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Abstract—Edge computing for machine learning has become a

heated research topic. On edge devices, data scarcity occurs as a

common problem where transfer learning serves as a widely-

suggested remedy. Nevertheless, one obstacle is that transfer

learning imposes heavy computation burden to the resource-

constrained edge devices. Motivated by the fact that only a few

tasks of Multi-task Transfer Learning (MTL) have a higher po-

tential for overall decision performance improvement, we design a

novel task allocation scheme, which assigns more important tasks

to more powerful edge devices to maximize the overall decision

performance. In this paper, we focus on task allocation under

multi-task scenarios by introducing task importance and make

the following contributions. First, we reveal that it is important

to measure the impact of tasks on overall decision performance

improvement and quantify task importance. We also observe

the long-tail property of task importance, i.e., only a few tasks

are important, which facilitates more efficient task allocation.

Second, we show that task allocation with task importance for

MTL (TATIM) is in fact a variant of the NP-complete Knapsack

problem, where the complicated computation to solve this prob-

lem needs to be conducted repeatedly under varying contexts. To

solve TATIM with high computational efficiency, we innovatively

propose a Data-driven Cooperative Task Allocation (DCTA)

approach. Third, we evaluate the performance of our DCTA

approach by applying it to a real-world industrial operation (e.g.,

AIOps) scenario. Experiments show that our DCTA approach can

reduce 3.24 times of processing time compared with the state-of-

the-art when solving TATIM. We offer our DCTA approach as

an effective and practical mechanism for reducing the required

resource associated with performing MTL on edge devices.

I. INTRODUCTION

Nowadays, computationally intensive machine-learning ap-
plications such as image recognition are becoming popular on
resource-constrained edge devices (e.g., intelligent camera).
While enjoying the merits of these applications, users are also
frustrated when striking the balance between execution time
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and resource requirement on the edge. To address this problem,
many task partitioning approaches have been proposed. Gener-
ally, an edge application is partitioned into a set of tasks which
can be executed on the edge devices. For example, the video
analytics application usually consists of several tasks, e.g., face
detection and action classification, and allocates these tasks to
multiple edge nodes to execute. Application separation and
task allocation reduce the burden of a single edge device and
jointly improve the performance of the application.

However, in major edge computing systems, we often
face challenges in learning under data scarcity, due to either
prohibitive cost, e.g., privacy concern, storage limitations, and
networking costs, or inherent difficulty in obtaining required
proper training samples with respect to the system complexity
and uncertainty on the edge. Recently, transfer learning shows
its effectiveness to tackle the data scarcity issue [1] and
serves as a widely-suggested remedy for different industrial
applications with insufficient samples, e.g., image recogni-
tion [2], speech analysis [3], disease diagnosis [4], medical
informatics [5] and industrial operations (e.g., AIOps) [6].

In this paper, we focus on the Multi-task Transfer Learning

(MTL) on the edge, where a machine-learning-based applica-
tion can be divided into multiple machine-learning tasks, and
each task can obtain the knowledge of some other tasks to
improve its performance. It is well known that the machine-
learning-based application is highly computation-intensive, but
the computing resource of edge device is limited. Many efforts
have been devoted to designing task allocation mechanisms to
achieve varying objectives, e.g., optimize the makespan [7],
throughput [8] or reliability [9] of the application. However,
these frameworks focus on general parallel tasks in the central-
ized datacenter where the computation capacity is assumed to
be infinite in terms of constantly leasing of virtual machines.

In edge computing systems, it is sometimes hard to obtain
a satisfactory result within time and resource limitations if we
directly utilize existing frameworks for the cloud. Admittedly,
existing task allocation studies have considered that different
tasks may require different resources in edge computing
systems in order to jointly improve the performance of the
application [10]–[13]. They are usually designed for general
machine learning and typically assume that all tasks contribute



identically to overall performance improvement of the applica-
tion. However, in MTL, tasks belonging to the same machine-
learning-based application usually have different potential for
improving the application’s overall performance. Directly ap-
plying these techniques leads to inefficient resource utilization
at a task level under MTL in edge computing systems.

To solve the above inefficient issue for multiple-task al-
location in edge computing systems, the key is that more
important tasks, which have the higher potential for improving
the application’s overall decision performance, should be al-
located to more powerful edge devices for priority execution
under time limits. Recently, Geng et al. also considered the
priority of tasks by leveraging the dependency of tasks in
task allocation [14]. In that study, the task dependency is
predefined and remains fixed over time, e.g., installing Hadoop
before Spark. However, due to the complex nature of machine-
learning tasks, variables such as environmental conditions and
model configurations are likely to change over time. The
dependency of machine-learning tasks is dynamic and usually
not available before learning. Directly applying the current
allocation mechanism can easily result in significant overall
application performance degradation for MTL.

Instead of assuming that all tasks contribute identically to
the application’s overall decision performance improvement
and conducting the time-dynamic task allocation on the edge,
our idea is to leverage machine learning techniques to cap-
ture the correlated and collective potential improvement of
multiple tasks. Accordingly, we propose a novel Data-driven
Cooperative Task Allocation (DCTA) mechanism to maximize
the application’s overall decision performance among multiple
tasks on the edge.

Challenges and solutions. In designing DCTA, we have to
overcome three following major technical challenges.

First, the metric of tasks impact on overall decision perfor-
mance improvement remains unknown in current studies. To
tackle the challenge, we propose a metric of task importance,
which is to measure the overall performance degradation
when the measured task is not conducted in MTL. We also
observe the long-tail property of task importance, i.e., only
a few tasks are important, which serves as a key metric to
guide task allocation and facilitate resource saving from less
important tasks. We formally define the TATIM problem of
task allocation with task importance for MTL on the edge.

Second, the TATIM problem is challenging not only due
to its computation complexity (i.e., NP-complete) but also the
varying contexts (i.e., dynamic task importance) on the edge.
We first prove that TATIM is a variant of Knapsack problem
and thus NP-complete. We then show that the task importance
is difficult to capture, due to varying environmental conditions
and configurations. Therefore, the complicated computation to
solve this problem needs to be conducted repeatedly under
varying contexts on the edge. To enhance the computational
efficiency, we propose a novel data-driven task allocation
mechanism based on reinforcement learning.

Third, applying the machine learning technique to solve the
TATIM problem introduces a trade-off between accuracy and

cost. On one hand, an accurate data-driven model requires a
huge amount of expensive local data on real-world operations.
On the other hand, merely using general data from simulation
helps to reduce the amount of local data needed but leads
to low accuracy. To tackle the challenge, we propose a
cooperative learning mechanism to reduce the amount of data
needed to generate a reliable data-driven model, by leveraging
both general simulated data and local real-world data.

We implement DCTA as a novel task allocation approach
within a data-driven building management system. We also
evaluate various distinct task allocation approaches on the real-
world industrial operation (e.g., AIOps) scenario. Experiments
show that DCTA saves 3.24 times of processing time when
solving TATIM compared to the state-of-the-art.

II. BACKGROUND AND PROBLEM DEFINITION OF TASK
ALLOCATION WITH TASK IMPORTANCE

In this section, we first introduce the background of Multi-
task Transfer Learning (MTL). We then give a formal def-
inition of task importance. We also observe the long-tail
property of task importance and the potential of leveraging task
importance for task allocation in MTL. With these notations,
we formally define the problem of task allocation with task
importance for MTL.

A. Background of Multi-task Transfer Learning (MTL)

In this paper, we study the issue of Multi-task Transfer

Learning (MTL) on the edge, where varying tasks together
can facilitate better decision performance. It basically reuses
parameters or training samples of source tasks to support target
tasks, e.g., which are lack of training data. The term task is
defined as a set of data, label and its corresponding learning
model for a predefined context. For example, for a self-driving
car on the road, the detection of each type of object, e.g.,
neighboring-car, traffic-sign, or pedestrian detection, can be
modeled separately as a task. Another example is to take the
coefficient of performance (COP) prediction of a chiller for
one particular load as a task. The process is shown in Fig. 1.

The benefits of multiple tasks come in mainly two ways.
First, similar tasks can transfer their knowledge between each
other during the training process, which reduces the negative
effect of data scarcity, especially on the edge. Second, in the
real-world scenario, it is common to make the final decision by
aggregating the output of multiple tasks. Maintaining the high
performance of all these tasks contribute to the final aggregated
decision performance. Again in the example of a self-driving
car, the final driving operation of the car is conducted based on
the result of multiple data-driven tasks, e.g., the neighboring-
car, traffic-sign, and pedestrian detection.

The Computation Challenge. However, the current MTL
systems are way too computationally complicated for edge de-
vices. The reason is twofold: 1) Each task needs to be learned
individually from scratch, where siloing tasks make training a
new task or a comprehensive perception system a Sisyphean
challenge; 2) To avoid data-driven task model being out-of-
date and leverage the latest accumulated data as effectively as
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Fig. 1: Decision making with (a) traditional learning and (b) transfer learning.

possible, MTL practitioners retrain their models repeatedly to
get the final model with the best quality, including to explore
feature representation [15]–[17], adjust structures of task rela-
tionship [18]–[20] and tune hyper-parameters [21]. For better
understanding, a formal formulation of transfer-learning tasks
on the edge is available in the following Section II-C.

B. Introduction of Task Importance

Confronted with the computational challenge of MTL, we
aim to allocate tasks for more efficient MTL on the edge.
When allocating tasks, current studies usually assume that all
machine-learning tasks are equally important so that resources
should be allocated to ensure the accuracy of all these tasks.

However, tasks are not always related to the current context,
and thus not equally important. At a specific period of time,
e.g., within one hour, the number of highly important tasks
are likely to be of a minor, compared with the number of all
possible tasks. For example, for a self-driving car on the high
way, neighboring car detection can be much more related and
important compared with most tasks like pedestrian detection
which are more important in a downtown area.

For further study of the importance of tasks, we plot the
distribution of task importance in Fig. 2, based on a real-world
transfer learning dataset released in [22]. The importance of a
task is defined as the overall performance degradation of the
final decision making when this task is not conducted. In there
are totally 50 data-driven tasks for cooling operations running
across four years in three buildings. We observe a long-tail
property of task importance, i.e., merely 12.72% of tasks have
a high contribution of over 80% to the final operation decision
performance. We therefore have such an observation. Results
in a recent CVPR paper also confirm such an observation [23].

Observation 1. In MTL, redundant or noisy tasks exist; The

importance of tasks has a long-tail distribution.

The redundant or noisy tasks can be the result of 1)
insufficient training samples on the edge, and 2) mismatch
of context and submitted tasks in practical scenarios. We then
formally define task importance.

Definition 1. (Task Importance) Given a task set J = {j}

which consists of a series of tasks, the importance of task j is

Ij = H(J;✓)�H(J\{j};✓\{✓j}), (1)

where a learning task is denoted by j 2 N+
; ✓j denotes the

model parameters of task j and ✓ = {✓j} denotes its vector;

Fig. 2: The long-tail distribution
of normalized task importance.
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Fig. 3: The potential with ACCU-
RATE and CURRENT schemes.

decision function H(·) outputs the final decision performance;

J denotes the entire task set.

Thus, given model parameters ✓, the task importance Ij can
be updated using the decision function H(·). Given that the
ideal performance of final decision can usually be collected
after task evaluation, an example of implementation of H(·)
might be H(J;✓) = 1 � |D�D(✓)|

D , where D denotes the
ideal performance and D(·) is the decision-making function
given model parameters. The decision-making function D(·)
is intrinsically solving an optimization problem finding the
best action according to parameters, which can be set once
given the scenario. For example, in the case of a self-driving
car, a possible decision-making function is to find an action
which minimizes the probability of accident while ensures
the car should be able to arrive at the destination under time
limitations.

More important tasks should be allocated to more powerful
edge devices under MTL scenarios with execution time limits.
To demonstrate the benefit, we show the performance of
decision making by conducting related tasks, compared with
the performance of conducting random tasks. Figure 3 shows
the result based on the transfer-learning dataset mentioned
above [22]. Accurate task allocation is conducted with high
task importance. Stacked bars on the left indicate the final
performance of decision making with accurate task allocation,
i.e., energy saving for cooling. Bars on the right show the
performance of the current scheme using random task allo-
cation. We see that the accurate task allocation considering
task importance could have resulted in an average of over
45.68% potential improvement in terms of the final decision
making performance. These results demonstrate that there
is a significant room to improve the final decision making
performance when using a more accurate and robust scheme
of task allocation.

Observation 2. Final decision making with MTL can be

improved by task allocation according to task importance.

However, the task importance is not directly available.
Based on the above dataset, we also conduct two experiments
as a more detailed distribution study showing how the im-
portance fluctuates over operations under different industrial
demands and conditions.

We first plot the average task importance as a function of
different operations in Fig. 4. We pick the first regular machine
for example. It can be seen that these machines often operate
at a small portion of operations, and the importance fluctuates
somewhat randomly. At the same time, for the same machines,



Fig. 4: Average task importance
for different machines and oper-
ations.

Fig. 5: Task importance variation
for different machines and opera-
tions.

we plot in Fig. 5, the variation in their task importance under
different operations, and note that there is a large fluctuation
even for a given operation.

Observation 3. Task importance fluctuates markedly over

operations with MTL in terms of average and variance.

The time-dynamic task importance changes in varying con-
texts, e.g., with different external factors (like environmental
conditions and dynamic industrial demands) and internal fac-
tors (like machine configurations and response). These factors
are exceedingly difficult to capture within an analytical model.
Facing such a high variance of task importance situation,
natural thinking of modeling task importance using synthetic
models easily suffers from low accuracy.

C. Problem of Task Allocation with Task Importance for MTL

Based on the above notations and observations, we are able
to leverage task importance to facilitate task allocation for
MTL tasks on the edge. We start by formally define task

allocation and MTL tasks on the edge.

Definition 2. (Task Allocation) Given a processor set P = {p}

which consists of a series of processors, the task allocation

over P is a binary variable uj,p, i.e.,

uj,p =

(
1, if task j is assigned to processor p

0, otherwise,

where a processor is denoted by p 2 N+
.

Since each task is assigned to exactly one processor, we
have the following constraint:

X

p2P

uj,p = 1, 8j 2 J. (2)

Additionally, the execution time and resource of all tasks as-
signed to the processor p should satisfy following constraints:

X

j2J

tj · uj,p  T, 8p 2 P, (3)

X

j2J

vj · uj,p  Vp, 8p 2 P, (4)

where tj denotes the execution time of task j; T denotes the
time limit; vj denotes the resource required for task j; Vp

denotes the resource capacity of processor p.
The objective of traditional MTL is to minimize the collec-

tive loss of all tasks. We study the modeling and define the
MTL tasks specific to the edge computing scenario for better
understanding.

Definition 3. (MTL Tasks on the Edge) Given task importance

Ij , the execution time and resource limitations of Eq. (2) - (4),

an on-edge MTL tasks aims to obtain ✓ by

✓ = argmin
X

j2J

X

p2P
Ij · Lj(✓j) · uj,p, s.t. Eq.(2)� (4),

where Lj(✓j) denotes the learning loss of task j, e.g., predic-

tion error and regularization terms.

Based on the above definitions, we formally define the
problem of task allocation with task importance for MTL on
the edge (TATIM Problem) as below:

Definition 4. (TATIM Problem) Given the execution time and

resource limitations, a TATIM problem is to obtain u by

max
u

X

j2J

X

p2P
Ij · uj,p, s.t. Eq. (2)� (4),

where u = [uj,p] denotes the task-allocation matrix; Ij can be

computed given ✓ from Definition 3 and J using Equation 1.

We found that the TATIM problem under the execution time
and resource limitations is in fact a 0-1 Knapsack problem.

Theorem 1. Task allocation problem with task importance is

a 0-1 multiply-constrained multiple Knapsack problem.

Proof. First of all, coming back to the traditional multiply-

constrained multiple Knapsack problem [24], there is a set
of |N | items, where each item i 2 N is associated with a
weight wi, a volume oi and a profit ⇢i. Meantime, there is
also a set of |M | knapsacks, where each knapsack m 2 M

has a maximum weight capacity Wj and volume capacity
Oj . The objective is to infer the positioned knapsack of
items �i,m = argmax

P
i2N

P
m2M

⇢i · �i,m, satisfyingP
m2M

�i,m = 1, 8i 2 N.
In our TATIM problem, each data-driven task j 2 N+ can

be regarded as an item i 2 N+ and each processor p 2 N+ can
be regarded as a knapsack m 2 N+. Similarly, the resource
and execution time requirement, i.e., vj , tj 2 R for each data-
driven task corresponds to the weight and volume wi, oi 2

R of each item. The importance of tasks Ij 2 [0, 1] can be
regarded as the profit of items ⇢i 2 [0, 1]. The allocation uj,p 2

{0, 1} is equal to the positioning �i,m 2 {0, 1}. Therefore, our
objective

P
j2J

P
p2P

Ij ·uj,p is also equal to the objective of
the above Knapsack problem

P
i2N

P
m2M

⇢i ·�i,m and so as
the other three constraints.

As a result, the TATIM problem is equal to the multiply-
constrained multiple Knapsack problem which is NP-C.

Therefore, our TATIM problem is in general NP-complete.
Besides, the complicated computation to solve TATIM needs
to be conducted repeatedly due to the time-varying parameter
of task importance, making the problem solving challenging.

III. THE CLUSTERED REINFORCEMENT LEARNING (CRL)
MODEL

In this section, we first present an overview of the data-
driven approach for task allocation. We then introduce the



background of reinforcement learning. At last, we give a
formal definition of the environment-dynamic task allocation
and propose our data-driven approach using Clustered Rein-
forcement Learning (CRL).

A. Data-driven Task Allocation Overview

In the previous section, we show that our TATIM problem
is in general 1) NP-complete 2) with time-varying parameters,
leading to complicated computations conducted repeatedly.
The key to efficiently allocate tasks on the edge lies in the
automatically adaptation to varying contexts.

As a remedy to such a challenge, we then propose the
data-driven task allocation. Recent years have witnessed a
trend of applying data-driven techniques for complicated prob-
lems in time-varying environments, including AlphaGO [25],
Intelligent logistics [26], Autonomous Mobility-on-Demand
system [27] and Human-level game control [28]. Basically,
data-driven techniques are particularly helpful for solving
complicated problems repeatedly with varying parameters,
because they not only help to model and reduce the envi-
ronmental randomness in multi-task scenarios but also help to
significantly enhance the computational efficiency due to the
fast inference phase when the solution is needed.1

Formally, given a task set J and the corresponding historical
feature space X , we are to develop a data-driven task alloca-
tion scheme with a loss function L(·) which maximize the
overall decision performance of the task allocation, i.e.,

u F(J,X ).

B. Background of Reinforcement Learning

Next, we consider the proper approach to solve the TATIM
problem. First, in the previous section, we have proved that the
TATIM problem is in fact a Knapsack problem and therefore
NP-complete. Reinforcement learning (RL) is widely sug-
gested to efficiently solve such problems [25], [28]. Second,
decisions made by industrial systems can be highly repetitive,
thus generating an abundance of training data to support
complicated data-driven model. Based on the two reasons, we
applied the well-known RL to solve the TATIM problem.

In general, the RL works like this: at each decision epoch,
the agent will make a decision based on the current state of
the environment. Once the decision is made, a reward would
be provided to the agent and the state of the environment
would be updated for making future decisions. The agent tries
to maximize the cumulative rewards over time. With RL, our
TATIM problem is optimized in a Markov Decision Process
(MDP), which is a five-tuple: < S,A,P, r,� >, where S

denotes the set of states; A denotes the set of actions; P

denotes the transition probability distribution; r denotes the
reward function and � 2 [0, 1] denotes the discount factor
for future rewards. Note that different optimization problems
have quite different objectives, constraints, and variables. To
adopt our TATIM problem, the different components of RL

1Though the training phase may be long, it merely needs to be conducted
once in advance.

needs to be specially designed. The detailed design of these
components in RL and MDP will be discussed next.

C. Environment-dynamic Task Allocation

However, RL should not be directly applied in our scenario,
where the environment is diverse over time and existing RL
approaches usually assume a fixed environment.

Novel Problem of Environment-dynamic Knapsacks.

In TATIM, the task importance is critical for environment
modeling and thus also important for RL. As we known, the
knowledge learned by the decision of an agent is rewarded ac-
cording to the environment. Once the task importance and the
corresponding environment is not close to reality, the decision
made by the agent will lead to poor decision performance.

However, due to the varying scenarios in MTL, the envi-
ronment matrix of RL usually changes over time in reality.
Recall the previous example where a self-driving car on the
highway and pedestrians usually do not occur, the task of
pedestrians detection is less important compared to other tasks.
Nevertheless, when driving around the school, pedestrians are
particularly frequent which makes the task of pedestrians de-
tection more important. Therefore, we see that the environment
is clearly diverse in different scenarios, especially when the
task importance is encoded in the environment of RL.2

In this regard, directly leveraging the RL model can easily
mismatch the environment and submitted less important tasks,
which leads to poor decision performance [29], [30]. We also
conduct an experiment to demonstrate the negative impact. It
shows a 46.28% reduction of performance when the environ-
ment is not accurate using existing RL.

To this end, we realize that our TATIM problem can be
regarded as a novel variant of the Knapsack problem. It is
even more challenging than the Multiply-constrained Multiple
Knapsack Problem proved in the previous section. This time,
additionally, the item value (i.e., task importance) can be
changed randomly over time, instead of being fixed in the
traditional Knapsack problem.

Clustered Approach for Environment Definition. Ac-
cordingly, to solve the TATIM problem, we are to learn
the current environment. Our idea is that the more similar
historical days, the more similar the environment is. Such
similarity can be measured by comparing the current scenarios
and configuration settings, e.g., sensing data, of the predicting
day and the historical days.

The overall process is illustrated in Fig. 6, which consists
of two parts, i.e., environment definition and data-driven task
allocation. In the figure, different days represent different
environments, and the darkness of each color represents the
different task importance. Through the analysis of historical
data, we establish an environment data set, i.e., historical

2Even in the same scenario, the environment can change over time, due
to the accumulating size of training data and the overwritten historical data
when the storage is insufficient. An experiment in the previous section also
indicates the fluctuation between historical and current task importance.
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environment E . We define the historical environment E as the
collection of environment e, i.e.,

E = [e1, ej , · · · , eN 0 ], 8j 2 [1, 2, · · · , N 0],

where ej denotes the corresponding environment. For better
understanding, a formal mathematical structure of the environ-
ment is available in the following Section III-D.

Through environment definition that we can find a similar
environment e by clustering algorithms such as k Nearest

Neighbors (kNN), i.e.,

e = kNN(E , Z),

where Z denotes the sensing data. We then can make data-
driven task allocation based on the clustered environment
under the execution time and resource constraints.

D. Clustered Reinforcement Learning for Environment-

dynamic Task Allocation

Next, we propose key designs of our approach, i.e., the
environment modeling, state space, action space, reward func-
tion, and optimization, which should be specified based on our
TATIM problem.

Environment. A key component in the RL model is the en-

vironment, which is everything outside the agent, and changes
its state due to the action of the agent, and gives the agent
corresponding rewards. For an RL predictor, the environment
can be described as a matrix e which is a map of the agent, e.g.,
Maze problem. More specifically, one dimension represents
the subject types (e.g., neighboring car detection, traffic sign
detection, and pedestrian detection), and the other represents
the available processors (CPU processor, GPU processor,
sensors). The elements of the matrix can be viewed as a data-
driven task. It is formulated as follows:

e = [Ij ⇥ Vp]N⇥M , 8Ij , Vp 2 R,

where Ij denotes the corresponding task importance and Vp

denotes the corresponding processor capacity.
State space. We represent the state, which is the current task

selection of the system. More specifically, the state is defined
by a matrix S and the element of each position can be 0 or
1. Note that 1 represents the task is selected, otherwise, it is
not selected, which is formulated as follows:

S = [sij ]N⇥M , 8sij 2 {0, 1}

Such a fixed state representation indicates that it can be
conveniently applied as an input to a neural network.

Algorithm 1 Clustered Reinforcement Learning (CRL)
Training Phase:

1: E  historical environment s0  initial state Z  

current scenarios and configuration settings.
2: e EnvironmentDefinition(E ,Z) . Find similar

environment.
3: while not yet reach the terminal state sN do

4: L(s, a|✓) (r +max
a

Q(s0, a|✓)�Q(s, a|✓))2 .

Update DNN parameters ✓.
5: end while

6: ✓⇤
 argminL(s, a|✓) . Obtain optimal parameter ✓.

7: return e, s0, ✓⇤

Prediction Phase:

8: (e, s0, ✓⇤)  initialization using the return value of the
training phase.

9: u F1((e, s0);✓⇤) . Make task allocation prediction.
10: return u

Action space. At each point in time, the scheduler may want
to select any subset of the N ⇥ M tasks. But this requires
a large action space of size 2N⇥M leading to unbearable
computation to learn on the edge. We keep the action space
small using a trick: we allow the agent to execute merely
one action in each time step. The action space is given by
{1, 2, · · · ,M}, where a = j means to conduct the j

th task
for the current processor in the current time step. Hence, the
action space is defined as follows:

A = {a|a 2 {1, 2, · · · ,M}}

In this way, we can greatly speed up our learning rate while
keeping the action space linear in M .

Reward Function. We craft the reward signal to guide the
agent towards desired solutions for our objective: maximize
overall task importance. Specifically, we set the reward at
each time step to

P
j2J

Ij only if the agent reaches the
terminal state (i.e., all tasks in the current system are assigned
accordingly), where J is the set of tasks currently in the
system. Otherwise, the reward was set to 0. Hence,

r(t) =

(P
j2J

Ij , if the agent reaches the terminal state
0, otherwise.

It is worth noting that the agent is set to not receive any
reward for intermediate decisions during a time step, which is
well-suited to apply to our real-world decision objectives.

Optimization. With the above key elements, we leverage
Deep Q-learning Q(s, a; ✓, J) [31], where ✓ denotes the ad-
justable parameter vector of neural networks. It estimates the
value of executing an action a from a given state s. Formally,
given the feature space X which consist of the environment e
and the initial state s0, we have

u F1(J,X ) = F1(J, (e, s0)) = Q(s, a; ✓, J). (5)

Based on the above design, we propose the Clustered Rein-
forcement Learning (CRL) approach, as shown in Algorithm 1.



Convergence Analysis. It has been proven that the Deep
Q-learning technique will gradually converge to the optimal
policy under stationary Markov decision process (MDP) envi-
ronment and sufficiently small learning rate [32]. Hence, the
proposed CRL predictor will converge to the optimal policy
when (i) the environment evolves as a stationary, memoryless
Semi-Markov Decision Process and (ii) the DNN is sufficiently
accurate to return the action associated with the optimal
Q(s, a) estimate.

IV. CRL-BASED LOCAL PROCESS WITH A COOPERATIVE
LEARNING FRAMEWORK

In this section, we first show that the CRL model should
not be directly applied due to the simulation limitations. We
then propose a Cooperative Learning approach based on both
CRL and Support Vector Machine (SVM) to fully leverage the
simulated and real-world data. At last, we briefly introduce the
design of the SVM model.

A. Introducing Local Process with Cooperative Learning

In the previous section, we present a detailed design of the
CRL model. However, the CRL model should not be directly
applied. In our scenario, the environment is diverse over time.
Although we can find similar environments in the historical
environment through simple clustering methods, there is a risk
that the environment is still not closed to the real environment.
That is especially true for edge devices without too much data,
whereas the RL model can confront with quite a few unseen
environments and it requires much environment observations
to cover all possible situations.

In this regard, directly leveraging the CRL model can
still mismatch the environment and submitted less important
tasks, which leads to poor decision performance [30]. We also
conduct an experiment to demonstrate the negative impact.
Based on our CRL model, when the environment is not
accurate, it leads to a 28.84% reduction of performance.

To tackle the challenge, our idea is to leverage runtime data
to adjust the decision of the CRL model.

Accordingly, we propose a cooperative learning approach as
shown in Fig. 7, which is especially well-suited to solve this
problem. The proposed cooperative learning approach contains
two components: 1) a general process with a huge environment
definition data, and 2) a local process with few real-world
data. Formally, let C and R be the feature spaces of the
environment definition data, i.e., C = {(e, s0)}, and real-world
data, respectively. Let F(·) denotes our cooperative learning
model, which can be represented more specifically as:

F(J,X ) = F(J, (C,R)) = w1F1(J, C) + w2F2(J,R), (6)

where F1(·) and F2(·) denote the general process and local
process; w1 and w2 denote the weight of the corresponding
model results, respectively. In addition, the task-allocation
matrix u is outputted by our cooperative learning model F(·),
i.e., u F(J, (C,R)).

CRL 
Predictor

SVM 
Predictor

C
ooperative L

earning

  General Process

  Local Process

Feature 
Engineering

 Environment 
Definition

Real-world
Data

Real-world
Data

Current
Environment

Current
Environment

Task Allocation 
Result

Task Allocation 
Result

Fig. 7: Framework of Cooperative Learning for task allocation.

B. Brief Design of Local Process

For our cooperative learning, We have discussed the first
component of the general process using CRL in the previous
section. Now we introduce the design of the local process.

As for the second component of local process, we compare
several state-of-the-art models of SVM, AdaBoost, and Ran-
dom Forest. We select SVM because of its highest accuracy.
Formally, given the target tasks feature values X , our objective
is to develop an SVM predictor F2(·) which infers the target
tasks allocation u. This can be formulated as follows:

u F2(J,X ) = SVM(X ;w, J) (7)

where w denotes its parameter vector.
In the following, we are to briefly introduce the design of

loss function and feature engineering of the local process of
SVM predictor.

C. Loss Function of Local Process

Formally, let R be the feature spaces of the real-world data,
sample k 2 R usually consists of two parts. One is a vector
xk that is regarded as the input feature values; the other is a
scalar yk that is the desired output of the model. Then, we
define the loss function Lk(w) of our SVM predictor F2(·) as
follows:

Lk(w) =
1

2
kwk

2 +
1

2
max{0; 1� ykw

T
xk}

2
, (8)

where w denotes its parameter vector; wT denotes the trans-
pose of w and k · k

2 denotes the L
2 norm. Finally, our

optimization process is to find the optimal parameter vector
w

⇤ that minimize the loss function Lk(w) on a collection of
training dataset R. Hence, w⇤ = argmin 1

|R|
P

k2R Lk(w).

D. Feature Engineering of Local Process

In most real-world scenarios, e.g., industry domain, it is
either costly or even impossible to obtain the data on envi-
ronments and configurations of tasks; we usually do not have
the luxury to obtain enormous data where local predictor can
be trained with irrelevant features automatically eliminated.
As such the challenge is to select the proper feature set
for our local predictor. Thus, we propose a domain-assisted
feature engineering approach which uses domain knowledge
to create features relevant to the problem at hand. The feature
set consists of the following two types of features, naming
domain features and general features, respectively. We list our
features in Table I.

General features. Overall, the general features should have
some universality and can be easily applied to other scenarios.



TABLE I: The description of features in the local process of SVM predictor.

Feature Type Feature Description

General Past Success The number of cases that a task is selected in the optimal decision in the past
Prediction Accuracy The similarity between the predicted (e.g., COP) and the real for a task in the past

Domain

Building The building that the operating chiller is deployed in
Model Type The model of the operating chiller

Operating Power The power measured by kilowatts for the operating chiller
Weather Condition The description of weather condition in a time interval

Outdoor Temperature The outdoor temperature measured by Celsius in a time interval
Latest Cooling Load The last recorded cooling load assigned on this chiller

Water Mass Flow Rate The mass of water flowing per second, measured by kg/s
Water Temperature Difference The difference between the returned and supplied chilled water temperature

More specifically, it should reflect the decision performance
of a data-driven task in the statistical view over the historical
data. We consider the following two factors: 1) Past Success
which refers to the number of cases that a task is selected in
the optimal decision in the past. In general, if the industrial
demand, configuration, and environment do not change too
much, a task selected in the past will likely be selected again
in the current period; 2) Prediction Accuracy which is the
similarity between the predicted performance and the real
performance for a given task in the past. This is also an
important factor since an accurate prediction indicates our final
decision making can be more reliable.

Domain features. Obviously, the domain features are
closely related to specific scenarios. Recall the previous ex-
ample in the driver-less car, driving operation decision is
critical to driver-less car safety, which consists of the following
specific characteristics such as engine status, speed, radar data,
GPS data and etc. While in this paper, we focus on the indus-
trial field where chiller sequencing is a common but highly
important industrial operation in energy-efficient buildings,
which consists of the following specific features: 1) Meteo-
rological information such as temperature and weather drive
the cooling demand imposed on the chillers; 2) Mechanical
information such as the model type, building, operating power,
water temperature difference, flow rate, and the recent cooling
load are used to capture the chiller specific characteristics.

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of DCTA
with extensive experiments over industrial operation (e.g.,
AIOps) scenarios and transfer learning applications, using
real-world data obtained from multiple data-driven building
management systems.

A. Background of the Simulated Green-building System

Before the setting of our simulation, we begin by introduc-
ing the real-world green-building system to be simulated [22].
The green-building system conducting industrial operations
assisted with machine learning. It is deployed for one week
in January 2019, in a high-rise office building in Hong Kong
which serves more than three thousand people. As a facility
in building, chiller is a machine generate cooling power in
commercial buildings and chiller operation is a significantly

Raspberry Pi ver.3 
× 9 

A+B+B B B+ BA+ A+B+

Laptop

Fig. 8: The Network Topology and Hardware Choice in the Experiments,
where Raspberry Pi are with model types of A+, B, and B+.

important operation, which aims to select run-time configura-
tions of the chiller so that the overall system serves the cooling
demand while minimizes the energy consumption.

In the green-building system, the equipment of chillers,
pumps, air-handling unit, and cooling tower differ greatly
in operation, maintenance, and services. The data of each
equipment in the chiller plant are captured and transmitted by
10 edge nodes, including one operation node conducting and
recording operations, and nine sensing nodes collecting run-
time data. To process data from different types of equipment, a
centralized approach is leveraged, where edge node transmits
data to the controller, and controllers are responsible for task
allocation and decision making for the edge nodes. Finally, the
operation node conducts data-driven COP prediction and send
control sequences to devices. Other sensing nodes without
computation power are merely used to collect data. The
simulation will be conducted according to the above setting to
better simulate the real-world green-building system.

B. Experiment Setup

For generating transfer learning tasks, we use a real-world
building operation dataset released in [22], which contains
four-year operation data for three high-rise commercial build-
ings in a metropolitan, collected by a major building service
provider. The total data is more than 1 TB. Supported 50
transfer-learning tasks include independent multi-task learn-
ing, self-adapted multi-task learning and clustered multi-task
learning based on SVM, AdaBoost and Random Forest.

Our simulation consists of nine Raspberry Pi (version 3)
and one laptop computer as shown in Fig. 8, which are
all interconnected via WiFi under a star network topology
in an office building. This represents an edge computing
environment where the computational capabilities of edge
nodes are heterogeneous. The simulation parameters, e.g., the



Fig. 9: The processing time of task allocation
system with different number of processors.

Fig. 10: The processing time of task allocation
system with different data input sizes.

Fig. 11: The processing time of task allocation
system with different bandwidth limits.

computation time of the Raspberry Pi A+ is 4.75⇥10�7 s/bit,
which is based on the settings from [33].

C. Comparison Baselines and Metrics

Comparison Baselines. We employ the following state-of-
the-art task allocation methods as baselines. It is worth noting
that the first two are some of the non-data-driven methods
(e.g., synthetic method) that have been widely suggested, and
the last two are the data-driven methods we proposed.

• Random Mapping (RM) where each task is processed
at different edge devices with equal probability [33]. In
other words, tasks are randomly assigned.

• Distributed Machine Learning (DML) distributes tasks
to multiple computing nodes, e.g., allocating the training
iteration either to edge devices or to the cloud [34].

• Clustered Reinforcement Learning (CRL) conducts al-
location with our clustered reinforcement learning model.

• Data-driven Cooperative Task Allocation (DCTA)

leverages an SVM model to adjust the decision of the
CRL model.

Evaluation Metrics. For a task allocation method, the abil-
ity to provide credible decision performance under execution
time limits is crucial to all stakeholders. Time is always the
first concern, and we measure the Processing Time (PT), which
is the time the main device needs to partition the application
and receive the output of the decision making. Formally,

PT = ts � tc,

where ts denotes the time instant when the industry decision
is made; tc denotes the time when each experiment start.

D. Experiment Results

Result on Processing Time. Figure 9 shows the processing
time as a function of processors. Consistent with our intuition,
as the number of processors increases, the processing time of
the above allocation methods gradually decreases. We see that
DCTA can outperform RM, DML, and CRL by as much as
3.24, 2.32 and 2.01 times, respectively. On average, DCTA
outperforms RM, DML, and CRL by 2.70, 2.05, and 1.80
times. That is because DCTA leverages data-driven techniques
to capture the dynamic task importance and reduces the
number of less important prediction tasks to perform.

Then, we compare the processing time of DCTA with that
of RM, DML, and CRL for different average input data sizes.
As we can see in Fig. 10, the processing time of our DCTA
is always outperformed other state-of-the-art methods. For
example, our DCTA has an improvement that is 2.71, 1.83,

and 1.68 times to that of RM, DML, and CRL at the average
input data size of 500 Mb. That is because our DCTA obtains
the importance of each task which is time-dynamic changing,
and then allocates to the most suitable edge devices to execute.

Finally, Figure 11 shows the processing time as a function of
network bandwidth. It is well known that network bandwidth
affects the time of data transmission, and transmission time
is also the main component of processing time. Thus, as the
network bandwidth increases, the processing time also gradu-
ally decreases. But it is worth noting that our DCTA always
outperforms RM, DML and CRL by 2.68, 1.94, and 1.71 times
on average, respectively. That is mainly because our DCTA
leverages data-driven techniques to capture the importance of
each task and merely perform the most important tasks.

VI. RELATED WORK

Task Allocation has been intensively researched in cloud
and mobile cloud computing systems [35]–[39]. Recent years
have witnessed great prospects exhibited down to the edge,
e.g., from OpenCL (2008) [40] to AWS IoT Greengrass (2017)
[41] and Microsoft Azure IoT Edge (2018) [42]. Under edge
computing, existing works on task allocation either 1) partition
the machine-learning model and its input, or 2) are conducted
according to different objectives.

First, task allocation in many distributed machine learning
systems [34], [43]–[45] have successfully demonstrated their
effectiveness to enable big-data applications deployed on a
large number of machines. For example, when allocating task
for deep neural network (DNN), Neurosurgeon [46] identifies
a strategy in a fine-grained layer level between edge and
cloud. A similar approach presented in [47] proposes a design
guideline for DNN partitioning based on the layer-wise trade-
off study. These methods provide the capability to accelerate
the execution of a single data-driven task on the edge.

Second, existing works also consider different objectives for
task allocation [48], [49]. Examples also include reducing the
energy consumption of edge device while predefined delay
constraint is satisfied [11] [12], finding a proper trade-off
between the energy consumption and the execution delay [13],
and minimizing the overall application execution cost [10]. A
majority of these works are not designed for machine learning
tasks. Nevertheless, though these techniques may consider a
multi-task setting, they regard all submitted tasks as equally
important, which leads to inefficient resource allocation at a
task level when directly applied for MTL.

Different from these works, our study investigates task al-
location for multiple machine-learning tasks without knowing



task priority. We capture and leverage task importance to
accelerate the overall learning process, which sheds some new
light on task allocation for MTL on the edge.

Machine learning for Complicated Optimization Prob-

lems has been successfully employed especially with time-
varying parameters and complicated solutions which are re-
peatedly conducted [50], [51]. Examples include intelligent
logistics [26], code optimization [52], [53], task schedul-
ing [54], [55]. Our cooperative approach is closely related to
ensemble learning where multiple models are used to solve an
optimization problem. Ensemble learning is shown to be useful
when scheduling parallel tasks [56] and optimizing application
memory usage [57]. This work is the first attempt in applying
ensemble techniques to optimize task allocation of MTL with
task importance on the edge.

VII. DISCUSSION

Naturally, there is room for further work and possible
improvements. We discuss a few points here.

Leveraging Existing Edge Nodes. Admittedly, it is possi-
ble to fully redeploy hardware after introducing data-driven
techniques and provide strong computational power within
a low purchasing budget [58]. However, for the scalability
purpose, only an incremental software installment for the real-
world system is conducted for edge computing, with a minimal
revision of hardware for the current system. That is to say, only
the current commercial off-the-shelf components in the system
are leveraged for computation. The proposed system avoids
deploying any additional equipment within the real-world sys-
tem, e.g., without adding high-performance servers which may
be in low purchasing price. Such a design ensures privacy and
enables low-intrusive or even non-intrusive installment, which
are both critical for scalability of the proposed approach. We
understand that we may sacrifice the probability to obtain
more sensing data and have even better prediction performance
if we avoid deploying additional equipment inside the local
system for the scalability purpose. As for the case where
powerful edge nodes are available, the proposed approach can
be easily extended to support the case by changing the budget
constraints in the problem formulation.

Data Scarcity on the Edge. For industrial edge-computing
applications, data scarcity often exists even though cloud
storage can still cooperate for big data. The data scarcity is
the result from 1) prohibitive cost or inherent difficulty in
obtaining required proper training samples, 2) with respect
to the application complexity and uncertainty. First, when
considering the privacy concern, storage limitations, budget,
and real-time requirements, partial or even the whole data
set is not possible to be stored, transmitted and processed
for the edge-computing applications, compared with that of
cloud-computing applications. Meantime, due to the instability
of the sensing devices, data loss also occurs frequently in
some environments. Worse still, an industrial application can
be complex or highly uncertain which requires a larger amount
of data. For example, many robots for text production, such
as search engines or translation programs, have difficulties in

finding sufficient samples for each context. The reason lies in
the context of words which can result in ambiguities and there
exists a huge amount of possible contexts. Thus, we believe
moves should be conducted for the data scarcity issue on the
edge and we provide an edge-based transfer learning.

Real-time Sensing Data. Real-time sensing data facilitate
the learning process by incorporating the run-time observations
on environmental dynamics. In order to capture the run-time
effect from real-time sensing data, we discuss two learning
modes, i.e. the offline and online modes. First, the offline mode
divides historical samples into multiple clusters in advance,
e.g., using K-means. When the real-sensing data is coming,
the system selects the most similar clustered samples to train
and predict. Its drawback lies in the possibly low prediction
accuracy due to the offline clustering. Second, the online mode
prepares the training samples in a run-time manner by finding
those which are the most similar with the real-time data, e.g.,
using KNN. This mode guarantees a high prediction accuracy
but could lead to extra time to choose the proper training data.
In this paper, we adopt the online mode to guarantee that our
final decision making can be more reliable. The additional time
overhead can be significantly reduced through our proposed
data-driven task allocation mechanism.

Multi-task Assumption. In this study, our approach is
designed to tackle time-varying environments. We assume that
1) there are multiple related machine-learning tasks, and 2)
there is no strong pre- and post-dependency, which is also a
prerequisite for performing multi-task transfer learning. Thus,
those cases 1) under single-task settings, or 2) under multi-
task settings but with the sequential dependency between tasks,
are beyond the scope of this paper. It would be an interesting
future work to extend our approach to those scenarios.

VIII. CONCLUSION

Edge computing for machine learning has become a heated
research topic. In this paper, we focus on task allocation for
MTL scenarios by introducing task importance and make the
following contributions. First, we reveal that it is important to
measure the impact of tasks on overall decision performance
improvement and quantify task importance. We also observe
the long-tail property of task importance, which serves as a
key metric to guide task allocation, and facilitates resource
saving from less important tasks and accelerates the overall
learning process. We formally define the TATIM problem
of task allocation with task importance for MTL. Second,
we show TATIM is in fact a variant of Knapsack problem,
which is NP-complete. Accordingly, we propose a Data-driven
Cooperative Task Allocation (DCTA) approach to accelerate
the computational efficiency without performance degradation.
Third, we evaluate the performance of our DCTA approach by
applying it to a real-world industrial operation (e.g., AIOps)
scenario. Experiments show that our DCTA approach can save
3.24 times of processing time compared to the state-of-the-
art. We believe that our DCTA approach offers an effective
and practical mechanism for reducing the required resource
associated with performing MTL on edge devices.
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