T . The noisy image xt at a certain time
t ∈ [0, T ] can be expressed as xt = αtx0+σtϵ, where αt and
σt are predefined hyperparameters. In the denoising process,
a noise predictor ϵθ(xt, t) with parameters θ is trained to
predict noise in xt for generation. Given the corresponding
condition y for x, the training objective of a diffusion model
is:

min
θ

Et∼U(0,1),ϵ∼N (0,I)

[
∥ϵθ(xt, t; y)− ϵ∥22

]
. (1)

Recent video diffusion models [25] typically employ a 3D-
VAE encoder E to compress the source video into a latent
space where the diffusion model is trained. The generated
latent video is subsequently decoded to the pixel space using
the corresponding decoder D .

B. 3D Gaussian Splatting
3DGS represents a scene with a set of 3D Gaussians, each

defined by a center µ ∈ R3, color c ∈ R3, opacity η, scale
S ∈ R3×3, and rotation R ∈ SO(3). The rendering color
along a ray r is computed by standard volume rendering:

C(p) =
N∑
i=1

αici

i−1∏
j=1

(1− αj), (2)

where αi is the opacity of Gaussian i. For a point p, αi is
given by

αi = η exp
(
− 1

2 (p− µ)⊤Σ−1(p− µ)
)
, (3)

with covariance Σ = RSS⊤R⊤.
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Fig. 2. The NavCrafter framework consists of three modules: (1) Controllable novel-view synthesis via video diffusion, integrating camera trajectories
to control video generation and achieve temporally consistent novel views; (2) Iterative view synthesis with collision-aware camera trajectory planning,
avoiding scene collisions and optimizing camera trajectories; (3) Geometry-aware 3D reconstruction with enhanced 3D Gaussian Splatting, incorporating
depth-aligned supervision, structural regularization and image diffusion model refinement.

IV. METHODOLOGY

A. System Overview

As shown in Fig. 2, NavCrafter consists of three modules:
a) Module I: Controllable Novel View Synthesis: In

Sec. IV-B, from a single input image, we employ a video
diffusion model with multi-stage camera control, which
incorporates camera trajectories to ensure precise viewpoint
control and temporal consistency across synthesized views.

b) Module II: Iterative View Synthesis with Collision-
Aware Camera Trajectory Planning: In Sec. IV-C, we
propose a collision-aware trajectory planning module that
iteratively explores novel views, avoiding scene collisions
and correcting camera trajectories.

c) Module III: Geometry-aware 3D Reconstruction: In
Sec. IV-D, synthesized views with poses are reconstructed
via enhanced 3D Gaussian Splatting, further refined by:
(1) depth-aligned supervision for geometric accuracy, (2)
structural regularization to mitigate overfitting, and (3) image
diffusion-based refinement for visual fidelity.

B. Controllable Novel View Synthesis

Video diffusion models lack explicit camera trajectory
control, limiting 3D reconstruction for static scenes. We
propose a framework integrating precise pose information
to enable multi-view-consistent synthesis with 3D-aware
latents.

1) Camera Trajectory Representation: Per-pixel rays are
derived from frame f ’s camera parameters (Rf ∈ R3×3,
tf ∈ R3, Kf ∈ R3×3). The normalized ray direction at
(uf , vf ) is:

duf ,vf =
RfK

−1
f [uf , vf , 1]

T + tf

∥RfK
−1
f [uf , vf , 1]T + tf∥

. (4)

Plücker embedding encodes ray orientation and camera
center:

ṗuf ,vf = (tf × duf ,vf ,duf ,vf ) ∈ R6. (5)

Stacking over frames yields p ∈ RT×H×W×6, precomputed
offline for efficiency.

2) Multi-Stage Camera Control Architecture: We propose
a three-stage architecture to achieve persistent camera guid-
ance without full fine-tuning.

Dual-Branch Camera Injection: Downsampled trajec-
tory embeddings ṗu,v are encoded by a 3D convolutional
adapter A into xc:

xc = A(ṗu,v). (6)

xc is injected into the video tokens xv before each Diffusion
Transformer (DiT) block as x′

v = xv + xc to initialize
trajectory constraints, and is also added to self-attention
outputs as x′

a = xa + xc to reinforce signals. Random
reference frames in self-attention further enhance cross-view
consistency.

LoRA Attention Modulation: Trajectory embeddings are
also projected by a lightweight 3D convolutional encoder into
LoRA control tokens xl, which share the same dimension
as video tokens. These tokens modulate the query, key, and
value projections, e.g.,

Q′ = Q+ α ·Wu(Wd · xl), (7)

where Wu and Wd are low-rank matrices and α controls the
modulation strength. This directs attention toward trajectory-
consistent regions.

Overall, the integration of dual-branch feature injection
and attention-level modulation ensures accurate trajectory
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following, enhanced geometric consistency, and efficient
adaptation without full retraining. Training details are given
in Sec. V.

C. Iterative View Synthesis with Collision-Aware Camera
Trajectory Planning

To mitigate instability and high cost in long-horizon video
diffusion, we adopt iterative view synthesis with collision-
aware camera trajectory planning.

Given a sequence of RGB images (Ii)
N
i=1, where each

Ii ∈ R3×H×W observes the same 3D scene, VGGT [26]
uses a transformer D(·) to generate 3D annotations for each
frame:

D
(
(Ii)

N
i=1

)
= (gi,di,pi)

N
i=1, (8)

where gi ∈ R9 represents camera intrinsics and extrinsics,
di ∈ RH×W is the depth map, and pi ∈ R3×H×W is the
point cloud. The point cloud is defined in the coordinate
system of the first camera g1, which serves as the world
reference frame.

Starting from the reference point cloud Pref, the camera
iteratively moves from the current pose Ccurr to selected next-
best-views (NBVs).

1) Collision-Aware NBV Selection: At each iteration, K
candidate poses are sampled around Ccurr. Colliding poses are
removed by G(·), and valid ones are scored with F(·) using
a visibility mask M from point-cloud rendering, favoring
informative and less occluded views.

2) Adaptive Trajectory Generation: The optimal pose Cnbv
is selected via spherical interpolation. If the interpolated
trajectory Tsmooth intersects the scene, continuous collision-
aware optimization adjusts the trajectory by minimizing a
combined cost of collision risk and trajectory smoothness:

min
Tt

∑
t

max
(
0, rsafe − d(Tt,Pcurr)

)
+ λ

∑
t

∥Tt+1 − Tt∥2,
(9)

where rsafe is the safety radius, dist(Tt,Pcurr) computes the
shortest distance from the trajectory point Tt to the current
point cloud Pcurr, and λ controls trajectory smoothness. This
formulation ensures collision-free, smooth, and physically
plausible camera trajectories.

3) Progressive Scene Enhancement: Synthesized views
Inbv by NavCrafter in Sec. IV-B using V(·) are back-
projected via D(·) to progressively expand coverage and
refine reconstruction. This iterative process continues until
N poses are generated.

The procedure is summarized in Algorithm 1.

D. Geometry-aware 3D Reconstruction

In this section, we focus on geometry-aware 3D scene
reconstruction, composed of three key components: depth-
aligned supervision, structural regularization, and multi-view
refinement for high-fidelity, geometrically consistent recon-
structions. These camera parameters and multi-view point

Algorithm 1 Collision-Aware Camera Trajectory Planning
1: Initialize scene center o, current point cloud Pcurr ←
Pref, current camera pose Ccurr ← Cref, collision detector
G ← initialize(Pref), step← 0

2: while step ≤ N do
3: Spherically sample K candidate poses Ccan =
{C1can, . . . , CKcan} from the searching space S around the
current pose Ccurr, initialize candidate mask set Mcan =
{}

4: for C in {C1can, . . . , CKcan} do
5: if not G(C) then
6: MC = Render(Pcurr, C)
7: Mcan.append(MC)
8: else
9: Mcan.append(∅) ▷ Collision

10: end if
11: end for
12: Cnbv = arg max

C∈Ccan
F(C)

13: Tsmooth = SphericalInterpolate(Ccurr, Cnbv)
14: if G(Tsmooth) then
15: Tsmooth = CollisionOptimization(Tsmooth,o)
16: end if
17: Inbv = V(Tsmooth,Pcurr) , Pcurr ← D(Inbv,Pcurr)
18: Ccurr ← Cnbv, step← step+ 1
19: end while
20: return

clouds which obtained in Sec. IV-C are used for 3DGS
initialization.

1) Depth-aligned Supervision: We use depth supervi-
sion to improve geometric consistency. To improve depth
quality, we combine absolute depths from neural matching
with monocular depth predictions. The depth estimated by
VGGT [26] is not accurate enough but is aligned with camera
poses, while monocular predictions perform better on edges.
We calibrate relative monocular depths dm obtained from
MoGe-2 [27] against absolute depths dv by solving:

min
scale,bias

∥∥∥M · (d̂m −
1

dv

)∥∥∥2, d̂m =
scale
dm

+ bias, (10)

where scale and bias are the calibration parameters, d̂m

denotes the calibrated monocular depth, and M is a mask
for valid non-sky regions.

2) Structural Regularization: To mitigate overfitting un-
der sparse views, we use DropGaussian [12], which ran-
domly removes Gaussians with dropping rate r. The opacity
value of the remaining Gaussians as follows:

õi = M(i) · oi, M(i) =
1

1− r
· Ikeep(i), (11)

where Ikeep(i) indicates whether Gaussian i is kept. We apply
a progressive dropping schedule:

rt = γ · t

ttotal
, (12)

where t is the current iteration, ttotal is the total number of
iterations, and γ is the maximum dropping rate.
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Fig. 3. Qualitative comparison with prior methods in controllable novel view synthesis, where the first column shows the input image and camera
trajectory. Blue bounding boxes indicate reference areas for easier comparison, while orange ones highlight low-quality generations.

3) Loss Function Design: We use a multi-constraint loss
function to balance photometric fidelity and geometric con-
sistency. L1 RGB loss L1RGB and perceptual loss Llpips
ensure texture accuracy, while L1 depth loss L1depth, based
on the calibrated depth d̂m, ensures 3D consistency:

L = L1RGB + Llpips + L1depth. (13)

4) Refinement: For improved visual fidelity, multi-view
images I are rendered and perturbed with noise, then it-
eratively denoised using the image diffusion model Di-
fix3D+ [28]:

Î = fθ(αtI + σtϵ, t), (14)

where t denotes the diffusion timestep and fθ denotes
the image diffusion model. The resulting images Î serve
as additional supervision for 3DGS reconstruction and are
optimized with the same loss in Eq. (13).

V. EXPERIMENTS AND RESULTS

In this section, we first describe implementation details
in Section V-A. Quantitative and qualitative results for con-
trollable video generation and 3D scene reconstruction are
presented in Sections V-B and V-C, respectively. Collision-
aware camera planning and ablation studies are analyzed in
Sections V-D and V-E.

A. Implementation Details

We build our model upon the transformer-based video dif-
fusion backbone Wan2.1 [25], with LoRA modules injected
into cross-attention layers to efficiently modulate spatial-
temporal features. The model is fine-tuned for 30,000 itera-
tions using the Adam optimizer with a learning rate of 1×
10−4, weight decay of 3×10−2, and BF16 mixed precision.
Input videos are divided into 81-frame clips, resized to 256×
256, and encoded using a high-resolution VAE at 1024 ×
1024. We construct the training set from two benchmark
datasets with camera pose annotations: RealEstate10K [29],
containing 80K real-world indoor/outdoor videos with esti-
mated trajectories, and DL3DV [30], comprising 10K diverse

indoor/outdoor videos with high-quality pose annotations.
During inference, we employ the DPM solver [31] with 40
steps, a guidance scale of 6.5, and LoRA weights fixed at
0.7.

B. Controllable Novel View Synthesis

We evaluate controllable novel view synthesis in Sec. IV-
B by comparing both visual generation quality and cam-
era guidance accuracy against several baselines: Wonder-
land [22], Scene-Splatter [32], ViewCrafter [17] and Mo-
tionCtrl [8].

1) Comparison of Benchmark Datasets and Metrics:
We evaluate our model on three datasets: 300 test videos
from RealEstate10K [29], 300 clips from DL3DV [30], and
100 clips from all 14 scenes of Tanks-and-Temples [33]
for out-of-domain evaluation. Evaluation metrics include: (1)
Visual Similarity measured by PSNR, SSIM, and LPIPS
against ground-truth views, where only the first 14 frames are
considered following Wonderland [22] to avoid long-horizon
drift (note: quantitative metrics for Wonderland are reported
from the original paper as the code is not publicly available);
(2) Visual Quality and Temporal Coherence assessed by FID
and FVD; and (3) Camera-Guidance Precision measured by
rotation error (Rerr) and translation error (Terr). For the last
metric, camera poses are recovered from generated videos
using Colmap [34], aligned to the first frame, normalized to
a unified scale, and averaged across frames under the same
pose conditions.

2) Qualitative Comparison: Fig. 3 presents qualitative
results on the evaluation datasets, where the bottom-right of
each input image shows the corresponding input camera frus-
tum trajectory. MotionCtrl [8] generates the lowest-resolution
results and exhibits the weakest trajectory alignment due to
coarse camera embeddings. Scene-Splatter [32] suffers from
poor geometric consistency in novel view synthesis, as it
relies on a low-performance feedforward model as input
condition. ViewCrafter [17] produces frame-wise artifacts
caused by incomplete point clouds with irregular missing
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Fig. 4. Qualitative comparison with prior methods in 3D scene reconstruction, where blue bounding boxes show visible regions derived from input image
and yellow bounding boxes highlight low-quality regions.

TABLE I
QUANTITATIVE COMPARISON OF CONTROLLABLE NOVEL VIEW SYNTHESIS

Method RealEstate10K DL3DV Tanks and Temples
LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

MotionCtrl [8] 0.381 16.17 0.443 0.296 15.85 0.485 0.389 14.62 0.421
Scene-Splatter [32] 0.332 17.91 0.506 0.259 16.80 0.519 0.345 15.20 0.489
ViewCrafter [17] 0.258 18.52 0.518 0.236 16.98 0.526 0.285 16.38 0.514
Wonderland [22] 0.206 19.71 0.557 0.218 17.56 0.543 0.221 16.87 0.529
Ours 0.158 21.15 0.680 0.196 17.79 0.576 0.212 17.28 0.547

TABLE II
COMPARISON OF DISTRIBUTIONAL METRICS

Method RealEstate10K DL3DV Tanks and Temples
FID ↓ FVD ↓ FID ↓ FVD ↓ FID ↓ FVD ↓

MotionCtrl [8] 24.12 255.18 28.43 292.62 34.65 327.49
Scene-Splatter [32] 22.09 223.71 25.70 242.97 26.37 274.25
ViewCrafter [17] 21.28 208.57 23.46 236.45 24.48 256.13
Wonderland [22] 16.16 153.48 17.74 169.34 19.46 189.32
Ours 15.88 143.85 16.86 158.61 19.13 181.49

TABLE III
COMPARISON OF CAMERA POSE ERRORS

Method RealEstate10K DL3DV Tanks and Temples
Rerr ↓ Terr ↓ Rerr ↓ Terr ↓ Rerr ↓ Terr ↓

MotionCtrl [8] 0.226 0.664 0.343 0.862 0.576 1.207
Scene-Splatter [32] 0.096 0.280 0.125 0.347 0.241 0.426
ViewCrafter [17] 0.073 0.194 0.104 0.216 0.144 0.337
Wonderland [22] 0.046 0.093 0.061 0.130 0.094 0.172
Ours 0.021 0.083 0.047 0.113 0.082 0.148

regions. In contrast, our method achieves superior fidelity
and more accurate camera control.

3) Quantitative Comparisons: Quantitative results are re-
ported in Table I. Our method consistently outperforms
baselines across all metrics. Lower FID and FVD values
indicate closer alignment with the ground-truth distribution.
Smaller LPIPS and higher PSNR/SSIM confirm superior
visual similarity. Furthermore, our model achieves more
precise camera control, as evidenced by lower Rerr and Terr

values.

C. 3D Scene Reconstruction

We evaluate our method against several baseline ap-
proaches, including Wonderland [22], ViewCrafter [17],
Scene-Splatter [32], on real-world datasets for 3D scene
generation. These baselines all support 3D scene generation
conditioned on a single input image and camera trajectory.

1) Comparison of Benchmark Datasets and Metrics:
To evaluate 3D scene generation on benchmark datasets,
we sampled 100, 100, and 50 images along with camera
trajectories from the RealEstate10K [29], DL3DV [30], and
Tanks & Temples [33] test sets, respectively, using the
sampling strategy described in Sec. V-B. For quantitative
evaluation, we measured LPIPS, SSIM, and PSNR by com-
paring the renderings against ground-truth frames from the
source datasets. Evaluating in this under-constrained setting
is challenging, since multiple 3D scenes can be regarded
as consistent generations for a given view [16]. Therefore,
following Sec. V-B, we used 14 sampled frames subsequent
to the conditional image for metric calculation.

2) Qualitative Comparison: The qualitative comparison
in Fig. 4 demonstrates the superior 3D generation capabil-
ities of our model. Scene-Splatter [32] produces blurry ren-
derings lacking fine details, while ViewCrafter [17] improves
fidelity in visible regions but struggles in handling occluded
areas. In contrast, our model preserves intricate details and
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TABLE IV
QUANTITATIVE COMPARISON OF 3D SCENE RECONSTRUCTION

Method RealEstate10K DL3DV Tanks-and-Temples
LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

Scene-Splatter [32] 0.370 16.41 0.482 0.386 15.51 0.503 0.392 15.08 0.479
ViewCrafter [17] 0.338 16.88 0.523 0.364 15.75 0.529 0.372 15.26 0.491
Wonderland [22] 0.292 17.15 0.550 0.325 16.64 0.574 0.344 15.90 0.510
Ours 0.179 19.08 0.662 0.291 17.27 0.595 0.308 16.52 0.542

TABLE V
COMPARISON OF RECONSTRUCTION QUALITY AND EFFICIENCY

BETWEEN OURS AND VIEWCRAFTER.

Method Coverage (%) ↑ Noise Ratio ↓ F-score@2cm ↑ Runtime (min) ↓

ViewCrafter [17] 66.20 0.240 0.421 4.75
Ours 77.67 0.078 0.593 4.79

accurately reconstructs both visible and occluded regions.
By leveraging priors from the video diffusion backbone, our
approach further generates high-fidelity and visually coherent
novel views, even for unseen perspectives.

3) Quantitative Results: As shown in Tab. IV, our
method significantly outperforms all baselines across multi-
ple datasets. These results affirm that our model is capable of
producing high-fidelity, geometrically consistent 3D scenes
from single-view inputs.

D. Iterative View Synthesis with Collision-Aware Camera
Trajectory Planning

Reference Image

Reference  PointCloud Ours  PointCloud

Ours Iterative NVS

ViewCrafter  PointCloud

ViewCrafter Iterative NVS

Fig. 5. Comparison of reconstruction quality between Ours and
ViewCrafter.

We evaluated the effect of collision-aware camera trajec-
tory planning under identical conditions as ViewCrafter [17],
using the same initial point cloud, reference images, a
quarter-sphere search space, and parameters N = 3, K = 3.
The resulting camera trajectories from our iterative synthesis
are visualized in the lower-left corner of each view in Fig. 5.

ViewCrafter [17] selects viewpoints by utility and smooth
interpolation, often causing intersections with scene geome-
try and leading to fragmented point clouds. In contrast, our
approach employs the collision detector G(·) during sampling
and interpolation, resolving conflicts through collision-aware
optimization and yielding geometrically valid trajectories.

We evaluate four metrics using a 2 cm threshold: Cov-
erage, defined as the percentage of ground-truth points
matched; Noise Ratio, the fraction of unmatched predictions;

TABLE VI
ABLATION STUDY RESULTS OF 3D SCENE RECONSTRUCTION.

Depth-aligned
Supervision

Structural
Regularization Refinement LPIPS ↓ PSNR ↑ SSIM ↑

× × × 0.341 15.42 0.471
✓ × × 0.325 16.12 0.502
✓ ✓ × 0.301 17.14 0.534
✓ ✓ ✓ 0.252 18.45 0.610

F-score@2cm, the harmonic mean of precision and recall;
and Runtime. Table V shows that collision-aware planning
substantially improves completeness and geometric accuracy
while maintaining similar runtime.

E. Ablation on 3D Scene Reconstruction

Fig. 6. Ablation study of 3D scene reconstruction.

We conduct ablation experiments on single-view 3D scene
generation to evaluate the contribution of each component in
our method. As shown in Fig. 6 and summarized in Table VI,
a checkmark (✓) indicates that the component is enabled,
while a cross (×) indicates its removal. Three variants are
evaluated: w/o Depth-aligned Supervision: This variant re-
moves the depth loss applied to calibrated monocular depths.
w/o Structural Regularization: This variant discards the
progressive Gaussian dropping mechanism. w/o Refinement:
This variant excludes the image refinement module. The
results clearly demonstrate that the removal of any individual
component leads to performance degradation, underscoring
the importance of each component in ensuring high-quality
3D scene reconstruction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented NavCrafter, a novel framework
for controllable novel-view synthesis and high-fidelity 3D
scene generation from a single image. By leveraging the
rich generative priors embedded in camera-conditioned video
diffusion models and employing iterative view synthesis with
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collision-aware camera trajectory planning, our approach
effectively addresses the multi-view requirements of scalable
3D scene synthesis. The proposed multi-stage camera control
architecture enables precise pose control and consistency
in novel-view synthesis, while the geometry-aware 3D re-
construction component combines the generative capabil-
ity of video diffusion models with enhanced 3D Gaussian
Splatting to produce high-fidelity and geometrically con-
sistent reconstructions. Extensive experiments demonstrate
that NavCrafter outperforms existing methods in both video
generalization and 3D reconstruction quality. For future
work, we plan to address more aggressive camera motions,
enhance geometric consistency over long video sequences,
and extend our approach to dynamic scenes.
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