
Cynthia: Cost-Efficient Cloud Resource Provisioning for
Predictable Distributed Deep Neural Network Training

Haoyue Zheng
∗
, Fei Xu

∗
, Li Chen

†
, Zhi Zhou

‡
, Fangming Liu

§

∗
Shanghai Key Laboratory of Multidimensional Information Processing,

Department of Computer Science and Technology, East China Normal University.

†
Department of Computer Science, University of Louisiana at Lafayette.

‡
School of Data and Computer Science, Sun Yat-sen University.

§
School of Computer Science and Technology, Huazhong University of Science and Technology.

∗
fxu@cs.ecnu.edu.cn,

†
li.chen@louisiana.edu,

‡
zhouzhi9@mail.sysu.edu.cn,

§
fmliu@hust.edu.cn

ABSTRACT
It becomes an increasingly popular trend for deep neural networks

with large-scale datasets to be trained in a distributed manner

in the cloud. However, widely known as resource-intensive and

time-consuming, distributed deep neural network (DDNN) training

suffers from unpredictable performance in the cloud, due to the intri-

cate factors of resource bottleneck, heterogeneity and the imbalance

of computation and communication which eventually cause severe

resource under-utilization. In this paper, we propose Cynthia, a
cost-efficient cloud resource provisioning framework to provide

predictable DDNN training performance and reduce the training

budget. To explicitly explore the resource bottleneck and hetero-

geneity, Cynthia predicts the DDNN training time by leveraging a

lightweight analytical performance model based on the resource

consumption of workers and parameter servers. With an accurate

performance prediction, Cynthia is able to optimally provision the

cost-efficient cloud instances to jointly guarantee the training per-

formance and minimize the training budget. We implement Cynthia
on top of Kubernetes by launching a 56-docker cluster to train four

representative DNN models. Extensive prototype experiments on

Amazon EC2 demonstrate that Cynthia can provide predictable

training performance while reducing the monetary cost for DDNN

workloads by up to 50.6%, in comparison to state-of-the-art resource

provisioning strategies, yet with acceptable runtime overhead.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization→ Cloud computing.

KEYWORDS
cloud resource provisioning, deep neural network training, pre-

dictable performance, resource bottleneck, resource heterogeneity

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00

https://doi.org/10.1145/3337821.3337873

ACM Reference Format:
Haoyue Zheng

∗
, Fei Xu

∗
, Li Chen

†
, Zhi Zhou

‡
, Fangming Liu

§
. 2019. Cyn-

thia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed

Deep Neural Network Training. In 48th International Conference on Parallel
Processing (ICPP 2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3337821.3337873

1 INTRODUCTION
Distributed Deep Learning (DDL) [16] has gained increasing pop-

ularity in both industry and academia over the past few years, as

it has played a significant role in diverse areas ranging from im-

age and speech recognition to autonomous driving [5]. Distributed

Deep Neural Network (DDNN) [11], which is the core of DDL, is

increasingly trained in the cloud in order to save training efforts

and budget, as the datasets get larger in size and DNN models in-

crease in complexity. The DDL frameworks such as Tensorflow [1]

and MXNet [9] are designed to exploit parallel training (e.g., data
parallelism, model parallelism) using a cluster of workers. To facili-

tate DDNN training in clouds, large cloud providers like Amazon

and Google have recently launched AWS Deep Learning [25] and

Cloud Deep Learning [22], respectively, as reported by Nucleus

Research that over 85% of Tensorflow projects running in the cloud

are deployed on AWS [2].

Unfortunately, deploying DDNN training workloads in public

clouds can suffer from unpredictable performance [12], which largely
originates from three factors: (a) Resource bottleneck. The parameter

server (PS) can easily become the CPU and network bandwidth

hotspots [19] due to the heavy parameter synchronizations. (b)

Resource heterogeneity. The hardware heterogeneity [30] among

different instance types can slow down the DDNN training pro-

cess during parameter synchronization [20]. (c) Imbalance between
computation and communication. Provisioning more workers can

adversely impact the DDNN training performance due to the pro-

longed communication overhead [18]. The underlying rationale

is that the three factors above can under-utilize the CPU and net-

work bandwidth resources of workers, leading to the cost-inefficient
cloud resource provisioning. As evidenced by our motivation ex-

periment in Sec. 2, the DDNN training performance in the cloud

can be degraded by up to 137.6% because of blindly scaling out

the provisioned DNN training cluster, which inevitably limits the

processing ability of workers.

To solve the performance issue above, many research efforts have

been devoted to optimizing the synchronization mechanism (e.g.,

https://doi.org/10.1145/3337821.3337873
https://doi.org/10.1145/3337821.3337873

ICPP 2019, August 5–8, 2019, Kyoto, Japan Haoyue and Fei, et al.

SpecSync [35]) and tuning the learning rate (e.g., DYNSGD [15]) or

the mini-batch size (e.g., R2SP [8]) for DDNN training workloads.

However, little attention has been paid to guaranteeing the DDNN

training performance in the cloud. There have also been investiga-

tions on optimizing cloud resource provisioning plans to minimize

the DDNN training time. Most existing resource schedulers such

as Optimus [21] and SLAQ [36] rely on the quality of profiling

data samples and thus bring heavy workload profiling overhead.

Moreover, the existing DDNN performance models (e.g., Paleo [23])
imprecisely predict the training performance under the circum-

stance of resource bottleneck and heterogeneity. As a result, there

has been scant research devoted to predicting the DDNN training

performance in a lightweight manner to explicitly explore the re-

source bottleneck and heterogeneity, so as to deliver predictable

performance [31] to DDNN training by an adequate resource pro-

visioning in the public cloud.

To address the challenge above, in this paper, we design Cyn-
thia, a cost-efficient resource scheduling framework to provide

predictable performance [31] for DDNN training workloads in the

cloud. As an example, given a DDNN training workload with an

expected completion time and a target training loss value, Cynthia
first predicts the DDNN training performance using a lightweight

analytical performance model and then identifies an optimal re-

source provisioning plan in the cloud, so as to train the DNN model

in a cost-efficient manner. Specifically, we make the following con-

tributions in Cynthia.
▷ We build a lightweight analytical performance model for

DDNN workloads. Specifically, our Cynthia model leverages the

resource consumption of workers and PS nodes to explicitly cap-

ture the resource bottleneck (i.e., CPU and network bandwidth)

and heterogeneity in the cloud. To reduce the profiling overhead,

our model requires profiling the DDNN workload only once on a

baseline worker to obtain the essential model parameters.

▷ Based on the DDNN performance model, we design a cloud

resource provisioning strategy to deliver predictable training per-

formance to DDNN workloads. Given the training performance

goal (i.e., the objective training time and loss value), Cynthia first
calculates the lower and upper bounds of provisioned workers, and

then identifies a cost-efficient resource provisioning plan in the

cloud to guarantee the training time and model accuracy.

▷We implement a prototype of Cynthia by integrating our per-

formance model (i.e., performance predictor) and resource provi-

sioning strategy (i.e., resource provisioner) into the master node

of a Kubernetes cluster. We conduct our prototype experiments in

such a Kubernetes cluster consisting of 56 dockers with three types

of cloud instances in Amazon EC2 [2]. Experimental results show

that Cynthia is able to guarantee the DDNN training performance

while saving the monetary cost by up to 50.6%, compared to the

state-of-the-art resource provisioning strategies (e.g.,Optimus [21]).

The rest of the paper is organized as follows. Sec. 2 conducts an

empirical study to identify the key factors that impact the training

performance of DDNN workloads. Sec. 3 devises a DDNN training

performance model that unifies the key factors above, which further

guides the design of our Cynthia resource provisioning strategy

in Sec. 4. Sec. 5 conducts extensive prototype experiments in the

cloud to evaluate the effectiveness and runtime overhead of Cynthia.
Sec. 6 discusses related work and Sec. 7 concludes our paper.

Table 1: Configurations of four representative DDNN train-
ing workloads in motivation experiments in Amazon EC2.

ResNet-32 mnist DNN VGG-19 cifar10 DNN

#iterations 3, 000 10, 000 1, 000 10, 000

Batch size 128 512 128 512

Dataset cifar10 mnist cifar10 cifar10

Sync. ASP BSP ASP BSP

Cluster

Homogeneous: 18 m4.xlarge dockers

Heterogeneous: 6 m4.xlarge and 4 m1.xlarge dockers

4 7 9

4000

6000

8000

10000

12000

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Homogeneous

Heterogeneous

(a)

1 2 4 8
0

100

200

300

400

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Homogeneous

Heterogeneous

(b)

Figure 1: Training time of (a) ResNet-32 with ASP and (b) the
mnist DNN with BSP in homogeneous and heterogeneous
clusters. The heterogeneous cluster contains ⌊ n

2
⌋ stragglers

(i.e.,m1.xlarge dockers), where n is the number of workers.

2 UNDERSTANDING DDNN TRAINING
PERFORMANCE IN THE CLOUD

In this section, we seek to understand the training performance

(i.e., training time and training loss) of DDNN workloads running

in the public cloud. We then illustrate the key factors that cause

the unpredictable performance of DDNN training.

Specifically, we conduct our motivation experiments on a cluster

of 28 dockers deployed on Amazon EC2 instances [2] using the

latest Kubernetes 1.14 [7]. Our 28-docker cluster is set up using two

types of EC2 instances (i.e., 24 m4.xlarge dockers each equipped

with Intel Xeon CPU E5-2686 v4 plus 4 m1.xlarge dockers each

equipped with Intel Xeon CPU E5-2651 v2). We train four repre-

sentative types of DNN training workloads, including the mnist
DNN and the cifar10 DNN

1
, as well as the ResNet-32 model and

the VGG-19 model both trained on the cifar10 dataset. We deploy

the asynchronous parallel (ASP) mechanism and the bulk synchro-

nous parallel (BSP) mechanism to update the model parameters.

In particular, we focus on the data parallelism and the PS distri-

bution strategy using the Stochastic Gradient Descent (i.e., SGD)
optimizer, as such a training configuration is commonly used in

production DDNN training [17]. The detailed training parameters

are summarized in Table 1.

Training time: As shown in Fig. 1, we observe that: (a) the DDNN

training time with ASP is expectedly decreased and interestingly,
(b) the training time for the mnist DNN with BSP is first decreased

and then surprisingly increased, as more training workers are pro-

visioned. The rationale is that, the CPU and network resources

of the PS can easily become bottlenecks when training the DNN

1
The default DNN structures defined in the path “/models/tutorials/images/” in Ten-

sorflow are trained on the mnist and cifar10 datasets, respectively.

Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed Deep Neural Network Training ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 2: Average CPU utilization of the PS and the worker
for training the mnist DNN in both homogeneous and het-
erogenous clusters.

Homogeneous cluster Heterogeneous cluster

PS worker PS worker (m4)

1 worker 32.6% 100.0% N/A N/A

2 workers 80.5% 100.0% 40.8% 51.1%

4 workers 100.0% 54.0% 100.0% 50.5%

8 workers 100.0% 26.2% 100.0% 27.0%

0 100 200 300
Training time (seconds)

0

20

40

60

80

N
et

w
or

kI
n

th
ro

ug
hp

ut
 (

M
B

/s
)

1ps+1worker
1ps+2workers
1ps+4workers
1ps+8workers

Figure 2: Network through-
put of the PS node for train-
ing the mnist DNN with BSP.

9 11 13 15 17
3000

4000

5000

6000

7000

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Computation time

Communication time
Training time

Figure 3: DDNN Training
time breakdown for training
the cifar DNN with BSP.

model with the BSP synchronization mechanism. To verify that,

we look into the CPU utilization of the PS and workers listed in

Table 2. We find that the PS becomes CPU bounded when training

the mnist DNN with more than 4 provisioned workers, which in

turn restricts the CPU utilization of workers under 100%. In more

detail, the CPU utilization of the worker is dramatically decreased

from 100% to 26.2% as the number of workers increases from 2 to 8

in the homogeneous cluster.

We further examine the network throughput of the PS with

different numbers of workers over time as shown in Fig. 2. As

expected, we observe that the network bandwidth becomes almost

saturated [8] (i.e., around 70 MB/s-90 MB/s) for the mnist DNN,

as the number of workers increases from 4 to 8. Similarly, we also

observe the network bandwidth bottleneck (i.e., around 60MB/s-110

MB/s) on the PS when training VGG-19 with ASP. To exclude the

impact of CPU resource, we also examine the network throughput

of the PS configured with different amount of CPU resources (i.e., 1,
2, and 4 CPU cores) when training the mnist DNN with 8 workers.

We find that the network throughput of the PS remains saturated

even when more CPU resources are configured to the PS. Such an

observation confirms our analysis of CPU and network bandwidth

resource bottlenecks on the PS.

In addition to the resource bottleneck on the PS discussed above,

the resource heterogeneity can also impact the DDNN training per-

formance. As expected, the training time is increased by up to 84%

with both BSP and ASP in the heterogeneous cluster. This is because

the processing ability of workers gets poor as the stragglers can

block and prolong the training process. In particular, the training

performance of mnist DNN with BSP in the heterogeneous cluster

is comparable to that in the homogeneous cluster, as the number of

provisioned workers exceeds 4 shown in Fig. 1(b). This is because

the CPU and network resources on the PS become bottlenecks in

0 2000 4000 6000 8000 10000
Iteration

0

1

2

3

4

5

T
ra

in
in

g
lo

ss

2 workers
4 workers
8 workers
Fitted loss

(a)

0 500 1000 1500 2000 2500 3000
Iteration

0.5

1

1.5

2

2.5

3

T
ra

in
in

g
lo

ss

4 workers
9 workers
Fitted loss of 4 workers
Fitted loss of 9 workers

(b)

Figure 4: Training loss of (a) the cifar10 DNN with BSP and
(b) ResNet-32 with ASP both trained on the cifar10 dataset
in the homogeneous cluster.

both the heterogeneous and homogeneous clusters as discussed

before, which in turn makes the worker (i.e., m4.xlarge docker)

underutilized, as evidenced by Table 2.

The increasing number of provisioned workers can cause the

imbalance of computation and communication, which inevitably

prolongs the DDNN training with BSP. To illustrate that, we break

down the training time of cifar10 DNN with BSP by examining

the computation time and the communication time shown in Fig. 3.

As the number of provisioned workers increases from 9 to 17, the

computation time is decreasing sharply as the communication time

is increasing, which implies that the CPU and network resources

are not bottlenecked on the PS. As the DDNN training time is deter-

mined by the maximum of computation time and communication

time for the BSP mechanism
2
, blindly provisioning more workers

for DDNN training can cause an inefficient resource usage (e.g.,
spending most of the training time in communication makes the

CPU computation resource idle). Accordingly, striking a balance

between computation and communication (e.g., 13workers in Fig. 3)
is mandated for the cost-efficient resource provisioning.

Summary 1: The DDNN training time is essentially determined

by the CPU and network bandwidth resources of both PS nodes

and workers. We identify three key factors that can cause the cost-
inefficient resource provisioning of PS nodes and workers, including
the resource bottleneck on the PS and the resource heterogeneity

of workers, as well as the imbalance of computation and communi-

cation, during the process of DDNN training.

Training loss: As shown in Fig. 4, we observe that the training

loss of DNN models is roughly in inverse proportion to the number

of iterations, which is consistent with the latest measurement stud-

ies [21, 36] on the DNN training loss. This is because the commonly

used SGD optimization converges at a rate of O(1s) for both ASP

and BSP [21], where s is the number of iterations. In more detail,

the training loss stays unchanged for BSP as more workers are pro-

visioned, as shown in Fig. 4(a). The rationale is that the mini-batch

size of each iteration for BSP keeps constant, thereby resulting in a

roughly fixed convergence rate for different numbers of workers

when training cifar10 DNN. In contrast, the training loss with

ASP converges at a slower rate as the ResNet-32 model is trained

on more workers illustrated in Fig. 4(b). This is because the ASP

mechanism is likely to introduce the parameter staleness [15] on

2
To optimize the DDNN training performance with the BSP mechanism, Tensorflow’s

API SyncReplicasOptimizer [1] overlaps the computation and communication.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Haoyue and Fei, et al.

Table 3: Key notations in our DDNN training performance
model.

Notation Definition

I Set of training iterations for a DNN model

Ibase Set of training iterations on a baseline worker

t icomp CPU computation time for an iteration i

t icomm Data communication time for an iteration i

witer Amount of FLOPs for each iteration

r
j
wk CPU processing rate of a worker j

c
j
wk , c

k
ps CPU capability of a worker j and a PS node k

nwk , nps Number of provisioned workers and PS nodes

дparam Size of model parameter data on one worker

bkps Available network bandwidth of a PS node k

u
j
wk CPU utilization of a worker j

rscale Scaling ratio of CPU and network resources

workers, as the worker will miss more fresh parameter updates

when the scale of the training cluster increases, thereby slowing

down the training convergence rate. In addition, we observe that

the stragglers have a negligible impact on the training loss, which

is different from our observation of the training time in Fig. 1. This

is because the DNN model still converges regularly as long as the

staleness of parameters is bounded [14].

Summary 2: Based on the characteristics of SGD above, we find

that the DDNN training loss solely depends on the number of itera-
tions for BSP, and it also correlated positively with the number of
provisioned workers for ASP. Accordingly, we empirically fit the dis-

tributed training loss values of DNN models using the polynomial

regression method [24]. The fitted training loss model is formulated

as

floss (s,n) =

β0

s+β1
BSP training,

β0
√
n

s+β1
ASP training,

(1)

where s denotes the number of training iterations and n denotes the

number of provisioned training workers. β0 and β1 are the model

coefficients, and in general β0 > β1. Note that our model in Eq. (1)

works for the DDNN training with the SGD optimizer, and we can

use our method above to fit the training loss achieved by the other

optimization methods (e.g., Adam [10]).

3 PREDICTING DDNN TRAINING
PERFORMANCEWITH RESOURCE
CONSUMPTION

In this section, we proceed to devise a simple yet effective analytical
model to capture the variance of distributed training performance

for DNN models. Based on the observations in Sec. 2, our perfor-

mance model leverages the resource consumption (i.e., the CPU
processing rate and the available network bandwidth) on both work-

ers and PS nodes, to explicitly unify the three factors including the

resource bottleneck and heterogeneity as well as the imbalance of

computation and communication. The parameters of our training

performance model are summarized in Table 3.

Parameter Servers

Workers

4 Parameter
avaraging

Network 1

2

3 Pull parametersPush gradients

Model
Training

Input data

Parameters

Figure 5: Distributed training process of a single iteration.

As evidenced by Sec. 2, the DNNmodel is commonly trained by a

set of iterations I, and the processing time for each iteration i ∈ I
consists of the computation time t icomp for model training and the

communication time t icomm for parameter updating. Accordingly,

we formulate the DDNN training time Ttrain as the sum of the

iteration processing time t iiter , which is given by

Ttrain =
∑
i ∈I

t iiter . (2)

In particular, the iteration processing time t iiter stays the same for

each iteration i with BSP, while such a time can be different for the

iterations trained on heterogeneous workers with ASP in parallel.

We accordingly estimate the DDNN training time with ASP by

leveraging the iteration set (i.e., I = Ibase) on a baseline worker.
As shown in Fig. 5, each iteration of the model training includes

the computation using CPU resources of workers and PS nodes as

well as the data communication over the network. In general, the

gradient computation and the data communication are processed

in sequential for ASP. To particularly optimize the training barrier

with BSP, it is not uncommon for distributed machine learning

frameworks to overlap the computation and communication as

evidenced in Sec. 2, by pulling parameters and pushing gradients

(i.e., step 1 and step 3 in Fig. 5) during the process of model training

on workers (i.e., step 2). Accordingly, we formulate the iteration

processing time t iiter as

t iiter =

{
max(t icomp , t

i
comm) BSP training,

t icomp + t
i
comm ASP training.

(3)

(1) Gradient computation time: The computation time t icomp can

be reduced to the model training time on the workers as the param-

eter averaging time on the PS (i.e., step 4) is commonly negligible

as compared to the model training process on workers (i.e., step
2) [37]. Specifically, the BSP mechanism processes each training

iteration i across all the provisioned workers, and thus the iteration
processing time for BSP is determined by the slowest worker, while

the ASP mechanism executes an iteration i on a specific worker j.
Accordingly, we formulate the computation time t icomp as

t icomp =

witer

nwk ·min

j
r jwk

BSP training,

witer

r jwk

ASP training,
(4)

wherewiter denotes the amount of floating point operations (i.e.,
FLOPs) for each iteration, which consumes the same amount of

CPU cycles [21] for a training iteration i ∈ I. We use r
j
wk to

Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed Deep Neural Network Training ICPP 2019, August 5–8, 2019, Kyoto, Japan

denote the CPU processing rate (measured in FLOPS) of a worker

j ∈ [1,nwk]. We calculate r
j
wk = c

j
wk ·u

j
wk , where c

j
wk denotes the

CPU processing capability of a worker j and u
j
wk ∈ [0, 100%].

(2) Data communication time: The data communication is com-

prised of pushing gradients and pulling model parameters. As the

size of model parameters is equal to the amount of gradient update

data [21], the communication time can be considered as the double

transfer time of model parameter data дparam over the network.

As discussed before, the PS node communicates with all provi-

sioned workers (i.e., nwk) in one iteration for BSP, while the ASP

mechanism only requires the data communication with a single

worker in one iteration. Accordingly, the data communication time

is formulated as

t icomm =

2·дparam ·nwk∑

k
bkps

BSP training,

2·дparam∑
k
bkps

ASP training,
(5)

where bkps denotes the amount of available network bandwidth of a

PS node k ∈ [1,nps], and thus the data communication bandwidth

is the sum of available network bandwidth across the provisioned

PS nodes (i.e., nps).
Obtaining model parameters:We obtain the three key model

parameters above (i.e., witer , дparam , r
j
wk) through profiling the

DDNN training workload with a fixed number of iterations (e.g.,
30) on one baseline worker with the CPU processing capability

cbase (measured in FLOPS). Specifically, we calculate the amount

of FLOPs for each iteration aswiter = tbase · cbase , where tbase is

the computation time of a single iteration when the DNN model

is trained on the baseline worker. The size of model parameters

дparam is fixed and it can be measured as the amount of network

communication data on the PS divided by the number of iterations

(e.g., 30) during the job profiling [33]. In addition, the amount of

network bandwidth bkps of a PS node k depends on the instance

type of the provisioned PS, and can be measured only once using

the netperf tool. The CPU processing capability c
j
wk of a worker

j and ckps of a PS node k can be statically obtained by looking up

the CPU processing capability table [3].

Estimating resource utilization of workers: To calculate the CPU

processing rate r
j
wk , ∀j ∈ [1,nwk], we need to obtain the resource

utilization u
j
wk of a worker j, by taking into account the effect of

resource bottleneck as discussed in Sec. 2. In particular, we use the

demand-supply ratio [32] of CPU and network bandwidth resources

to indicate the severity of resource bottleneck and estimate the

resource utilizationu
j
wk of a worker j . Specifically, we first measure

the CPU consumption cprof (calculated by multiplying the CPU

utilization and CPU capability of the PS andmeasured in FLOPs) and

the network throughput bprof on the PS node
3
, when profiling the

DDNN workload on a baseline worker. We further obtain the CPU

processing demand cdemand and the network bandwidth demand

bdemand of PS nodes as

cdemand = cprof · rscale , bdemand = bprof · rscale , (6)

3
In the environment of one PS node and one worker, the PS node commonly does not

become the resource bottleneck and thus the worker fully utilizes the CPU resource.

where rscale denotes the scaling ratio of the resource demand of

the PS in a provisioned deep learning cluster, to that in the scenario

of a single PS node and a baseline worker. As the workers are

processing the DNN workload with the CPU processing capability

c
j
wk , j ∈ [1,nwk] in the cluster, we simply estimate the rscale as the
ratio of the CPU processing capability of all provisioned workers

to the baseline worker with the CPU processing capability cbase in

the workload profiling above, which is given by

rscale =

nwk ·min

j
c jwk

cbase
BSP training,∑

j
c jwk

cbase
ASP training.

(7)

With the given CPU resource supply csupply =
∑
k
ckps ,∀k ∈

[1,nps] and the network bandwidth resource supply bsupply =∑
k
bkps ,∀k ∈ [1,nps], the resource bottleneck occurs on the PS node

when the CPU resource demand exceeds the CPU resource supply

(i.e., cdemand > csupply) or the network bandwidth demand ex-

ceeds the network bandwidth supply (i.e., bdemand > bsupply) [32].
As evidenced by Sec. 2, the CPU and network bandwidth bottle-

necks on the PS node can adversely limit the CPU utilization (and

thus the CPU processing rate) of workers. As a result, when the

resource bottleneck occurs, we estimate the CPU resource utiliza-

tion of workers as the minimum of the demand-supply ratios on

the CPU and network resources of the PS node, which is given by

u
j
wk =

{
min

{ bsupply
bdemand

,
csupply
cdemand

}
· 100% bottleneck occurs,

100% otherwise.

After obtaining the CPU utilization of workers above, we are able

to calculate the CPU processing rate of workers r
j
wk by multiplying

the CPU processing capability c
j
wk and the CPU utilization u

j
wk

of a worker j. The accuracy of our DDNN training performance

model will be validated in Sec. 5.1.

4 GUARANTEEING DDNN TRAINING
PERFORMANCEWITH COST-EFFICIENT
CLOUD RESOURCES

Based on the DDNN training performance model in Sec. 3, in this

section, we proceed to formulate our resource provisioning problem

in the form of a monetary cost minimization model (in Eq. (8)) with

the constraints on the DDNN training time and the loss value. We

then design Cynthia, a cost-efficient resource provisioning strategy

(in Alg. 1) to guarantee the performance and reduce the monetary

cost of DDNN training in the cloud.

Problem formulation:Given an objective DDNN training time

Tд and loss value lд , we aim to provision an appropriate amount

of cloud resources to guarantee the training performance while

minimizing the monetary cost. To avoid an inefficient resource us-

age of instances, it is beneficial to provision a homogeneous cluster
of workers to train the DNN model with both BSP and ASP, as

evidenced by summary 1 in Sec. 2. Furthermore, a cost-efficient

cloud resource provisioning for the DDNN workload also avoids

the resource bottleneck and balances the computation and commu-

nication of training with BSP. In particular, each training iteration

ICPP 2019, August 5–8, 2019, Kyoto, Japan Haoyue and Fei, et al.

i ∈ I has the same processing time titer in the cluster of homo-

geneous workers. With the training time of a single iteration in

Eq. (3), we accordingly formulate our resource provisioning cost

model as below.

min

nwk ,nps
C = (ptwk · nwk + p

t
ps · nps) · titer · s (8)

s.t. titer ≤
Tд

s
, (9)

floss (s,nwk) = lд , nwk ∈ Z
+

(10)

1 ≤
nwk
nps

≤ r , nwk ,nps ∈ Z
+

(11)

where ptwk and ptps denote the hourly price for workers and PS

nodes of the instance type t , respectively, and s ∈ Z+ denotes

the number of training iterations which is required to achieve the

objective training loss lд . In more detail, Constraint (9) confines the

iteration processing time below

Tд
s , and Constraint (10) achieves

the objective training loss value lд . Constraint (11) represents the re-
source provisioning ratio of workers to PS nodes, so as to maximize

the utilization of provisioned cloud resources. Typically, the num-

ber of provisioned PS nodes is less than that of workers to achieve

an efficient instance resource utilization [19]. The coefficient r de-
notes the maximum resource provisioning ratio that prevents the

bottlenecks on the CPU and network bandwidth resources.

In more detail, we calculate the coefficient r in the homogeneous

cluster of workers and PS nodes. In order to make the workers fully

utilized, the CPU and network bandwidth resource bottlenecks can-

not occur on the PS (i.e., cdemand ≤ csupply , bdemand ≤ bsupply).
By inputting Eq. (7) into Eq. (6), we are able to calculate the maxi-

mum resource provisioning ratio as

r = min

(cbase · cps
cprof · cwk

,
bps · cbase

bprof · cwk

)
. (12)

Model analysis: By substituting Eq. (3)–Eq. (5) into Constraint (9),
we find that the constraint on the iteration processing time is non-

linear. The resource provisioning cost minimization problem de-

fined in Eq. (8) above is in the form of non-linear integer program-
ming, which is non-convex and is NP-hard to solve [6]. Accordingly,

we turn to devising a heuristic algorithm to solve such a problem.

To reduce the algorithm complexity, we calculate the lower and

upper bounds of provisioned workers according to the constraints

defined in Constraint (9)–(11).

Theorem 4.1. Given a DDNN training workload with the perfor-
mance goal, the cost-efficient resource provisioning plan is to launch
the minimum number of PS nodes nps . The upper bound and lower
bound of nwk can be formulated as below.

nlower
wk =

⌈
witer ·s
Tд ·cwk

⌉
BSP,⌈(

witer ·(β0−β1)
cwk ·Tд ·lд

)
2
⌉

ASP.
(13)

n
upper
wk =

⌈
min

(
u · nps ,

√
witer ·nps ·bps
2·дparam ·cwk

)⌉
BSP,

⌈r · nps ⌉ ASP,
(14)

where u = min

(
r ,

Tд ·bps
2·s ·дparam

)
is the updated resource provisioning

ratio for BSP.

The proof can be found in Appendix A.

Cloud resource provisioning strategy: Given a target loss

value lд and an expected training time Tд for a DDNN workload

with a training loss function floss (s,nwk), we first initialize the

monetary cost and the amount of provisioned PS nodes andworkers.

Through profiling the DDNN training workload on a PS node and

a baseline worker cbase , we then obtain the DNN training specific

parameters including witer , дparam , cprof , and bprof (lines 1-2).

By inputting the target loss value lд into the DNN loss function, we

are able to obtain the number of iterations s to achieve the expected
training loss (line 3). For each instance type t , we further obtain
the instance specific parameters cwk , cps , and bps in the cluster

of homogeneous workers and PS nodes as well as the coefficient

r in Constraint (11) (line 5). To narrow down the searching space

of the number of provisioned workers, we calculate the upper and

lower bounds of nwk as well as the minimum number of PS nodes

for both BSP and ASP training (line 6). Through iterating all the

possible number of provisioned workers, we calculate the iteration

processing time by Eq. (3) and the monetary cost using Eq. (8).

Among all the possible number of provisioned workers, we find

the candidate provisioned cloud resources to achieve the training

iteration time within

Tд
s , and then identify the cost-efficient cloud

resource provisioning plan including the instance type tmin and

the number of PS nodes nps and workers nwk with the minimum

monetary cost Cmin (lines 7-13).

Algorithm 1: Cynthia: Cloud resource provisioning strat-

egy to guarantee DDNN training performance and mini-

mize the monetary cost.

Input: Objective training time Tд and training loss value lд for a DDNN

workload, and training loss function floss (s, nwk).

Output: Cost-efficient cloud resource provisioning plan including the

number and the type tmin of PS nodes nps and workers nwk .

1: Initialize: the monetary cost of cloud resource provisioning

Cmin ←∞, nps ← 0, and nwk ← 0;

2: Obtain the model training parameters witer , дparam , cprof , and
bprof through profiling the DNN workload;

3: Calculate the number of iterations s that achieves the target loss
floss (s, nwk) ← lд ;

4: for each instance type t do
5: Obtain the instance parameters cwk , cps , and bps , and calculate

the maximum resource provisioning ratio r ← Eq. (12);

6: Calculate the lower bound nlower
wk ← Eq. (13), nupperwk ← Eq. (14)

and the minimum number of provisioned PS nodes nps .
7: for all ˆnwk ∈ [nlower

wk , nupperwk] do
8: Calculate titer ← Eq. (3), and C ← Eq. (8);

9: if titer · s < Tд && Cmin > C then
10: Record the monetary cost Cmin ← C and the instance type

tmin ← t , as well as the number of workers nwk ← ˆnwk ;

11: break out of the loop;

12: end if
13: end for
14: end for

Remark: The complexity of our algorithm is in the order of

O(m · p), wherem = n
upper
wk − nlower

wk denotes the searching space

of nwk , and p is the limited number of provisioned instance types in

a public cloud. The instance specific parameters above can be offline

Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed Deep Neural Network Training ICPP 2019, August 5–8, 2019, Kyoto, Japan

7 9 12

1000

2000

3000

4000

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Observed

Cynthia
Optimus
Paleo

(a)

4 9 12
3600

7200

10800

14400

Number of workers
Tr

ai
ni

ng
 ti

m
e

(s
ec

on
ds

)

Observed
Cynthia
Optimus
Paleo

(b)

Figure 6: Comparison of the observed and predicted training
time for (a) VGG-19 with ASP and (b) the cifar10 DNN with
BSP, under the Cynthia, Optimus, and Paleo models.

measured only once. Also, the loss function floss (s,nwk) can be

obtained by executing the DDNN training job once, as the DDNN

workloads are repeatedly executed in production clusters [12]. In

particular, the loss function for the ASP mechanism is related to

both the number of iterations s and the number of provisioned

workers nwk as evidenced by Eq. (1). We accordingly update the

number of iterations s that is required to achieve the expected

loss value lд using Eq. (20) in Appendix A for each number of

provisioned workers nwk . The runtime overhead of our Cynthia
strategy is well contained and will be validated in Sec. 5.3.

5 PERFORMANCE EVALUATION
In this section, we carry out a set of prototype experiments in

Amazon EC2 to evaluate the effectiveness and runtime overhead

of Cynthia, in comparison to the state-of-the-art resource provi-

sioning strategies (e.g., Optimus [21]). Specifically, we examine the

prediction accuracy of our DDNN training performance model, the

training performance and monetary cost saving achieved by our

resource provisioning strategy, as well as the computation time and

profiling overhead of Cynthia.
Cynthia prototype:We implement a prototype of Cynthiawith

two pieces of modules including a performance predictor and a re-
source provisioner based on Kubernetes v1.14 [7] in Amazon EC2 [2].

Specifically, we initialize a master node of the Kubernetes cluster

using a general-purpose cloud instance (e.g., m4.xlarge). The two

modules of Cynthia above are integrated into the master node of

the training cluster. Once a DDNN training job is submitted, the

expected number of iterations to achieve the objective training loss

can be calculated by Eq. (1). The performance predictor predicts
the DDNN training time using the performance model elaborated

in Sec. 3, which is built according to the workload profiling on a

baseline worker. The resource provisioner further identifies the cost-
efficient cloud instance provisioning plan. Once the plan is deter-

mined, the cloud instances are provisioned using AWS CLI. After the
instances automatically install the docker, kubelet, and kubeadm
components, the provisioned cloud instances can join the train-

ing cluster with the token and discovery-token-ca-cert-hash
generated by the master node using the command “kubeadm join”.

Testbed: We conduct our Cynthia prototype experiment on a

cluster of 56 dockers using 28 EC2 instances. In addition to the

28 dockers with two instance types (i.e., m4.xlarge instances and

m1.xlarge instances) in Sec. 2, we further add 28 dockers on 14

r3.xlarge instances which is equipped with Intel Xeon CPU E5-2670

0 1000 2000 3000 4000 5000 6000
Training time (seconds)

0

50

100

150

N
et

w
or

kI
n

th
ro

ug
hp

ut
 (

M
B

/s
)

1ps+4workers
1ps+7workers
1ps+9workers

Figure 7: Network through-
put of the PS node for train-
ing VGG-19with ASP in a ho-
mogeneous cluster.

7 9 12
1000

1900

2800

3700

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Observed

Cynthia

Figure 8: Comparison of the
observed and Cynthia pre-
dicted time for VGG-19 with
ASP in the r3.xlarge cluster.

Table 4: DNN training specific parameters obtained from
the 30-iteration profiling for four DDNN workloads on an
m4.xlarge worker.

ResNet-32 VGG-19 cifar10 mnist

witer (GFLOPS) 39.87 58.81 26.86 0.04

дparam (MB) 2.22 135.84 4.94 0.33

cprof (GFLOPS) 0.12 0.33 0.06 1.13

bprof (MB/s) 0.19 13.49 1.56 16.69

v2 to our docker cluster. To avoid potential CPU contention caused

by Hyper-threading, we host one docker on each instance physical

CPU core. We focus on two key metrics including the DDNN train-

ing time and the monetary cost for each resource provisioning plan.

We illustrate the DDNN workload performance with error bars of

standard deviations by repeating the DDNN training workload for

three times.

5.1 Validating DDNN Training Performance
Model in Cynthia

We evaluate the training time of representative DNN benchmark

workloads including ResNet-32, VGG-19, the mnist DNN, and the

cifar10 DNN, as listed in Table 1, running on four different in-

stance types includingm4.xlarge, m1.xlarge, c3.xlarge, and r3.xlarge.

We compare our Cynthia performance model with the traditional

Paleo model [23] and the state-of-the-art Optimus model [21]. By

profiling the DDNN workloads with 30 iterations, we are able to

obtain the training specific parameters including witer , дparam ,

cprof , and bprof as listed in Table 4.

Can Cynthia well predict the DDNN training time?We ex-

amine the DDNN training time by varying the number of provi-

sioned workers with one fixed PS node. As shown in Fig. 6, we

observe that our Cynthia model can well predict the training time

of VGG-19 with ASP and cifar10 DNN with BSP in the homoge-

neous cluster with an error of 1.6%-6.3% on average, in comparison

to 2.2%-19.4% achieved by the Optimus and Paleo performance

models. The DDNN training time predicted by Optimus and Paleo

is comparatively accurate with a prediction error of 2.2%-10.6%,

as long as the provisioned PS resources are sufficient and thus the

resource contention does not occur on the PS node (i.e., cifar10
DNN with BSP shown in Fig. 6(b)). The training time of cifar10
DNN predicted by Optimus and Paleo is slightly beyond the ob-

served time, because both of them are oblivious to the training

ICPP 2019, August 5–8, 2019, Kyoto, Japan Haoyue and Fei, et al.

4 7 9
4000

6000

8000

10000

12000

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Observed

Cynthia

(a)

2 4 8
0

100

200

300

400

Number of workers
Tr

ai
ni

ng
 ti

m
e

(s
ec

on
ds

) Observed
Cynthia

(b)

Figure 9: Observed and Cynthia predicted training time for
(a) ResNet-32 with ASP and (b) mnist DNN with BSP in the
heterogeneous cluster, which contains ⌈n

2
⌉ m4.xlarge and

⌊ n
2
⌋ m1.xlarge workers, where n is the number of workers.

optimization for the BSP training. In more detail, rather than over-

lapping the computation and communication as mentioned in Sec. 2,

Optimus and Paleo simplistically consider the training time as the

combination of computation and communication.

However, Optimus and Paleo poorly predict the DDNN training

time when the provisioned PS node becomes a resource bottleneck.

As shown in Fig. 6(a), we observe that the prediction error of VGG-

19 achieved by Optimus and Paleo gets larger as the number of

provisioned workers exceeds 7. In more detail, the prediction error

of VGG-19 achieved by Optimus (Paleo) with 9 workers is 17.6%

(12.7%) and that with 12 workers is 27.9% (14.7%). This is because

the network bandwidth becomes the bottleneck on the PS node

when the number of workers reaches 9. As evidenced by Fig. 7, the

network throughput of the PS node increases to around 110MB/s

and thus becomes saturated with 9 workers, thereby limiting the

CPU utilization of a worker to 85.4%. When the number of workers

exceeds 11, both CPU and network bandwidth bottlenecks occur

on the PS node, which further degrades the processing ability of

workers as the CPU utilization of a worker is reduced to 64.0%.

Moreover, the prediction accuracy of Optimus relies on the quality

and the number of data profiling samples, which also results in

the inaccurate prediction of the DDNN training performance with

resource bottleneck. In contrast, our Cynthia model explicitly cap-

tures the resource bottleneck using the demand-supply ratio [32]

of the resource consumption of workers and PS nodes. Specifically,

the prediction error of VGG-19 achieved by our prediction model

with 9 workers is 6.4% and that with 12 workers is 5.9% which are

significantly better than that achieved by Optimus and Paleo.

In addition, we evaluate the predicted DDNN training time of

VGG-19 on the r3.xlarge instance using the workload profiling on

the m4.xlarge instance. As shown in Fig. 8, we observe that Cynthia
predicts the training time of VGG-19 with ASPwith an error of 4.0%-

5.2%, as the number of provisioned r3.xlarge instances increases

from 7 to 12. Such an observation confirms that Cynthia does not
need to profile the DDNN workload on each instance type, as the

DDNN workload requires profiling only once on a baseline worker

(e.g., m4.xlarge) as discussed in Sec. 3. Accordingly, Cynthia is able
to predict the training time of the DDNN workload running on

different types of cloud instances with the well-contained profiling

overhead, which will be validated in Sec. 5.3.

Can Cynthia adapt to the resource heterogeneity of work-
ers? As shown in Fig. 9, we observe that our Cynthia model can ac-

curately predict the training time of ResNet-32 and mnistDNNwith

4 7 9

4000

6000

8000

10000

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Observed (1 ps)

Cynthia (1 ps)
Observed (2 ps)
Cynthia (2 ps)
Observed (4 ps)
Cynthia (4 ps)

(a)

4 8 16
100

300

500

700

Number of workers

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Observed (1 ps)

Cynthia (1 ps)
Observed (2 ps)
Cynthia (2 ps)
Observed (4 ps)
Cynthia (4 ps)

(b)

Figure 10: Comparison of the observed and Cynthia pre-
dicted training time for (a) ResNet-32 with ASP and (b) the
mnist DNN with BSP, by varying the number of PS nodes
from 1 to 4 and the number of workers from 4 to 16.

an average error of 1.0%-5.3% in a heterogeneous cluster. Specif-

ically, increasing the number of provisioned workers from 2 to 4

slightly speeds up the training process by 22.7% for the mnist DNN
with BSP. This is because the performance of the BSP training is

determined by the CPU processing rate of stragglers (i.e.,m1.xlarge

instance) due to the parameter synchronization (discussed in Sec. 2).

Moreover, the training time increases as more workers are provi-

sioned (i.e., nwk grows from 4 to 8), due to the CPU and network

resource bottlenecks on the PS node (which further limits CPU

utilization of a worker to 27.0%). In contrast, the training perfor-

mance of ResNet-32 with ASP is still improved as the number of

provisioned workers increases as shown in Fig. 9(a).

Can Cynthia work with multiple PS nodes? As shown in

Fig. 10, we observe thatCynthia predicts the training time of ResNet-

32 and mnist DNN with an error of 1.1%-3.5% as multiple PS nodes

are provisioned. Specifically, provisioningmore PS nodes can hardly

increase the training performance of ResNet-32 with ASP. This

is because the ResNet-32 workload cannot saturate the CPU and

network resources of the PS node as more workers are provisioned.

In contrast, the mnist DNN with BSP has high demand for both

CPU and network bandwidth resources on the PS node. Increasing

the number of PS can accordingly alleviate the resource bottleneck,

so as to expedite the training process of the mnist DNN. As a result,
we empirically show that blindly adding more PS nodes to DDNN

training can undoubtedly reduce the cost efficiency of resource

provisioning, which further validates the selection choice of the

minimum number of provisioned PS nodes in Sec. 4.

5.2 Effectiveness of Cynthia Resource
Provisioning Strategy

We further examine whether Cynthia can guarantee the DDNN

training performance by provisioning an appropriate number of

workers and PS nodes. Specifically, we set different training per-

formance goals (i.e., training time and loss values) for ResNet-32

and cifar10 DNN models with BSP and VGG-19 with ASP. We

compare the DDNN training time and monetary cost achieved by

Cynthia and the modified Optimus
4
[21].

CanCynthia guarantee theDDNN training timewithBSP?
As shown in Fig. 11(a), we observe that Cynthia basically meets the

4
We substitute the Optimus model for our performance model in Cynthia to calculate

the resource provisioning plan, because Optimus is designed to minimize the DDNN

training time rather than guaranteeing the training performance.

Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed Deep Neural Network Training ICPP 2019, August 5–8, 2019, Kyoto, Japan

5400 7200 9000 10800

5400

7200

9000

10800

Performance goals (seconds)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Cynthia-cifar10 DNN

Optimus-cifar10 DNN
Cynthia-ResNet-32
Optimus-ResNet-32

Performance
goals

(a)

5400 7200 10800

1.5

2.0

2.5

3.0

Performance goals (seconds)
M

on
et

ar
y

co
st

 ($
)

Cynthia-cifar10 DNN
Optimus-cifar10 DNN
Cynthia-ResNet-32
Optimus-ResNet-32

8*m4
9*m4

6*m4
7*m4 4*m4

5*m4

14*m4
15*m4

10*m4
11*m4 7*m4 7*m4

(b)

Figure 11: DDNN training performance and the monetary
cost of cifar10 DNN and ResNet-32 both with BSP achieved
byCynthia andOptimus under different performance goals.

0.8 0.7 0.6
3000

4200

5400

6600

Target loss

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Cynthia

Optimus
Goals

(a)

0.8 0.7 0.6

1.2

1.8

2.4

3.0

Target loss

M
on

et
ar

y
co

st
 ($

)

Cynthia
Optimus

12*m4
14*m4

2ps
14*m4

17*m4

11*m413*m4

(b)

Figure 12: Comparison of DDNN training performance and
the monetary cost achieved by Cynthia and Optimus, under
various target loss values of cifar10 DNN with BSP.

performance goals (i.e., 90, 120, and 180 minutes), with the target

loss value of 0.8 for cifar10 DNN and 0.6 for ResNet-32, respec-

tively. Meanwhile, the monetary cost of DDNN training achieved

by Cynthia is reduced by 0.9%-9.9% as compared to Optimus. This is

because the Optimus prediction model does not overlap the compu-

tation time and communication time for BSP, thereby underestimat-

ing the training performance. Such performance underestimation

further results in the over-provisioning of cloud instances, leading

to higher monetary cost and resource under-utilization. In addition,

Cynthia can reduce more monetary cost of ResNet-32 with ASP

in Fig. 11(b), in comparison to the cifar10 DNN with BSP which

has a low demand of cloud instances, as ResNet-32 provisions more

workers than cifar10 DNN.

We further validate whether Cynthia can satisfy different ob-

jective training loss values (i.e., 0.6, 0.7, and 0.8). As shown in

Fig. 12(a), Optimus fails to provide predictable training time (i.e., 60
minutes) for the cifar10DNNwith the target loss value of 0.7. The

rationale is that Optimus cannot accurately capture the imbalance

between computation and communication when the number of

workers exceeds a threshold (i.e., 13 shown in Fig. 3). In contrast,

Cynthia provides two PS nodes in a cost-efficient manner to reduce

the communication time, thereby balancing the computation and

communication during the training process. With the provisioned

cloud instances, Cynthia brings 4.2%-50.6% monetary cost saving

as compared to Optimus under different objective loss values of

cifar10 DNN with BSP as shown in Fig. 12(b).

CanCynthia guarantee theDDNN training timewithASP?
We examine whether our Cynthia resource provisioning strategy
can guarantee the DDNN training with ASP using the VGG-19

1800 3600 5400

1800

3600

5400

7200

Performance goals (seconds)

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
) Cynthia

Optimus
Goals

(a)

1800 3600 5400
0.5

0.6

0.7

0.8

Performance goals (seconds)

M
on

et
ar

y
co

st
 ($

) Cynthia
Optimus

2ps
11*m410*m4

6*m4
4*m4 4*m4 3*m4

(b)

Figure 13: DDNN training performance and the monetary
cost of VGG-19 with ASP achieved by Cynthia and Optimus
under different performance goals.

workload. Specifically, as shown in Fig. 13(a), we observe that Cyn-
thia is basically able to deliver predictable performance to VGG-19

with the target loss of 0.8, under the different performance goals

(i.e., 30, 60, and 90 minutes) with ASP. However, Optimus fails to

meet the performance goals due to its performance overestimation

as illustrated in Fig. 6(b). In particular, Cynthia provisions two PS

nodes to guarantee the 30-minute performance goal. This is because

the CPU and network resources become bottlenecks on the PS node

when the number of workers reaches 11 (as illustrated in Sec. 5.1),

which cannot be predicted by Optimus. As shown in Fig. 13(b),

Cynthia marginally reduces the training budget by 0.5%-4.4% with

the guaranteed training performance in comparison to Optimus.

5.3 Runtime Overhead of Cynthia
We evaluate the runtime overhead of Cynthia in terms of the DDNN

workload profiling overhead and the computation time of our re-

source provisioning strategy (i.e., Alg. 1). First, by training the

DDNN workloads listed in Table 1 with 30 iterations on a single

baseline worker (e.g., m4.xlarge), the profiling time of mnist DNN,

cifar10 DNN, ResNet-32, and VGG-19 is only 0.9 seconds, 4.0, 6.0,

and 10.4 minutes, respectively. In particular, each DDNN workload

requires profiling only once to obtain the essential training spe-

cific parameters, as the DDNN workloads are repeatedly executed

in production clusters [12]. Second, by deploying Cynthia on an

m4.xlarge instance equipped with 4 Intel Xeon E5-2686 v4 vCPUs

and 16GBmemory, Cynthia is able to calculate the optimal resource

provisioning plan in Sec. 5.2 for cifar10DNN, ResNet-32 with BSP,
and VGG-19 with ASP using 19, 39, and 13 milliseconds, respec-

tively. Such computation overhead is largely in proportion to the

space between the lower and upper bounds of provisioned workers,

which further validates the complexity analysis of in Sec. 4. As a

result, the runtime overhead of Cynthia is practically acceptable.

6 RELATEDWORK
DDNN training performance modeling: There have been ef-

forts devoted to predicting the training performance of DDNN

workloads. For example, Yan et al. [34] devise a fine-grained per-

formance model using the prior knowledge of DNN models such

as the network structure and the parallelization strategy. Similarly,

Paleo [23] predicts the DDNN training time on a single node, by con-
sidering various factors including network structures, computation

speed, and communication strategies. Yet, these two models above

are oblivious to the resource bottleneck and heterogeneity which

ICPP 2019, August 5–8, 2019, Kyoto, Japan Haoyue and Fei, et al.

are not uncommon in DDL clusters. To model the DDNN training

time in the GPU cluster, Shi et al. [26] profiles the iteration time

at a fine granularity, such as the time of forward phase and back-

ward propagation for each DNN workload trained in the cluster,

which inevitably brings heavy profiling overhead. A more recent

work [21] builds a high-level performance model by considering

the pattern of computation and communication of DDNN training

and fitting the training speed online. Nevertheless, it highly relies

on the quality of data samples and cannot be applied to the het-

erogeneous cluster as evidenced in Sec. 5. Different from the prior

works above, our Cynthia model is able to capture the resource

bottleneck and heterogeneity in the cloud, by leveraging the CPU

and network resource consumption of workers and PS nodes, which

brings practically acceptable runtime overhead.

Resource provisioning for DDNN training: There have been
recent works on resource provisioning for DDNN training work-

loads. To minimize the DDNN training time, Dike [29] leverages

the characteristics of DNN models (i.e., the number of parameters

and layers) to decide the amount of resource allocated to workers

and PS nodes. To maximize the overall utility and reduce the aver-

age completion time of DDNN training workloads, Optimus [21]

and OASiS [4] are designed to provision an appropriate number of

workers and PS nodes for each workload in a DDL cluster. To reduce

the monetary cost of DDNN workloads, Proteus [13] and FC
2
[27]

exploit the EC2 spot instances and different instance types for cloud

resource provisioning, respectively. While these prior works above

focus on finding an optimal resource provisioning plan to either

minimize the training time or save the monetary cost, Cynthia aims

to jointly deliver the predictable performance to DDNN training

workloads and save the resource provisioning budget in the cloud.

DDNN training performance optimization: To mitigate the

network bandwidth bottleneck on PS nodes, a straightforward ap-

proach is to compress the gradients and model parameters without

impacting the training performance [18]. A more recent work [8]

coordinates the parameter synchronization between workers and

PS nodes in a round-robin manner. To alleviate the performance

impact caused by stragglers in a heterogeneous cluster, traditional

techniques are designed to tune the training hyper-parameters such

as the learning rate [15] and the batch size [28]. Recent works (e.g.,
SpecSync [35], Hop [20]) focus on optimizing the synchronization

mechanism by selectively aborting and skipping the iterations on

the stragglers without impacting the training accuracy. Orthogonal

to these works above, Cynthia incorporates the resource bottleneck
and heterogeneity into our DDNN training performance model,

and it can work with the performance optimization methods so as

to improve the cost efficiency of resource provisioning.

7 CONCLUSION AND FUTUREWORK
To provide predictable performance and minimize the monetary

cost for DDNN training workloads, this paper presents Cynthia,
a cost-efficient resource provisioning framework in the cloud, by

explicitly exploiting the characteristics of resource bottleneck and

heterogeneity as well as the imbalance between computation and

communication. Leveraging the resource consumption of workers

and PS nodes and the repetitiveness of training iterations, we build

an analytical performance model at the system level to accurately

predict the DDNN training time through a lightweight workload

profiling. Based on our performance model, Cynthia further provi-
sions an appropriate type and number of cloud instances to achieve

the target training loss within an expected training time while

minimizing the monetary cost. Extensive prototype experiments in

Amazon EC2 demonstrate that Cynthia can guarantee the DDNN

training performance and save the monetary cost by up to 50.6%,

compared with the state-of-the-art resource provisioning strategies.

As our future work, we plan to examine the effectiveness of

Cynthia with other DNN models and training datasets (e.g., ResNet-
50 on the ImageNet dataset). We also plan to deploy Cynthia in the

GPU cluster and evaluate its effectiveness and runtime overhead.

ACKNOWLEDGMENTS
The corresponding author is Fei Xu (fxu@cs.ecnu.edu.cn). This

work was supported in part by the Science and Technology Com-

mission of Shanghai Municipality under grant No.17511102602 and

No.14DZ2260800. Li Chen’s work was supported by a grant from

BoRSF-RCS. Zhi Zhou’s work was supported by the NSFC under

Grant 61802449 and the Guangdong Natural Science Funds under

Grant 2018A030313032. Fangming Liu’s work was supported in

part by the NSFC under Grant 61761136014 and 61722206, and in

part by National Key Research & Development (R&D) Plan under

grant 2017YFB1001703.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, et al. 2016. Tensorflow: A System for Large-Scale Machine

Learning. In Proc. of OSDI. 265–283.
[2] Amazon. 2019. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.

com/ec2/

[3] Asteroids. 2018. CPU performance. https://asteroidsathome.net/boinc/cpu_list.

php

[4] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. 2018. Online Job Sched-

uling in Distributed Machine Learning Clusters. In Proc. of Infocom. 495–503.

[5] Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Dis-

tributed Deep Learning: An In-Depth Concurrency Analysis. arXiv preprint
arXiv:1802.09941 (2018).

[6] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press.

[7] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

2016. Borg, omega, and kubernetes. ACM Queue (2016), 10–10.
[8] Chen Chen,WeiWang, and Bo Li. 2019. Round-Robin Synchronization:Mitigating

Communication Bottlenecks in Parameter Servers. In Proc. of Infocom.

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, et al. 2015. Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015).
[10] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project adam: Building an efficient and scalable deep learning training

system. In Proc. of OSDI. 571–582.
[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, et al. 2012. Large Scale Distributed Deep Networks. In Proc. of
NIPS. 1223–1231.

[12] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster

Manager for Distributed Deep Learning. In Proc. of NSDI. 485–500.
[13] AaronHarlap, Alexey Tumanov, AndrewChung, Gregory R. Ganger, and Phillip B.

Gibbons. 2017. Proteus: agile ml elasticity through tiered reliability in dynamic

resource markets. In Proc. of Eurosys. 589–604.
[14] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.

Gibbons, Garth A Gibson, et al. 2013. More effective distributed ml via a stale

synchronous parallel parameter server. In Proc. of NIPS. 1223–1231.
[15] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware dis-

tributed parameter servers. In Proc. of SIGMOD. 463–478.
[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature

521, 7553 (2015), 436–444.

[17] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja

Josifovski, James Long, et al. 2014. Scaling distributed machine learning with the

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://asteroidsathome.net/boinc/cpu_list.php
https://asteroidsathome.net/boinc/cpu_list.php

Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable Distributed Deep Neural Network Training ICPP 2019, August 5–8, 2019, Kyoto, Japan

parameter server. In Proc. of OSDI. 583–598.
[18] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2019. 3LC: Light-

weight and Effective Traffic Compression for Distributed Machine Learning. In

Proc. of SysML. 32–43.
[19] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-

murthy. 2018. Parameter Hub: a Rack-Scale Parameter Server for Distributed

Deep Neural Network Training. In Proc. of SOCC. 41–54.
[20] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian. 2019. Hop: Heterogeneity-

Aware Decentralized Training. In Proc. of ASPLOS.
[21] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.

In Proc. of Eurosys. 3–3.
[22] Google Cloud Platform. 2018. Cloud Deep Learning VM Image. https://cloud.

google.com/deep-learning-vm/

[23] Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2017. Paleo: A performance

model for deep neural networks. In Proc. of ICLR. 1–10.
[24] George A. F. Seber and Alan J. Lee. 2012. Linear regression analysis. Vol. 329. John

Wiley & Sons.

[25] Amazon Web Service. 2018. AWS Deep Learning AMIs. https://aws.amazon.com/

machine-learning/amis/

[26] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. 2018. Performance modeling

and evaluation of distributed deep learning frameworks on gpus. In Proc. of
DASC/PiCom/DataCom/CyberSciTech. 949–957.

[27] Nguyen Binh Duong Ta. 2019. FC2: cloud-based cluster provisioning for dis-

tributed machine learning. Cluster Computing (2019), 1–17.

[28] Shaoqi Wang, Wei Chen, Aidi Pi, and Xiaobo Zhou. 2018. Aggressive Synchro-

nization with Partial Processing for Iterative ML Jobs on Clusters. In Proc. of
Middleware. 253–265.

[29] Erci Xu and Shanshan Li. 2019. Revisiting Resource Management for Deep

Learning Framework. Electronics (2019), 327–327.
[30] Fei Xu, Fangming Liu, and Hai Jin. 2016. Heterogeneity and interference-aware

virtual machine provisioning for predictable performance in the cloud. IEEE
Trans. Comput. 65, 8 (2016), 2470–2483.

[31] Fei Xu, Fangming Liu, Hai Jin, and Athanasios V. Vasilakos. 2014. Managing

performance overhead of virtual machines in cloud computing: A survey, state

of the art, and future directions. Proc. IEEE 102, 1 (2014), 11–31.

[32] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. 2014. iAware:

Making live migration of virtual machines interference-aware in the cloud. IEEE
Trans. Comput. 63, 12 (2014), 3012–3025.

[33] Fei Xu, Haoyue Zheng, Huan Jiang, Wujie Shao, Haikun Liu, and Zhi Zhou. 2019.

Cost-Effective Cloud Server Provisioning for Predictable Performance of Big

Data Analytics. IEEE Transactions on Parallel and Distributed Systems 30, 5 (2019),
1036–1051.

[34] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. 2015. Performance

Modeling and Scalability Optimization of Distributed Deep Learning Systems. In

Proc. of KDD. 1355–1364.
[35] Chengliang Zhang, Huangshi Tian, Wei Wang, and Feng Yan. 2018. Stay Fresh:

Speculative Synchronization for Fast Distributed Machine Learning. In Proc. of
ICDCS. 99–109.

[36] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. 2017. SLAQ:

quality-driven scheduling for distributed machine learning. In Proc. of SOCC.
390–404.

[37] Wei Zhang, Minwei Feng, Yunhui Zheng, Yufei Ren, Yandong Wang, Ji Liu, Peng

Liu, et al. 2017. Gadei: On scale-up training as a service for deep learning. In

Proc. of ICDM. 1195–1200.

A PROOF OF THEOREM 4.1
Proof. As the training performance model (in Eq. (3)) and the

loss model (in Eq. (1)) are both different for BSP and ASP, we obtain

the lower and upper bounds of nwk separately for the two training

synchronization mechanisms.

(1) BSP training: By Eq. (1) and Constraint (10), we first obtain

the number of training iterations s as

s =
⌈ β0
lд
− β1

⌉
, (15)

which can be considered as a constant given the objective training

loss value lд . By Eq. (3) and Constraint (9), we then obtain that the

computation time and the communication time for each iteration

cannot exceed the expected iteration time (i.e., witer
nwk ·cwk

≤
Tд
s ,

2·nwk ·дparam
nps ·bps

≤
Tд
s). Accordingly, we calculate the lower bound of

nwk and the upper limit of the resource provisioning ratio
nwk
nps as

nlower
wk =

⌈witer · s

Tд · cwk

⌉
, (16)

nwk
nps

≤ u, where u = min

(
r ,

Tд · bps

2 · s · дparam

)
. (17)

By substituting Eq. (16) into Eq. (17), we are able to calculate the

number of PS nodes nps as

nps =
⌈nlower

wk
u

⌉
. (18)

The rationale is that blindly increasing the number of provisioned

PS nodes can reduce the cost efficiency of cloud resources, though

the DDNN training performance can be slightly improved, which

will be validated in Sec. 5.1. We accordingly select the minimum

number of provisioned PS nodes in practice.

According to Eq. (17), we have nwk ≤ u · nps . Moreover, as

evidenced by Sec. 2, the cost-efficient provisioning for BSP balances

the computation time and the communication time (i.e., tcomm ≤

tcomp). We accordingly have nwk ≤

√
witer ·nps ·bps
2·дparam ·cwk

. Based on the

above, we finally obtain the upper bound of nwk as

n
upper
wk =

⌈
min

(
u · nps ,

√
witer · nps · bps

2 · дparam · cwk

)⌉
. (19)

(2) ASP training: As the training iterations are evenly distributed

among the homogeneous workers, we first calculate the number of

training iterations on each worker as

s =
⌈ β0
lд ·
√
nwk

−
β1
nwk

⌉
. (20)

As the target loss value lд is commonly less than 1 while nwk ∈

Z+ is larger than 1, we have lд ≤
√
nwk . Thus, Eq. (20) can be

further reduced to s ≥
β0−β1

lд ·
√
nwk

, where β0 > β1 as evidenced in

Sec. 2. Meanwhile, as the iteration processing time is larger than the

gradient computation time, we have
witer
cwk

≤
Tд ·lд ·

√
nwk

β0−β1
according

to Constraint (9). We further calculate the lower bound of nwk as

nlower
wk =

⌈(witer · (β0 − β1)

cwk ·Tд · lд

)
2
⌉
. (21)

Similarly to BSP training, we use the lower bound of nwk to obtain

the minimum number of provisioned PS nodes as

nps =
⌈nlower

wk
r

⌉
. (22)

By the minimum number of provisioned PS nodes in Eq. (22) and

Constraint (11), the upper bound of nwk is calculated as

n
upper
wk = ⌈r · nps ⌉ . (23)

□

https://cloud.google.com/deep-learning-vm/
https://cloud.google.com/deep-learning-vm/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/

	Abstract
	1 Introduction
	2 Understanding DDNN Training Performance in the Cloud
	3 Predicting DDNN Training Performance with Resource Consumption
	4 Guaranteeing DDNN Training Performance with Cost-Efficient Cloud Resources
	5 Performance Evaluation
	5.1 Validating DDNN Training Performance Model in Cynthia
	5.2 Effectiveness of Cynthia Resource Provisioning Strategy
	5.3 Runtime Overhead of Cynthia

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Theorem 4.1

