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ABSTRACT
To increase the resource utilization of datacenters, big data analytics
jobs are commonly running stages in parallel which are organized
into and scheduled according to the Directed Acyclic Graph (DAG).
Through an in-depth analysis of the latest Alibaba cluster trace and
our motivation experiments on Amazon EC2, however, we show
that the CPU and network resources are still under-utilized due to
the unwise stage scheduling, thereby prolonging the completion
time of a DAG-style job (e.g., Spark). While existing works on
reducing the job completion time focus on either task scheduling
or job scheduling, stage scheduling has received comparably little
attention. In this paper, we design and implement DelayStage, a
simple yet effective stage delay scheduling strategy to interleave the
cluster resources across the parallel stages, so as to increase the
cluster resource utilization and speed up the job performance. With
the aim of minimizing the makespan of parallel stages, DelayStage
judiciously arranges the execution of stages in a pipelined manner
to maximize the performance benefits of resource interleaving.
Extensive prototype experiments on 30 Amazon EC2 instances and
complementary trace-driven simulations show that DelayStage can
improve the cluster resource utilization by up to 81.8% and reduce
the job completion time by up to 41.3%, in comparison to the stock
Spark and the state-of-the-art stage scheduling strategies, yet with
acceptable runtime overhead.
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•General and reference→ Performance; • Theory of compu-
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1 INTRODUCTION
Datacenters are hosting and processing an increasing amount of
data, as reported by Forbes that 2.5 exabytes of data is daily gener-
ated and processed over the Internet [17]. Timely analysis of the
massive amounts of data ismandated for decisionmaking inmodern
companies like Facebook, Google, and Alibaba, where data analyt-
ics frameworks such as MapReduce [7], Spark [29], Flink [4], and
Tensorflow [1] are employed to run big data analytics jobs. These
jobs typically consist of a number of stages with inter-dependencies
which are represented with Directed Acyclic Graphs (DAGs). Each
stage is further divided into a number of tasks, reading input data
over the network, processing data partitions using worker CPUs
and writing output data to local disks [29].

It is typical for stages in a big data analytics job to be running in
parallel [27]. As evidenced by our motivational analysis (in Sec. 2.1)
on the latest Alibaba cluster trace v2018 [2], parallel stages account
for 79.1% of stages on average in production jobs. Unfortunately, the
stages are naively scheduled to execute once they have completely
acquired their input data. With such an unwise stage scheduling
policy, parallel stages are easily executed in an almost “synchro-
nized” manner — they fetch input data at the same time, competing
for network bandwidth while leaving the CPU resource idle, and
then processing data simultaneously, contending for CPU and leav-
ing bandwidth idle instead. The significant fluctuation of resource
utilization between the full and idle extremes inevitably results in
an inefficient resource utilization. As demonstrated in our trace
analysis, both the CPU and the network resource are under-utilized
in production cluster, with around 20%-50% utilization on aver-
age. Undoubtedly, such heavy resource contention and inefficient
resource usage would prolong the execution of DAG-style data
analytics jobs.

To improve the cluster resource utilization and speed up the job
performance, there have been a number of research works dedi-
cated to task scheduling (e.g., Quincy [15]), stage scheduling (e.g.,
Tetris [8]), and job scheduling (e.g., Flowtime [11]). These existing
scheduling techniques above are mostly designed for optimizing
the placement of (i.e., where to place) tasks or stages in both a
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Figure 1: Illustration of parallel stages in the DAG of a rep-
resentative big data analytics job (i.e., the ALS job DAG with
6 stages). Stage 1 runs in parallel with Stage 2, and Stage 3 is
executed in parallel with Stage 1, Stage 2, and Stage 4.

single cluster (e.g., Alibaba Fuxi [30], Graphene [10]) and across
geo-distributed datacenters (e.g., Geode [24], Tetrium [13]), as well
as optimizing the job execution sequence (e.g., LAS_MQ [12]). Nev-
ertheless, comparatively little attention has been paid to optimizing
the launch time of (i.e., when to execute) stages to improve job
performance in the literature.

To fill this gap, we investigate from the perspective of manip-
ulating the stage launch time, or more specifically, delaying the
submission of parallel stages for a higher resource efficiency and
a shorter job completion time. The intuition can be clearly illus-
trated with a motivation example of a Spark job, which consists of
three parent stages and a child stage. With the default scheduling,
the three parent stages will be launched at the same time, causing
an intense resource contention. However, if we deliberately delay
two of the parallel stages to some extents, the usage of bandwidth
and CPU resources would be seamlessly interleaved, which eventu-
ally improves the job performance by accelerating its completion.
Though it looks similar to Delay Scheduling [28], our idea is quite
different for the following reasons. First, we delay parallel stages to
accelerate job performance and improve cluster resource utilization,
while Delay Scheduling delays the map task to achieve data locality
and fairness. Second, we need to make decisions on which stage
and how much time to delay, while Delay Scheduling does not. As a
result, the deficiencies of existing works and the potential of great
performance gains motivate us to develop a practical technique to
optimize the launch time of parallel stages.

In this paper, we design DelayStage, a simple yet effective stage
delay scheduling strategy to achieve acceleration of DAG-style data
analytics jobs by interleaving the usage of resources (including CPU,
network bandwidth and disk I/O) across multiple parallel stages in
the cluster. In particular, DelayStage first organizes parallel stages
into multiple execution paths in a descending order of path execu-
tion time according to the job’s DAG. It then preferably schedules
the stages in the long-running execution path, so as to reduce the
resource fragments [10] and increase the cluster resource utiliza-
tion. We implement a prototype of DelayStage based on Apache
Spark [29] with two modules, including a delay time calculator and
a stage delayer. With the aim of greedily minimizing the makespan
of parallel stages, the calculator computes the best schedule for par-
allel stages, and then outputs the stage schedule time to the delayer,
so that the execution of parallel stages is postponed accordingly in
a lightweight manner.

We evaluate the effectiveness and runtime overhead ofDelayStage
with both extensive prototype experiments on 30 Amazon EC2
m4.large instances and large-scale simulations driven by Alibaba
cluster trace v2018. Our experimental results show that DelayStage
can improve the average utilization of CPU and network resources
in the cluster by 7.2%-81.8%, and reduce the job completion time
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Figure 2: CDF of the number
of stages and parallel stages
executed in production jobs
from Alibaba cluster trace.

10 20 30 40 50 60 70 80 90 100

T(parallel stages) / T(job) (%)

0
10
20
30
40
50
60
70
80
90

100

C
D

F
 (

%
)

Figure 3: CDF of the propor-
tion of the makespan of par-
allel stages to the job execu-
tion time in Alibaba trace.

by 17.5%-41.3% compared to the stock Spark and the state-of-the-
art stage scheduling strategies (e.g., AggShuffle [16]). In addition,
DelayStage incurs acceptable runtime overhead in practice.

The rest of the paper is organized as follows. Sec. 2 illustrates the
inefficiency of cluster resource usage and our motivational example.
Through modeling the makespan of parallel stages in Sec. 3, Sec. 4
designs and implementsDelayStage based onApache Spark to speed
up the performance of a DAG-style job. Sec. 5 extensively evaluates
the performance gains and runtime overhead of DelayStage. We
discuss our contribution in the context of related work in Sec. 6.
Finally, we conclude this paper in Sec. 7.

2 BACKGROUND AND MOTIVATION
In this section, we first characterize the execution of parallel stages
in production jobs as well as the utilization of cluster resources
from Alibaba cluster trace v2018. We then present an illustrative
example to show how to speed up the job performance simply by
delaying the scheduling time of parallel stages.

2.1 Characterizing Parallel Stages and
Resource Utilization

It is typical for a big data analytics (e.g., Spark [29]) job to contain
a number of pre-defined stages forming a DAG, with an example
shown in Fig. 1 for an Alternating Least Squares (i.e., ALS) job from
Spark MLlib. These stages are executed according to the dependency
in a DAG, as the child stage demands for the input data generated
by its parent stages. In particular, a parent stage can be executed in
parallel with another parent (or ancestor) stage, so as to improve
the resource utilization of datacenters. Accordingly, we formally
define parallel stages as the kind of stages which can be executed
in parallel with at least one of the other stages in the job’s DAG.

Parallel stages are common in production jobs. We analyze the
latest Alibaba cluster trace v2018 [2], which includes 2, 775, 025
production jobs1 running on 4, 000 machines in a period of 8 days.
Through a topological sorting of stages in the job’s DAG, we find that
over 68.6% of production jobs in Alibaba cluster trace have parallel
stages. Similarly, we also observe that over 51% of jobs contain
parallel stages in the job trace from Microsoft [10]. In more detail,
we find that these jobs have 16, 650, 134 stages and 13, 173, 110
parallel stages in total, which indicates that the number of parallel
stages accounts for over 79.1% of stages in a job on average. As
1We exclude the incomplete jobs before or after the 8-day trace time span
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Figure 4: (a) Average CPU and network bandwidth utiliza-
tion across 4, 000 machines, and (b) CPU and network band-
width utilization of a worker node (i.e., machine_id = m_2077)
over 8 days in Alibaba cluster trace.
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Figure 5: CPU utilization and network throughput of one
worker node over time when running a ALS job with 3 GB
input dataset in a three-node stock Spark cluster.

evidenced in Fig. 2, the number of parallel stages is roughly close
to the number of stages in a job.

Parallel stages’ makespan dominates the job execution time.Through
analyzing the start time and the end time of each stage in the Al-
ibaba trace, we are able to obtain the execution time for all stages.
The stage runtime mostly spans from 10 seconds to 3, 000 seconds
in the trace. As shown in Fig. 3, the makespan (i.e., execution time)
of parallel stages accounts for more than 60% job completion time
for over 80% of jobs. In particular, the average proportion of the
makespan of parallel stages to the job execution time is 82.3%.

Unfortunately, CPU and network resources are still under-utilized,
despite the prevalence of parallel stages in production clusters. As
illustrated in Fig. 4(a), the average CPU utilization and network
bandwidth utilization of 4, 000machines range from 20% to 50%, and
30% to 45%, respectively. Furthermore, we take a closer look at the
resource utilization of machines during the execution of jobs. We
find that the CPU utilization and the network bandwidth utilization
fluctuate wildly from 0% to 98%, and from 0% to 62.2%, respectively.
In particular, the CPU resource utilization of one worker node stays
low-utilized (i.e., below 10%) for around 39.1% of the job execution
time as shown in Fig. 4(b). Accordingly, we infer that the naive
scheduling of stages leads to the inefficiency of resource usage during
the job execution in the cluster.

To confirm our hypothesis on the inefficient stage scheduling in
the stock Spark, we examine the utilization of CPU and network
resources of one worker node by launching a representative big
data analytics job (i.e., ALS) in a three-node cluster. As shown in
Fig. 5, we observe that the CPU and network bandwidth resources
of the worker node is either fully utilized or totally idle as expected.

(b)
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Stage 6(a)

Stage 2
Stage 3

Stage 1 Stage 4
Time

Shuffle read time Data processing time  plus Shuffle write time
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Figure 6: An illustrative motivation example with the ALS
job: (a) the stock Spark naively launches the parallel stages
at the same time, making them compete for the cluster re-
sources; (b) If we simply postpone the scheduling of Stage
2 and Stage 3, the utilization of the network bandwidth and
computing resources can be improved by 31.3% and 40.1%, re-
spectively, thereby reducing the job completion time from
133 seconds to 104 seconds. The gray and white parts of a
stage denote the shuffle read time and the data processing
time plus shuffle write time, respectively.

Specifically, the network bandwidth is idle during a period of 58
seconds (i.e., from 32 to 62 seconds, and from 90 to 118 seconds).
Similarly, the CPU resource is idle for around 38 seconds. The ratio-
nale is that, the parallel stages are initially scheduled to execute at the
same time in the stock Spark, as long as the stage has acquired all of
its input data and becomes ready for launch. As shown in Fig. 6 (a),
the stock Spark executes Stage 1, Stage 2, and Stage 3 simultaneously.
Such a naive stage scheduling can cause the contention on the CPU
and network bandwidth among the parallel stages, thereby making
the resource utilization fluctuate significantly. As an example, Stage
1 and Stage 3 contend for the network resource during the period
from 0 to 20 seconds, and they also contend for the CPU resource in
the period from 32 to 60 seconds. As a result, the unwise scheduling
of parallel stages is likely to cause the inefficiency of resource usage,
thereby prolonging the job completion time.

2.2 An Illustrative Example
To improve the resource utilization of the cluster and speed up
the job performance, we propose a simple yet effective approach
to interleave the cluster (e.g., CPU, network bandwidth, disk I/O)
resources across the stages by delaying the execution of parallel
stages. Still with the ALS job as our motivation example illustrated
in Fig. 6, we next present how our proposed approach manages to
achieve efficient usage of cluster resources and thus the accelerated
job completion time.

In general, each stage execution can be divided into three phases:
shuffle reading the input data over the network, executing the
stage by the CPU resource, and shuffle writing the output data to
the disk [29]. As observed in Fig. 6 (a), there is intense network
contention among Stage 1, Stage 2, and Stage 3 during the first 10
seconds in stock Spark, while the CPU resource remains idle. Later,
Stage 1 and Stage 3 contend for the CPU resource during the period
of 32 to 60 seconds along the timeline, while the network resource
is totally idle. Finally, the CPU resource becomes idle again for
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Table 1: Notations in our stage scheduling model

Notation Definition
K Set of parallel stages in a DAG-style job
Pm Set of stages in an execution pathm of a job’s DAG
Tm Execution time of an execution pathm
I Set of nodes that store input data of a stage k
W Set of worker nodes that execute tasks of a stage k
tk Execution time of a stage k
twk Task execution time of a stage k on a worker nodew

si,wk
Size of shuffle input data that a stage k reads from a
node i to a worker nodew

Bi,wk
Available bandwidth for a stage k over the network
link from a node i to a worker nodew (i , w)

dwk Size of shuffle data to a worker nodew of a stage k
Dw
k Available disk bandwidth for a stage k on a nodew

ϵwk
Number of available executors for running a stage k
on a worker nodew

Rk Data processing rate of a stage k on an executor

Bi,w
Available bandwidth over the network link from a
node i to a worker nodew (i , w)

Dw Available disk bandwidth on a nodew
ϵw Number of available executors on a worker nodew
X Set of delayed scheduling time of parallel stages

almost 30 seconds, when Stage 4 starts to fetch (i.e., shuffle read)
the input data from Stage 1 and Stage 2. Accordingly, the naive
stage scheduling inevitably causes the resource wastage of the
CPU and network bandwidth. In contrast, if we simply delay the
execution of Stage 2 and Stage 3 as illustrated in Fig. 6 (b), the CPU
and network resources are interleaved across Stage 1, Stage 2, and
Stage 3 during the period of 13 to 32 seconds, and across Stage 3
and Stage 4 during the period of 32 to 60 seconds. As a result, our
stage delay scheduling can improve the average CPU utilization
from 52.34% to 68.73%, and the average network throughput from
17.91 MB/s to 25.2 MB/s, thereby shortening the job completion
time by 27.8%.

3 MODELING MAKESPAN OF PARALLEL
STAGES FOR A DAG-STYLE JOB

In this section, we build an analytical model to formulate the
makespan of parallel stages in a DAG-style job particularly with
different stage scheduling plans (i.e., deciding when to submit the
parallel stages in a job). The key notations used in our stage sched-
uling model are summarized in Table 1.

3.1 Parallel Stage Scheduling Problem for A
DAG-Style Job

We consider a DAG-style (e.g., Spark) job with a set of parallel
stages which is denoted by K = {k1,k2, ...,kn }. The parallel stages
are running simultaneously in the worker nodes and belong to
different execution paths. Each execution path consists of a set
of stages executed sequentially. As illustrated in Fig. 7, the set
of parallel stages K includes a set of execution paths denoted by
P = {P1,P2, ...,Pm }, and each execution path Pm consists of a

Stage 1
t1=20s

t2=10s

t3=30s

t4=20s

t5=10s
Stage 2

Stage 3

Stage 4

Stage 5

P1

P2

Parallel stage set K

P3

Figure 7: Illustration of execution paths in a DAG-style job.
The parallel stage set K includes Stage 1, 2, 3, and 4, which
can be organized into three execution paths. We put Stage
1 and 3 as an execution path P1, and Stage 2 and 3 as an-
other execution path P2. The remaining Stage 4 is put as the
last execution path P3. In particular, Stage 5 is not put into
parallel stage setK , as it is executed sequentially with other
stages.

A stage partition on a worker node wnode i1

node i2

node ip

Merge

shuffle read

execution block

Task 
function Local disk

data processing shuffle write

Network

Figure 8: Detailed procedure of a task (i.e., a stage partition)
execution.

set of stages {ki ∈ K}. For each stage k , we denote a set of nodes
that store the input data as I = {i1, i2, ..., ip }, and a set of worker
nodesW = {w1,w2, ...,wq } that process the stage input data and
shuffle write the intermediate data to their local disks.

To formulate the task execution time on a worker node w , we
look into the detailed procedure of each stage partition as illustrated
in Fig. 8. Specifically, it consists of three parts: (shuffle) reading the
input data, executing the task, and shuffle writing the intermediate
data to the local disk. In more detail, each stage partition (i.e., a
single task) first shuffle reads the input data from a set of nodes I.
The shuffle input data is then merged and processed on a worker
nodew , and generates the intermediate data which is finally shuffle
written on the local disk of the worker node w . In particular, the
process of merging data to the task function and shuffle write is
blocked by the shuffle read process. This reason is that only after
each task (i.e., the stage partition) has acquired the whole of its
input data, can such a stage partition start the data processing in
the task [29]. Accordingly, the task execution time twk on a worker
nodew can be formulated as

twk = max
i ∈I

( si,wk
Bi,wk

)
+

∑
i ∈I

si,wk

ϵwk · Rk
+

dwk
Dw
k
. (1)

The model parameters in Eq. (1) are summarized in Table 1.
In more detail, the first item of Eq. (1) denotes the network

transfer time of shuffle input data of stage k on worker node w ,
which is determined by the longest transmission time among all
the input data partitions in upstream workers. The second item
and the third item are the task (i.e., a stage partition) processing
time and the shuffle write time on worker nodew , respectively. For
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simplicity, we assume the computing executor resource (i.e., ϵw )
and the bandwidth (i.e., network, disk) resource (Bi,w ) are equally
shared among the parallel stages. Accordingly, the stage execution
time is determined by the slowest worker w ∈ W [29]. With the
execution time of stage partition defined in Eq. (1), we are able to
formulate the stage execution time tk as

tk = max
w ∈W

(
twk

)
. (2)

Furthermore, we formulate the execution time Tm as the sum of
the execution time of stages along an execution pathm, which is
given by

Tm =
∑

k ∈Pm

(xk + tk ), (3)

where xk denotes the delayed scheduling (i.e., submission) time
for a stage k , as opposed to the immediate submission with the
stock stage scheduling in Spark. We proceed to define our stage
scheduling problem to minimize the makespan of parallel stages
for a DAG-style job as below,

min
X

max
Pm ∈P

(
Tm

)
(4)

s.t. xk ≥ 0, ∀xk ∈ X (5)
xk ≥ x j + tj , ∀(x j ,xk ) ∈ Q (6)
Q = {(x1,x2)|Hm (x1) < Hm (x2),Pm ∈ P} (7)

The model variable is denoted by X = {x1,x2, ...,xn }, which repre-
sents the set of delayed scheduling time for each parallel stage in
the set K for a DAG-style job. In Constraint (7), Hm (xk ) denotes
the sequence index of stage xk in the execution path Pm , of which
the value can be 1, 2, · · · , |Pm | (i.e., the total number of sequential
stages in Pm ). The set Q represents the whole set of pairs of stages
which have sequential dependency constraints. As intuitively in-
dicated by the definition of Q, for a stage pair (x j ,xk ) ∈ Q, stage
x j has a smaller sequence index than xk in an execution path. As
such, stage xk should be executed after the completion of x j , as
represented in Constraint (6).

3.2 Analysis of the Hidden Complexity
Although the form of the optimization seems neat and simple, the
complexity is hidden in the representation of tk , which is involved
in both the objective and Constraint (6). In particular, tk is deter-
mined by twk , which further relies on Bi,wk , ϵwk , and Dw

k , as shown
in Eq. (1). These variables are time-dependent, and are determined
by the number of parallel stages (i.e., how many stages are executed
simultaneously), denoted by f wτ (X), at a particular workerw at a
given time τ . Intuitively, the numbers depend on both the submis-
sion time and the execution process of tasks that are sharing the
resources, which are non-trivial to calculate even in a numerical
way when the submission time of all the stages inX are given. Thus,
it is even harder to represent f wτ (X) in a closed-form expression
of X. If f wτ (X) is non-convex, problem defined in Eq. (4) becomes
a non-convex optimization problem [5], which is at least NP-hard.
Even if f wτ (X) is convex, the closed-form expression is difficult to
obtain due to the inter-dependency between f wτ (X) and twk . Rather
than spending enormous efforts on unveiling the complex relation-
ship which may turn out to be in vain, we propose our algorithmic
solution to be presented in the next section.

4 DESIGN AND IMPLEMENTATION OF STAGE
DELAY SCHEDULING

Based on our analytical performance model and problem analysis
in the previous section, we proceed to design DelayStage, a simple
yet effective stage scheduling strategy to solve our optimization
problem. With the adjusted scheduling time (i.e., X) of parallel
stages, DelayStage is able to increase the cluster resource utilization
and reduce the job completion time. In addition, we unveil the
implementation details of our DelayStage scheduler on Apache
Spark [29].

4.1 Algorithm Design
To particularly answer “which stage and how much time should we
delay during the job execution,” our DelayStage strategy in Alg. 1
is quite simple and intuitive: we preferably schedule the stages in
the long-running execution path with high priority, in order to
minimize the resource fragments [10] and maximize the benefits
of resource interleaving. Within an execution path Pm , we further
calculate the best scheduling time for each stage according to the
stage dependency sequence, with the aim of greedily minimizing
the makespan of parallel stages.

Specifically, we first obtain the execution path set P by a topo-
logical sorting of the job’s DAG, and initialize the stage execution
time ˆtk ,∀k ∈ K , the path execution time Tm ,∀Pm ∈ P and the
makespan Tmax of parallel stages (lines 1-3). With the sorted Pm
according to Tm in a descending order, we then iterate over stages
one by one in all the execution paths Pm (lines 4-6). In particular,
we skip the scheduled stages in Pm as it has already been processed
in a former execution path (lines 7-9). For each stage k , DelayStage
further obtains the lower and upper bounds of the delayed schedul-
ing time xk (line 10) according to the stage dependency in Pm . We
set Tmax as an infinite value as we need to store a minimum value
of Tmax in the following loop defined in lines 11-18. Assuming the
time is slotted (e.g., one second per slot), DelayStage iterates over
xk in the range of its lower and upper limits (line 11). With a candi-
date stage scheduling time xk in each iteration, we first obtain the
model parameters Dw

k , Bi,wk , and ϵwk , based on which we calculate
the stage execution time tk , the completion time of subsequent
stages in Pm and update the completion time of the previously
scheduled stages (lines 12-14). After calculating the path execution
time Tm , DelayStage finally identifies the best schedule of delayed
stage submission time xk to greedily minimize the makespanTmax
of parallel stages (lines 15-18).

Remark: The complexity of Alg. 1 is in the order of O(|K| ·m),
wherem = max

k ∈K
{uk − lk } denotes the cardinality of the scheduling

time space for xk . As evidenced by Fig. 2, around 90% of production
jobs have less than 15 parallel stages. Accordingly, the complexity
of Alg. 1 can approximately be reduced to O(m) as |K | is limited.
The computation time of our DelayStage strategy is well contained,
which will be validated in Sec. 5.3. In addition, we intuitively sort
the sequence of execution paths Pm in the descending order of
Tm (line 4) in Alg. 1, so as to greedily derive the performance
benefit from the resource interleaving across the stages in the long-
running execution path. DelayStage can also work with the random
or ascending sequence of Pm according to the path execution time
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Algorithm 1: DelayStage: Stage delay scheduling strategy
for minimizing job completion time and improving cluster
resource utilization.
Input: The job’s DAG; available network bandwidth Bi,w , disk

bandwidth Dw and executor resources ϵw (∀w ∈ W); data
processing rate Rk , the size of shuffle input data s i,wk and shuffle write
data dwk of stage k (∀k ∈ K).

Output: Delayed scheduling (i.e., submission) time set
X = {x1, x2, ..., xn } for parallel stages in a job.

1: Initialize: X ← {−1, ..., −1} and the set of execution paths P
according to the job’s DAG;

2: Calculate the initial stage execution time ˆtk ← Eq. (2) (∀k ∈ K), as if
stage k is running alone in the cluster;

3: Calculate the execution time Tm ←
∑

k∈Pm
ˆtk on each path, and

initialize the makespan of parallel stages Tmax ← max
Pm∈P

(Tm );

4: Sort Pm in P according to the descending order of Tm ;
5: for all Pm in P do
6: for all k in Pm do
7: if xk , −1 then
8: continue;
9: end if
10: Obtain the lower limit lk and the upper limit uk of xk :

lk ← (stage k has a parent stage j) ? (x j + tj ) : 0; uk ← Tmax ;
Tmax ←∞;

11: for all x̂k ∈ [lk , uk ] do
12: Obtain the parameters Dw

k , Bi,wk , and ϵwk according to the
parallelism of stage k ;

13: Calculate the stage execution time tk ← Eq. (2);
14: Update the completion time of the subsequent stages in Pm

and that of the scheduled stages interfering with the stage k ;
15: Calculate the path execution time Tm ← Eq. (3);
16: if Tmax > max

k∈Pm
(Tm ) then

17: Tmax ← max
k∈Pm

(Tm ), xk ← x̂k ;

18: end if
19: end for
20: end for
21: end for

Tm . We will examine the performance gains of DelayStage with the
three kinds of Pm sequence, and validate the effectiveness of our
stage delay scheduling strategy in Sec. 5.3.

4.2 Implementation of DelayStage on Apache
Spark

We implement a prototype of our DelayStage scheduler based on
Apache Spark [29], as Spark is a representative DAG-style data
processing framework. Specifically, our prototype of DelayStage
is built upon Apache Spark v2.3.1 with over 600 lines of C++ and
Scala codes which are publicly available on GitHub2. As shown in
Fig. 9, our DelayStage scheduler is deployed on the master of Spark,
which includes two modules elaborated as follows.

Delay Time Calculator: The delay time calculator is actually
the implementation of our stage delay scheduling strategy in Alg. 1.
The input of our calculator can be obtained by profiling jobs on a
worker node. Specifically, we sample the input data (e.g., 10%) and
2https://github.com/icloud-ecnu/delaystage.
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Figure 9: DelayStage implementation on Apache Spark.

profile the job on a single executor according to our prior work
iSpot [26]. Through analyzing the log information (e.g., eventlog
in Spark) generated by the job profiling, we extract the job’s DAG
information including parallel stage set K and the execution path
set P, as well as the data processing rate Rk , the size of shuffle input
data si,wk and shuffle write data dwk of each stage k . In addition, the
available network bandwidth and disk I/O bandwidth of worker
nodes can be periodically measured using the netperf and iotop
command line tools. With the job’s DAG information and the model
parameters includingBi,w ,Dw , ϵw ,Rk , si,wk , anddwk , our delay time
calculator is able to output the delayed scheduling time of parallel
stages X = {x1,x2, ...,xn } by Alg. 1. In particular, we store the
result X in the default configuration file metrics.properties in
Apache Spark.

Stage Delayer: Based on the output result X, the stage delayer
first extracts the delayed scheduling time for parallel stages in
metrics.properties and then postpones the submission time of
these stages accordingly. In more detail, we add a new API function
stageDelayScheduling() to simply sleep the submission of a
stage k for a period of xk . We invoke stageDelayScheduling() in
the function submitStage() defined in DAGScheduler.scala, so
as to delay the submission and execution of parallel stages in Spark.
Accordingly, our stage delayer is simple and lightweight, without
affecting the main scheduling functions like task placement or data
placement in the cluster.

5 PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness and runtime overhead
of ourDelayStage strategy by carrying out a set of real-world experi-
ments with four representative DAG-style data analytics workloads
on Amazon Elastic Compute Cloud (EC2) [3]. Furthermore, we con-
ducted extensive simulations driven by the latest Alibaba cluster
trace v2018 [2] to obtain complementary insights.

5.1 Experimental Setup
Cluster configurations: We set up a Spark cluster on Amazon
EC2 [3] using 30 m4.large instances, each equipped with 2 Intel
Xeon CPU E5-2670 v2 vCPUs, 8 GB memory, 32 GB SSD (Solid-State
Drive) and the network bandwidth ranging from 100 Mbps to 480
Mbps. On each instance, we launch two executors, each configured
with 1 vCPU and 2 GB memory accordingly. For simplicity, we
configure the parameters in Spark as the default values and set up
the HDFS cluster storage with 3 dedicated instances.

Workloads and datasets:We select four representative bench-
mark workloads of Spark, which include ConnectedComponents
with 5 stages and TriangleCount with 11 stages from Spark GraphX,
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Table 2: Specifications of four representative benchmark
workloads in our experiment.

Workload Specification
ConnectedComponents 10 GB synthetic input data

CosineSimilarity 30 GB synthetic input data

LDA 140 million documents fromWikipedia
articles [25] trained for 10 iterations

TriangleCount 10 million users and 100 million
connections of synthetic input data
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Figure 10: Job completion time of four representative work-
loadswith stage scheduling strategies of the stock Spark, Ag-
gShuffle, and DelayStage.

CosineSimilarity with 5 stages and LDA (i.e., Latent Dirichlet Alloca-
tion) with 5 stages from Spark MLlib. Specifically, we run Connect-
edComponents and CosineSimilarity applications with 10 GB and
30 GB synthetic data, respectively, LDA with 140 million Wikipedia
documents and TriangleCount applicationswith 100million connec-
tions of synthetic data. We summarize the workload specifications
above in Table 2.

Baselines: We compare our DelayStage strategy with two com-
parable baselines: 1) the naive stage scheduling in the stock Spark,
which immediately submits stages once they have acquired all the
shuffle input data; 2) AggShuffle [16], a state-of-the-art scheduling
strategy which proactively transfers data to the child stage once
the computation is completed, so as to pipeline the data transfer
over the network and reduce the job completion time. We also com-
pare DelayStage (the descending order of Pm by default) with its
variations based on the random order and the ascending order of
Pm (as discussed in Sec. 4.1), in our trace-driven simulation.

Metrics: We illustrate the effectiveness of DelayStage mainly
using three important metrics: job completion time, stage execu-
tion time and resource utilization of worker nodes. To make our
performance evaluation accurate, we run our experiment five times
for each workload, and illustrate the job performance with error
bars of standard deviations.

5.2 Effectiveness of DelayStage
Job completion time: As illustrated in Fig. 10, we observe that
DelayStage shortens the job completion time by 17.5%-41.3% as
compared to the stock Spark. The rationale is that our DelayStage
strategy adjusts the scheduling time of parallel stages to greedily
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Figure 11: Stage execution time breakdown for CosineSimi-
larity with 5 stages and LDA with 5 stages. Each rectangular
block represents the execution time of one stage.

achieve resource interleaving across stages, thereby reducing the
makespan of parallel stages and the job completion time. Mean-
while, DelayStage outperforms AggShuffle by a moderate perfor-
mance improvement (i.e., 4.2%-17.4%) because of two reasons: First,
our DelayStage strategy seeks to improve the utilization of multi-
ple resources including CPU, network, and disk, while AggShuffle
only optimizes the usage of network bandwidth. Through tracing
the CPU utilization of a worker node, we find that there exists a
moderate amount of CPU idle periods with AggShuffle. Second, Ag-
gShuffle relies on the variance of task execution time within a stage,
and thus the job performance improvement of AggShuffle becomes
trivial when the stage tasks (e.g., LDA) has nearly homogeneous
stage partitions.

Furthermore, we observe that DelayStage achieves the most sta-
ble job performance (with the least execution time variance), as
compared to the other two baseline strategies. This is because De-
layStage tries to mitigate the resource contention across multiple
parallel stages, by delaying the scheduling time of stages with more
performance gains, so as to minimize the job completion time. In
particular, we observe that the ConnectedComponents workload
achieves the least performance improvement (i.e., 17.5%) with De-
layStage. This is because the execution time of sequential stages
accounts for over half (i.e., around 54.8%) of the job completion time
for ConnectedComponents, leaving a limited optimization space
for minimizing the job completion time.

Stage execution time: We breakdown the execution of two
workloads (i.e., CosineSimilarity, LDA) by stages, and the stage
execution of ConnectedComponents and TriangleCount are shown
in the Appendix A.1. Specifically, we show the execution of parallel
stages in the form of execution paths (defined in Fig. 7), which can
be represented by multiple rectangular blocks executed in parallel.
For example, the three execution paths in LDA are {Stage 1}, {Stage 2,
Stage 3}, and {Stage 4}, and the execution of the last Stage 5 is blocked
by the parallel stages in LDA execution paths above, as shown in
Fig. 11. Note that the job completion time in Fig. 10 is actually the
sum of the makespan of parallel stages (i.e., the longest execution
time of execution paths) and the execution time of sequential stages
(e.g., Stage 5 of LDA). Leveraging the predicted stage execution time
tk by our Spark performance model within an error of 9.1% (as
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Figure 12: (a) Network throughput and (b) CPU utilization of a worker node run-
ning CosineSimilarity and TriangleCount under the stock Spark and DelayStage
during the job execution.
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Figure 13: Comparison of the executor
occupation across the stages of CosineS-
imilarity achieved by the stock Spark
and DelayStage.

illustrated in the Appendix A.2), DelayStage is able to delay the
appropriate stages to improve resource utilization and speed up the
job execution.

Specifically, we observe from Fig. 11 that, the stock Spark starts
to submit and execute stages once the stage is ready for launch.
Accordingly, the resource contention significantly prolongs the
execution of the long-running execution path by 29.4% for CosineS-
imilarity and 23.8% for LDA, respectively. In contrast, DelayStage
improves the job performance simply by delaying the execution
of several parallel stages (i.e., Stage 1 and Stage 2 in both CosineS-
imilarity and LDA). The “magic” of our DelayStage strategy is that
simply delaying the stages can achieve resource interleaving of
CPU, network bandwidth and disk I/O across parallel stages, so
that the long-running execution path (e.g., {Stage 3, Stage 4} in Cosi-
neSimilarity, {Stage 4} in LDA) can be processed faster than the
stock Spark.

Though AggShuffle improves the data locality on the reduce
stage by proactively transferring the data during the shuffle phase,
the performance benefits of AggShuffle actually depend on the
heterogeneity of map tasks as discussed before. As illustrated in
Fig. 11, AggShuffle can possibly increase the execution time of stages
(e.g., Stage 1 and Stage 2 in LDA), because the Stage 1 and Stage
2 of LDA contains almost the same tasks. In addition, the size of
shuffle input data on the reduce stage is larger than the amount of
the intermediate data before the shuffle phase. In more detail, the
ratio of the shuffle input data size to the intermediate data size of
Stage 1 is large than 1 (i.e., 1.3) in LDA, which requires more CPU
computation works and thus prolongs the execution time of Stage
1 accordingly.

CPU and network resource utilization: To examine whether
ourDelayStage strategy can improve the resource utilization, we fur-
ther take a closer look at the CPU utilization and network through-
put of a worker node during the execution of CosineSimilarity and
TriangleCount workloads. The resource utilization of Connected-
Components and LDA workloads are provided in the Appendix A.3.

As shown in Fig. 12(a), the DelayStage strategy fills most of the
idle periods during the job execution, and thus achieves higher
network throughput of a worker node as compared to the stock
Spark. For example,DelayStage fills the network low-utilized period

from around 40 to 160 seconds when running CosineSimilarity in
the stock Spark shown in Fig. 12(a). This is because we simply delay
the execution of Stage 1 of CosineSimilarity for about 110 seconds
during the shuffle reading process of Stage 3, so as to alleviate
the network contention across the two stages, thereby increasing
the utilization of network bandwidth. Similar observations can
be obtained with DelayStage when running TriangleCount with
11 stages. By delaying Stage 1 and Stage 3 for 43 seconds and 107
seconds, respectively, as illustrated in Appendix A.1,DelayStage can
fully utilize the network bandwidth resource during the network
idle period from 85 to 143 seconds running TriangleCount in the
stock Spark.

In addition, the CPU resource of a worker node under the De-
layStage strategy is better utilized compared with the stock Spark
shown in Fig. 12(b). As an example, the CPU idle period from around
216 to 291 seconds running CosineSimilarity in the stock Spark
can be totally filled by DelayStage. This is because the shuffle input
data of Stage 3 can be fetched faster than the stock Spark as we
have delayed the submission of Stage 1, and thus the computation
of Stage 3 can be brought forward for around 75 seconds. To verify
that, we further look into the execution occupation by stages of
CosineSimilarity. As shown in Fig. 13, we observe that Stage 3 can
fully utilize the executor bandwidth resources to read its stage input
data during the period of the submission delay of Stage 1 (i.e., from
0 to around 110 seconds) with DelayStage. As a result, the execution
time of Stage 1 and Stage 3 can both be shortened by 8.4% and 28.8%,
respectively, due to the improved resource utilization.

In more detail, we calculate the average value and the stan-
dard deviation of the network throughput and CPU utilization of a
worker node during the execution of the four workloads, which are
summarized in Table 3, respectively. Obviously,DelayStage achieves
higher and more stable CPU utilization and network throughput,
in comparison to the stock Spark. In more detail, DelayStage im-
proves the average network throughput by 18.3%-81.8% (e.g., from
18.1 MB/s to 32.9 MB/s for TriangleCount). Similarly, DelayStage
also increases the average CPU utilization by 7.2%-28.1% (e.g., from
60.4% to 74.1% for TriangleCount). In particular, the small standard
deviation of resource utilization further validates the low variance
of job completion time achieved by the DelayStage strategy.
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Table 3: The #average (#standard deviation) of network
throughput and CPU utilization of a worker node when run-
ning CosineSimilarity (Cos.), ConnectedComponents (Con.),
LDA, andTriangleCount (Tri.) under the stock Spark and the
DelayStage strategy.

Network (MB/s) CPU (%)
Spark DelayStage Spark DelayStage

Cos. 10.2 (13.2) 17.1 (9.1) 56.6 (44.7) 60.7 (42.4)
Con. 11.5 (17.1) 13.6 (14.6) 49.5 (43.1) 53.4 (37.6)
LDA 21.3 (10.4) 26.7 (6.9) 46.6 (34.7) 59.7 (28.8)
Tri. 18.1 (15.1) 32.9 (9.9) 60.4 (42.5) 74.1 (35.8)
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5.3 Large-Scale Simulations Driven by Alibaba
Cluster Trace

To evaluate the effectiveness and benefits of ourDelayStage strategy
with multiple jobs at scale, we conduct complementary simulations
driven by the latest Alibaba cluster trace v2018 [2]. Specifically, we
compare the job completion time using our DelayStage strategy
with that using Alibaba Fuxi scheduler [30], by replaying 2, 775, 025
jobs on 4, 000 machines in our simulation. The numbers of stages
range from 4 to 186 for the production jobs in the trace. Each ma-
chine is configured with multiple executors by setting the executor
number ϵw as the number of CPU cores per machine by default. For
simplicity, we only consider the network bandwidth heterogeneity
in our simulation. We set the network bandwidth Bi,w as the value
in the range from 100 Mbps to 2 Gbps, and the disk bandwidth
Dw is statically set as 80 MB/s. In our simulation, the resources
are evenly partitioned among multiple jobs that are concurrently
running in the cluster.

Specifically, we compare our default DelayStage strategy (Pm
in the descending order) with Alibaba Fuxi [30], and DelayStage
with the other two kinds of Pm sequence (in the random order and
the ascending order), which are referred to as “random DelayStage”
and “ascending DelayStage”, respectively. As shown in Fig. 14, we
observe that our default, random, and ascending DelayStage strate-
gies as well as Alibaba Fuxi complete each production job with 871,
945, 996, and 1, 373 seconds on average, respectively. This indicates
that: First, our DelayStrategy can work well with multiple jobs to
reduce the average completion time of production jobs. Second, our
three DelayStage strategies can reduce the average job completion

Table 4: Average CPU and network utilization of a worker
node running production jobs with Alibaba Fuxi [30] and
the random, ascending, and default DelayStage strategies.

Fuxi random ascending default
CPU (%) 36.2 43.4 42.2 45.4

Network (%) 42.7 49.1 48.3 53.3

time by 36.6%, 31.2%, and 27.5%, respectively, in comparison to Al-
ibaba Fuxi scheduling strategy. Though Alibaba Fuxi distributes the
task execution uniformly to available workers to balance computa-
tion and network utilization among workers [30], our DelayStage
strategy can moderately increase the average CPU and network
utilization by 25.4% and 24.8%, respectively, compared to Alibaba
Fuxi as shown in Table 4. In addition, our simulation results further
validate the effectiveness of the descending Pm sequence adopted
in the default DelayStrategy as discussed in Sec. 4.1.

5.4 Runtime Overhead of DelayStage
We first evaluate the computation time of our DelayStage strategy
(i.e., Alg. 1) deployed on one EC2 m4.large instance. Specifically,
the strategy execution time for ConnectedComponents, CosineSimi-
larity, LDA, and TriangleCount are 58, 76, 107, and 164 milliseconds,
respectively. By repeatedly replaying the Alibaba production jobs
with different number of stages, we also record the strategy com-
putation time in simulation. As shown in Fig. 15, the computation
time of DelayStage shows a roughly linear increase along with the
number of stages in a job, which further validates the complexity
analysis of our strategy in Sec. 4.1. In addition, 90% of production
jobs contain less than 15 stages as analyzed from Alibaba cluster
trace in Fig. 2, and the corresponding strategy computation only
takes less than 0.2 seconds for these jobs. We further examine the
profiling overhead for the four DAG-style data analytics jobs on a
sampled input data (e.g., 10%) [26] in our experiment. The profiling
time for ConnectedComponents, CosineSimilarity, LDA, and Tri-
angleCount are 104, 143, 45, and 79 seconds, respectively. As the
DAG-style data analytics jobs are executed repeatedly in produc-
tion clusters [26], each job requires profiling only once to obtain
the essential parameters. As a result, the overall runtime overhead
of DelayStage above is acceptable in practice.

6 RELATEDWORK
Task scheduling: There have been a number of works on sched-
uling tasks within a cluster to reduce the job response time, by
scheduling sub-second tasks [19], task speculation [22], and bal-
ancing task loads [30]. To jointly achieve data locality and fairness,
Quincy [15] designs a queue-based greedy scheduler to place tasks
with locality constraints. Zaharia et al. [28] simply delay the map
tasks to achieve data locality with slightly relaxed fairness. While
sharing the similar idea, DelayStage computes the best schedule
to answer which stages and how much time to delay for parallel
stages, with the aim of achieving high resource utilization and min-
imizing the job completion time. A more recent work [18] designs
Monotasks, which leverages a fine-grained task schedulingmodel to
exploit the resource pipelining and thus avoid resource contention.
Monotasks requires modifying the resource allocation in Spark,
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while DelayStage is simple and lightweight by only delaying the
submission time of stages.

Recently, task placement for geo-distributed analytics (i.e., GDA)
has received much attention. To shorten the GDA job completion
time, Iridium [20] distributes tasks and their input data among geo-
distributed datacenters to achieve the minimal data transfer time.
Tetrium [13] further considers the multi-dimensional resource (i.e.,
CPU, memory, and network) constraints when placing the GDA
tasks. To minimize the intra-datacenter traffic, Clarinet [23] designs
a WAN-aware query optimizer to place tasks across datacenters.
A recent work [6] proposes a task placement algorithm to achieve
max-min fairness in the completion time across GDA jobs. Orthog-
onal to these task placement-based solutions which answer where
to execute tasks, DelayStage answers when to execute the stage by
delaying its execution. In addition, we plan to extend DelayStage to
the geo-distributed setting and examine its effectiveness.

Stage scheduling: Several recent works have been proposed to
schedule stages by considering the dependencies in job’s DAG. To
minimize the average job completion time, Tetris [8] places the map
or reduce stages from different jobs to satisfy multi-dimensional
resource demands. CARBYNE [9] designs an altruistic scheduling
of stages which vacates resources for other jobs before or after the
stage execution. Graphene [10] identifies the troublesome stages of
multiple jobs and assigns them to the machines first. While these
works focus on the stage placement on workers, DelayStage focuses
on interleaving stage executions over time. A more recent work
named AggShuffle [16] leverages the task-level network resource
interleaving, by proactively aggregating the output data of map
tasks to the target datacenters. In contrast, DelayStage explores the
stage-level resource interleaving on multiple resources (i.e., CPU,
network, and disk) with a larger optimization space. We plan to
incorporate DelayStage into the prior works above and examine
the joint effectiveness in shortening the job completion time.

Job scheduling: There have been works on arranging the job
sequence to reduce the average job response time. For instance,
LAS_MQ[12] leverages multi-level queues to schedule jobs accord-
ing to the job queue priority. Rasley et al. [21] further propose the
task queue management on each worker node to reduce the job
feedback delays. SWAG [14] re-orders the sub-jobs from multiple
jobs in each datacenter according to the job makespan. Similar to
the priorities of job queues above, DelayStage organizes the parallel
stages into multiple execution paths with the descending order, and
schedules the stage in the long-running execution path with high
priority. In addition, our work can be easily extended to reducing
the average job completion time in the multi-job environment, as
validated by our trace-driven simulation in Sec. 5.3.

7 CONCLUSION
To speed up the performance of DAG-style data analytics jobs, this
paper presents the design and implementation of DelayStage, a
simple stage delay scheduling strategy by interleaving the clus-
ter resources across parallel stages. With a job’s DAG, DelayStage
computes the best time schedule for executing parallel stages to
greedily minimize the makespan of parallel stages (i.e., the longest
path execution time in the DAG) in a job. We implement a prototype

of DelayStage based on Apache Spark, and conduct extensive proto-
type experiments on Amazon EC2 as well as large-scale simulations
driven by the latest Alibaba cluster trace v2018. Our experiment re-
sults demonstrate that DelayStage is able to reduce the completion
time of DAG-style jobs by up to 41.3% with practically acceptable
runtime overhead, compared with the stock Spark and the state-of-
the-art stage scheduling strategies.
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ing the job execution.
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A SUPPLEMENTARY EXPERIMENT RESULTS
A.1 Stage Execution Time Breakdown for

TriangleCount and ConnectedComponents
As shown in Fig. 16, we observe that DelayStage simply delays Stage
1 for ConnectedComponents and a set parallel stages including
Stage 1, Stage 3, Stage 7, and Stage 8 for TriangleCount, respectively,
so that the execution time of the longest execution path of parallel
stages is shortened by 28.2% for ConnectedComponents and 42.0%
for TriangleCount in comparison to the stock Spark. Similar to the
explanations of Fig. 11, selectively delaying the execution of stages
can exploit multi-dimensional resource interleaving across multiple
parallel stages, in order to mitigate the resource contention and
speed up the execution of the longest stage execution path.

A.2 Prediction Accuracy of Stage Execution
Time by Spark Performance Model

Our Spark performance model in Sec. 3.1 can accurately predict
the stage execution time for a representative Spark job (i.e., LDA),
with an error of 1.6%-9.1%. This is because our analytical perfor-
mance model explicitly considers the stage parallelism during the
execution and captures the task/stage execution from the multi-
dimensional resources including CPU, network, and disk. In addi-
tion, our model is constructed using a set of system-level parame-
ters, which are practically obtained by the job profiling on a single
executor, as elaborated in Sec. 4.2. DelayStage benefits from an ac-
curate Spark performance model in predicting the stage execution
time and decides the scheduling of parallel stages accordingly.

A.3 CPU and Network Resource Utilization of
ConnectedComponents and LDA

As shown in Fig. 17(a), the DelayStage strategy basically achieves
higher network bandwidth utilization compared with the stock
Spark, during the job execution of ConnectedComponents and LDA.
For example, we simply delay the scheduling of Stage 1 for Con-
nectedComponents so as to speed up the execution of the longest
execution path of parallel stages (i.e., Stage 2 and Stage 3). De-
layStage can accordingly fully utilize the network bandwidth by
reading the input data of Stage 4, during the network idle period
from around 250 to 390 seconds running ConnectedComponents
in the stock Spark. As Stage 4 is a sequential stage (i.e., there is no
any stages running in parallel with Stage 4), the CPU utilization
of DelayStage shows an idle period from around 270 to 420 sec-
onds (reading the stage input data) as shown in Fig. 17(b). Even
though, our strategy can still fill most of the CPU idle period of
the stock Spark (e.g., from around 420 to 590 seconds) to speed up
the execution of ConnectedComponents. Similarly, by delaying the
scheduling of Stage 1 and Stage 2 of LDA, the CPU utilization of
workers can be maximized by resource interleaving across multiple
parallel stages. As evidenced by Fig. 17(b), the CPU idle period of
the stock Spark from around 90 seconds to 135 seconds can be filled
by DelayStage to execute Stage 2, Stage 3 and Stage 4.
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